summaryrefslogtreecommitdiff
path: root/shape.c
blob: 68c74034e70d654e0de87856d35c6cf6c9b427eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
#include "vm_core.h"
#include "vm_sync.h"
#include "shape.h"
#include "symbol.h"
#include "id_table.h"
#include "internal/class.h"
#include "internal/error.h"
#include "internal/gc.h"
#include "internal/object.h"
#include "internal/symbol.h"
#include "internal/variable.h"
#include "variable.h"
#include <stdbool.h>

#ifndef _WIN32
#include <sys/mman.h>
#endif

#ifndef SHAPE_DEBUG
#define SHAPE_DEBUG (VM_CHECK_MODE > 0)
#endif

#if SIZEOF_SHAPE_T == 4
#if RUBY_DEBUG
#define SHAPE_BUFFER_SIZE 0x8000
#else
#define SHAPE_BUFFER_SIZE 0x80000
#endif
#else
#define SHAPE_BUFFER_SIZE 0x8000
#endif

#define REDBLACK_CACHE_SIZE (SHAPE_BUFFER_SIZE * 32)

#define SINGLE_CHILD_TAG 0x1
#define TAG_SINGLE_CHILD(x) (struct rb_id_table *)((uintptr_t)x | SINGLE_CHILD_TAG)
#define SINGLE_CHILD_MASK (~((uintptr_t)SINGLE_CHILD_TAG))
#define SINGLE_CHILD_P(x) (((uintptr_t)x) & SINGLE_CHILD_TAG)
#define SINGLE_CHILD(x) (rb_shape_t *)((uintptr_t)x & SINGLE_CHILD_MASK)
#define ANCESTOR_CACHE_THRESHOLD 10
#define MAX_SHAPE_ID (SHAPE_BUFFER_SIZE - 1)
#define ANCESTOR_SEARCH_MAX_DEPTH 2

static ID id_frozen;
static ID id_t_object;

#define LEAF 0
#define BLACK 0x0
#define RED 0x1

static redblack_node_t *
redblack_left(redblack_node_t * node)
{
    if (node->l == LEAF) {
        return LEAF;
    }
    else {
        RUBY_ASSERT(node->l < GET_SHAPE_TREE()->cache_size);
        redblack_node_t * left = &GET_SHAPE_TREE()->shape_cache[node->l - 1];
        return left;
    }
}

static redblack_node_t *
redblack_right(redblack_node_t * node)
{
    if (node->r == LEAF) {
        return LEAF;
    }
    else {
        RUBY_ASSERT(node->r < GET_SHAPE_TREE()->cache_size);
        redblack_node_t * right = &GET_SHAPE_TREE()->shape_cache[node->r - 1];
        return right;
    }
}

static redblack_node_t *
redblack_find(redblack_node_t * tree, ID key)
{
    if (tree == LEAF) {
        return LEAF;
    }
    else {
        RUBY_ASSERT(redblack_left(tree) == LEAF || redblack_left(tree)->key < tree->key);
        RUBY_ASSERT(redblack_right(tree) == LEAF || redblack_right(tree)->key > tree->key);

        if (tree->key == key) {
            return tree;
        }
        else {
            if (key < tree->key) {
                return redblack_find(redblack_left(tree), key);
            }
            else {
                return redblack_find(redblack_right(tree), key);
            }
        }
    }
}

static inline char
redblack_color(redblack_node_t * node)
{
    return node && ((uintptr_t)node->value & RED);
}

static inline bool
redblack_red_p(redblack_node_t * node)
{
    return redblack_color(node) == RED;
}

static inline rb_shape_t *
redblack_value(redblack_node_t * node)
{
    // Color is stored in the bottom bit of the shape pointer
    // Mask away the bit so we get the actual pointer back
    return (rb_shape_t *)((uintptr_t)node->value & (((uintptr_t)-1) - 1));
}

static redblack_id_t
redblack_id_for(redblack_node_t * node)
{
    RUBY_ASSERT(node || node == LEAF);
    if (node == LEAF) {
        return 0;
    }
    else {
        redblack_node_t * redblack_nodes = GET_SHAPE_TREE()->shape_cache;
        redblack_id_t id = (redblack_id_t)(node - redblack_nodes);
        return id + 1;
    }
}

static redblack_node_t *
redblack_new(char color, ID key, rb_shape_t * value, redblack_node_t * left, redblack_node_t * right)
{
    if (GET_SHAPE_TREE()->cache_size + 1 >= REDBLACK_CACHE_SIZE) {
        // We're out of cache, just quit
        return LEAF;
    }

    RUBY_ASSERT(left == LEAF || left->key < key);
    RUBY_ASSERT(right == LEAF || right->key > key);

    redblack_node_t * redblack_nodes = GET_SHAPE_TREE()->shape_cache;
    redblack_node_t * node = &redblack_nodes[(GET_SHAPE_TREE()->cache_size)++];
    node->key = key;
    node->value = (rb_shape_t *)((uintptr_t)value | color);
    node->l = redblack_id_for(left);
    node->r = redblack_id_for(right);
    return node;
}

static redblack_node_t *
redblack_balance(char color, ID key, rb_shape_t * value, redblack_node_t * left, redblack_node_t * right)
{
    if (color == BLACK) {
        ID new_key, new_left_key, new_right_key;
        rb_shape_t *new_value, *new_left_value, *new_right_value;
        redblack_node_t *new_left_left, *new_left_right, *new_right_left, *new_right_right;

        if (redblack_red_p(left) && redblack_red_p(redblack_left(left))) {
            new_right_key = key;
            new_right_value = value;
            new_right_right = right;

            new_key = left->key;
            new_value = redblack_value(left);
            new_right_left = redblack_right(left);

            new_left_key = redblack_left(left)->key;
            new_left_value = redblack_value(redblack_left(left));

            new_left_left = redblack_left(redblack_left(left));
            new_left_right = redblack_right(redblack_left(left));
        }
        else if (redblack_red_p(left) && redblack_red_p(redblack_right(left))) {
            new_right_key = key;
            new_right_value = value;
            new_right_right = right;

            new_left_key = left->key;
            new_left_value = redblack_value(left);
            new_left_left = redblack_left(left);

            new_key = redblack_right(left)->key;
            new_value = redblack_value(redblack_right(left));
            new_left_right = redblack_left(redblack_right(left));
            new_right_left = redblack_right(redblack_right(left));
        }
        else if (redblack_red_p(right) && redblack_red_p(redblack_left(right))) {
            new_left_key = key;
            new_left_value = value;
            new_left_left = left;

            new_right_key = right->key;
            new_right_value = redblack_value(right);
            new_right_right = redblack_right(right);

            new_key = redblack_left(right)->key;
            new_value = redblack_value(redblack_left(right));
            new_left_right = redblack_left(redblack_left(right));
            new_right_left = redblack_right(redblack_left(right));
        }
        else if (redblack_red_p(right) && redblack_red_p(redblack_right(right))) {
            new_left_key = key;
            new_left_value = value;
            new_left_left = left;

            new_key = right->key;
            new_value = redblack_value(right);
            new_left_right = redblack_left(right);

            new_right_key = redblack_right(right)->key;
            new_right_value = redblack_value(redblack_right(right));
            new_right_left = redblack_left(redblack_right(right));
            new_right_right = redblack_right(redblack_right(right));
        }
        else {
            return redblack_new(color, key, value, left, right);
        }

        RUBY_ASSERT(new_left_key < new_key);
        RUBY_ASSERT(new_right_key > new_key);
        RUBY_ASSERT(new_left_left == LEAF || new_left_left->key < new_left_key);
        RUBY_ASSERT(new_left_right == LEAF || new_left_right->key > new_left_key);
        RUBY_ASSERT(new_left_right == LEAF || new_left_right->key < new_key);
        RUBY_ASSERT(new_right_left == LEAF || new_right_left->key < new_right_key);
        RUBY_ASSERT(new_right_left == LEAF || new_right_left->key > new_key);
        RUBY_ASSERT(new_right_right == LEAF || new_right_right->key > new_right_key);

        return redblack_new(
                RED, new_key, new_value,
                redblack_new(BLACK, new_left_key, new_left_value, new_left_left, new_left_right),
                redblack_new(BLACK, new_right_key, new_right_value, new_right_left, new_right_right));
    }

    return redblack_new(color, key, value, left, right);
}

static redblack_node_t *
redblack_insert_aux(redblack_node_t * tree, ID key, rb_shape_t * value)
{
    if (tree == LEAF) {
        return redblack_new(RED, key, value, LEAF, LEAF);
    }
    else {
        redblack_node_t *left, *right;
        if (key < tree->key) {
            left = redblack_insert_aux(redblack_left(tree), key, value);
            RUBY_ASSERT(left != LEAF);
            right = redblack_right(tree);
            RUBY_ASSERT(right == LEAF || right->key > tree->key);
        }
        else if (key > tree->key) {
            left = redblack_left(tree);
            RUBY_ASSERT(left == LEAF || left->key < tree->key);
            right = redblack_insert_aux(redblack_right(tree), key, value);
            RUBY_ASSERT(right != LEAF);
        }
        else {
            return tree;
        }

        return redblack_balance(
            redblack_color(tree),
            tree->key,
            redblack_value(tree),
            left,
            right
        );
    }
}

static redblack_node_t *
redblack_force_black(redblack_node_t * node)
{
    node->value = redblack_value(node);
    return node;
}

static redblack_node_t *
redblack_insert(redblack_node_t * tree, ID key, rb_shape_t * value)
{
    redblack_node_t * root = redblack_insert_aux(tree, key, value);

    if (redblack_red_p(root)) {
        return redblack_force_black(root);
    }
    else {
        return root;
    }
}

rb_shape_tree_t *rb_shape_tree_ptr = NULL;

/*
 * Shape getters
 */
rb_shape_t *
rb_shape_get_root_shape(void)
{
    return GET_SHAPE_TREE()->root_shape;
}

shape_id_t
rb_shape_id(rb_shape_t * shape)
{
    return (shape_id_t)(shape - GET_SHAPE_TREE()->shape_list);
}

void
rb_shape_each_shape(each_shape_callback callback, void *data)
{
    rb_shape_t *cursor = rb_shape_get_root_shape();
    rb_shape_t *end = rb_shape_get_shape_by_id(GET_SHAPE_TREE()->next_shape_id);
    while (cursor < end) {
        callback(cursor, data);
        cursor += 1;
    }
}

RUBY_FUNC_EXPORTED rb_shape_t *
rb_shape_get_shape_by_id(shape_id_t shape_id)
{
    RUBY_ASSERT(shape_id != INVALID_SHAPE_ID);

    rb_shape_t *shape = &GET_SHAPE_TREE()->shape_list[shape_id];
    return shape;
}

rb_shape_t *
rb_shape_get_parent(rb_shape_t * shape)
{
    return rb_shape_get_shape_by_id(shape->parent_id);
}

#if !SHAPE_IN_BASIC_FLAGS
shape_id_t rb_generic_shape_id(VALUE obj);
#endif

RUBY_FUNC_EXPORTED shape_id_t
rb_shape_get_shape_id(VALUE obj)
{
    if (RB_SPECIAL_CONST_P(obj)) {
        return SPECIAL_CONST_SHAPE_ID;
    }

#if SHAPE_IN_BASIC_FLAGS
    return RBASIC_SHAPE_ID(obj);
#else
    switch (BUILTIN_TYPE(obj)) {
      case T_OBJECT:
        return ROBJECT_SHAPE_ID(obj);
        break;
      case T_CLASS:
      case T_MODULE:
        return RCLASS_SHAPE_ID(obj);
      default:
        return rb_generic_shape_id(obj);
    }
#endif
}

size_t
rb_shape_depth(rb_shape_t * shape)
{
    size_t depth = 1;

    while (shape->parent_id != INVALID_SHAPE_ID) {
        depth++;
        shape = rb_shape_get_parent(shape);
    }

    return depth;
}

rb_shape_t*
rb_shape_get_shape(VALUE obj)
{
    return rb_shape_get_shape_by_id(rb_shape_get_shape_id(obj));
}

static rb_shape_t *
shape_alloc(void)
{
    shape_id_t shape_id = GET_SHAPE_TREE()->next_shape_id;
    GET_SHAPE_TREE()->next_shape_id++;

    if (shape_id == (MAX_SHAPE_ID + 1)) {
        // TODO: Make an OutOfShapesError ??
        rb_bug("Out of shapes");
    }

    return &GET_SHAPE_TREE()->shape_list[shape_id];
}

static rb_shape_t *
rb_shape_alloc_with_parent_id(ID edge_name, shape_id_t parent_id)
{
    rb_shape_t * shape = shape_alloc();

    shape->edge_name = edge_name;
    shape->next_iv_index = 0;
    shape->parent_id = parent_id;
    shape->edges = NULL;

    return shape;
}

static rb_shape_t *
rb_shape_alloc(ID edge_name, rb_shape_t * parent, enum shape_type type)
{
    rb_shape_t * shape = rb_shape_alloc_with_parent_id(edge_name, rb_shape_id(parent));
    shape->type = (uint8_t)type;
    shape->size_pool_index = parent->size_pool_index;
    shape->capacity = parent->capacity;
    shape->edges = 0;
    return shape;
}

#ifdef HAVE_MMAP
static redblack_node_t *
redblack_cache_ancestors(rb_shape_t * shape)
{
    if (!(shape->ancestor_index || shape->parent_id == INVALID_SHAPE_ID)) {
        redblack_node_t * parent_index;

        parent_index = redblack_cache_ancestors(rb_shape_get_parent(shape));

        if (shape->type == SHAPE_IVAR) {
            shape->ancestor_index = redblack_insert(parent_index, shape->edge_name, shape);

#if RUBY_DEBUG
            if (shape->ancestor_index) {
                redblack_node_t *inserted_node = redblack_find(shape->ancestor_index, shape->edge_name);
                RUBY_ASSERT(inserted_node);
                RUBY_ASSERT(redblack_value(inserted_node) == shape);
            }
#endif
        }
        else {
            shape->ancestor_index = parent_index;
        }
    }

    return shape->ancestor_index;
}
#else
static redblack_node_t *
redblack_cache_ancestors(rb_shape_t * shape)
{
    return LEAF;
}
#endif

static rb_shape_t *
rb_shape_alloc_new_child(ID id, rb_shape_t * shape, enum shape_type shape_type)
{
    rb_shape_t * new_shape = rb_shape_alloc(id, shape, shape_type);

    switch (shape_type) {
      case SHAPE_IVAR:
        if (UNLIKELY(shape->next_iv_index >= shape->capacity)) {
            RUBY_ASSERT(shape->next_iv_index == shape->capacity);
            new_shape->capacity = (uint32_t)rb_malloc_grow_capa(shape->capacity, sizeof(VALUE));
        }
        RUBY_ASSERT(new_shape->capacity > shape->next_iv_index);
        new_shape->next_iv_index = shape->next_iv_index + 1;
        if (new_shape->next_iv_index > ANCESTOR_CACHE_THRESHOLD) {
            redblack_cache_ancestors(new_shape);
        }
        break;
      case SHAPE_FROZEN:
        new_shape->next_iv_index = shape->next_iv_index;
        break;
      case SHAPE_OBJ_TOO_COMPLEX:
      case SHAPE_ROOT:
      case SHAPE_T_OBJECT:
        rb_bug("Unreachable");
        break;
    }

    return new_shape;
}

static rb_shape_t*
get_next_shape_internal(rb_shape_t * shape, ID id, enum shape_type shape_type, bool * variation_created, bool new_variations_allowed)
{
    rb_shape_t *res = NULL;

    // There should never be outgoing edges from "too complex"
    RUBY_ASSERT(rb_shape_id(shape) != OBJ_TOO_COMPLEX_SHAPE_ID);

    *variation_created = false;

    RB_VM_LOCK_ENTER();
    {
        // If the current shape has children
        if (shape->edges) {
            // Check if it only has one child
            if (SINGLE_CHILD_P(shape->edges)) {
                rb_shape_t * child = SINGLE_CHILD(shape->edges);
                // If the one child has a matching edge name, then great,
                // we found what we want.
                if (child->edge_name == id) {
                    res = child;
                }
            }
            else {
                // If it has more than one child, do a hash lookup to find it.
                VALUE lookup_result;
                if (rb_id_table_lookup(shape->edges, id, &lookup_result)) {
                    res = (rb_shape_t *)lookup_result;
                }
            }
        }

        // If we didn't find the shape we're looking for we create it.
        if (!res) {
            // If we're not allowed to create a new variation, of if we're out of shapes
            // we return TOO_COMPLEX_SHAPE.
            if (!new_variations_allowed || GET_SHAPE_TREE()->next_shape_id > MAX_SHAPE_ID) {
                res = rb_shape_get_shape_by_id(OBJ_TOO_COMPLEX_SHAPE_ID);
            }
            else {
                rb_shape_t * new_shape = rb_shape_alloc_new_child(id, shape, shape_type);

                if (!shape->edges) {
                    // If the shape had no edge yet, we can directly set the new child
                    shape->edges = TAG_SINGLE_CHILD(new_shape);
                }
                else {
                    // If the edge was single child we need to allocate a table.
                    if (SINGLE_CHILD_P(shape->edges)) {
                        rb_shape_t * old_child = SINGLE_CHILD(shape->edges);
                        shape->edges = rb_id_table_create(2);
                        rb_id_table_insert(shape->edges, old_child->edge_name, (VALUE)old_child);
                    }

                    rb_id_table_insert(shape->edges, new_shape->edge_name, (VALUE)new_shape);
                    *variation_created = true;
                }

                res = new_shape;
            }
        }
    }
    RB_VM_LOCK_LEAVE();

    return res;
}

int
rb_shape_frozen_shape_p(rb_shape_t* shape)
{
    return SHAPE_FROZEN == (enum shape_type)shape->type;
}

static rb_shape_t *
remove_shape_recursive(rb_shape_t *shape, ID id, rb_shape_t **removed_shape)
{
    if (shape->parent_id == INVALID_SHAPE_ID) {
        // We've hit the top of the shape tree and couldn't find the
        // IV we wanted to remove, so return NULL
        return NULL;
    }
    else {
        if (shape->type == SHAPE_IVAR && shape->edge_name == id) {
            *removed_shape = shape;

            return rb_shape_get_parent(shape);
        }
        else {
            // This isn't the IV we want to remove, keep walking up.
            rb_shape_t *new_parent = remove_shape_recursive(rb_shape_get_parent(shape), id, removed_shape);

            // We found a new parent.  Create a child of the new parent that
            // has the same attributes as this shape.
            if (new_parent) {
                if (UNLIKELY(new_parent->type == SHAPE_OBJ_TOO_COMPLEX)) {
                    return new_parent;
                }

                bool dont_care;
                rb_shape_t *new_child = get_next_shape_internal(new_parent, shape->edge_name, shape->type, &dont_care, true);
                if (UNLIKELY(new_child->type == SHAPE_OBJ_TOO_COMPLEX)) {
                    return new_child;
                }

                RUBY_ASSERT(new_child->capacity <= shape->capacity);

                return new_child;
            }
            else {
                // We went all the way to the top of the shape tree and couldn't
                // find an IV to remove, so return NULL
                return NULL;
            }
        }
    }
}

bool
rb_shape_transition_shape_remove_ivar(VALUE obj, ID id, rb_shape_t *shape, VALUE *removed)
{
    if (UNLIKELY(shape->type == SHAPE_OBJ_TOO_COMPLEX)) {
        return false;
    }

    rb_shape_t *removed_shape = NULL;
    rb_shape_t *new_shape = remove_shape_recursive(shape, id, &removed_shape);
    if (new_shape) {
        RUBY_ASSERT(removed_shape != NULL);

        if (UNLIKELY(new_shape->type == SHAPE_OBJ_TOO_COMPLEX)) {
            return false;
        }

        RUBY_ASSERT(new_shape->next_iv_index == shape->next_iv_index - 1);

        VALUE *ivptr;
        switch(BUILTIN_TYPE(obj)) {
          case T_CLASS:
          case T_MODULE:
            ivptr = RCLASS_IVPTR(obj);
            break;
          case T_OBJECT:
            ivptr = ROBJECT_IVPTR(obj);
            break;
          default: {
            struct gen_ivtbl *ivtbl;
            rb_gen_ivtbl_get(obj, id, &ivtbl);
            ivptr = ivtbl->as.shape.ivptr;
            break;
          }
        }

        *removed = ivptr[removed_shape->next_iv_index - 1];

        memmove(&ivptr[removed_shape->next_iv_index - 1], &ivptr[removed_shape->next_iv_index],
                ((new_shape->next_iv_index + 1) - removed_shape->next_iv_index) * sizeof(VALUE));

        // Re-embed objects when instances become small enough
        // This is necessary because YJIT assumes that objects with the same shape
        // have the same embeddedness for efficiency (avoid extra checks)
        if (BUILTIN_TYPE(obj) == T_OBJECT &&
                !RB_FL_TEST_RAW(obj, ROBJECT_EMBED) &&
                rb_obj_embedded_size(new_shape->next_iv_index) <= rb_gc_obj_slot_size(obj)) {
            RB_FL_SET_RAW(obj, ROBJECT_EMBED);
            memcpy(ROBJECT_IVPTR(obj), ivptr, new_shape->next_iv_index * sizeof(VALUE));
            xfree(ivptr);
        }

        rb_shape_set_shape(obj, new_shape);
    }
    return true;
}

rb_shape_t *
rb_shape_transition_shape_frozen(VALUE obj)
{
    rb_shape_t* shape = rb_shape_get_shape(obj);
    RUBY_ASSERT(shape);
    RUBY_ASSERT(RB_OBJ_FROZEN(obj));

    if (rb_shape_frozen_shape_p(shape) || rb_shape_obj_too_complex(obj)) {
        return shape;
    }

    rb_shape_t* next_shape;

    if (shape == rb_shape_get_root_shape()) {
        return rb_shape_get_shape_by_id(SPECIAL_CONST_SHAPE_ID);
    }

    bool dont_care;
    next_shape = get_next_shape_internal(shape, (ID)id_frozen, SHAPE_FROZEN, &dont_care, true);

    RUBY_ASSERT(next_shape);
    return next_shape;
}

/*
 * This function is used for assertions where we don't want to increment
 * max_iv_count
 */
rb_shape_t *
rb_shape_get_next_iv_shape(rb_shape_t* shape, ID id)
{
    RUBY_ASSERT(!is_instance_id(id) || RTEST(rb_sym2str(ID2SYM(id))));
    bool dont_care;
    return get_next_shape_internal(shape, id, SHAPE_IVAR, &dont_care, true);
}

rb_shape_t *
rb_shape_get_next(rb_shape_t *shape, VALUE obj, ID id)
{
    RUBY_ASSERT(!is_instance_id(id) || RTEST(rb_sym2str(ID2SYM(id))));
    if (UNLIKELY(shape->type == SHAPE_OBJ_TOO_COMPLEX)) {
        return shape;
    }

#if RUBY_DEBUG
    attr_index_t index;
    if (rb_shape_get_iv_index(shape, id, &index)) {
        rb_bug("rb_shape_get_next: trying to create ivar that already exists at index %u", index);
    }
#endif

    bool allow_new_shape = true;

    if (BUILTIN_TYPE(obj) == T_OBJECT) {
        VALUE klass = rb_obj_class(obj);
        allow_new_shape = RCLASS_EXT(klass)->variation_count < SHAPE_MAX_VARIATIONS;
    }

    bool variation_created = false;
    rb_shape_t *new_shape = get_next_shape_internal(shape, id, SHAPE_IVAR, &variation_created, allow_new_shape);

    // Check if we should update max_iv_count on the object's class
    if (BUILTIN_TYPE(obj) == T_OBJECT) {
        VALUE klass = rb_obj_class(obj);
        if (new_shape->next_iv_index > RCLASS_EXT(klass)->max_iv_count) {
            RCLASS_EXT(klass)->max_iv_count = new_shape->next_iv_index;
        }

        if (variation_created) {
            RCLASS_EXT(klass)->variation_count++;
            if (rb_warning_category_enabled_p(RB_WARN_CATEGORY_PERFORMANCE)) {
                if (RCLASS_EXT(klass)->variation_count >= SHAPE_MAX_VARIATIONS) {
                    rb_category_warn(
                        RB_WARN_CATEGORY_PERFORMANCE,
                        "The class %"PRIsVALUE" reached %d shape variations, instance variables accesses will be slower and memory usage increased.\n"
                        "It is recommended to define instance variables in a consistent order, for instance by eagerly defining them all in the #initialize method.",
                        rb_class_path(klass),
                        SHAPE_MAX_VARIATIONS
                    );
                }
            }
        }
    }

    return new_shape;
}

// Same as rb_shape_get_iv_index, but uses a provided valid shape id and index
// to return a result faster if branches of the shape tree are closely related.
bool
rb_shape_get_iv_index_with_hint(shape_id_t shape_id, ID id, attr_index_t *value, shape_id_t *shape_id_hint)
{
    attr_index_t index_hint = *value;
    rb_shape_t *shape = rb_shape_get_shape_by_id(shape_id);
    rb_shape_t *initial_shape = shape;

    if (*shape_id_hint == INVALID_SHAPE_ID) {
        *shape_id_hint = shape_id;
        return rb_shape_get_iv_index(shape, id, value);
    }

    rb_shape_t * shape_hint = rb_shape_get_shape_by_id(*shape_id_hint);

    // We assume it's likely shape_id_hint and shape_id have a close common
    // ancestor, so we check up to ANCESTOR_SEARCH_MAX_DEPTH ancestors before
    // eventually using the index, as in case of a match it will be faster.
    // However if the shape doesn't have an index, we walk the entire tree.
    int depth = INT_MAX;
    if (shape->ancestor_index && shape->next_iv_index >= ANCESTOR_CACHE_THRESHOLD) {
        depth = ANCESTOR_SEARCH_MAX_DEPTH;
    }

    while (depth > 0 && shape->next_iv_index > index_hint) {
        while (shape_hint->next_iv_index > shape->next_iv_index) {
            shape_hint = rb_shape_get_parent(shape_hint);
        }

        if (shape_hint == shape) {
            // We've found a common ancestor so use the index hint
            *value = index_hint;
            *shape_id_hint = rb_shape_id(shape);
            return true;
        }
        if (shape->edge_name == id) {
            // We found the matching id before a common ancestor
            *value = shape->next_iv_index - 1;
            *shape_id_hint = rb_shape_id(shape);
            return true;
        }

        shape = rb_shape_get_parent(shape);
        depth--;
    }

    // If the original shape had an index but its ancestor doesn't
    // we switch back to the original one as it will be faster.
    if (!shape->ancestor_index && initial_shape->ancestor_index) {
        shape = initial_shape;
    }
    *shape_id_hint = shape_id;
    return rb_shape_get_iv_index(shape, id, value);
}

static bool
shape_get_iv_index(rb_shape_t *shape, ID id, attr_index_t *value)
{
    while (shape->parent_id != INVALID_SHAPE_ID) {
        if (shape->edge_name == id) {
            enum shape_type shape_type;
            shape_type = (enum shape_type)shape->type;

            switch (shape_type) {
              case SHAPE_IVAR:
                RUBY_ASSERT(shape->next_iv_index > 0);
                *value = shape->next_iv_index - 1;
                return true;
              case SHAPE_ROOT:
              case SHAPE_T_OBJECT:
                return false;
              case SHAPE_OBJ_TOO_COMPLEX:
              case SHAPE_FROZEN:
                rb_bug("Ivar should not exist on transition");
            }
        }

        shape = rb_shape_get_parent(shape);
    }

    return false;
}

static bool
shape_cache_get_iv_index(rb_shape_t *shape, ID id, attr_index_t *value)
{
    if (shape->ancestor_index && shape->next_iv_index >= ANCESTOR_CACHE_THRESHOLD) {
        redblack_node_t *node = redblack_find(shape->ancestor_index, id);
        if (node) {
            rb_shape_t *shape = redblack_value(node);
            *value = shape->next_iv_index - 1;

#if RUBY_DEBUG
            attr_index_t shape_tree_index;
            RUBY_ASSERT(shape_get_iv_index(shape, id, &shape_tree_index));
            RUBY_ASSERT(shape_tree_index == *value);
#endif

            return true;
        }

        /* Verify the cache is correct by checking that this instance variable
         * does not exist in the shape tree either. */
        RUBY_ASSERT(!shape_get_iv_index(shape, id, value));
    }

    return false;
}

bool
rb_shape_get_iv_index(rb_shape_t *shape, ID id, attr_index_t *value)
{
    // It doesn't make sense to ask for the index of an IV that's stored
    // on an object that is "too complex" as it uses a hash for storing IVs
    RUBY_ASSERT(rb_shape_id(shape) != OBJ_TOO_COMPLEX_SHAPE_ID);

    if (!shape_cache_get_iv_index(shape, id, value)) {
        // If it wasn't in the ancestor cache, then don't do a linear search
        if (shape->ancestor_index && shape->next_iv_index >= ANCESTOR_CACHE_THRESHOLD) {
            return false;
        }
        else {
            return shape_get_iv_index(shape, id, value);
        }
    }

    return true;
}

void
rb_shape_set_shape(VALUE obj, rb_shape_t* shape)
{
    rb_shape_set_shape_id(obj, rb_shape_id(shape));
}

int32_t
rb_shape_id_offset(void)
{
    return sizeof(uintptr_t) - SHAPE_ID_NUM_BITS / sizeof(uintptr_t);
}

rb_shape_t *
rb_shape_traverse_from_new_root(rb_shape_t *initial_shape, rb_shape_t *dest_shape)
{
    RUBY_ASSERT(initial_shape->type == SHAPE_T_OBJECT);
    rb_shape_t *next_shape = initial_shape;

    if (dest_shape->type != initial_shape->type) {
        next_shape = rb_shape_traverse_from_new_root(initial_shape, rb_shape_get_parent(dest_shape));
        if (!next_shape) {
            return NULL;
        }
    }

    switch ((enum shape_type)dest_shape->type) {
      case SHAPE_IVAR:
      case SHAPE_FROZEN:
        if (!next_shape->edges) {
            return NULL;
        }

        VALUE lookup_result;
        if (SINGLE_CHILD_P(next_shape->edges)) {
            rb_shape_t * child = SINGLE_CHILD(next_shape->edges);
            if (child->edge_name == dest_shape->edge_name) {
                return child;
            }
            else {
                return NULL;
            }
        }
        else {
            if (rb_id_table_lookup(next_shape->edges, dest_shape->edge_name, &lookup_result)) {
                next_shape = (rb_shape_t *)lookup_result;
            }
            else {
                return NULL;
            }
        }
        break;
      case SHAPE_ROOT:
      case SHAPE_T_OBJECT:
        break;
      case SHAPE_OBJ_TOO_COMPLEX:
        rb_bug("Unreachable");
        break;
    }

    return next_shape;
}

rb_shape_t *
rb_shape_rebuild_shape(rb_shape_t * initial_shape, rb_shape_t * dest_shape)
{
    RUBY_ASSERT(rb_shape_id(initial_shape) != OBJ_TOO_COMPLEX_SHAPE_ID);
    RUBY_ASSERT(rb_shape_id(dest_shape) != OBJ_TOO_COMPLEX_SHAPE_ID);

    rb_shape_t * midway_shape;

    RUBY_ASSERT(initial_shape->type == SHAPE_T_OBJECT);

    if (dest_shape->type != initial_shape->type) {
        midway_shape = rb_shape_rebuild_shape(initial_shape, rb_shape_get_parent(dest_shape));
        if (UNLIKELY(rb_shape_id(midway_shape) == OBJ_TOO_COMPLEX_SHAPE_ID)) {
            return midway_shape;
        }
    }
    else {
        midway_shape = initial_shape;
    }

    switch ((enum shape_type)dest_shape->type) {
      case SHAPE_IVAR:
        midway_shape = rb_shape_get_next_iv_shape(midway_shape, dest_shape->edge_name);
        break;
      case SHAPE_ROOT:
      case SHAPE_FROZEN:
      case SHAPE_T_OBJECT:
        break;
      case SHAPE_OBJ_TOO_COMPLEX:
        rb_bug("Unreachable");
        break;
    }

    return midway_shape;
}

RUBY_FUNC_EXPORTED bool
rb_shape_obj_too_complex(VALUE obj)
{
    return rb_shape_get_shape_id(obj) == OBJ_TOO_COMPLEX_SHAPE_ID;
}

size_t
rb_shape_edges_count(rb_shape_t *shape)
{
    if (shape->edges) {
        if (SINGLE_CHILD_P(shape->edges)) {
            return 1;
        }
        else {
            return rb_id_table_size(shape->edges);
        }
    }
    return 0;
}

size_t
rb_shape_memsize(rb_shape_t *shape)
{
    size_t memsize = sizeof(rb_shape_t);
    if (shape->edges && !SINGLE_CHILD_P(shape->edges)) {
        memsize += rb_id_table_memsize(shape->edges);
    }
    return memsize;
}

#if SHAPE_DEBUG
/*
 * Exposing Shape to Ruby via RubyVM.debug_shape
 */

/* :nodoc: */
static VALUE
rb_shape_too_complex(VALUE self)
{
    rb_shape_t * shape;
    shape = rb_shape_get_shape_by_id(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));
    if (rb_shape_id(shape) == OBJ_TOO_COMPLEX_SHAPE_ID) {
        return Qtrue;
    }
    else {
        return Qfalse;
    }
}

static VALUE
parse_key(ID key)
{
    if (is_instance_id(key)) {
        return ID2SYM(key);
    }
    return LONG2NUM(key);
}

static VALUE rb_shape_edge_name(rb_shape_t * shape);

static VALUE
rb_shape_t_to_rb_cShape(rb_shape_t *shape)
{
    VALUE rb_cShape = rb_const_get(rb_cRubyVM, rb_intern("Shape"));

    VALUE obj = rb_struct_new(rb_cShape,
            INT2NUM(rb_shape_id(shape)),
            INT2NUM(shape->parent_id),
            rb_shape_edge_name(shape),
            INT2NUM(shape->next_iv_index),
            INT2NUM(shape->size_pool_index),
            INT2NUM(shape->type),
            INT2NUM(shape->capacity));
    rb_obj_freeze(obj);
    return obj;
}

static enum rb_id_table_iterator_result
rb_edges_to_hash(ID key, VALUE value, void *ref)
{
    rb_hash_aset(*(VALUE *)ref, parse_key(key), rb_shape_t_to_rb_cShape((rb_shape_t*)value));
    return ID_TABLE_CONTINUE;
}

/* :nodoc: */
static VALUE
rb_shape_edges(VALUE self)
{
    rb_shape_t* shape;

    shape = rb_shape_get_shape_by_id(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));

    VALUE hash = rb_hash_new();

    if (shape->edges) {
        if (SINGLE_CHILD_P(shape->edges)) {
            rb_shape_t * child = SINGLE_CHILD(shape->edges);
            rb_edges_to_hash(child->edge_name, (VALUE)child, &hash);
        }
        else {
            rb_id_table_foreach(shape->edges, rb_edges_to_hash, &hash);
        }
    }

    return hash;
}

static VALUE
rb_shape_edge_name(rb_shape_t * shape)
{
    if (shape->edge_name) {
        if (is_instance_id(shape->edge_name)) {
            return ID2SYM(shape->edge_name);
        }
        return INT2NUM(shape->capacity);
    }
    return Qnil;
}

/* :nodoc: */
static VALUE
rb_shape_export_depth(VALUE self)
{
    rb_shape_t* shape;
    shape = rb_shape_get_shape_by_id(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));
    return SIZET2NUM(rb_shape_depth(shape));
}

/* :nodoc: */
static VALUE
rb_shape_parent(VALUE self)
{
    rb_shape_t * shape;
    shape = rb_shape_get_shape_by_id(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));
    if (shape->parent_id != INVALID_SHAPE_ID) {
        return rb_shape_t_to_rb_cShape(rb_shape_get_parent(shape));
    }
    else {
        return Qnil;
    }
}

/* :nodoc: */
static VALUE
rb_shape_debug_shape(VALUE self, VALUE obj)
{
    return rb_shape_t_to_rb_cShape(rb_shape_get_shape(obj));
}

/* :nodoc: */
static VALUE
rb_shape_root_shape(VALUE self)
{
    return rb_shape_t_to_rb_cShape(rb_shape_get_root_shape());
}

/* :nodoc: */
static VALUE
rb_shape_shapes_available(VALUE self)
{
    return INT2NUM(MAX_SHAPE_ID - (GET_SHAPE_TREE()->next_shape_id - 1));
}

/* :nodoc: */
static VALUE
rb_shape_exhaust(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 0, 1);
    int offset = argc == 1 ? NUM2INT(argv[0]) : 0;
    GET_SHAPE_TREE()->next_shape_id = MAX_SHAPE_ID - offset + 1;
    return Qnil;
}

VALUE rb_obj_shape(rb_shape_t* shape);

static enum rb_id_table_iterator_result collect_keys_and_values(ID key, VALUE value, void *ref)
{
    rb_hash_aset(*(VALUE *)ref, parse_key(key), rb_obj_shape((rb_shape_t*)value));
    return ID_TABLE_CONTINUE;
}

static VALUE edges(struct rb_id_table* edges)
{
    VALUE hash = rb_hash_new();
    if (SINGLE_CHILD_P(edges)) {
        rb_shape_t * child = SINGLE_CHILD(edges);
        collect_keys_and_values(child->edge_name, (VALUE)child, &hash);
    }
    else {
        rb_id_table_foreach(edges, collect_keys_and_values, &hash);
    }
    return hash;
}

/* :nodoc: */
VALUE
rb_obj_shape(rb_shape_t* shape)
{
    VALUE rb_shape = rb_hash_new();

    rb_hash_aset(rb_shape, ID2SYM(rb_intern("id")), INT2NUM(rb_shape_id(shape)));
    rb_hash_aset(rb_shape, ID2SYM(rb_intern("edges")), edges(shape->edges));

    if (shape == rb_shape_get_root_shape()) {
        rb_hash_aset(rb_shape, ID2SYM(rb_intern("parent_id")), INT2NUM(ROOT_SHAPE_ID));
    }
    else {
        rb_hash_aset(rb_shape, ID2SYM(rb_intern("parent_id")), INT2NUM(shape->parent_id));
    }

    rb_hash_aset(rb_shape, ID2SYM(rb_intern("edge_name")), rb_id2str(shape->edge_name));
    return rb_shape;
}

/* :nodoc: */
static VALUE
shape_transition_tree(VALUE self)
{
    return rb_obj_shape(rb_shape_get_root_shape());
}

/* :nodoc: */
static VALUE
rb_shape_find_by_id(VALUE mod, VALUE id)
{
    shape_id_t shape_id = NUM2UINT(id);
    if (shape_id >= GET_SHAPE_TREE()->next_shape_id) {
        rb_raise(rb_eArgError, "Shape ID %d is out of bounds\n", shape_id);
    }
    return rb_shape_t_to_rb_cShape(rb_shape_get_shape_by_id(shape_id));
}
#endif

#ifdef HAVE_MMAP
#include <sys/mman.h>
#endif

void
Init_default_shapes(void)
{
    rb_shape_tree_ptr = xcalloc(1, sizeof(rb_shape_tree_t));

#ifdef HAVE_MMAP
    rb_shape_tree_ptr->shape_list = (rb_shape_t *)mmap(NULL, rb_size_mul_or_raise(SHAPE_BUFFER_SIZE, sizeof(rb_shape_t), rb_eRuntimeError),
                         PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
    if (GET_SHAPE_TREE()->shape_list == MAP_FAILED) {
        GET_SHAPE_TREE()->shape_list = 0;
    }
#else
    GET_SHAPE_TREE()->shape_list = xcalloc(SHAPE_BUFFER_SIZE, sizeof(rb_shape_t));
#endif

    if (!GET_SHAPE_TREE()->shape_list) {
        rb_memerror();
    }

    id_frozen = rb_make_internal_id();
    id_t_object = rb_make_internal_id();

#ifdef HAVE_MMAP
    rb_shape_tree_ptr->shape_cache = (redblack_node_t *)mmap(NULL, rb_size_mul_or_raise(REDBLACK_CACHE_SIZE, sizeof(redblack_node_t), rb_eRuntimeError),
                         PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
    rb_shape_tree_ptr->cache_size = 0;

    // If mmap fails, then give up on the redblack tree cache.
    // We set the cache size such that the redblack node allocators think
    // the cache is full.
    if (GET_SHAPE_TREE()->shape_cache == MAP_FAILED) {
        GET_SHAPE_TREE()->shape_cache = 0;
        GET_SHAPE_TREE()->cache_size = REDBLACK_CACHE_SIZE;
    }
#endif

    // Root shape
    rb_shape_t *root = rb_shape_alloc_with_parent_id(0, INVALID_SHAPE_ID);
    root->capacity = 0;
    root->type = SHAPE_ROOT;
    root->size_pool_index = 0;
    GET_SHAPE_TREE()->root_shape = root;
    RUBY_ASSERT(rb_shape_id(GET_SHAPE_TREE()->root_shape) == ROOT_SHAPE_ID);

    bool dont_care;
    // Special const shape
#if RUBY_DEBUG
    rb_shape_t *special_const_shape =
#endif
        get_next_shape_internal(root, (ID)id_frozen, SHAPE_FROZEN, &dont_care, true);
    RUBY_ASSERT(rb_shape_id(special_const_shape) == SPECIAL_CONST_SHAPE_ID);
    RUBY_ASSERT(SPECIAL_CONST_SHAPE_ID == (GET_SHAPE_TREE()->next_shape_id - 1));
    RUBY_ASSERT(rb_shape_frozen_shape_p(special_const_shape));

    rb_shape_t *too_complex_shape = rb_shape_alloc_with_parent_id(0, ROOT_SHAPE_ID);
    too_complex_shape->type = SHAPE_OBJ_TOO_COMPLEX;
    too_complex_shape->size_pool_index = 0;
    RUBY_ASSERT(OBJ_TOO_COMPLEX_SHAPE_ID == (GET_SHAPE_TREE()->next_shape_id - 1));
    RUBY_ASSERT(rb_shape_id(too_complex_shape) == OBJ_TOO_COMPLEX_SHAPE_ID);

    // Make shapes for T_OBJECT
    size_t *sizes = rb_gc_size_pool_sizes();
    for (int i = 0; sizes[i] > 0; i++) {
        rb_shape_t *t_object_shape = rb_shape_alloc_with_parent_id(0, INVALID_SHAPE_ID);
        t_object_shape->type = SHAPE_T_OBJECT;
        t_object_shape->size_pool_index = i;
        t_object_shape->capacity = (uint32_t)((sizes[i] - offsetof(struct RObject, as.ary)) / sizeof(VALUE));
        t_object_shape->edges = rb_id_table_create(0);
        t_object_shape->ancestor_index = LEAF;
        RUBY_ASSERT(rb_shape_id(t_object_shape) == (shape_id_t)(i + FIRST_T_OBJECT_SHAPE_ID));
    }
}

void
Init_shape(void)
{
#if SHAPE_DEBUG
    VALUE rb_cShape = rb_struct_define_under(rb_cRubyVM, "Shape",
            "id",
            "parent_id",
            "edge_name",
            "next_iv_index",
            "size_pool_index",
            "type",
            "capacity",
            NULL);

    rb_define_method(rb_cShape, "parent", rb_shape_parent, 0);
    rb_define_method(rb_cShape, "edges", rb_shape_edges, 0);
    rb_define_method(rb_cShape, "depth", rb_shape_export_depth, 0);
    rb_define_method(rb_cShape, "too_complex?", rb_shape_too_complex, 0);
    rb_define_const(rb_cShape, "SHAPE_ROOT", INT2NUM(SHAPE_ROOT));
    rb_define_const(rb_cShape, "SHAPE_IVAR", INT2NUM(SHAPE_IVAR));
    rb_define_const(rb_cShape, "SHAPE_T_OBJECT", INT2NUM(SHAPE_T_OBJECT));
    rb_define_const(rb_cShape, "SHAPE_FROZEN", INT2NUM(SHAPE_FROZEN));
    rb_define_const(rb_cShape, "SHAPE_ID_NUM_BITS", INT2NUM(SHAPE_ID_NUM_BITS));
    rb_define_const(rb_cShape, "SHAPE_FLAG_SHIFT", INT2NUM(SHAPE_FLAG_SHIFT));
    rb_define_const(rb_cShape, "SPECIAL_CONST_SHAPE_ID", INT2NUM(SPECIAL_CONST_SHAPE_ID));
    rb_define_const(rb_cShape, "OBJ_TOO_COMPLEX_SHAPE_ID", INT2NUM(OBJ_TOO_COMPLEX_SHAPE_ID));
    rb_define_const(rb_cShape, "FIRST_T_OBJECT_SHAPE_ID", INT2NUM(FIRST_T_OBJECT_SHAPE_ID));
    rb_define_const(rb_cShape, "SHAPE_MAX_VARIATIONS", INT2NUM(SHAPE_MAX_VARIATIONS));
    rb_define_const(rb_cShape, "SIZEOF_RB_SHAPE_T", INT2NUM(sizeof(rb_shape_t)));
    rb_define_const(rb_cShape, "SIZEOF_REDBLACK_NODE_T", INT2NUM(sizeof(redblack_node_t)));
    rb_define_const(rb_cShape, "SHAPE_BUFFER_SIZE", INT2NUM(sizeof(rb_shape_t) * SHAPE_BUFFER_SIZE));
    rb_define_const(rb_cShape, "REDBLACK_CACHE_SIZE", INT2NUM(sizeof(redblack_node_t) * REDBLACK_CACHE_SIZE));

    rb_define_singleton_method(rb_cShape, "transition_tree", shape_transition_tree, 0);
    rb_define_singleton_method(rb_cShape, "find_by_id", rb_shape_find_by_id, 1);
    rb_define_singleton_method(rb_cShape, "of", rb_shape_debug_shape, 1);
    rb_define_singleton_method(rb_cShape, "root_shape", rb_shape_root_shape, 0);
    rb_define_singleton_method(rb_cShape, "shapes_available", rb_shape_shapes_available, 0);
    rb_define_singleton_method(rb_cShape, "exhaust_shapes", rb_shape_exhaust, -1);
#endif
}