summaryrefslogtreecommitdiff
path: root/yjit/src/backend/arm64/mod.rs
blob: 9dc49a7686a5c202ccfd172b3a8604a7930fb72d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
#![allow(dead_code)]
#![allow(unused_variables)]
#![allow(unused_imports)]

use crate::asm::{CodeBlock};
use crate::asm::arm64::*;
use crate::codegen::{JITState};
use crate::cruby::*;
use crate::backend::ir::*;
use crate::virtualmem::CodePtr;

// Use the arm64 register type for this platform
pub type Reg = A64Reg;

// Callee-saved registers
pub const _CFP: Opnd = Opnd::Reg(X19_REG);
pub const _EC: Opnd = Opnd::Reg(X20_REG);
pub const _SP: Opnd = Opnd::Reg(X21_REG);

// C argument registers on this platform
pub const _C_ARG_OPNDS: [Opnd; 6] = [
    Opnd::Reg(X0_REG),
    Opnd::Reg(X1_REG),
    Opnd::Reg(X2_REG),
    Opnd::Reg(X3_REG),
    Opnd::Reg(X4_REG),
    Opnd::Reg(X5_REG)
];

// C return value register on this platform
pub const C_RET_REG: Reg = X0_REG;
pub const _C_RET_OPND: Opnd = Opnd::Reg(X0_REG);

// These constants define the way we work with Arm64's stack pointer. The stack
// pointer always needs to be aligned to a 16-byte boundary.
pub const C_SP_REG: A64Opnd = X31;
pub const C_SP_STEP: i32 = 16;

/// Map Opnd to A64Opnd
impl From<Opnd> for A64Opnd {
    fn from(opnd: Opnd) -> Self {
        match opnd {
            Opnd::UImm(value) => A64Opnd::new_uimm(value),
            Opnd::Imm(value) => A64Opnd::new_imm(value),
            Opnd::Reg(reg) => A64Opnd::Reg(reg),
            Opnd::Mem(Mem { base: MemBase::Reg(reg_no), num_bits, disp }) => {
                A64Opnd::new_mem(num_bits, A64Opnd::Reg(A64Reg { num_bits, reg_no }), disp)
            },
            Opnd::Mem(Mem { base: MemBase::InsnOut(_), .. }) => {
                panic!("attempted to lower an Opnd::Mem with a MemBase::InsnOut base")
            },
            Opnd::InsnOut { .. } => panic!("attempted to lower an Opnd::InsnOut"),
            Opnd::None => panic!("attempted to lower an Opnd::None"),
            Opnd::Value(_) => panic!("attempted to lower an Opnd::Value"),
        }
    }
}

impl Assembler
{
    // A special scratch register for intermediate processing.
    const SCRATCH0: A64Opnd = A64Opnd::Reg(X22_REG);

    /// Get the list of registers from which we will allocate on this platform
    /// These are caller-saved registers
    /// Note: we intentionally exclude C_RET_REG (X0) from this list
    /// because of the way it's used in gen_leave() and gen_leave_exit()
    pub fn get_alloc_regs() -> Vec<Reg> {
        vec![X11_REG, X12_REG, X13_REG]
    }

    /// Get a list of all of the caller-saved registers
    pub fn get_caller_save_regs() -> Vec<Reg> {
        vec![X9_REG, X10_REG, X11_REG, X12_REG, X13_REG, X14_REG, X15_REG]
    }

    /// Split platform-specific instructions
    /// The transformations done here are meant to make our lives simpler in later
    /// stages of the compilation pipeline.
    /// Here we may want to make sure that all instructions (except load and store)
    /// have no memory operands.
    fn arm64_split(mut self) -> Assembler
    {
        /// Operands that take the place of bitmask immediates must follow a
        /// certain encoding. In this function we ensure that those operands
        /// do follow that encoding, and if they don't then we load them first.
        fn split_bitmask_immediate(asm: &mut Assembler, opnd: Opnd) -> Opnd {
            match opnd {
                Opnd::Reg(_) | Opnd::InsnOut { .. } => opnd,
                Opnd::Mem(_) => asm.load(opnd),
                Opnd::Imm(imm) => {
                    if imm <= 0 {
                        asm.load(opnd)
                    } else if BitmaskImmediate::try_from(imm as u64).is_ok() {
                        Opnd::UImm(imm as u64)
                    } else {
                        asm.load(opnd)
                    }
                },
                Opnd::UImm(uimm) => {
                    if BitmaskImmediate::try_from(uimm).is_ok() {
                        opnd
                    } else {
                        asm.load(opnd)
                    }
                },
                Opnd::None | Opnd::Value(_) => unreachable!()
            }
        }

        /// Operands that take the place of a shifted immediate must fit within
        /// a certain size. If they don't then we need to load them first.
        fn split_shifted_immediate(asm: &mut Assembler, opnd: Opnd) -> Opnd {
            match opnd {
                Opnd::Reg(_) | Opnd::InsnOut { .. } => opnd,
                Opnd::Mem(_) | Opnd::Imm(_) => asm.load(opnd),
                Opnd::UImm(uimm) => {
                    if ShiftedImmediate::try_from(uimm).is_ok() {
                        opnd
                    } else {
                        asm.load(opnd)
                    }
                },
                Opnd::None | Opnd::Value(_) => unreachable!()
            }
        }

        /// When you're storing a register into a memory location, the
        /// displacement from the base register of the memory location must fit
        /// into 9 bits. If it doesn't, then we need to load that memory address
        /// into a register first.
        fn split_store(asm: &mut Assembler, opnd: Opnd) -> Opnd {
            match opnd {
                Opnd::Mem(mem) => {
                    if imm_fits_bits(mem.disp.into(), 9) {
                        opnd
                    } else {
                        let base = asm.lea(opnd);
                        Opnd::mem(64, base, 0)
                    }
                },
                _ => unreachable!("Can only store memory addresses.")
            }
        }

        self.forward_pass(|asm, index, op, opnds, target, text, pos_marker| {
            // Load all Value operands into registers that aren't already a part
            // of Load instructions.
            let opnds = match op {
                Op::Load => opnds,
                _ => opnds.into_iter().map(|opnd| {
                    if let Opnd::Value(_) = opnd {
                        asm.load(opnd)
                    } else {
                        opnd
                    }
                }).collect()
            };

            match op {
                Op::Add => {
                    match (opnds[0], opnds[1]) {
                        (Opnd::Reg(_) | Opnd::InsnOut { .. }, Opnd::Reg(_) | Opnd::InsnOut { .. }) => {
                            asm.add(opnds[0], opnds[1]);
                        },
                        (reg_opnd @ (Opnd::Reg(_) | Opnd::InsnOut { .. }), other_opnd) |
                        (other_opnd, reg_opnd @ (Opnd::Reg(_) | Opnd::InsnOut { .. })) => {
                            let opnd1 = split_shifted_immediate(asm, other_opnd);
                            asm.add(reg_opnd, opnd1);
                        },
                        _ => {
                            let opnd0 = asm.load(opnds[0]);
                            let opnd1 = split_shifted_immediate(asm, opnds[1]);
                            asm.add(opnd0, opnd1);
                        }
                    }
                },
                Op::And | Op::Or => {
                    match (opnds[0], opnds[1]) {
                        (Opnd::Reg(_), Opnd::Reg(_)) => {
                            asm.and(opnds[0], opnds[1]);
                        },
                        (reg_opnd @ Opnd::Reg(_), other_opnd) |
                        (other_opnd, reg_opnd @ Opnd::Reg(_)) => {
                            let opnd1 = split_bitmask_immediate(asm, other_opnd);
                            asm.and(reg_opnd, opnd1);
                        },
                        _ => {
                            let opnd0 = asm.load(opnds[0]);
                            let opnd1 = split_bitmask_immediate(asm, opnds[1]);
                            asm.and(opnd0, opnd1);
                        }
                    }
                },
                Op::CCall => {
                    assert!(opnds.len() < C_ARG_OPNDS.len());

                    // For each of the operands we're going to first load them
                    // into a register and then move them into the correct
                    // argument register.
                    // Note: the iteration order is reversed to avoid corrupting x0,
                    // which is both the return value and first argument register
                    for (idx, opnd) in opnds.into_iter().enumerate().rev() {
                        let value = asm.load(opnd);
                        asm.mov(C_ARG_OPNDS[idx], value);
                    }

                    // Now we push the CCall without any arguments so that it
                    // just performs the call.
                    asm.ccall(target.unwrap().unwrap_fun_ptr(), vec![]);
                },
                Op::Cmp => {
                    let opnd0 = match opnds[0] {
                        Opnd::Reg(_) | Opnd::InsnOut { .. } => opnds[0],
                        _ => asm.load(opnds[0])
                    };

                    let opnd1 = split_shifted_immediate(asm, opnds[1]);

                    asm.push_insn(op, vec![opnd0, opnd1], target, text, pos_marker);
                },
                Op::CRet => {
                    if opnds[0] != Opnd::Reg(C_RET_REG) {
                        let value = asm.load(opnds[0]);
                        asm.mov(C_RET_OPND, value);
                    }
                    asm.cret(C_RET_OPND);
                },
                Op::CSelZ | Op::CSelNZ | Op::CSelE | Op::CSelNE |
                Op::CSelL | Op::CSelLE | Op::CSelG | Op::CSelGE => {
                    let new_opnds = opnds.into_iter().map(|opnd| {
                        match opnd {
                            Opnd::Reg(_) | Opnd::InsnOut { .. } => opnd,
                            _ => asm.load(opnd)
                        }
                    }).collect();

                    asm.push_insn(op, new_opnds, target, text, pos_marker);
                },
                Op::IncrCounter => {
                    // We'll use LDADD later which only works with registers
                    // ... Load pointer into register
                    let counter_addr = asm.lea(opnds[0]);

                    // Load immediates into a register
                    let addend = match opnds[1] {
                        opnd @ Opnd::Imm(_) | opnd @ Opnd::UImm(_) => asm.load(opnd),
                        opnd => opnd,
                    };

                    asm.incr_counter(counter_addr, addend);
                },
                Op::JmpOpnd => {
                    if let Opnd::Mem(_) = opnds[0] {
                        let opnd0 = asm.load(opnds[0]);
                        asm.jmp_opnd(opnd0);
                    } else {
                        asm.jmp_opnd(opnds[0]);
                    }
                },
                Op::LoadSExt => {
                    match opnds[0] {
                        // We only want to sign extend if the operand is a
                        // register, instruction output, or memory address that
                        // is 32 bits. Otherwise we'll just load the value
                        // directly since there's no need to sign extend.
                        Opnd::Reg(Reg { num_bits: 32, .. }) |
                        Opnd::InsnOut { num_bits: 32, .. } |
                        Opnd::Mem(Mem { num_bits: 32, .. }) => {
                            asm.load_sext(opnds[0]);
                        },
                        _ => {
                            asm.load(opnds[0]);
                        }
                    };
                },
                Op::Mov => {
                    let value = match (opnds[0], opnds[1]) {
                        // If the first operand is a memory operand, we're going
                        // to transform this into a store instruction, so we'll
                        // need to load this anyway.
                        (Opnd::Mem(_), Opnd::UImm(_)) => asm.load(opnds[1]),
                        // The value that is being moved must be either a
                        // register or an immediate that can be encoded as a
                        // bitmask immediate. Otherwise, we'll need to split the
                        // move into multiple instructions.
                        _ => split_bitmask_immediate(asm, opnds[1])
                    };

                    // If we're attempting to load into a memory operand, then
                    // we'll switch over to the store instruction. Otherwise
                    // we'll use the normal mov instruction.
                    match opnds[0] {
                        Opnd::Mem(_) => {
                            let opnd0 = split_store(asm, opnds[0]);
                            asm.store(opnd0, value);
                        },
                        Opnd::Reg(_) => {
                            asm.mov(opnds[0], value);
                        },
                        _ => unreachable!()
                    };
                },
                Op::Not => {
                    // The value that is being negated must be in a register, so
                    // if we get anything else we need to load it first.
                    let opnd0 = match opnds[0] {
                        Opnd::Mem(_) => asm.load(opnds[0]),
                        _ => opnds[0]
                    };

                    asm.not(opnd0);
                },
                Op::Store => {
                    // The displacement for the STUR instruction can't be more
                    // than 9 bits long. If it's longer, we need to load the
                    // memory address into a register first.
                    let opnd0 = split_store(asm, opnds[0]);

                    // The value being stored must be in a register, so if it's
                    // not already one we'll load it first.
                    let opnd1 = match opnds[1] {
                        Opnd::Reg(_) | Opnd::InsnOut { .. } => opnds[1],
                        _ => asm.load(opnds[1])
                    };

                    asm.store(opnd0, opnd1);
                },
                Op::Sub => {
                    let opnd0 = match opnds[0] {
                        Opnd::Reg(_) | Opnd::InsnOut { .. } => opnds[0],
                        _ => asm.load(opnds[0])
                    };

                    let opnd1 = split_shifted_immediate(asm, opnds[1]);

                    asm.push_insn(op, vec![opnd0, opnd1], target, text, pos_marker);
                },
                Op::Test => {
                    // The value being tested must be in a register, so if it's
                    // not already one we'll load it first.
                    let opnd0 = match opnds[0] {
                        Opnd::Reg(_) | Opnd::InsnOut { .. } => opnds[0],
                        _ => asm.load(opnds[0])
                    };

                    // The second value must be either a register or an
                    // unsigned immediate that can be encoded as a bitmask
                    // immediate. If it's not one of those, we'll need to load
                    // it first.
                    let opnd1 = split_bitmask_immediate(asm, opnds[1]);

                    asm.test(opnd0, opnd1);
                },
                _ => {
                    asm.push_insn(op, opnds, target, text, pos_marker);
                }
            };
        })
    }

    /// Emit platform-specific machine code
    /// Returns a list of GC offsets
    pub fn arm64_emit(&mut self, cb: &mut CodeBlock) -> Vec<u32>
    {
        /// Determine how many instructions it will take to represent moving
        /// this value into a register. Note that the return value of this
        /// function must correspond to how many instructions are used to
        /// represent this load in the emit_load_value function.
        fn emit_load_size(value: u64) -> u8 {
            if BitmaskImmediate::try_from(value).is_ok() {
                return 1;
            }

            if value < (1 << 16) {
                1
            } else if value < (1 << 32) {
                2
            } else if value < (1 << 48) {
                3
            } else {
                4
            }
        }

        /// Emit the required instructions to load the given value into the
        /// given register. Our goal here is to use as few instructions as
        /// possible to get this value into the register.
        fn emit_load_value(cb: &mut CodeBlock, rd: A64Opnd, value: u64) {
            let mut current = value;

            if current <= 0xffff {
                // If the value fits into a single movz
                // instruction, then we'll use that.
                movz(cb, rd, A64Opnd::new_uimm(current), 0);
            } else if BitmaskImmediate::try_from(current).is_ok() {
                // Otherwise, if the immediate can be encoded
                // with the special bitmask immediate encoding,
                // we'll use that.
                mov(cb, rd, A64Opnd::new_uimm(current));
            } else {
                // Finally we'll fall back to encoding the value
                // using movz for the first 16 bits and movk for
                // each subsequent set of 16 bits as long we
                // they are necessary.
                movz(cb, rd, A64Opnd::new_uimm(current & 0xffff), 0);

                // (We're sure this is necessary since we
                // checked if it only fit into movz above).
                current >>= 16;
                movk(cb, rd, A64Opnd::new_uimm(current & 0xffff), 16);

                if current > 0xffff {
                    current >>= 16;
                    movk(cb, rd, A64Opnd::new_uimm(current & 0xffff), 32);
                }

                if current > 0xffff {
                    current >>= 16;
                    movk(cb, rd, A64Opnd::new_uimm(current & 0xffff), 48);
                }
            }
        }

        /// Emit a conditional jump instruction to a specific target. This is
        /// called when lowering any of the conditional jump instructions.
        fn emit_conditional_jump<const CONDITION: u8>(cb: &mut CodeBlock, target: Target) {
            match target {
                Target::CodePtr(dst_ptr) => {
                    let dst_addr = dst_ptr.into_u64();
                    //let src_addr = cb.get_write_ptr().into_i64() + 4;
                    //let offset = dst_addr - src_addr;

                    // If the condition is met, then we'll skip past the
                    // next instruction, put the address in a register, and
                    // jump to it.
                    bcond(cb, CONDITION, A64Opnd::new_imm(8));

                    // If we get to this instruction, then the condition
                    // wasn't met, in which case we'll jump past the
                    // next instruction that perform the direct jump.

                    b(cb, A64Opnd::new_imm(2i64 + emit_load_size(dst_addr) as i64));
                    emit_load_value(cb, Assembler::SCRATCH0, dst_addr);
                    br(cb, Assembler::SCRATCH0);

                    /*
                    // If the jump offset fits into the conditional jump as an
                    // immediate value and it's properly aligned, then we can
                    // use the b.cond instruction directly. Otherwise, we need
                    // to load the address into a register and use the branch
                    // register instruction.
                    if bcond_offset_fits_bits(offset) {
                        bcond(cb, CONDITION, A64Opnd::new_imm(dst_addr - src_addr));
                    } else {
                        // If the condition is met, then we'll skip past the
                        // next instruction, put the address in a register, and
                        // jump to it.
                        bcond(cb, CONDITION, A64Opnd::new_imm(8));

                        // If the offset fits into a direct jump, then we'll use
                        // that and the number of instructions will be shorter.
                        // Otherwise we'll use the branch register instruction.
                        if b_offset_fits_bits(offset) {
                            // If we get to this instruction, then the condition
                            // wasn't met, in which case we'll jump past the
                            // next instruction that performs the direct jump.
                            b(cb, A64Opnd::new_imm(1));

                            // Here we'll perform the direct jump to the target.
                            let offset = dst_addr - cb.get_write_ptr().into_i64() + 4;
                            b(cb, A64Opnd::new_imm(offset / 4));
                        } else {
                            // If we get to this instruction, then the condition
                            // wasn't met, in which case we'll jump past the
                            // next instruction that perform the direct jump.
                            let value = dst_addr as u64;

                            b(cb, A64Opnd::new_imm(emit_load_size(value).into()));
                            emit_load_value(cb, Assembler::SCRATCH0, value);
                            br(cb, Assembler::SCRATCH0);
                        }
                    }
                    */
                },
                Target::Label(label_idx) => {
                    // Here we're going to save enough space for ourselves and
                    // then come back and write the instruction once we know the
                    // offset. We're going to assume we can fit into a single
                    // b.cond instruction. It will panic otherwise.
                    cb.label_ref(label_idx, 4, |cb, src_addr, dst_addr| {
                        bcond(cb, CONDITION, A64Opnd::new_imm(dst_addr - (src_addr - 4)));
                    });
                },
                Target::FunPtr(_) => unreachable!()
            };
        }

        /// Emit a push instruction for the given operand by adding to the stack
        /// pointer and then storing the given value.
        fn emit_push(cb: &mut CodeBlock, opnd: A64Opnd) {
            str_pre(cb, opnd, A64Opnd::new_mem(64, C_SP_REG, -C_SP_STEP));
        }

        /// Emit a pop instruction into the given operand by loading the value
        /// and then subtracting from the stack pointer.
        fn emit_pop(cb: &mut CodeBlock, opnd: A64Opnd) {
            ldr_post(cb, opnd, A64Opnd::new_mem(64, C_SP_REG, C_SP_STEP));
        }

        // dbg!(&self.insns);

        // List of GC offsets
        let mut gc_offsets: Vec<u32> = Vec::new();

        // For each instruction
        for insn in &self.insns {
            match insn.op {
                Op::Comment => {
                    if cfg!(feature = "asm_comments") {
                        cb.add_comment(&insn.text.as_ref().unwrap());
                    }
                },
                Op::Label => {
                    cb.write_label(insn.target.unwrap().unwrap_label_idx());
                },
                // Report back the current position in the generated code
                Op::PosMarker => {
                    let pos = cb.get_write_ptr();
                    let pos_marker_fn = insn.pos_marker.as_ref().unwrap();
                    pos_marker_fn(pos);
                }
                Op::BakeString => {
                    let str = insn.text.as_ref().unwrap();
                    for byte in str.as_bytes() {
                        cb.write_byte(*byte);
                    }

                    // Add a null-terminator byte for safety (in case we pass
                    // this to C code)
                    cb.write_byte(0);

                    // Pad out the string to the next 4-byte boundary so that
                    // it's easy to jump past.
                    for _ in 0..(4 - ((str.len() + 1) % 4)) {
                        cb.write_byte(0);
                    }
                },
                Op::Add => {
                    add(cb, insn.out.into(), insn.opnds[0].into(), insn.opnds[1].into());
                },
                Op::FrameSetup => {
                    stp_pre(cb, X29, X30, A64Opnd::new_mem(128, C_SP_REG, -16));

                    // X29 (frame_pointer) = SP
                    mov(cb, X29, C_SP_REG);
                },
                Op::FrameTeardown => {
                    // SP = X29 (frame pointer)
                    mov(cb, C_SP_REG, X29);

                    ldp_post(cb, X29, X30, A64Opnd::new_mem(128, C_SP_REG, 16));
                },
                Op::Sub => {
                    sub(cb, insn.out.into(), insn.opnds[0].into(), insn.opnds[1].into());
                },
                Op::And => {
                    and(cb, insn.out.into(), insn.opnds[0].into(), insn.opnds[1].into());
                },
                Op::Or => {
                    orr(cb, insn.out.into(), insn.opnds[0].into(), insn.opnds[1].into());
                },
                Op::Not => {
                    mvn(cb, insn.out.into(), insn.opnds[0].into());
                },
                Op::Store => {
                    // This order may be surprising but it is correct. The way
                    // the Arm64 assembler works, the register that is going to
                    // be stored is first and the address is second. However in
                    // our IR we have the address first and the register second.
                    stur(cb, insn.opnds[1].into(), insn.opnds[0].into());
                },
                Op::Load => {
                    match insn.opnds[0] {
                        Opnd::Reg(_) | Opnd::InsnOut { .. } => {
                            mov(cb, insn.out.into(), insn.opnds[0].into());
                        },
                        Opnd::UImm(uimm) => {
                            emit_load_value(cb, insn.out.into(), uimm);
                        },
                        Opnd::Imm(imm) => {
                            emit_load_value(cb, insn.out.into(), imm as u64);
                        },
                        Opnd::Mem(_) => {
                            ldur(cb, insn.out.into(), insn.opnds[0].into());
                        },
                        Opnd::Value(value) => {
                            // This assumes only load instructions can contain
                            // references to GC'd Value operands. If the value
                            // being loaded is a heap object, we'll report that
                            // back out to the gc_offsets list.
                            ldr(cb, insn.out.into(), 2);
                            b(cb, A64Opnd::new_imm(1 + (SIZEOF_VALUE as i64) / 4));
                            cb.write_bytes(&value.as_u64().to_le_bytes());

                            if !value.special_const_p() {
                                let ptr_offset: u32 = (cb.get_write_pos() as u32) - (SIZEOF_VALUE as u32);
                                gc_offsets.push(ptr_offset);
                            }
                        },
                        Opnd::None => {
                            unreachable!("Attempted to load from None operand");
                        }
                    };
                },
                Op::LoadSExt => {
                    match insn.opnds[0] {
                        Opnd::Reg(Reg { num_bits: 32, .. }) |
                        Opnd::InsnOut { num_bits: 32, .. } => {
                            sxtw(cb, insn.out.into(), insn.opnds[0].into());
                        },
                        Opnd::Mem(Mem { num_bits: 32, .. }) => {
                            ldursw(cb, insn.out.into(), insn.opnds[0].into());
                        },
                        _ => unreachable!()
                    };
                },
                Op::Mov => {
                    mov(cb, insn.opnds[0].into(), insn.opnds[1].into());
                },
                Op::Lea => {
                    let opnd: A64Opnd = insn.opnds[0].into();

                    match opnd {
                        A64Opnd::Mem(mem) => {
                            add(
                                cb,
                                insn.out.into(),
                                A64Opnd::Reg(A64Reg { reg_no: mem.base_reg_no, num_bits: 64 }),
                                A64Opnd::new_imm(mem.disp.into())
                            );
                        },
                        _ => {
                            panic!("Op::Lea only accepts Opnd::Mem operands.");
                        }
                    };
                },
                Op::LeaLabel => {
                    let label_idx = insn.target.unwrap().unwrap_label_idx();

                    cb.label_ref(label_idx, 4, |cb, end_addr, dst_addr| {
                        adr(cb, Self::SCRATCH0, A64Opnd::new_imm(dst_addr - (end_addr - 4)));
                    });

                    mov(cb, insn.out.into(), Self::SCRATCH0);
                },
                Op::CPush => {
                    emit_push(cb, insn.opnds[0].into());
                },
                Op::CPop => {
                    emit_pop(cb, insn.out.into());
                },
                Op::CPopInto => {
                    emit_pop(cb, insn.opnds[0].into());
                },
                Op::CPushAll => {
                    let regs = Assembler::get_caller_save_regs();

                    for reg in regs {
                        emit_push(cb, A64Opnd::Reg(reg));
                    }

                    // Push the flags/state register
                    mrs(cb, Self::SCRATCH0, SystemRegister::NZCV);
                    emit_push(cb, Self::SCRATCH0);
                },
                Op::CPopAll => {
                    let regs = Assembler::get_caller_save_regs();

                    // Pop the state/flags register
                    msr(cb, SystemRegister::NZCV, Self::SCRATCH0);
                    emit_pop(cb, Self::SCRATCH0);

                    for reg in regs.into_iter().rev() {
                        emit_pop(cb, A64Opnd::Reg(reg));
                    }
                },
                Op::CCall => {
                    // The offset to the call target in bytes
                    let src_addr = cb.get_write_ptr().into_i64();
                    let dst_addr = insn.target.unwrap().unwrap_fun_ptr() as i64;
                    let offset = dst_addr - src_addr;
                    // The offset in instruction count for BL's immediate
                    let offset = offset / 4;

                    // Use BL if the offset is short enough to encode as an immediate.
                    // Otherwise, use BLR with a register.
                    if b_offset_fits_bits(offset) {
                        bl(cb, A64Opnd::new_imm(offset));
                    } else {
                        emit_load_value(cb, Self::SCRATCH0, dst_addr as u64);
                        blr(cb, Self::SCRATCH0);
                    }
                },
                Op::CRet => {
                    ret(cb, A64Opnd::None);
                },
                Op::Cmp => {
                    cmp(cb, insn.opnds[0].into(), insn.opnds[1].into());
                },
                Op::Test => {
                    tst(cb, insn.opnds[0].into(), insn.opnds[1].into());
                },
                Op::JmpOpnd => {
                    br(cb, insn.opnds[0].into());
                },
                Op::Jmp => {
                    match insn.target.unwrap() {
                        Target::CodePtr(dst_ptr) => {
                            let src_addr = cb.get_write_ptr().into_i64();
                            let dst_addr = dst_ptr.into_i64();

                            // The offset between the two instructions in bytes.
                            // Note that when we encode this into a b
                            // instruction, we'll divide by 4 because it accepts
                            // the number of instructions to jump over.
                            let offset = dst_addr - src_addr;
                            let offset = offset / 4;

                            // If the offset is short enough, then we'll use the
                            // branch instruction. Otherwise, we'll move the
                            // destination into a register and use the branch
                            // register instruction.
                            if b_offset_fits_bits(offset) {
                                b(cb, A64Opnd::new_imm(offset));
                            } else {
                                emit_load_value(cb, Self::SCRATCH0, dst_addr as u64);
                                br(cb, Self::SCRATCH0);
                            }
                        },
                        Target::Label(label_idx) => {
                            // Here we're going to save enough space for
                            // ourselves and then come back and write the
                            // instruction once we know the offset. We're going
                            // to assume we can fit into a single b instruction.
                            // It will panic otherwise.
                            cb.label_ref(label_idx, 4, |cb, src_addr, dst_addr| {
                                b(cb, A64Opnd::new_imm((dst_addr - (src_addr - 4)) / 4));
                            });
                        },
                        _ => unreachable!()
                    };
                },
                Op::Je => {
                    emit_conditional_jump::<{Condition::EQ}>(cb, insn.target.unwrap());
                },
                Op::Jne => {
                    emit_conditional_jump::<{Condition::NE}>(cb, insn.target.unwrap());
                },
                Op::Jbe => {
                    emit_conditional_jump::<{Condition::LS}>(cb, insn.target.unwrap());
                },
                Op::Jz => {
                    emit_conditional_jump::<{Condition::EQ}>(cb, insn.target.unwrap());
                },
                Op::Jnz => {
                    emit_conditional_jump::<{Condition::NE}>(cb, insn.target.unwrap());
                },
                Op::Jo => {
                    emit_conditional_jump::<{Condition::VS}>(cb, insn.target.unwrap());
                },
                Op::IncrCounter => {
                    ldaddal(cb, insn.opnds[1].into(), insn.opnds[1].into(), insn.opnds[0].into());
                },
                Op::Breakpoint => {
                    brk(cb, A64Opnd::None);
                },
                Op::CSelZ | Op::CSelE => {
                    csel(cb, insn.out.into(), insn.opnds[0].into(), insn.opnds[1].into(), Condition::EQ);
                },
                Op::CSelNZ | Op::CSelNE => {
                    csel(cb, insn.out.into(), insn.opnds[0].into(), insn.opnds[1].into(), Condition::NE);
                },
                Op::CSelL => {
                    csel(cb, insn.out.into(), insn.opnds[0].into(), insn.opnds[1].into(), Condition::LT);
                },
                Op::CSelLE => {
                    csel(cb, insn.out.into(), insn.opnds[0].into(), insn.opnds[1].into(), Condition::LE);
                },
                Op::CSelG => {
                    csel(cb, insn.out.into(), insn.opnds[0].into(), insn.opnds[1].into(), Condition::GT);
                },
                Op::CSelGE => {
                    csel(cb, insn.out.into(), insn.opnds[0].into(), insn.opnds[1].into(), Condition::GE);
                }
                Op::LiveReg => (), // just a reg alloc signal, no code
            };
        }

        gc_offsets
    }

    /// Optimize and compile the stored instructions
    pub fn compile_with_regs(self, cb: &mut CodeBlock, regs: Vec<Reg>) -> Vec<u32>
    {
        let mut asm = self.arm64_split().alloc_regs(regs);

        // Create label instances in the code block
        for (idx, name) in asm.label_names.iter().enumerate() {
            let label_idx = cb.new_label(name.to_string());
            assert!(label_idx == idx);
        }

        let gc_offsets = asm.arm64_emit(cb);
        cb.link_labels();

        gc_offsets
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    fn setup_asm() -> (Assembler, CodeBlock) {
        (Assembler::new(), CodeBlock::new_dummy(1024))
    }

    #[test]
    fn test_emit_add() {
        let (mut asm, mut cb) = setup_asm();

        let opnd = asm.add(Opnd::Reg(X0_REG), Opnd::Reg(X1_REG));
        asm.store(Opnd::mem(64, Opnd::Reg(X2_REG), 0), opnd);
        asm.compile_with_regs(&mut cb, vec![X3_REG]);

        let insns = cb.get_ptr(0).raw_ptr() as *const u32;
        assert_eq!(0x8b010003, unsafe { *insns });
    }

    #[test]
    fn test_emit_bake_string() {
        let (mut asm, mut cb) = setup_asm();

        asm.bake_string("Hello, world!");
        asm.compile_with_num_regs(&mut cb, 0);

        // Testing that we pad the string to the nearest 4-byte boundary to make
        // it easier to jump over.
        assert_eq!(16, cb.get_write_pos());
    }

    #[test]
    fn test_emit_cpush_all() {
        let (mut asm, mut cb) = setup_asm();

        asm.cpush_all();
        asm.compile_with_num_regs(&mut cb, 0);
    }

    #[test]
    fn test_emit_cpop_all() {
        let (mut asm, mut cb) = setup_asm();

        asm.cpop_all();
        asm.compile_with_num_regs(&mut cb, 0);
    }

    #[test]
    fn test_emit_frame() {
        let (mut asm, mut cb) = setup_asm();

        asm.frame_setup();
        asm.frame_teardown();
        asm.compile_with_num_regs(&mut cb, 0);
    }

    #[test]
    fn test_emit_lea_label() {
        let (mut asm, mut cb) = setup_asm();

        let label = asm.new_label("label");
        let opnd = asm.lea_label(label);

        asm.write_label(label);
        asm.bake_string("Hello, world!");
        asm.store(Opnd::mem(64, SP, 0), opnd);

        asm.compile_with_num_regs(&mut cb, 1);
    }

    #[test]
    fn test_emit_or() {
        let (mut asm, mut cb) = setup_asm();

        let opnd = asm.or(Opnd::Reg(X0_REG), Opnd::Reg(X1_REG));
        asm.store(Opnd::mem(64, Opnd::Reg(X2_REG), 0), opnd);
        asm.compile_with_num_regs(&mut cb, 1);
    }

    #[test]
    fn test_emit_test() {
        let (mut asm, mut cb) = setup_asm();

        asm.test(Opnd::Reg(X0_REG), Opnd::Reg(X1_REG));
        asm.compile_with_num_regs(&mut cb, 0);

        // Assert that only one instruction was written.
        assert_eq!(4, cb.get_write_pos());
    }

    #[test]
    fn test_emit_test_with_encodable_unsigned_immediate() {
        let (mut asm, mut cb) = setup_asm();

        asm.test(Opnd::Reg(X0_REG), Opnd::UImm(7));
        asm.compile_with_num_regs(&mut cb, 0);

        // Assert that only one instruction was written.
        assert_eq!(4, cb.get_write_pos());
    }

    #[test]
    fn test_emit_test_with_unencodable_unsigned_immediate() {
        let (mut asm, mut cb) = setup_asm();

        asm.test(Opnd::Reg(X0_REG), Opnd::UImm(5));
        asm.compile_with_num_regs(&mut cb, 1);

        // Assert that a load and a test instruction were written.
        assert_eq!(8, cb.get_write_pos());
    }

    #[test]
    fn test_emit_test_with_encodable_signed_immediate() {
        let (mut asm, mut cb) = setup_asm();

        asm.test(Opnd::Reg(X0_REG), Opnd::Imm(7));
        asm.compile_with_num_regs(&mut cb, 0);

        // Assert that only one instruction was written.
        assert_eq!(4, cb.get_write_pos());
    }

    #[test]
    fn test_emit_test_with_unencodable_signed_immediate() {
        let (mut asm, mut cb) = setup_asm();

        asm.test(Opnd::Reg(X0_REG), Opnd::Imm(5));
        asm.compile_with_num_regs(&mut cb, 1);

        // Assert that a load and a test instruction were written.
        assert_eq!(8, cb.get_write_pos());
    }

    #[test]
    fn test_emit_test_with_negative_signed_immediate() {
        let (mut asm, mut cb) = setup_asm();

        asm.test(Opnd::Reg(X0_REG), Opnd::Imm(-7));
        asm.compile_with_num_regs(&mut cb, 1);

        // Assert that a load and a test instruction were written.
        assert_eq!(8, cb.get_write_pos());
    }

    #[test]
    #[cfg(feature = "disasm")]
    fn test_simple_disasm() -> std::result::Result<(), capstone::Error> {
        // Test drive Capstone with simple input
        use capstone::prelude::*;

        let cs = Capstone::new()
            .arm64()
            .mode(arch::arm64::ArchMode::Arm)
            .build()?;

        let insns = cs.disasm_all(&[0x60, 0x0f, 0x80, 0xF2], 0x1000)?;

        match insns.as_ref() {
            [insn] => {
                assert_eq!(Some("movk"), insn.mnemonic());
                Ok(())
            }
            _ => Err(capstone::Error::CustomError(
                "expected to disassemble to movk",
            )),
        }
    }
}