summaryrefslogtreecommitdiff
path: root/shape.c
diff options
context:
space:
mode:
Diffstat (limited to 'shape.c')
-rw-r--r--shape.c1657
1 files changed, 1657 insertions, 0 deletions
diff --git a/shape.c b/shape.c
new file mode 100644
index 0000000000..90036722f1
--- /dev/null
+++ b/shape.c
@@ -0,0 +1,1657 @@
+#include "vm_core.h"
+#include "vm_sync.h"
+#include "shape.h"
+#include "symbol.h"
+#include "id_table.h"
+#include "internal/class.h"
+#include "internal/error.h"
+#include "internal/gc.h"
+#include "internal/object.h"
+#include "internal/symbol.h"
+#include "internal/variable.h"
+#include "variable.h"
+#include <stdbool.h>
+
+#ifndef _WIN32
+#include <sys/mman.h>
+#endif
+
+#ifndef SHAPE_DEBUG
+#define SHAPE_DEBUG (VM_CHECK_MODE > 0)
+#endif
+
+#define REDBLACK_CACHE_SIZE (SHAPE_BUFFER_SIZE * 32)
+
+/* This depends on that the allocated memory by Ruby's allocator or
+ * mmap is not located at an odd address. */
+#define SINGLE_CHILD_TAG 0x1
+#define TAG_SINGLE_CHILD(x) (VALUE)((uintptr_t)(x) | SINGLE_CHILD_TAG)
+#define SINGLE_CHILD_MASK (~((uintptr_t)SINGLE_CHILD_TAG))
+#define SINGLE_CHILD_P(x) ((uintptr_t)(x) & SINGLE_CHILD_TAG)
+#define SINGLE_CHILD(x) (rb_shape_t *)((uintptr_t)(x) & SINGLE_CHILD_MASK)
+#define ANCESTOR_CACHE_THRESHOLD 10
+#define MAX_SHAPE_ID (SHAPE_BUFFER_SIZE - 1)
+#define ANCESTOR_SEARCH_MAX_DEPTH 2
+
+static ID id_object_id;
+
+#define LEAF 0
+#define BLACK 0x0
+#define RED 0x1
+
+static redblack_node_t *
+redblack_left(redblack_node_t *node)
+{
+ if (node->l == LEAF) {
+ return LEAF;
+ }
+ else {
+ RUBY_ASSERT(node->l < rb_shape_tree.cache_size);
+ redblack_node_t *left = &rb_shape_tree.shape_cache[node->l - 1];
+ return left;
+ }
+}
+
+static redblack_node_t *
+redblack_right(redblack_node_t *node)
+{
+ if (node->r == LEAF) {
+ return LEAF;
+ }
+ else {
+ RUBY_ASSERT(node->r < rb_shape_tree.cache_size);
+ redblack_node_t *right = &rb_shape_tree.shape_cache[node->r - 1];
+ return right;
+ }
+}
+
+static redblack_node_t *
+redblack_find(redblack_node_t *tree, ID key)
+{
+ if (tree == LEAF) {
+ return LEAF;
+ }
+ else {
+ RUBY_ASSERT(redblack_left(tree) == LEAF || redblack_left(tree)->key < tree->key);
+ RUBY_ASSERT(redblack_right(tree) == LEAF || redblack_right(tree)->key > tree->key);
+
+ if (tree->key == key) {
+ return tree;
+ }
+ else {
+ if (key < tree->key) {
+ return redblack_find(redblack_left(tree), key);
+ }
+ else {
+ return redblack_find(redblack_right(tree), key);
+ }
+ }
+ }
+}
+
+static inline rb_shape_t *
+redblack_value(redblack_node_t *node)
+{
+ // Color is stored in the bottom bit of the shape pointer
+ // Mask away the bit so we get the actual pointer back
+ return (rb_shape_t *)((uintptr_t)node->value & ~(uintptr_t)1);
+}
+
+#ifdef HAVE_MMAP
+static inline char
+redblack_color(redblack_node_t *node)
+{
+ return node && ((uintptr_t)node->value & RED);
+}
+
+static inline bool
+redblack_red_p(redblack_node_t *node)
+{
+ return redblack_color(node) == RED;
+}
+
+static redblack_id_t
+redblack_id_for(redblack_node_t *node)
+{
+ RUBY_ASSERT(node || node == LEAF);
+ if (node == LEAF) {
+ return 0;
+ }
+ else {
+ redblack_node_t *redblack_nodes = rb_shape_tree.shape_cache;
+ redblack_id_t id = (redblack_id_t)(node - redblack_nodes);
+ return id + 1;
+ }
+}
+
+static redblack_node_t *
+redblack_new(char color, ID key, rb_shape_t *value, redblack_node_t *left, redblack_node_t *right)
+{
+ if (rb_shape_tree.cache_size + 1 >= REDBLACK_CACHE_SIZE) {
+ // We're out of cache, just quit
+ return LEAF;
+ }
+
+ RUBY_ASSERT(left == LEAF || left->key < key);
+ RUBY_ASSERT(right == LEAF || right->key > key);
+
+ redblack_node_t *redblack_nodes = rb_shape_tree.shape_cache;
+ redblack_node_t *node = &redblack_nodes[(rb_shape_tree.cache_size)++];
+ node->key = key;
+ node->value = (rb_shape_t *)((uintptr_t)value | color);
+ node->l = redblack_id_for(left);
+ node->r = redblack_id_for(right);
+ return node;
+}
+
+static redblack_node_t *
+redblack_balance(char color, ID key, rb_shape_t *value, redblack_node_t *left, redblack_node_t *right)
+{
+ if (color == BLACK) {
+ ID new_key, new_left_key, new_right_key;
+ rb_shape_t *new_value, *new_left_value, *new_right_value;
+ redblack_node_t *new_left_left, *new_left_right, *new_right_left, *new_right_right;
+
+ if (redblack_red_p(left) && redblack_red_p(redblack_left(left))) {
+ new_right_key = key;
+ new_right_value = value;
+ new_right_right = right;
+
+ new_key = left->key;
+ new_value = redblack_value(left);
+ new_right_left = redblack_right(left);
+
+ new_left_key = redblack_left(left)->key;
+ new_left_value = redblack_value(redblack_left(left));
+
+ new_left_left = redblack_left(redblack_left(left));
+ new_left_right = redblack_right(redblack_left(left));
+ }
+ else if (redblack_red_p(left) && redblack_red_p(redblack_right(left))) {
+ new_right_key = key;
+ new_right_value = value;
+ new_right_right = right;
+
+ new_left_key = left->key;
+ new_left_value = redblack_value(left);
+ new_left_left = redblack_left(left);
+
+ new_key = redblack_right(left)->key;
+ new_value = redblack_value(redblack_right(left));
+ new_left_right = redblack_left(redblack_right(left));
+ new_right_left = redblack_right(redblack_right(left));
+ }
+ else if (redblack_red_p(right) && redblack_red_p(redblack_left(right))) {
+ new_left_key = key;
+ new_left_value = value;
+ new_left_left = left;
+
+ new_right_key = right->key;
+ new_right_value = redblack_value(right);
+ new_right_right = redblack_right(right);
+
+ new_key = redblack_left(right)->key;
+ new_value = redblack_value(redblack_left(right));
+ new_left_right = redblack_left(redblack_left(right));
+ new_right_left = redblack_right(redblack_left(right));
+ }
+ else if (redblack_red_p(right) && redblack_red_p(redblack_right(right))) {
+ new_left_key = key;
+ new_left_value = value;
+ new_left_left = left;
+
+ new_key = right->key;
+ new_value = redblack_value(right);
+ new_left_right = redblack_left(right);
+
+ new_right_key = redblack_right(right)->key;
+ new_right_value = redblack_value(redblack_right(right));
+ new_right_left = redblack_left(redblack_right(right));
+ new_right_right = redblack_right(redblack_right(right));
+ }
+ else {
+ return redblack_new(color, key, value, left, right);
+ }
+
+ RUBY_ASSERT(new_left_key < new_key);
+ RUBY_ASSERT(new_right_key > new_key);
+ RUBY_ASSERT(new_left_left == LEAF || new_left_left->key < new_left_key);
+ RUBY_ASSERT(new_left_right == LEAF || new_left_right->key > new_left_key);
+ RUBY_ASSERT(new_left_right == LEAF || new_left_right->key < new_key);
+ RUBY_ASSERT(new_right_left == LEAF || new_right_left->key < new_right_key);
+ RUBY_ASSERT(new_right_left == LEAF || new_right_left->key > new_key);
+ RUBY_ASSERT(new_right_right == LEAF || new_right_right->key > new_right_key);
+
+ return redblack_new(
+ RED, new_key, new_value,
+ redblack_new(BLACK, new_left_key, new_left_value, new_left_left, new_left_right),
+ redblack_new(BLACK, new_right_key, new_right_value, new_right_left, new_right_right));
+ }
+
+ return redblack_new(color, key, value, left, right);
+}
+
+static redblack_node_t *
+redblack_insert_aux(redblack_node_t *tree, ID key, rb_shape_t *value)
+{
+ if (tree == LEAF) {
+ return redblack_new(RED, key, value, LEAF, LEAF);
+ }
+ else {
+ redblack_node_t *left, *right;
+ if (key < tree->key) {
+ left = redblack_insert_aux(redblack_left(tree), key, value);
+ RUBY_ASSERT(left != LEAF);
+ right = redblack_right(tree);
+ RUBY_ASSERT(right == LEAF || right->key > tree->key);
+ }
+ else if (key > tree->key) {
+ left = redblack_left(tree);
+ RUBY_ASSERT(left == LEAF || left->key < tree->key);
+ right = redblack_insert_aux(redblack_right(tree), key, value);
+ RUBY_ASSERT(right != LEAF);
+ }
+ else {
+ return tree;
+ }
+
+ return redblack_balance(
+ redblack_color(tree),
+ tree->key,
+ redblack_value(tree),
+ left,
+ right
+ );
+ }
+}
+
+static redblack_node_t *
+redblack_force_black(redblack_node_t *node)
+{
+ node->value = redblack_value(node);
+ return node;
+}
+
+static redblack_node_t *
+redblack_insert(redblack_node_t *tree, ID key, rb_shape_t *value)
+{
+ redblack_node_t *root = redblack_insert_aux(tree, key, value);
+
+ if (redblack_red_p(root)) {
+ return redblack_force_black(root);
+ }
+ else {
+ return root;
+ }
+}
+#endif
+
+rb_shape_tree_t rb_shape_tree = { 0 };
+static VALUE shape_tree_obj = Qfalse;
+
+rb_shape_t *
+rb_shape_get_root_shape(void)
+{
+ return rb_shape_tree.root_shape;
+}
+
+static void
+shape_tree_mark_and_move(void *data)
+{
+ rb_shape_t *cursor = rb_shape_get_root_shape();
+ rb_shape_t *end = RSHAPE(rb_shape_tree.next_shape_id - 1);
+ while (cursor <= end) {
+ if (cursor->edges && !SINGLE_CHILD_P(cursor->edges)) {
+ rb_gc_mark_and_move(&cursor->edges);
+ }
+ cursor++;
+ }
+}
+
+static size_t
+shape_tree_memsize(const void *data)
+{
+ return rb_shape_tree.cache_size * sizeof(redblack_node_t);
+}
+
+static const rb_data_type_t shape_tree_type = {
+ .wrap_struct_name = "VM/shape_tree",
+ .function = {
+ .dmark = shape_tree_mark_and_move,
+ .dfree = NULL, // Nothing to free, done at VM exit in rb_shape_free_all,
+ .dsize = shape_tree_memsize,
+ .dcompact = shape_tree_mark_and_move,
+ },
+ .flags = RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED,
+};
+
+
+/*
+ * Shape getters
+ */
+
+static inline shape_id_t
+raw_shape_id(rb_shape_t *shape)
+{
+ RUBY_ASSERT(shape);
+ return (shape_id_t)(shape - rb_shape_tree.shape_list);
+}
+
+static inline shape_id_t
+shape_id(rb_shape_t *shape, shape_id_t previous_shape_id)
+{
+ RUBY_ASSERT(shape);
+ shape_id_t raw_id = (shape_id_t)(shape - rb_shape_tree.shape_list);
+ return raw_id | (previous_shape_id & SHAPE_ID_FLAGS_MASK);
+}
+
+#if RUBY_DEBUG
+static inline bool
+shape_frozen_p(shape_id_t shape_id)
+{
+ return shape_id & SHAPE_ID_FL_FROZEN;
+}
+#endif
+
+void
+rb_shape_each_shape_id(each_shape_callback callback, void *data)
+{
+ rb_shape_t *start = rb_shape_get_root_shape();
+ rb_shape_t *cursor = start;
+ rb_shape_t *end = RSHAPE(rb_shapes_count());
+ while (cursor < end) {
+ callback((shape_id_t)(cursor - start), data);
+ cursor += 1;
+ }
+}
+
+RUBY_FUNC_EXPORTED shape_id_t
+rb_obj_shape_id(VALUE obj)
+{
+ if (RB_SPECIAL_CONST_P(obj)) {
+ rb_bug("rb_obj_shape_id: called on a special constant");
+ }
+
+ if (BUILTIN_TYPE(obj) == T_CLASS || BUILTIN_TYPE(obj) == T_MODULE) {
+ VALUE fields_obj = RCLASS_WRITABLE_FIELDS_OBJ(obj);
+ if (fields_obj) {
+ return RBASIC_SHAPE_ID(fields_obj);
+ }
+ return ROOT_SHAPE_ID;
+ }
+ return RBASIC_SHAPE_ID(obj);
+}
+
+size_t
+rb_shape_depth(shape_id_t shape_id)
+{
+ size_t depth = 1;
+ rb_shape_t *shape = RSHAPE(shape_id);
+
+ while (shape->parent_id != INVALID_SHAPE_ID) {
+ depth++;
+ shape = RSHAPE(shape->parent_id);
+ }
+
+ return depth;
+}
+
+static rb_shape_t *
+shape_alloc(void)
+{
+ shape_id_t current, new_id;
+
+ do {
+ current = RUBY_ATOMIC_LOAD(rb_shape_tree.next_shape_id);
+ if (current > MAX_SHAPE_ID) {
+ return NULL; // Out of shapes
+ }
+ new_id = current + 1;
+ } while (current != RUBY_ATOMIC_CAS(rb_shape_tree.next_shape_id, current, new_id));
+
+ return &rb_shape_tree.shape_list[current];
+}
+
+static rb_shape_t *
+rb_shape_alloc_with_parent_id(ID edge_name, shape_id_t parent_id)
+{
+ rb_shape_t *shape = shape_alloc();
+ if (!shape) return NULL;
+
+ shape->edge_name = edge_name;
+ shape->next_field_index = 0;
+ shape->parent_id = parent_id;
+ shape->edges = 0;
+
+ return shape;
+}
+
+static rb_shape_t *
+rb_shape_alloc(ID edge_name, rb_shape_t *parent, enum shape_type type)
+{
+ rb_shape_t *shape = rb_shape_alloc_with_parent_id(edge_name, raw_shape_id(parent));
+ if (!shape) return NULL;
+
+ shape->type = (uint8_t)type;
+ shape->capacity = parent->capacity;
+ shape->edges = 0;
+ return shape;
+}
+
+#ifdef HAVE_MMAP
+static redblack_node_t *
+redblack_cache_ancestors(rb_shape_t *shape)
+{
+ if (!(shape->ancestor_index || shape->parent_id == INVALID_SHAPE_ID)) {
+ redblack_node_t *parent_index;
+
+ parent_index = redblack_cache_ancestors(RSHAPE(shape->parent_id));
+
+ if (shape->type == SHAPE_IVAR) {
+ shape->ancestor_index = redblack_insert(parent_index, shape->edge_name, shape);
+
+#if RUBY_DEBUG
+ if (shape->ancestor_index) {
+ redblack_node_t *inserted_node = redblack_find(shape->ancestor_index, shape->edge_name);
+ RUBY_ASSERT(inserted_node);
+ RUBY_ASSERT(redblack_value(inserted_node) == shape);
+ }
+#endif
+ }
+ else {
+ shape->ancestor_index = parent_index;
+ }
+ }
+
+ return shape->ancestor_index;
+}
+#else
+static redblack_node_t *
+redblack_cache_ancestors(rb_shape_t *shape)
+{
+ return LEAF;
+}
+#endif
+
+static attr_index_t
+shape_grow_capa(attr_index_t current_capa)
+{
+ const attr_index_t *capacities = rb_shape_tree.capacities;
+
+ // First try to use the next size that will be embeddable in a larger object slot.
+ attr_index_t capa;
+ while ((capa = *capacities)) {
+ if (capa > current_capa) {
+ return capa;
+ }
+ capacities++;
+ }
+
+ return (attr_index_t)rb_malloc_grow_capa(current_capa, sizeof(VALUE));
+}
+
+static rb_shape_t *
+rb_shape_alloc_new_child(ID id, rb_shape_t *shape, enum shape_type shape_type)
+{
+ rb_shape_t *new_shape = rb_shape_alloc(id, shape, shape_type);
+ if (!new_shape) return NULL;
+
+ switch (shape_type) {
+ case SHAPE_OBJ_ID:
+ case SHAPE_IVAR:
+ if (UNLIKELY(shape->next_field_index >= shape->capacity)) {
+ RUBY_ASSERT(shape->next_field_index == shape->capacity);
+ new_shape->capacity = shape_grow_capa(shape->capacity);
+ }
+ RUBY_ASSERT(new_shape->capacity > shape->next_field_index);
+ new_shape->next_field_index = shape->next_field_index + 1;
+ if (new_shape->next_field_index > ANCESTOR_CACHE_THRESHOLD) {
+ RB_VM_LOCKING() {
+ redblack_cache_ancestors(new_shape);
+ }
+ }
+ break;
+ case SHAPE_ROOT:
+ rb_bug("Unreachable");
+ break;
+ }
+
+ return new_shape;
+}
+
+static rb_shape_t *
+get_next_shape_internal_atomic(rb_shape_t *shape, ID id, enum shape_type shape_type, bool *variation_created, bool new_variations_allowed)
+{
+ rb_shape_t *res = NULL;
+
+ *variation_created = false;
+ VALUE edges_table;
+
+retry:
+ edges_table = RUBY_ATOMIC_VALUE_LOAD(shape->edges);
+
+ // If the current shape has children
+ if (edges_table) {
+ // Check if it only has one child
+ if (SINGLE_CHILD_P(edges_table)) {
+ rb_shape_t *child = SINGLE_CHILD(edges_table);
+ // If the one child has a matching edge name, then great,
+ // we found what we want.
+ if (child->edge_name == id) {
+ res = child;
+ }
+ }
+ else {
+ // If it has more than one child, do a hash lookup to find it.
+ VALUE lookup_result;
+ if (rb_managed_id_table_lookup(edges_table, id, &lookup_result)) {
+ res = (rb_shape_t *)lookup_result;
+ }
+ }
+ }
+
+ // If we didn't find the shape we're looking for and we're allowed more variations we create it.
+ if (!res && new_variations_allowed) {
+ VALUE new_edges = 0;
+
+ rb_shape_t *new_shape = rb_shape_alloc_new_child(id, shape, shape_type);
+
+ // If we're out of shapes, return NULL
+ if (new_shape) {
+ if (!edges_table) {
+ // If the shape had no edge yet, we can directly set the new child
+ new_edges = TAG_SINGLE_CHILD(new_shape);
+ }
+ else {
+ // If the edge was single child we need to allocate a table.
+ if (SINGLE_CHILD_P(edges_table)) {
+ rb_shape_t *old_child = SINGLE_CHILD(edges_table);
+ new_edges = rb_managed_id_table_new(2);
+ rb_managed_id_table_insert(new_edges, old_child->edge_name, (VALUE)old_child);
+ }
+ else {
+ new_edges = rb_managed_id_table_dup(edges_table);
+ }
+
+ rb_managed_id_table_insert(new_edges, new_shape->edge_name, (VALUE)new_shape);
+ *variation_created = true;
+ }
+
+ if (edges_table != RUBY_ATOMIC_VALUE_CAS(shape->edges, edges_table, new_edges)) {
+ // Another thread updated the table;
+ goto retry;
+ }
+ RB_OBJ_WRITTEN(shape_tree_obj, Qundef, new_edges);
+ res = new_shape;
+ RB_GC_GUARD(new_edges);
+ }
+ }
+
+ return res;
+}
+
+static rb_shape_t *
+get_next_shape_internal(rb_shape_t *shape, ID id, enum shape_type shape_type, bool *variation_created, bool new_variations_allowed)
+{
+ if (rb_multi_ractor_p()) {
+ return get_next_shape_internal_atomic(shape, id, shape_type, variation_created, new_variations_allowed);
+ }
+
+ rb_shape_t *res = NULL;
+ *variation_created = false;
+
+ VALUE edges_table = shape->edges;
+
+ // If the current shape has children
+ if (edges_table) {
+ // Check if it only has one child
+ if (SINGLE_CHILD_P(edges_table)) {
+ rb_shape_t *child = SINGLE_CHILD(edges_table);
+ // If the one child has a matching edge name, then great,
+ // we found what we want.
+ if (child->edge_name == id) {
+ res = child;
+ }
+ }
+ else {
+ // If it has more than one child, do a hash lookup to find it.
+ VALUE lookup_result;
+ if (rb_managed_id_table_lookup(edges_table, id, &lookup_result)) {
+ res = (rb_shape_t *)lookup_result;
+ }
+ }
+ }
+
+ // If we didn't find the shape we're looking for we create it.
+ if (!res) {
+ // If we're not allowed to create a new variation, of if we're out of shapes
+ // we return TOO_COMPLEX_SHAPE.
+ if (!new_variations_allowed || rb_shapes_count() > MAX_SHAPE_ID) {
+ res = NULL;
+ }
+ else {
+ rb_shape_t *new_shape = rb_shape_alloc_new_child(id, shape, shape_type);
+
+ if (!edges_table) {
+ // If the shape had no edge yet, we can directly set the new child
+ shape->edges = TAG_SINGLE_CHILD(new_shape);
+ }
+ else {
+ // If the edge was single child we need to allocate a table.
+ if (SINGLE_CHILD_P(edges_table)) {
+ rb_shape_t *old_child = SINGLE_CHILD(edges_table);
+ VALUE new_edges = rb_managed_id_table_new(2);
+ rb_managed_id_table_insert(new_edges, old_child->edge_name, (VALUE)old_child);
+ RB_OBJ_WRITE(shape_tree_obj, &shape->edges, new_edges);
+ }
+
+ rb_managed_id_table_insert(shape->edges, new_shape->edge_name, (VALUE)new_shape);
+ *variation_created = true;
+ }
+
+ res = new_shape;
+ }
+ }
+
+ return res;
+}
+
+static inline shape_id_t transition_complex(shape_id_t shape_id);
+
+static shape_id_t
+shape_transition_object_id(shape_id_t original_shape_id)
+{
+ RUBY_ASSERT(!rb_shape_has_object_id(original_shape_id));
+
+ bool dont_care;
+ rb_shape_t *shape = get_next_shape_internal(RSHAPE(original_shape_id), id_object_id, SHAPE_OBJ_ID, &dont_care, true);
+ if (!shape) {
+ shape = RSHAPE(ROOT_SHAPE_WITH_OBJ_ID);
+ return transition_complex(shape_id(shape, original_shape_id) | SHAPE_ID_FL_HAS_OBJECT_ID);
+ }
+
+ RUBY_ASSERT(shape);
+ return shape_id(shape, original_shape_id) | SHAPE_ID_FL_HAS_OBJECT_ID;
+}
+
+shape_id_t
+rb_shape_transition_object_id(VALUE obj)
+{
+ return shape_transition_object_id(RBASIC_SHAPE_ID(obj));
+}
+
+shape_id_t
+rb_shape_object_id(shape_id_t original_shape_id)
+{
+ RUBY_ASSERT(rb_shape_has_object_id(original_shape_id));
+
+ rb_shape_t *shape = RSHAPE(original_shape_id);
+ while (shape->type != SHAPE_OBJ_ID) {
+ if (UNLIKELY(shape->parent_id == INVALID_SHAPE_ID)) {
+ rb_bug("Missing object_id in shape tree");
+ }
+ shape = RSHAPE(shape->parent_id);
+ }
+
+ return shape_id(shape, original_shape_id) | SHAPE_ID_FL_HAS_OBJECT_ID;
+}
+
+static inline shape_id_t
+transition_complex(shape_id_t shape_id)
+{
+ uint8_t heap_index = rb_shape_heap_index(shape_id);
+ shape_id_t next_shape_id;
+
+ if (heap_index) {
+ next_shape_id = rb_shape_root(heap_index - 1) | SHAPE_ID_FL_TOO_COMPLEX;
+ if (rb_shape_has_object_id(shape_id)) {
+ next_shape_id = shape_transition_object_id(next_shape_id);
+ }
+ }
+ else {
+ if (rb_shape_has_object_id(shape_id)) {
+ next_shape_id = ROOT_TOO_COMPLEX_WITH_OBJ_ID | (shape_id & SHAPE_ID_FLAGS_MASK);
+ }
+ else {
+ next_shape_id = ROOT_TOO_COMPLEX_SHAPE_ID | (shape_id & SHAPE_ID_FLAGS_MASK);
+ }
+ }
+
+ RUBY_ASSERT(rb_shape_has_object_id(shape_id) == rb_shape_has_object_id(next_shape_id));
+
+ return next_shape_id;
+}
+
+shape_id_t
+rb_shape_transition_frozen(VALUE obj)
+{
+ RUBY_ASSERT(RB_OBJ_FROZEN(obj));
+
+ shape_id_t shape_id = rb_obj_shape_id(obj);
+ return shape_id | SHAPE_ID_FL_FROZEN;
+}
+
+shape_id_t
+rb_shape_transition_complex(VALUE obj)
+{
+ return transition_complex(RBASIC_SHAPE_ID(obj));
+}
+
+shape_id_t
+rb_shape_transition_heap(VALUE obj, size_t heap_index)
+{
+ return (RBASIC_SHAPE_ID(obj) & (~SHAPE_ID_HEAP_INDEX_MASK)) | rb_shape_root(heap_index);
+}
+
+void
+rb_set_boxed_class_shape_id(VALUE obj, shape_id_t shape_id)
+{
+ RBASIC_SET_SHAPE_ID(RCLASS_WRITABLE_ENSURE_FIELDS_OBJ(obj), shape_id);
+ // FIXME: How to do multi-shape?
+ RBASIC_SET_SHAPE_ID(obj, shape_id);
+}
+
+/*
+ * This function is used for assertions where we don't want to increment
+ * max_iv_count
+ */
+static inline rb_shape_t *
+shape_get_next_iv_shape(rb_shape_t *shape, ID id)
+{
+ RUBY_ASSERT(!is_instance_id(id) || RTEST(rb_sym2str(ID2SYM(id))));
+ bool dont_care;
+ return get_next_shape_internal(shape, id, SHAPE_IVAR, &dont_care, true);
+}
+
+shape_id_t
+rb_shape_get_next_iv_shape(shape_id_t shape_id, ID id)
+{
+ rb_shape_t *shape = RSHAPE(shape_id);
+ rb_shape_t *next_shape = shape_get_next_iv_shape(shape, id);
+ if (!next_shape) {
+ return INVALID_SHAPE_ID;
+ }
+ return raw_shape_id(next_shape);
+}
+
+static bool
+shape_get_iv_index(rb_shape_t *shape, ID id, attr_index_t *value)
+{
+ while (shape->parent_id != INVALID_SHAPE_ID) {
+ if (shape->edge_name == id) {
+ enum shape_type shape_type;
+ shape_type = (enum shape_type)shape->type;
+
+ switch (shape_type) {
+ case SHAPE_IVAR:
+ RUBY_ASSERT(shape->next_field_index > 0);
+ *value = shape->next_field_index - 1;
+ return true;
+ case SHAPE_ROOT:
+ return false;
+ case SHAPE_OBJ_ID:
+ rb_bug("Ivar should not exist on transition");
+ }
+ }
+
+ shape = RSHAPE(shape->parent_id);
+ }
+
+ return false;
+}
+
+static inline rb_shape_t *
+shape_get_next(rb_shape_t *shape, enum shape_type shape_type, VALUE klass, ID id, bool emit_warnings)
+{
+ RUBY_ASSERT(!is_instance_id(id) || RTEST(rb_sym2str(ID2SYM(id))));
+
+#if RUBY_DEBUG
+ attr_index_t index;
+ if (shape_get_iv_index(shape, id, &index)) {
+ rb_bug("rb_shape_get_next: trying to create ivar that already exists at index %u", index);
+ }
+#endif
+
+ bool allow_new_shape = RCLASS_VARIATION_COUNT(klass) < SHAPE_MAX_VARIATIONS;
+ bool variation_created = false;
+ rb_shape_t *new_shape = get_next_shape_internal(shape, id, shape_type, &variation_created, allow_new_shape);
+
+ if (!new_shape) {
+ // We could create a new variation, transitioning to TOO_COMPLEX.
+ return NULL;
+ }
+
+ // Check if we should update max_iv_count on the object's class
+ if (new_shape->next_field_index > RCLASS_MAX_IV_COUNT(klass)) {
+ RCLASS_SET_MAX_IV_COUNT(klass, new_shape->next_field_index);
+ }
+
+ if (variation_created) {
+ RCLASS_VARIATION_COUNT(klass)++;
+
+ if (emit_warnings && rb_warning_category_enabled_p(RB_WARN_CATEGORY_PERFORMANCE)) {
+ if (RCLASS_VARIATION_COUNT(klass) >= SHAPE_MAX_VARIATIONS) {
+ rb_category_warn(
+ RB_WARN_CATEGORY_PERFORMANCE,
+ "The class %"PRIsVALUE" reached %d shape variations, instance variables accesses will be slower and memory usage increased.\n"
+ "It is recommended to define instance variables in a consistent order, for instance by eagerly defining them all in the #initialize method.",
+ rb_class_path(klass),
+ SHAPE_MAX_VARIATIONS
+ );
+ }
+ }
+ }
+
+ return new_shape;
+}
+
+static VALUE
+obj_get_owner_class(VALUE obj)
+{
+ VALUE klass;
+ if (IMEMO_TYPE_P(obj, imemo_fields)) {
+ VALUE owner = rb_imemo_fields_owner(obj);
+ switch (BUILTIN_TYPE(owner)) {
+ case T_CLASS:
+ case T_MODULE:
+ klass = rb_singleton_class(owner);
+ break;
+ default:
+ klass = rb_obj_class(owner);
+ break;
+ }
+ }
+ else {
+ klass = rb_obj_class(obj);
+ }
+ return klass;
+}
+
+static rb_shape_t *
+remove_shape_recursive(VALUE obj, rb_shape_t *shape, ID id, rb_shape_t **removed_shape)
+{
+ if (shape->parent_id == INVALID_SHAPE_ID) {
+ // We've hit the top of the shape tree and couldn't find the
+ // IV we wanted to remove, so return NULL
+ *removed_shape = NULL;
+ return NULL;
+ }
+ else {
+ if (shape->type == SHAPE_IVAR && shape->edge_name == id) {
+ *removed_shape = shape;
+
+ return RSHAPE(shape->parent_id);
+ }
+ else {
+ // This isn't the IV we want to remove, keep walking up.
+ rb_shape_t *new_parent = remove_shape_recursive(obj, RSHAPE(shape->parent_id), id, removed_shape);
+
+ // We found a new parent. Create a child of the new parent that
+ // has the same attributes as this shape.
+ if (new_parent) {
+ VALUE klass = obj_get_owner_class(obj);
+ rb_shape_t *new_child = shape_get_next(new_parent, shape->type, klass, shape->edge_name, true);
+ RUBY_ASSERT(!new_child || new_child->capacity <= shape->capacity);
+ return new_child;
+ }
+ else {
+ // We went all the way to the top of the shape tree and couldn't
+ // find an IV to remove so return NULL.
+ return NULL;
+ }
+ }
+ }
+}
+
+shape_id_t
+rb_shape_transition_remove_ivar(VALUE obj, ID id, shape_id_t *removed_shape_id)
+{
+ shape_id_t original_shape_id = RBASIC_SHAPE_ID(obj);
+ RUBY_ASSERT(!shape_frozen_p(original_shape_id));
+
+ if (rb_shape_too_complex_p(original_shape_id)) {
+ return original_shape_id;
+ }
+
+ rb_shape_t *removed_shape = NULL;
+ rb_shape_t *new_shape = remove_shape_recursive(obj, RSHAPE(original_shape_id), id, &removed_shape);
+
+ if (removed_shape) {
+ *removed_shape_id = raw_shape_id(removed_shape);
+ }
+
+ if (new_shape) {
+ return shape_id(new_shape, original_shape_id);
+ }
+ else if (removed_shape) {
+ // We found the shape to remove, but couldn't create a new variation.
+ // We must transition to TOO_COMPLEX.
+ shape_id_t next_shape_id = transition_complex(original_shape_id);
+ RUBY_ASSERT(rb_shape_has_object_id(next_shape_id) == rb_shape_has_object_id(original_shape_id));
+ return next_shape_id;
+ }
+ return original_shape_id;
+}
+
+shape_id_t
+rb_shape_transition_add_ivar(VALUE obj, ID id)
+{
+ shape_id_t original_shape_id = RBASIC_SHAPE_ID(obj);
+ RUBY_ASSERT(!shape_frozen_p(original_shape_id));
+
+ VALUE klass = obj_get_owner_class(obj);
+ rb_shape_t *next_shape = shape_get_next(RSHAPE(original_shape_id), SHAPE_IVAR, klass, id, true);
+ if (next_shape) {
+ return shape_id(next_shape, original_shape_id);
+ }
+ else {
+ return transition_complex(original_shape_id);
+ }
+}
+
+shape_id_t
+rb_shape_transition_add_ivar_no_warnings(VALUE klass, shape_id_t original_shape_id, ID id)
+{
+ RUBY_ASSERT(!shape_frozen_p(original_shape_id));
+
+ rb_shape_t *next_shape = shape_get_next(RSHAPE(original_shape_id), SHAPE_IVAR, klass, id, false);
+ if (next_shape) {
+ return shape_id(next_shape, original_shape_id);
+ }
+ else {
+ return transition_complex(original_shape_id);
+ }
+}
+
+// Same as rb_shape_get_iv_index, but uses a provided valid shape id and index
+// to return a result faster if branches of the shape tree are closely related.
+bool
+rb_shape_get_iv_index_with_hint(shape_id_t shape_id, ID id, attr_index_t *value, shape_id_t *shape_id_hint)
+{
+ attr_index_t index_hint = *value;
+
+ if (*shape_id_hint == INVALID_SHAPE_ID) {
+ *shape_id_hint = shape_id;
+ return rb_shape_get_iv_index(shape_id, id, value);
+ }
+
+ rb_shape_t *shape = RSHAPE(shape_id);
+ rb_shape_t *initial_shape = shape;
+ rb_shape_t *shape_hint = RSHAPE(*shape_id_hint);
+
+ // We assume it's likely shape_id_hint and shape_id have a close common
+ // ancestor, so we check up to ANCESTOR_SEARCH_MAX_DEPTH ancestors before
+ // eventually using the index, as in case of a match it will be faster.
+ // However if the shape doesn't have an index, we walk the entire tree.
+ int depth = INT_MAX;
+ if (shape->ancestor_index && shape->next_field_index >= ANCESTOR_CACHE_THRESHOLD) {
+ depth = ANCESTOR_SEARCH_MAX_DEPTH;
+ }
+
+ while (depth > 0 && shape->next_field_index > index_hint) {
+ while (shape_hint->next_field_index > shape->next_field_index) {
+ shape_hint = RSHAPE(shape_hint->parent_id);
+ }
+
+ if (shape_hint == shape) {
+ // We've found a common ancestor so use the index hint
+ *value = index_hint;
+ *shape_id_hint = raw_shape_id(shape);
+ return true;
+ }
+ if (shape->edge_name == id) {
+ // We found the matching id before a common ancestor
+ *value = shape->next_field_index - 1;
+ *shape_id_hint = raw_shape_id(shape);
+ return true;
+ }
+
+ shape = RSHAPE(shape->parent_id);
+ depth--;
+ }
+
+ // If the original shape had an index but its ancestor doesn't
+ // we switch back to the original one as it will be faster.
+ if (!shape->ancestor_index && initial_shape->ancestor_index) {
+ shape = initial_shape;
+ }
+ *shape_id_hint = shape_id;
+ return shape_get_iv_index(shape, id, value);
+}
+
+static bool
+shape_cache_find_ivar(rb_shape_t *shape, ID id, rb_shape_t **ivar_shape)
+{
+ if (shape->ancestor_index && shape->next_field_index >= ANCESTOR_CACHE_THRESHOLD) {
+ redblack_node_t *node = redblack_find(shape->ancestor_index, id);
+ if (node) {
+ *ivar_shape = redblack_value(node);
+
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static bool
+shape_find_ivar(rb_shape_t *shape, ID id, rb_shape_t **ivar_shape)
+{
+ while (shape->parent_id != INVALID_SHAPE_ID) {
+ if (shape->edge_name == id) {
+ RUBY_ASSERT(shape->type == SHAPE_IVAR);
+ *ivar_shape = shape;
+ return true;
+ }
+
+ shape = RSHAPE(shape->parent_id);
+ }
+
+ return false;
+}
+
+bool
+rb_shape_find_ivar(shape_id_t current_shape_id, ID id, shape_id_t *ivar_shape_id)
+{
+ RUBY_ASSERT(!rb_shape_too_complex_p(current_shape_id));
+
+ rb_shape_t *shape = RSHAPE(current_shape_id);
+ rb_shape_t *ivar_shape;
+
+ if (!shape_cache_find_ivar(shape, id, &ivar_shape)) {
+ // If it wasn't in the ancestor cache, then don't do a linear search
+ if (shape->ancestor_index && shape->next_field_index >= ANCESTOR_CACHE_THRESHOLD) {
+ return false;
+ }
+ else {
+ if (!shape_find_ivar(shape, id, &ivar_shape)) {
+ return false;
+ }
+ }
+ }
+
+ *ivar_shape_id = shape_id(ivar_shape, current_shape_id);
+
+ return true;
+}
+
+bool
+rb_shape_get_iv_index(shape_id_t shape_id, ID id, attr_index_t *value)
+{
+ // It doesn't make sense to ask for the index of an IV that's stored
+ // on an object that is "too complex" as it uses a hash for storing IVs
+ RUBY_ASSERT(!rb_shape_too_complex_p(shape_id));
+
+ shape_id_t ivar_shape_id;
+ if (rb_shape_find_ivar(shape_id, id, &ivar_shape_id)) {
+ *value = RSHAPE_INDEX(ivar_shape_id);
+ return true;
+ }
+ return false;
+}
+
+int32_t
+rb_shape_id_offset(void)
+{
+ return sizeof(uintptr_t) - SHAPE_ID_NUM_BITS / sizeof(uintptr_t);
+}
+
+// Rebuild a similar shape with the same ivars but starting from
+// a different SHAPE_T_OBJECT, and don't cary over non-canonical transitions
+// such as SHAPE_OBJ_ID.
+static rb_shape_t *
+shape_rebuild(rb_shape_t *initial_shape, rb_shape_t *dest_shape)
+{
+ rb_shape_t *midway_shape;
+
+ RUBY_ASSERT(initial_shape->type == SHAPE_ROOT);
+
+ if (dest_shape->type != initial_shape->type) {
+ midway_shape = shape_rebuild(initial_shape, RSHAPE(dest_shape->parent_id));
+ if (UNLIKELY(!midway_shape)) {
+ return NULL;
+ }
+ }
+ else {
+ midway_shape = initial_shape;
+ }
+
+ switch ((enum shape_type)dest_shape->type) {
+ case SHAPE_IVAR:
+ midway_shape = shape_get_next_iv_shape(midway_shape, dest_shape->edge_name);
+ break;
+ case SHAPE_OBJ_ID:
+ case SHAPE_ROOT:
+ break;
+ }
+
+ return midway_shape;
+}
+
+// Rebuild `dest_shape_id` starting from `initial_shape_id`, and keep only SHAPE_IVAR transitions.
+// SHAPE_OBJ_ID and frozen status are lost.
+shape_id_t
+rb_shape_rebuild(shape_id_t initial_shape_id, shape_id_t dest_shape_id)
+{
+ RUBY_ASSERT(!rb_shape_too_complex_p(initial_shape_id));
+ RUBY_ASSERT(!rb_shape_too_complex_p(dest_shape_id));
+
+ rb_shape_t *next_shape = shape_rebuild(RSHAPE(initial_shape_id), RSHAPE(dest_shape_id));
+ if (next_shape) {
+ return shape_id(next_shape, initial_shape_id);
+ }
+ else {
+ return transition_complex(initial_shape_id | (dest_shape_id & SHAPE_ID_FL_HAS_OBJECT_ID));
+ }
+}
+
+void
+rb_shape_copy_fields(VALUE dest, VALUE *dest_buf, shape_id_t dest_shape_id, VALUE *src_buf, shape_id_t src_shape_id)
+{
+ rb_shape_t *dest_shape = RSHAPE(dest_shape_id);
+ rb_shape_t *src_shape = RSHAPE(src_shape_id);
+
+ if (src_shape->next_field_index == dest_shape->next_field_index) {
+ // Happy path, we can just memcpy the ivptr content
+ MEMCPY(dest_buf, src_buf, VALUE, dest_shape->next_field_index);
+
+ // Fire write barriers
+ for (uint32_t i = 0; i < dest_shape->next_field_index; i++) {
+ RB_OBJ_WRITTEN(dest, Qundef, dest_buf[i]);
+ }
+ }
+ else {
+ while (src_shape->parent_id != INVALID_SHAPE_ID) {
+ if (src_shape->type == SHAPE_IVAR) {
+ while (dest_shape->edge_name != src_shape->edge_name) {
+ if (UNLIKELY(dest_shape->parent_id == INVALID_SHAPE_ID)) {
+ rb_bug("Lost field %s", rb_id2name(src_shape->edge_name));
+ }
+ dest_shape = RSHAPE(dest_shape->parent_id);
+ }
+
+ RB_OBJ_WRITE(dest, &dest_buf[dest_shape->next_field_index - 1], src_buf[src_shape->next_field_index - 1]);
+ }
+ src_shape = RSHAPE(src_shape->parent_id);
+ }
+ }
+}
+
+void
+rb_shape_copy_complex_ivars(VALUE dest, VALUE obj, shape_id_t src_shape_id, st_table *fields_table)
+{
+ // obj is TOO_COMPLEX so we can copy its iv_hash
+ st_table *table = st_copy(fields_table);
+ if (rb_shape_has_object_id(src_shape_id)) {
+ st_data_t id = (st_data_t)id_object_id;
+ st_delete(table, &id, NULL);
+ }
+ rb_obj_init_too_complex(dest, table);
+ rb_gc_writebarrier_remember(dest);
+}
+
+size_t
+rb_shape_edges_count(shape_id_t shape_id)
+{
+ rb_shape_t *shape = RSHAPE(shape_id);
+ if (shape->edges) {
+ if (SINGLE_CHILD_P(shape->edges)) {
+ return 1;
+ }
+ else {
+ return rb_managed_id_table_size(shape->edges);
+ }
+ }
+ return 0;
+}
+
+size_t
+rb_shape_memsize(shape_id_t shape_id)
+{
+ rb_shape_t *shape = RSHAPE(shape_id);
+
+ size_t memsize = sizeof(rb_shape_t);
+ if (shape->edges && !SINGLE_CHILD_P(shape->edges)) {
+ memsize += rb_managed_id_table_size(shape->edges);
+ }
+ return memsize;
+}
+
+bool
+rb_shape_foreach_field(shape_id_t initial_shape_id, rb_shape_foreach_transition_callback func, void *data)
+{
+ RUBY_ASSERT(!rb_shape_too_complex_p(initial_shape_id));
+
+ rb_shape_t *shape = RSHAPE(initial_shape_id);
+ if (shape->type == SHAPE_ROOT) {
+ return true;
+ }
+
+ shape_id_t parent_id = shape_id(RSHAPE(shape->parent_id), initial_shape_id);
+ if (rb_shape_foreach_field(parent_id, func, data)) {
+ switch (func(shape_id(shape, initial_shape_id), data)) {
+ case ST_STOP:
+ return false;
+ case ST_CHECK:
+ case ST_CONTINUE:
+ break;
+ default:
+ rb_bug("unreachable");
+ }
+ }
+ return true;
+}
+
+#if RUBY_DEBUG
+bool
+rb_shape_verify_consistency(VALUE obj, shape_id_t shape_id)
+{
+ if (shape_id == ROOT_SHAPE_ID) {
+ return true;
+ }
+
+ if (shape_id == INVALID_SHAPE_ID) {
+ rb_bug("Can't set INVALID_SHAPE_ID on an object");
+ }
+
+ rb_shape_t *shape = RSHAPE(shape_id);
+
+ bool has_object_id = false;
+ while (shape->parent_id != INVALID_SHAPE_ID) {
+ if (shape->type == SHAPE_OBJ_ID) {
+ has_object_id = true;
+ break;
+ }
+ shape = RSHAPE(shape->parent_id);
+ }
+
+ if (rb_shape_has_object_id(shape_id)) {
+ if (!has_object_id) {
+ rb_p(obj);
+ rb_bug("shape_id claim having obj_id but doesn't shape_id=%u, obj=%s", shape_id, rb_obj_info(obj));
+ }
+ }
+ else {
+ if (has_object_id) {
+ rb_p(obj);
+ rb_bug("shape_id claim not having obj_id but it does shape_id=%u, obj=%s", shape_id, rb_obj_info(obj));
+ }
+ }
+
+ // Make sure SHAPE_ID_HAS_IVAR_MASK is valid.
+ if (rb_shape_too_complex_p(shape_id)) {
+ RUBY_ASSERT(shape_id & SHAPE_ID_HAS_IVAR_MASK);
+
+ // Ensure complex object don't appear as embedded
+ if (RB_TYPE_P(obj, T_OBJECT) || IMEMO_TYPE_P(obj, imemo_fields)) {
+ RUBY_ASSERT(FL_TEST_RAW(obj, ROBJECT_HEAP));
+ }
+ }
+ else {
+ attr_index_t ivar_count = RSHAPE_LEN(shape_id);
+ if (has_object_id) {
+ ivar_count--;
+ }
+ if (ivar_count) {
+ RUBY_ASSERT(shape_id & SHAPE_ID_HAS_IVAR_MASK);
+ }
+ else {
+ RUBY_ASSERT(!(shape_id & SHAPE_ID_HAS_IVAR_MASK));
+ }
+ }
+
+ uint8_t flags_heap_index = rb_shape_heap_index(shape_id);
+ if (RB_TYPE_P(obj, T_OBJECT)) {
+ RUBY_ASSERT(flags_heap_index > 0);
+ size_t shape_id_slot_size = rb_shape_tree.capacities[flags_heap_index - 1] * sizeof(VALUE) + sizeof(struct RBasic);
+ size_t actual_slot_size = rb_gc_obj_slot_size(obj);
+
+ if (shape_id_slot_size != actual_slot_size) {
+ rb_bug("shape_id heap_index flags mismatch: shape_id_slot_size=%zu, gc_slot_size=%zu\n", shape_id_slot_size, actual_slot_size);
+ }
+ }
+ else {
+ if (flags_heap_index) {
+ rb_bug("shape_id indicate heap_index > 0 but object is not T_OBJECT: %s", rb_obj_info(obj));
+ }
+ }
+
+ return true;
+}
+#endif
+
+#if SHAPE_DEBUG
+
+/*
+ * Exposing Shape to Ruby via RubyVM::Shape.of(object)
+ */
+
+static VALUE
+shape_too_complex(VALUE self)
+{
+ shape_id_t shape_id = NUM2INT(rb_struct_getmember(self, rb_intern("id")));
+ return RBOOL(rb_shape_too_complex_p(shape_id));
+}
+
+static VALUE
+shape_frozen(VALUE self)
+{
+ shape_id_t shape_id = NUM2INT(rb_struct_getmember(self, rb_intern("id")));
+ return RBOOL(shape_id & SHAPE_ID_FL_FROZEN);
+}
+
+static VALUE
+shape_has_object_id_p(VALUE self)
+{
+ shape_id_t shape_id = NUM2INT(rb_struct_getmember(self, rb_intern("id")));
+ return RBOOL(rb_shape_has_object_id(shape_id));
+}
+
+static VALUE
+parse_key(ID key)
+{
+ if (is_instance_id(key)) {
+ return ID2SYM(key);
+ }
+ return LONG2NUM(key);
+}
+
+static VALUE rb_shape_edge_name(rb_shape_t *shape);
+
+static VALUE
+shape_id_t_to_rb_cShape(shape_id_t shape_id)
+{
+ VALUE rb_cShape = rb_const_get(rb_cRubyVM, rb_intern("Shape"));
+ rb_shape_t *shape = RSHAPE(shape_id);
+
+ VALUE obj = rb_struct_new(rb_cShape,
+ INT2NUM(shape_id),
+ INT2NUM(shape_id & SHAPE_ID_OFFSET_MASK),
+ INT2NUM(shape->parent_id),
+ rb_shape_edge_name(shape),
+ INT2NUM(shape->next_field_index),
+ INT2NUM(rb_shape_heap_index(shape_id)),
+ INT2NUM(shape->type),
+ INT2NUM(RSHAPE_CAPACITY(shape_id)));
+ rb_obj_freeze(obj);
+ return obj;
+}
+
+static enum rb_id_table_iterator_result
+rb_edges_to_hash(ID key, VALUE value, void *ref)
+{
+ rb_hash_aset(*(VALUE *)ref, parse_key(key), shape_id_t_to_rb_cShape(raw_shape_id((rb_shape_t *)value)));
+ return ID_TABLE_CONTINUE;
+}
+
+static VALUE
+rb_shape_edges(VALUE self)
+{
+ rb_shape_t *shape = RSHAPE(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));
+
+ VALUE hash = rb_hash_new();
+
+ if (shape->edges) {
+ if (SINGLE_CHILD_P(shape->edges)) {
+ rb_shape_t *child = SINGLE_CHILD(shape->edges);
+ rb_edges_to_hash(child->edge_name, (VALUE)child, &hash);
+ }
+ else {
+ VALUE edges = shape->edges;
+ rb_managed_id_table_foreach(edges, rb_edges_to_hash, &hash);
+ RB_GC_GUARD(edges);
+ }
+ }
+
+ return hash;
+}
+
+static VALUE
+rb_shape_edge_name(rb_shape_t *shape)
+{
+ if (shape->edge_name) {
+ if (is_instance_id(shape->edge_name)) {
+ return ID2SYM(shape->edge_name);
+ }
+ return INT2NUM(shape->capacity);
+ }
+ return Qnil;
+}
+
+static VALUE
+rb_shape_export_depth(VALUE self)
+{
+ shape_id_t shape_id = NUM2INT(rb_struct_getmember(self, rb_intern("id")));
+ return SIZET2NUM(rb_shape_depth(shape_id));
+}
+
+static VALUE
+rb_shape_parent(VALUE self)
+{
+ rb_shape_t *shape;
+ shape = RSHAPE(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));
+ if (shape->parent_id != INVALID_SHAPE_ID) {
+ return shape_id_t_to_rb_cShape(shape->parent_id);
+ }
+ else {
+ return Qnil;
+ }
+}
+
+static VALUE
+rb_shape_debug_shape(VALUE self, VALUE obj)
+{
+ if (RB_SPECIAL_CONST_P(obj)) {
+ rb_raise(rb_eArgError, "Can't get shape of special constant");
+ }
+ return shape_id_t_to_rb_cShape(rb_obj_shape_id(obj));
+}
+
+static VALUE
+rb_shape_root_shape(VALUE self)
+{
+ return shape_id_t_to_rb_cShape(ROOT_SHAPE_ID);
+}
+
+static VALUE
+rb_shape_shapes_available(VALUE self)
+{
+ return INT2NUM(MAX_SHAPE_ID - (rb_shapes_count() - 1));
+}
+
+static VALUE
+rb_shape_exhaust(int argc, VALUE *argv, VALUE self)
+{
+ rb_check_arity(argc, 0, 1);
+ int offset = argc == 1 ? NUM2INT(argv[0]) : 0;
+ RUBY_ATOMIC_SET(rb_shape_tree.next_shape_id, MAX_SHAPE_ID - offset + 1);
+ return Qnil;
+}
+
+static VALUE shape_to_h(rb_shape_t *shape);
+
+static enum rb_id_table_iterator_result collect_keys_and_values(ID key, VALUE value, void *ref)
+{
+ rb_hash_aset(*(VALUE *)ref, parse_key(key), shape_to_h((rb_shape_t *)value));
+ return ID_TABLE_CONTINUE;
+}
+
+static VALUE edges(VALUE edges)
+{
+ VALUE hash = rb_hash_new();
+ if (edges) {
+ if (SINGLE_CHILD_P(edges)) {
+ rb_shape_t *child = SINGLE_CHILD(edges);
+ collect_keys_and_values(child->edge_name, (VALUE)child, &hash);
+ }
+ else {
+ rb_managed_id_table_foreach(edges, collect_keys_and_values, &hash);
+ }
+ }
+ return hash;
+}
+
+static VALUE
+shape_to_h(rb_shape_t *shape)
+{
+ VALUE rb_shape = rb_hash_new();
+
+ rb_hash_aset(rb_shape, ID2SYM(rb_intern("id")), INT2NUM(raw_shape_id(shape)));
+ rb_hash_aset(rb_shape, ID2SYM(rb_intern("edges")), edges(shape->edges));
+
+ if (shape == rb_shape_get_root_shape()) {
+ rb_hash_aset(rb_shape, ID2SYM(rb_intern("parent_id")), INT2NUM(ROOT_SHAPE_ID));
+ }
+ else {
+ rb_hash_aset(rb_shape, ID2SYM(rb_intern("parent_id")), INT2NUM(shape->parent_id));
+ }
+
+ rb_hash_aset(rb_shape, ID2SYM(rb_intern("edge_name")), rb_id2str(shape->edge_name));
+ return rb_shape;
+}
+
+static VALUE
+shape_transition_tree(VALUE self)
+{
+ return shape_to_h(rb_shape_get_root_shape());
+}
+
+static VALUE
+rb_shape_find_by_id(VALUE mod, VALUE id)
+{
+ shape_id_t shape_id = NUM2UINT(id);
+ if (shape_id >= rb_shapes_count()) {
+ rb_raise(rb_eArgError, "Shape ID %d is out of bounds\n", shape_id);
+ }
+ return shape_id_t_to_rb_cShape(shape_id);
+}
+#endif
+
+#ifdef HAVE_MMAP
+#include <sys/mman.h>
+#endif
+
+void
+Init_default_shapes(void)
+{
+ size_t *heap_sizes = rb_gc_heap_sizes();
+ size_t heaps_count = 0;
+ while (heap_sizes[heaps_count]) {
+ heaps_count++;
+ }
+ attr_index_t *capacities = ALLOC_N(attr_index_t, heaps_count + 1);
+ capacities[heaps_count] = 0;
+ size_t index;
+ for (index = 0; index < heaps_count; index++) {
+ capacities[index] = (heap_sizes[index] - sizeof(struct RBasic)) / sizeof(VALUE);
+ }
+ rb_shape_tree.capacities = capacities;
+
+#ifdef HAVE_MMAP
+ size_t shape_list_mmap_size = rb_size_mul_or_raise(SHAPE_BUFFER_SIZE, sizeof(rb_shape_t), rb_eRuntimeError);
+ rb_shape_tree.shape_list = (rb_shape_t *)mmap(NULL, shape_list_mmap_size,
+ PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+ if (rb_shape_tree.shape_list == MAP_FAILED) {
+ rb_shape_tree.shape_list = 0;
+ }
+ else {
+ ruby_annotate_mmap(rb_shape_tree.shape_list, shape_list_mmap_size, "Ruby:Init_default_shapes:shape_list");
+ }
+#else
+ rb_shape_tree.shape_list = xcalloc(SHAPE_BUFFER_SIZE, sizeof(rb_shape_t));
+#endif
+
+ if (!rb_shape_tree.shape_list) {
+ rb_memerror();
+ }
+
+ id_object_id = rb_make_internal_id();
+
+#ifdef HAVE_MMAP
+ size_t shape_cache_mmap_size = rb_size_mul_or_raise(REDBLACK_CACHE_SIZE, sizeof(redblack_node_t), rb_eRuntimeError);
+ rb_shape_tree.shape_cache = (redblack_node_t *)mmap(NULL, shape_cache_mmap_size,
+ PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+ rb_shape_tree.cache_size = 0;
+
+ // If mmap fails, then give up on the redblack tree cache.
+ // We set the cache size such that the redblack node allocators think
+ // the cache is full.
+ if (rb_shape_tree.shape_cache == MAP_FAILED) {
+ rb_shape_tree.shape_cache = 0;
+ rb_shape_tree.cache_size = REDBLACK_CACHE_SIZE;
+ }
+ else {
+ ruby_annotate_mmap(rb_shape_tree.shape_cache, shape_cache_mmap_size, "Ruby:Init_default_shapes:shape_cache");
+ }
+#endif
+
+ rb_gc_register_address(&shape_tree_obj);
+ shape_tree_obj = TypedData_Wrap_Struct(0, &shape_tree_type, (void *)1);
+
+ // Root shape
+ rb_shape_t *root = rb_shape_alloc_with_parent_id(0, INVALID_SHAPE_ID);
+ root->capacity = 0;
+ root->type = SHAPE_ROOT;
+ rb_shape_tree.root_shape = root;
+ RUBY_ASSERT(raw_shape_id(rb_shape_tree.root_shape) == ROOT_SHAPE_ID);
+ RUBY_ASSERT(!(raw_shape_id(rb_shape_tree.root_shape) & SHAPE_ID_HAS_IVAR_MASK));
+
+ bool dontcare;
+ rb_shape_t *root_with_obj_id = get_next_shape_internal(root, id_object_id, SHAPE_OBJ_ID, &dontcare, true);
+ RUBY_ASSERT(root_with_obj_id);
+ RUBY_ASSERT(raw_shape_id(root_with_obj_id) == ROOT_SHAPE_WITH_OBJ_ID);
+ RUBY_ASSERT(root_with_obj_id->type == SHAPE_OBJ_ID);
+ RUBY_ASSERT(root_with_obj_id->edge_name == id_object_id);
+ RUBY_ASSERT(root_with_obj_id->next_field_index == 1);
+ RUBY_ASSERT(!(raw_shape_id(root_with_obj_id) & SHAPE_ID_HAS_IVAR_MASK));
+ (void)root_with_obj_id;
+}
+
+void
+rb_shape_free_all(void)
+{
+ xfree((void *)rb_shape_tree.capacities);
+}
+
+void
+Init_shape(void)
+{
+#if SHAPE_DEBUG
+ /* Document-class: RubyVM::Shape
+ * :nodoc: */
+ VALUE rb_cShape = rb_struct_define_under(rb_cRubyVM, "Shape",
+ "id",
+ "raw_id",
+ "parent_id",
+ "edge_name",
+ "next_field_index",
+ "heap_index",
+ "type",
+ "capacity",
+ NULL);
+
+ rb_define_method(rb_cShape, "parent", rb_shape_parent, 0);
+ rb_define_method(rb_cShape, "edges", rb_shape_edges, 0);
+ rb_define_method(rb_cShape, "depth", rb_shape_export_depth, 0);
+ rb_define_method(rb_cShape, "too_complex?", shape_too_complex, 0);
+ rb_define_method(rb_cShape, "shape_frozen?", shape_frozen, 0);
+ rb_define_method(rb_cShape, "has_object_id?", shape_has_object_id_p, 0);
+
+ rb_define_const(rb_cShape, "SHAPE_ROOT", INT2NUM(SHAPE_ROOT));
+ rb_define_const(rb_cShape, "SHAPE_IVAR", INT2NUM(SHAPE_IVAR));
+ rb_define_const(rb_cShape, "SHAPE_ID_NUM_BITS", INT2NUM(SHAPE_ID_NUM_BITS));
+ rb_define_const(rb_cShape, "SHAPE_FLAG_SHIFT", INT2NUM(SHAPE_FLAG_SHIFT));
+ rb_define_const(rb_cShape, "SHAPE_MAX_VARIATIONS", INT2NUM(SHAPE_MAX_VARIATIONS));
+ rb_define_const(rb_cShape, "SIZEOF_RB_SHAPE_T", INT2NUM(sizeof(rb_shape_t)));
+ rb_define_const(rb_cShape, "SIZEOF_REDBLACK_NODE_T", INT2NUM(sizeof(redblack_node_t)));
+ rb_define_const(rb_cShape, "SHAPE_BUFFER_SIZE", INT2NUM(sizeof(rb_shape_t) * SHAPE_BUFFER_SIZE));
+ rb_define_const(rb_cShape, "REDBLACK_CACHE_SIZE", INT2NUM(sizeof(redblack_node_t) * REDBLACK_CACHE_SIZE));
+
+ rb_define_singleton_method(rb_cShape, "transition_tree", shape_transition_tree, 0);
+ rb_define_singleton_method(rb_cShape, "find_by_id", rb_shape_find_by_id, 1);
+ rb_define_singleton_method(rb_cShape, "of", rb_shape_debug_shape, 1);
+ rb_define_singleton_method(rb_cShape, "root_shape", rb_shape_root_shape, 0);
+ rb_define_singleton_method(rb_cShape, "shapes_available", rb_shape_shapes_available, 0);
+ rb_define_singleton_method(rb_cShape, "exhaust_shapes", rb_shape_exhaust, -1);
+#endif
+}