summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authortadf <tadf@b2dd03c8-39d4-4d8f-98ff-823fe69b080e>2009-06-27 07:46:57 +0000
committertadf <tadf@b2dd03c8-39d4-4d8f-98ff-823fe69b080e>2009-06-27 07:46:57 +0000
commitb2fb759624ff814a9429536e594082eb6e644857 (patch)
treef2c65d96cebebeef0b187dcdc2d041f29bdc4b77
parent4365f6710d42c17152e94c40e9ce349d96b5c057 (diff)
* complex.c: revised rdoc.
* rational.c: ditto. * numeric.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@23870 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
-rw-r--r--ChangeLog8
-rw-r--r--complex.c227
-rw-r--r--numeric.c222
-rw-r--r--rational.c608
4 files changed, 503 insertions, 562 deletions
diff --git a/ChangeLog b/ChangeLog
index 3c2dc8b737..374c8247cc 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,3 +1,11 @@
+Sat Jun 27 16:45:10 2009 Tadayoshi Funaba <tadf@dotrb.org>
+
+ * complex.c: revised rdoc.
+
+ * rational.c: ditto.
+
+ * numeric.c: ditto.
+
Sat Jun 27 13:44:48 2009 Kouhei Sutou <kou@cozmixng.org>
* NEWS, lib/rss/maker/base.rb, test/rss/test_maker_2.0.rb: add
diff --git a/complex.c b/complex.c
index c2113f23c7..41bd6bd665 100644
--- a/complex.c
+++ b/complex.c
@@ -382,8 +382,8 @@ nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE imag)
/*
* call-seq:
- * Complex.rect(real[, imag]) => complex
- * Complex.rectangular(real[, imag]) => complex
+ * Complex.rect(real[, imag]) -> complex
+ * Complex.rectangular(real[, imag]) -> complex
*
* Returns a complex object which denotes the given rectangular form.
*/
@@ -420,6 +420,12 @@ f_complex_new2(VALUE klass, VALUE x, VALUE y)
return nucomp_s_canonicalize_internal(klass, x, y);
}
+/*
+ * call-seq:
+ * Complex(x[, y]) -> numeric
+ *
+ * Returns x+i*y;
+ */
static VALUE
nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
{
@@ -528,7 +534,7 @@ f_complex_polar(VALUE klass, VALUE x, VALUE y)
/*
* call-seq:
- * Complex.polar(abs, arg) => complex
+ * Complex.polar(abs, arg) -> complex
*
* Returns a complex object which denotes the given polar form.
*/
@@ -540,7 +546,7 @@ nucomp_s_polar(VALUE klass, VALUE abs, VALUE arg)
/*
* call-seq:
- * cmp.real => real
+ * cmp.real -> real
*
* Returns the real part.
*/
@@ -553,8 +559,8 @@ nucomp_real(VALUE self)
/*
* call-seq:
- * cmp.imag => real
- * cmp.imaginary => real
+ * cmp.imag -> real
+ * cmp.imaginary -> real
*
* Returns the imaginary part.
*/
@@ -566,10 +572,10 @@ nucomp_imag(VALUE self)
}
/*
- * call-seq:
- * -cmp => complex
+ * call-seq:
+ * -cmp -> complex
*
- * Returns negation of the value.
+ * Returns negation of the value.
*/
static VALUE
nucomp_negate(VALUE self)
@@ -581,7 +587,7 @@ nucomp_negate(VALUE self)
/*
* call-seq:
- * cmp + numeric => complex
+ * cmp + numeric -> complex
*
* Performs addition.
*/
@@ -609,7 +615,7 @@ nucomp_add(VALUE self, VALUE other)
/*
* call-seq:
- * cmp - numeric => complex
+ * cmp - numeric -> complex
*
* Performs subtraction.
*/
@@ -637,7 +643,7 @@ nucomp_sub(VALUE self, VALUE other)
/*
* call-seq:
- * cmp * numeric => complex
+ * cmp * numeric -> complex
*
* Performs multiplication.
*/
@@ -697,15 +703,15 @@ nucomp_divide(VALUE self, VALUE other,
/*
* call-seq:
- * cmp / numeric => complex
- * cmp.quo(numeric) => complex
+ * cmp / numeric -> complex
+ * cmp.quo(numeric) -> complex
*
* Performs division.
*
* For example:
*
- * Complex(10.0) / 3 #=> (3.3333333333333335+(0/1)*i)
- * Complex(10) / 3 #=> ((10/3)+(0/1)*i) # not (3+0i)
+ * Complex(10.0) / 3 #=> (3.3333333333333335+(0/1)*i)
+ * Complex(10) / 3 #=> ((10/3)+(0/1)*i) # not (3+0i)
*/
static VALUE
nucomp_div(VALUE self, VALUE other)
@@ -717,13 +723,13 @@ nucomp_div(VALUE self, VALUE other)
/*
* call-seq:
- * cmp.fdiv(numeric) => complex
+ * cmp.fdiv(numeric) -> complex
*
- * Performs division as each part is a float, never returns float.
+ * Performs division as each part is a float, never returns a float.
*
* For example:
*
- * Complex(11,22).fdiv(3) #=> (3.6666666666666665+7.333333333333333i)
+ * Complex(11,22).fdiv(3) #=> (3.6666666666666665+7.333333333333333i)
*/
static VALUE
nucomp_fdiv(VALUE self, VALUE other)
@@ -733,14 +739,14 @@ nucomp_fdiv(VALUE self, VALUE other)
/*
* call-seq:
- * cmp ** numeric => complex
+ * cmp ** numeric -> complex
*
* Performs exponentiation.
*
* For example:
*
- * Complex('i')**2 #=> (-1+0i)
- * Complex(-8)**Rational(1,3) #=> (1.0000000000000002+1.7320508075688772i)
+ * Complex('i') ** 2 #=> (-1+0i)
+ * Complex(-8) ** Rational(1,3) #=> (1.0000000000000002+1.7320508075688772i)
*/
static VALUE
nucomp_expt(VALUE self, VALUE other)
@@ -806,7 +812,7 @@ nucomp_expt(VALUE self, VALUE other)
/*
* call-seq:
- * cmp == object => true or false
+ * cmp == object -> true or false
*
* Returns true if cmp equals object numerically.
*/
@@ -827,6 +833,7 @@ nucomp_equal_p(VALUE self, VALUE other)
return f_equal_p(other, self);
}
+/* :nodoc: */
static VALUE
nucomp_coerce(VALUE self, VALUE other)
{
@@ -842,8 +849,8 @@ nucomp_coerce(VALUE self, VALUE other)
/*
* call-seq:
- * cmp.abs => float
- * cmp.magnitude => float
+ * cmp.abs -> real
+ * cmp.magnitude -> real
*
* Returns the absolute part of its polar form.
*/
@@ -856,7 +863,7 @@ nucomp_abs(VALUE self)
/*
* call-seq:
- * cmp.abs2 => real
+ * cmp.abs2 -> real
*
* Returns square of the absolute value.
*/
@@ -870,9 +877,9 @@ nucomp_abs2(VALUE self)
/*
* call-seq:
- * cmp.arg => float
- * cmp.angle => float
- * cmp.phase => float
+ * cmp.arg -> float
+ * cmp.angle -> float
+ * cmp.phase -> float
*
* Returns the angle part of its polar form.
*/
@@ -885,10 +892,10 @@ nucomp_arg(VALUE self)
/*
* call-seq:
- * cmp.rect => array
- * cmp.rectangular => array
+ * cmp.rect -> array
+ * cmp.rectangular -> array
*
- * Returns an array [cmp.real, cmp.imag].
+ * Returns an array; [cmp.real, cmp.imag].
*/
static VALUE
nucomp_rect(VALUE self)
@@ -899,9 +906,9 @@ nucomp_rect(VALUE self)
/*
* call-seq:
- * cmp.polar => array
+ * cmp.polar -> array
*
- * Returns an array [cmp.abs, cmp.arg].
+ * Returns an array; [cmp.abs, cmp.arg].
*/
static VALUE
nucomp_polar(VALUE self)
@@ -911,8 +918,8 @@ nucomp_polar(VALUE self)
/*
* call-seq:
- * cmp.conj => complex
- * cmp.conjucate => complex
+ * cmp.conj -> complex
+ * cmp.conjucate -> complex
*
* Returns the complex conjucate.
*/
@@ -924,6 +931,7 @@ nucomp_conj(VALUE self)
}
#if 0
+/* :nodoc: */
static VALUE
nucomp_true(VALUE self)
{
@@ -933,7 +941,7 @@ nucomp_true(VALUE self)
/*
* call-seq:
- * cmp.real? => false
+ * cmp.real? -> false
*
* Returns false.
*/
@@ -944,6 +952,7 @@ nucomp_false(VALUE self)
}
#if 0
+/* :nodoc: */
static VALUE
nucomp_exact_p(VALUE self)
{
@@ -951,6 +960,7 @@ nucomp_exact_p(VALUE self)
return f_boolcast(f_exact_p(dat->real) && f_exact_p(dat->imag));
}
+/* :nodoc: */
static VALUE
nucomp_inexact_p(VALUE self)
{
@@ -962,13 +972,11 @@ extern VALUE rb_lcm(VALUE x, VALUE y);
/*
* call-seq:
- * cmp.denominator => integer
- *
- * Returns the denominator.
+ * cmp.denominator -> integer
*
- * This means cmp.real.denominator.lcm(cmp.denominator).
+ * Returns the denominator (lcm of both denominator, real and imag).
*
- * See Complex#numerator.
+ * See numerator.
*/
static VALUE
nucomp_denominator(VALUE self)
@@ -979,19 +987,23 @@ nucomp_denominator(VALUE self)
/*
* call-seq:
- * cmp.numerator => numeric
+ * cmp.numerator -> numeric
*
* Returns the numerator.
*
* For example:
*
- * c = Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i)
- * n = c.numerator #=> (3+4i)
- * d = c.denominator #=> 6
- * n/d #=> ((1/2)+(2/3)*i)
- * Complex(Rational(n.real, d), Rational(n.imag, d))
+ * 1 2 3+4i <- numerator
+ * - + -i -> ----
+ * 2 3 6 <- denominator
+ *
+ * c = Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i)
+ * n = c.numerator #=> (3+4i)
+ * d = c.denominator #=> 6
+ * n / d #=> ((1/2)+(2/3)*i)
+ * Complex(Rational(n.real, d), Rational(n.imag, d))
* #=> ((1/2)+(2/3)*i)
- * See Complex#denominator.
+ * See denominator.
*/
static VALUE
nucomp_numerator(VALUE self)
@@ -1008,6 +1020,7 @@ nucomp_numerator(VALUE self)
f_div(cd, f_denominator(dat->imag))));
}
+/* :nodoc: */
static VALUE
nucomp_hash(VALUE self)
{
@@ -1024,6 +1037,7 @@ nucomp_hash(VALUE self)
return LONG2FIX(v);
}
+/* :nodoc: */
static VALUE
nucomp_eql_p(VALUE self, VALUE other)
{
@@ -1093,7 +1107,7 @@ nucomp_format(VALUE self, VALUE (*func)(VALUE))
/*
* call-seq:
- * cmp.to_s => string
+ * cmp.to_s -> string
*
* Returns the value as a string.
*/
@@ -1105,7 +1119,7 @@ nucomp_to_s(VALUE self)
/*
* call-seq:
- * cmp.inspect => string
+ * cmp.inspect -> string
*
* Returns the value as a string for inspection.
*/
@@ -1121,6 +1135,7 @@ nucomp_inspect(VALUE self)
return s;
}
+/* :nodoc: */
static VALUE
nucomp_marshal_dump(VALUE self)
{
@@ -1132,6 +1147,7 @@ nucomp_marshal_dump(VALUE self)
return a;
}
+/* :nodoc: */
static VALUE
nucomp_marshal_load(VALUE self, VALUE a)
{
@@ -1175,9 +1191,9 @@ rb_Complex(VALUE x, VALUE y)
/*
* call-seq:
- * cmp.to_i => integer
+ * cmp.to_i -> integer
*
- * Returns the value as an integer if can.
+ * Returns the value as an integer if possible.
*/
static VALUE
nucomp_to_i(VALUE self)
@@ -1194,9 +1210,9 @@ nucomp_to_i(VALUE self)
/*
* call-seq:
- * cmp.to_f => float
+ * cmp.to_f -> float
*
- * Returns the value as a float if can.
+ * Returns the value as a float if possible.
*/
static VALUE
nucomp_to_f(VALUE self)
@@ -1213,9 +1229,9 @@ nucomp_to_f(VALUE self)
/*
* call-seq:
- * cmp.to_r => rational
+ * cmp.to_r -> rational
*
- * Returns the value as a rational if can.
+ * Returns the value as a rational if possible.
*/
static VALUE
nucomp_to_r(VALUE self)
@@ -1232,7 +1248,7 @@ nucomp_to_r(VALUE self)
/*
* call-seq:
- * nil.to_c => complex
+ * nil.to_c -> (0+0i)
*
* Returns zero as a complex.
*/
@@ -1244,7 +1260,7 @@ nilclass_to_c(VALUE self)
/*
* call-seq:
- * num.to_c => complex
+ * num.to_c -> complex
*
* Returns the value as a complex.
*/
@@ -1425,21 +1441,24 @@ string_to_c_strict(VALUE self)
/*
* call-seq:
- * str.to_c => complex
+ * str.to_c -> complex
*
- * Returns a complex which denotes string form.
+ * Returns a complex which denotes the string form. The parser
+ * ignores leading whitespaces and trailing garbage. Any digit
+ * sequences can be separeted by an underscore. Returns zero for null
+ * string.
*
* For example:
*
- * '9'.to_c #=> (9+0i)
- * '-3/2'.to_c #=> ((-3/2)+0i)
- * '-i'.to_c #=> (0-1i)
- * '45i'.to_c #=> (0+45i)
- * '3-4i'.to_c #=> (3-4i)
- * '-4e2-4e-2i'.to_c #=> (-400.0-0.04i)
- * '-0.0-0.0i'.to_c #=> (-0.0-0.0i)
- * '1/2+3/4i'.to_c #=> ((1/2)+(3/4)*i)
- * 'ruby'.to_c #=> (0+0i)
+ * '9'.to_c #=> (9+0i)
+ * '-3/2'.to_c #=> ((-3/2)+0i)
+ * '-i'.to_c #=> (0-1i)
+ * '45i'.to_c #=> (0+45i)
+ * '3-4i'.to_c #=> (3-4i)
+ * '-4e2-4e-2i'.to_c #=> (-400.0-0.04i)
+ * '-0.0-0.0i'.to_c #=> (-0.0-0.0i)
+ * '1/2+3/4i'.to_c #=> ((1/2)+(3/4)*i)
+ * 'ruby'.to_c #=> (0+0i)
*/
static VALUE
string_to_c(VALUE self)
@@ -1547,7 +1566,7 @@ nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
/*
* call-seq:
- * num.real => self
+ * num.real -> self
*
* Returns self.
*/
@@ -1559,8 +1578,8 @@ numeric_real(VALUE self)
/*
* call-seq:
- * num.imag => 0
- * num.imaginary => 0
+ * num.imag -> 0
+ * num.imaginary -> 0
*
* Returns zero.
*/
@@ -1572,7 +1591,7 @@ numeric_imag(VALUE self)
/*
* call-seq:
- * num.abs2 => real
+ * num.abs2 -> real
*
* Returns square of self.
*/
@@ -1586,9 +1605,9 @@ numeric_abs2(VALUE self)
/*
* call-seq:
- * num.arg => float
- * num.angle => float
- * num.phase => float
+ * num.arg -> float
+ * num.angle -> float
+ * num.phase -> float
*
* Returns 0 if the value is positive, pi otherwise.
*/
@@ -1602,9 +1621,9 @@ numeric_arg(VALUE self)
/*
* call-seq:
- * num.rect => array
+ * num.rect -> array
*
- * Returns an array [num, 0].
+ * Returns an array; [num, 0].
*/
static VALUE
numeric_rect(VALUE self)
@@ -1614,9 +1633,9 @@ numeric_rect(VALUE self)
/*
* call-seq:
- * num.polar => array
+ * num.polar -> array
*
- * Returns an array [num.abs, num.arg].
+ * Returns an array; [num.abs, num.arg].
*/
static VALUE
numeric_polar(VALUE self)
@@ -1626,8 +1645,8 @@ numeric_polar(VALUE self)
/*
* call-seq:
- * num.conj => self
- * num.conjucate => self
+ * num.conj -> self
+ * num.conjucate -> self
*
* Returns self.
*/
@@ -1638,22 +1657,36 @@ numeric_conj(VALUE self)
}
/*
- * Complex provides complex number.
- * it's simple. it's not real. but really numeric.
+ * A complex number can be represented as a paired real number with
+ * imaginary unit; a+bi. Where a is real part, b is imaginary part
+ * and i is imaginary unit. Real a equals complex a+0i
+ * mathematically.
+ *
+ * In ruby, you can create complex object with Complex, Complex::rect,
+ * Complex::polar or to_c method.
+ *
+ * Complex(1) #=> (1+0i)
+ * Complex(2, 3) #=> (2+3i)
+ * Complex.polar(2, 3) #=> (-1.9799849932008908+0.2822400161197344i)
+ * 3.to_c #=> (3+0i)
+ *
+ * You can also create complex object from floating-point numbers or
+ * strings.
+ *
+ * Complex(0.3) #=> (0.3+0i)
+ * Complex('0.3-0.5i') #=> (0.3-0.5i)
+ * Complex('2/3+3/4i') #=> ((2/3)+(3/4)*i)
+ * Complex('1@2') #=> (-0.4161468365471424+0.9092974268256817i)
+ *
+ * 0.3.to_c #=> (0.3+0i)
+ * '0.3-0.5i'.to_c #=> (0.3-0.5i)
+ * '2/3+3/4i'.to_c #=> ((2/3)+(3/4)*i)
+ * '1@2'.to_c #=> (-0.4161468365471424+0.9092974268256817i)
*
- * Complex(0) #=> (0+0i)
- * Complex(1, 2) #=> (1+2i)
- * Complex.rect(1, 2) #=> (1+2i)
- * Complex(1.1, 3.3) #=> (1.1+3.3i)
- * Complex(Rational(1, 2), Rational(2, 3))
- * #=> ((1/2)+(2/3)*i)
- * Complex.polar(1, 2) #=> (-0.4161468365471424+0.9092974268256817i)
+ * A complex object is either an exact or an inexact number.
*
- * Complex('i') #=> (0+1i)
- * Complex('1+2i') #=> (1+2i)
- * Complex('1.1+3.3i') #=> (1.1+3.3i)
- * Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i)
- * Complex('1@2') #=> (-0.4161468365471424+0.9092974268256817i)
+ * Complex(1, 1) / 2 #=> ((1/2)+(1/2)*i)
+ * Complex(1, 1) / 2.0 #=> (0.5+0.5i)
*/
void
Init_Complex(void)
diff --git a/numeric.c b/numeric.c
index f3aa757874..ff63dccb2b 100644
--- a/numeric.c
+++ b/numeric.c
@@ -103,7 +103,7 @@ rb_num_zerodiv(void)
/*
* call-seq:
- * num.coerce(numeric) => array
+ * num.coerce(numeric) -> array
*
* If <i>aNumeric</i> is the same type as <i>num</i>, returns an array
* containing <i>aNumeric</i> and <i>num</i>. Otherwise, returns an
@@ -225,7 +225,7 @@ num_init_copy(VALUE x, VALUE y)
/*
* call-seq:
- * +num => num
+ * +num -> num
*
* Unary Plus---Returns the receiver's value.
*/
@@ -238,7 +238,7 @@ num_uplus(VALUE num)
/*
* call-seq:
- * -num => numeric
+ * -num -> numeric
*
* Unary Minus---Returns the receiver's value, negated.
*/
@@ -256,7 +256,7 @@ num_uminus(VALUE num)
/*
* call-seq:
- * num.quo(numeric) => real
+ * num.quo(numeric) -> real
*
* Returns most exact division (rational for integers, float for floats).
*/
@@ -270,7 +270,7 @@ num_quo(VALUE x, VALUE y)
/*
* call-seq:
- * num.fdiv(numeric) => float
+ * num.fdiv(numeric) -> float
*
* Returns float division.
*/
@@ -284,7 +284,7 @@ num_fdiv(VALUE x, VALUE y)
/*
* call-seq:
- * num.div(numeric) => integer
+ * num.div(numeric) -> integer
*
* Uses <code>/</code> to perform division, then converts the result to
* an integer. <code>numeric</code> does not define the <code>/</code>
@@ -306,7 +306,7 @@ num_div(VALUE x, VALUE y)
/*
* call-seq:
- * num.modulo(numeric) => real
+ * num.modulo(numeric) -> real
*
* x.modulo(y) means x-y*(x/y).floor
*
@@ -326,7 +326,7 @@ num_modulo(VALUE x, VALUE y)
/*
* call-seq:
- * num.remainder(numeric) => real
+ * num.remainder(numeric) -> real
*
* x.remainder(y) means x-y*(x/y).truncate
*
@@ -350,7 +350,7 @@ num_remainder(VALUE x, VALUE y)
/*
* call-seq:
- * num.divmod(numeric) => array
+ * num.divmod(numeric) -> array
*
* Returns an array containing the quotient and modulus obtained by
* dividing <i>num</i> by <i>numeric</i>. If <code>q, r =
@@ -397,7 +397,7 @@ num_divmod(VALUE x, VALUE y)
/*
* call-seq:
- * num.real? => true or false
+ * num.real? -> true or false
*
* Returns <code>true</code> if <i>num</i> is a <code>Real</code>
* (i.e. non <code>Complex</code>).
@@ -411,7 +411,7 @@ num_real_p(VALUE num)
/*
* call-seq:
- * num.integer? => true or false
+ * num.integer? -> true or false
*
* Returns <code>true</code> if <i>num</i> is an <code>Integer</code>
* (including <code>Fixnum</code> and <code>Bignum</code>).
@@ -425,8 +425,8 @@ num_int_p(VALUE num)
/*
* call-seq:
- * num.abs => numeric
- * num.magnitude => numeric
+ * num.abs -> numeric
+ * num.magnitude -> numeric
*
* Returns the absolute value of <i>num</i>.
*
@@ -447,7 +447,7 @@ num_abs(VALUE num)
/*
* call-seq:
- * num.zero? => true or false
+ * num.zero? -> true or false
*
* Returns <code>true</code> if <i>num</i> has a zero value.
*/
@@ -464,7 +464,7 @@ num_zero_p(VALUE num)
/*
* call-seq:
- * num.nonzero? => self or nil
+ * num.nonzero? -> self or nil
*
* Returns <i>self</i> if <i>num</i> is not zero, <code>nil</code>
* otherwise. This behavior is useful when chaining comparisons:
@@ -485,7 +485,7 @@ num_nonzero_p(VALUE num)
/*
* call-seq:
- * num.to_int => integer
+ * num.to_int -> integer
*
* Invokes the child class's <code>to_i</code> method to convert
* <i>num</i> to an integer.
@@ -519,7 +519,7 @@ rb_float_new(double d)
/*
* call-seq:
- * flt.to_s => string
+ * flt.to_s -> string
*
* Returns a string containing a representation of self. As well as a
* fixed or exponential form of the number, the call may return
@@ -573,7 +573,7 @@ flo_coerce(VALUE x, VALUE y)
/*
* call-seq:
- * -float => float
+ * -float -> float
*
* Returns float, negated.
*/
@@ -586,7 +586,7 @@ flo_uminus(VALUE flt)
/*
* call-seq:
- * float + other => float
+ * float + other -> float
*
* Returns a new float which is the sum of <code>float</code>
* and <code>other</code>.
@@ -609,7 +609,7 @@ flo_plus(VALUE x, VALUE y)
/*
* call-seq:
- * float + other => float
+ * float + other -> float
*
* Returns a new float which is the difference of <code>float</code>
* and <code>other</code>.
@@ -632,7 +632,7 @@ flo_minus(VALUE x, VALUE y)
/*
* call-seq:
- * float * other => float
+ * float * other -> float
*
* Returns a new float which is the product of <code>float</code>
* and <code>other</code>.
@@ -655,7 +655,7 @@ flo_mul(VALUE x, VALUE y)
/*
* call-seq:
- * float / other => float
+ * float / other -> float
*
* Returns a new float which is the result of dividing
* <code>float</code> by <code>other</code>.
@@ -718,8 +718,8 @@ flodivmod(double x, double y, double *divp, double *modp)
/*
* call-seq:
- * flt % other => float
- * flt.modulo(other) => float
+ * flt % other -> float
+ * flt.modulo(other) -> float
*
* Return the modulo after division of <code>flt</code> by <code>other</code>.
*
@@ -767,7 +767,7 @@ dbl2ival(double d)
/*
* call-seq:
- * flt.divmod(numeric) => array
+ * flt.divmod(numeric) -> array
*
* See <code>Numeric#divmod</code>.
*/
@@ -800,7 +800,7 @@ flo_divmod(VALUE x, VALUE y)
/*
* call-seq:
*
- * flt ** other => float
+ * flt ** other -> float
*
* Raises <code>float</code> the <code>other</code> power.
*
@@ -825,7 +825,7 @@ flo_pow(VALUE x, VALUE y)
/*
* call-seq:
- * num.eql?(numeric) => true or false
+ * num.eql?(numeric) -> true or false
*
* Returns <code>true</code> if <i>num</i> and <i>numeric</i> are the
* same type and have equal values.
@@ -845,7 +845,7 @@ num_eql(VALUE x, VALUE y)
/*
* call-seq:
- * num <=> other => 0 or nil
+ * num <=> other -> 0 or nil
*
* Returns zero if <i>num</i> equals <i>other</i>, <code>nil</code>
* otherwise.
@@ -867,7 +867,7 @@ num_equal(VALUE x, VALUE y)
/*
* call-seq:
- * flt == obj => true or false
+ * flt == obj -> true or false
*
* Returns <code>true</code> only if <i>obj</i> has the same value
* as <i>flt</i>. Contrast this with <code>Float#eql?</code>, which
@@ -907,7 +907,7 @@ flo_eq(VALUE x, VALUE y)
/*
* call-seq:
- * flt.hash => integer
+ * flt.hash -> integer
*
* Returns a hash code for this float.
*/
@@ -935,7 +935,7 @@ rb_dbl_cmp(double a, double b)
/*
* call-seq:
- * flt <=> real => -1, 0, +1
+ * flt <=> real -> -1, 0, +1
*
* Returns -1, 0, or +1 depending on whether <i>flt</i> is less than,
* equal to, or greater than <i>real</i>. This is the basis for the
@@ -979,7 +979,7 @@ flo_cmp(VALUE x, VALUE y)
/*
* call-seq:
- * flt > real => true or false
+ * flt > real -> true or false
*
* <code>true</code> if <code>flt</code> is greater than <code>real</code>.
*/
@@ -1017,7 +1017,7 @@ flo_gt(VALUE x, VALUE y)
/*
* call-seq:
- * flt >= real => true or false
+ * flt >= real -> true or false
*
* <code>true</code> if <code>flt</code> is greater than
* or equal to <code>real</code>.
@@ -1056,7 +1056,7 @@ flo_ge(VALUE x, VALUE y)
/*
* call-seq:
- * flt < real => true or false
+ * flt < real -> true or false
*
* <code>true</code> if <code>flt</code> is less than <code>real</code>.
*/
@@ -1094,7 +1094,7 @@ flo_lt(VALUE x, VALUE y)
/*
* call-seq:
- * flt <= rael => true or false
+ * flt <= rael -> true or false
*
* <code>true</code> if <code>flt</code> is less than
* or equal to <code>real</code>.
@@ -1133,7 +1133,7 @@ flo_le(VALUE x, VALUE y)
/*
* call-seq:
- * flt.eql?(obj) => true or false
+ * flt.eql?(obj) -> true or false
*
* Returns <code>true</code> only if <i>obj</i> is a
* <code>Float</code> with the same value as <i>flt</i>. Contrast this
@@ -1159,7 +1159,7 @@ flo_eql(VALUE x, VALUE y)
/*
* call-seq:
- * flt.to_f => self
+ * flt.to_f -> self
*
* As <code>flt</code> is already a float, returns <i>self</i>.
*/
@@ -1172,8 +1172,8 @@ flo_to_f(VALUE num)
/*
* call-seq:
- * flt.abs => float
- * flt.magnitude => float
+ * flt.abs -> float
+ * flt.magnitude -> float
*
* Returns the absolute value of <i>flt</i>.
*
@@ -1191,7 +1191,7 @@ flo_abs(VALUE flt)
/*
* call-seq:
- * flt.zero? => true or false
+ * flt.zero? -> true or false
*
* Returns <code>true</code> if <i>flt</i> is 0.0.
*
@@ -1208,7 +1208,7 @@ flo_zero_p(VALUE num)
/*
* call-seq:
- * flt.nan? => true or false
+ * flt.nan? -> true or false
*
* Returns <code>true</code> if <i>flt</i> is an invalid IEEE floating
* point number.
@@ -1229,7 +1229,7 @@ flo_is_nan_p(VALUE num)
/*
* call-seq:
- * flt.infinite? => nil, -1, +1
+ * flt.infinite? -> nil, -1, +1
*
* Returns <code>nil</code>, -1, or +1 depending on whether <i>flt</i>
* is finite, -infinity, or +infinity.
@@ -1253,7 +1253,7 @@ flo_is_infinite_p(VALUE num)
/*
* call-seq:
- * flt.finite? => true or false
+ * flt.finite? -> true or false
*
* Returns <code>true</code> if <i>flt</i> is a valid IEEE floating
* point number (it is not infinite, and <code>nan?</code> is
@@ -1279,7 +1279,7 @@ flo_is_finite_p(VALUE num)
/*
* call-seq:
- * flt.floor => integer
+ * flt.floor -> integer
*
* Returns the largest integer less than or equal to <i>flt</i>.
*
@@ -1304,7 +1304,7 @@ flo_floor(VALUE num)
/*
* call-seq:
- * flt.ceil => integer
+ * flt.ceil -> integer
*
* Returns the smallest <code>Integer</code> greater than or equal to
* <i>flt</i>.
@@ -1330,10 +1330,10 @@ flo_ceil(VALUE num)
/*
* call-seq:
- * flt.round([ndigits]) => integer or float
+ * flt.round([ndigits]) -> integer or float
*
* Rounds <i>flt</i> to a given precision in decimal digits (default 0 digits).
- * Precision may be negative. Returns a a floating point number when ndigits
+ * Precision may be negative. Returns a floating point number when ndigits
* is more than one.
*
* 1.5.round #=> 2
@@ -1379,9 +1379,9 @@ flo_round(int argc, VALUE *argv, VALUE num)
/*
* call-seq:
- * flt.to_i => integer
- * flt.to_int => integer
- * flt.truncate => integer
+ * flt.to_i -> integer
+ * flt.to_int -> integer
+ * flt.truncate -> integer
*
* Returns <i>flt</i> truncated to an <code>Integer</code>.
*/
@@ -1404,7 +1404,7 @@ flo_truncate(VALUE num)
/*
* call-seq:
- * num.floor => integer
+ * num.floor -> integer
*
* Returns the largest integer less than or equal to <i>num</i>.
* <code>Numeric</code> implements this by converting <i>anInteger</i>
@@ -1423,7 +1423,7 @@ num_floor(VALUE num)
/*
* call-seq:
- * num.ceil => integer
+ * num.ceil -> integer
*
* Returns the smallest <code>Integer</code> greater than or equal to
* <i>num</i>. Class <code>Numeric</code> achieves this by converting
@@ -1444,10 +1444,10 @@ num_ceil(VALUE num)
/*
* call-seq:
- * num.round([ndigits]) => integer or float
+ * num.round([ndigits]) -> integer or float
*
* Rounds <i>num</i> to a given precision in decimal digits (default 0 digits).
- * Precision may be negative. Returns a a floating point number when ndigits
+ * Precision may be negative. Returns a floating point number when ndigits
* is more than one. <code>Numeric</code> implements this by converting itself
* to a <code>Float</code> and invoking <code>Float#round</code>.
*/
@@ -1460,7 +1460,7 @@ num_round(int argc, VALUE* argv, VALUE num)
/*
* call-seq:
- * num.truncate => integer
+ * num.truncate -> integer
*
* Returns <i>num</i> truncated to an integer. <code>Numeric</code>
* implements this by converting its value to a float and invoking
@@ -1504,8 +1504,8 @@ ruby_float_step(VALUE from, VALUE to, VALUE step, int excl)
/*
* call-seq:
- * num.step(limit[, step]) {|i| block } => self
- * num.step(limit[, step]) => enumerator
+ * num.step(limit[, step]) {|i| block } -> self
+ * num.step(limit[, step]) -> enumerator
*
* Invokes <em>block</em> with the sequence of numbers starting at
* <i>num</i>, incremented by <i>step</i> (default 1) on each
@@ -1801,12 +1801,12 @@ rb_num2ull(VALUE val)
/*
* call-seq:
- * int.to_i => integer
- * int.to_int => integer
- * int.floor => integer
- * int.ceil => integer
- * int.round => integer
- * int.truncate => integer
+ * int.to_i -> integer
+ * int.to_int -> integer
+ * int.floor -> integer
+ * int.ceil -> integer
+ * int.round -> integer
+ * int.truncate -> integer
*
* As <i>int</i> is already an <code>Integer</code>, all these
* methods simply return the receiver.
@@ -1820,7 +1820,7 @@ int_to_i(VALUE num)
/*
* call-seq:
- * int.integer? => true
+ * int.integer? -> true
*
* Always returns <code>true</code>.
*/
@@ -1833,7 +1833,7 @@ int_int_p(VALUE num)
/*
* call-seq:
- * int.odd? => true or false
+ * int.odd? -> true or false
*
* Returns <code>true</code> if <i>int</i> is an odd number.
*/
@@ -1849,7 +1849,7 @@ int_odd_p(VALUE num)
/*
* call-seq:
- * int.even? => true or false
+ * int.even? -> true or false
*
* Returns <code>true</code> if <i>int</i> is an even number.
*/
@@ -1865,8 +1865,8 @@ int_even_p(VALUE num)
/*
* call-seq:
- * fixnum.next => integer
- * fixnum.succ => integer
+ * fixnum.next -> integer
+ * fixnum.succ -> integer
*
* Returns the <code>Integer</code> equal to <i>int</i> + 1.
*
@@ -1883,8 +1883,8 @@ fix_succ(VALUE num)
/*
* call-seq:
- * int.next => integer
- * int.succ => integer
+ * int.next -> integer
+ * int.succ -> integer
*
* Returns the <code>Integer</code> equal to <i>int</i> + 1.
*
@@ -1904,7 +1904,7 @@ int_succ(VALUE num)
/*
* call-seq:
- * int.pred => integer
+ * int.pred -> integer
*
* Returns the <code>Integer</code> equal to <i>int</i> - 1.
*
@@ -1924,7 +1924,7 @@ int_pred(VALUE num)
/*
* call-seq:
- * int.chr([encoding]) => string
+ * int.chr([encoding]) -> string
*
* Returns a string containing the character represented by the
* receiver's value according to +encoding+.
@@ -1981,7 +1981,7 @@ int_chr(int argc, VALUE *argv, VALUE num)
/*
* call-seq:
- * int.ord => self
+ * int.ord -> self
*
* Returns the int itself.
*
@@ -2020,7 +2020,7 @@ int_ord(num)
/*
* call-seq:
- * -fix => integer
+ * -fix -> integer
*
* Negates <code>fix</code> (which might return a Bignum).
*/
@@ -2062,7 +2062,7 @@ rb_fix2str(VALUE x, int base)
/*
* call-seq:
- * fix.to_s(base=10) => string
+ * fix.to_s(base=10) -> string
*
* Returns a string containing the representation of <i>fix</i> radix
* <i>base</i> (between 2 and 36).
@@ -2093,7 +2093,7 @@ fix_to_s(int argc, VALUE *argv, VALUE x)
/*
* call-seq:
- * fix + numeric => numeric_result
+ * fix + numeric -> numeric_result
*
* Performs addition: the class of the resulting object depends on
* the class of <code>numeric</code> and on the magnitude of the
@@ -2126,7 +2126,7 @@ fix_plus(VALUE x, VALUE y)
/*
* call-seq:
- * fix - numeric => numeric_result
+ * fix - numeric -> numeric_result
*
* Performs subtraction: the class of the resulting object depends on
* the class of <code>numeric</code> and on the magnitude of the
@@ -2164,7 +2164,7 @@ fix_minus(VALUE x, VALUE y)
/*
* call-seq:
- * fix * numeric => numeric_result
+ * fix * numeric -> numeric_result
*
* Performs multiplication: the class of the resulting object depends on
* the class of <code>numeric</code> and on the magnitude of the
@@ -2246,7 +2246,7 @@ fixdivmod(long x, long y, long *divp, long *modp)
/*
* call-seq:
- * fix.fdiv(numeric) => float
+ * fix.fdiv(numeric) -> float
*
* Returns the floating point result of dividing <i>fix</i> by
* <i>numeric</i>.
@@ -2308,7 +2308,7 @@ fix_divide(VALUE x, VALUE y, ID op)
/*
* call-seq:
- * fix / numeric => numeric_result
+ * fix / numeric -> numeric_result
*
* Performs division: the class of the resulting object depends on
* the class of <code>numeric</code> and on the magnitude of the
@@ -2323,7 +2323,7 @@ fix_div(VALUE x, VALUE y)
/*
* call-seq:
- * fix.div(numeric) => integer
+ * fix.div(numeric) -> integer
*
* Performs integer division: returns integer value.
*/
@@ -2336,8 +2336,8 @@ fix_idiv(VALUE x, VALUE y)
/*
* call-seq:
- * fix % other => real
- * fix.modulo(other) => real
+ * fix % other -> real
+ * fix.modulo(other) -> real
*
* Returns <code>fix</code> modulo <code>other</code>.
* See <code>numeric.divmod</code> for more information.
@@ -2370,7 +2370,7 @@ fix_mod(VALUE x, VALUE y)
/*
* call-seq:
- * fix.divmod(numeric) => array
+ * fix.divmod(numeric) -> array
*
* See <code>Numeric#divmod</code>.
*/
@@ -2443,7 +2443,7 @@ int_pow(long x, unsigned long y)
/*
* call-seq:
- * fix ** numeric => numeric_result
+ * fix ** numeric -> numeric_result
*
* Raises <code>fix</code> to the <code>numeric</code> power, which may
* be negative or fractional.
@@ -2508,7 +2508,7 @@ fix_pow(VALUE x, VALUE y)
/*
* call-seq:
- * fix == other => true or false
+ * fix == other -> true or false
*
* Return <code>true</code> if <code>fix</code> equals <code>other</code>
* numerically.
@@ -2534,7 +2534,7 @@ fix_equal(VALUE x, VALUE y)
/*
* call-seq:
- * fix <=> numeric => -1, 0, +1
+ * fix <=> numeric -> -1, 0, +1
*
* Comparison---Returns -1, 0, or +1 depending on whether <i>fix</i> is
* less than, equal to, or greater than <i>numeric</i>. This is the
@@ -2561,7 +2561,7 @@ fix_cmp(VALUE x, VALUE y)
/*
* call-seq:
- * fix > real => true or false
+ * fix > real -> true or false
*
* Returns <code>true</code> if the value of <code>fix</code> is
* greater than that of <code>real</code>.
@@ -2586,7 +2586,7 @@ fix_gt(VALUE x, VALUE y)
/*
* call-seq:
- * fix >= real => true or false
+ * fix >= real -> true or false
*
* Returns <code>true</code> if the value of <code>fix</code> is
* greater than or equal to that of <code>real</code>.
@@ -2611,7 +2611,7 @@ fix_ge(VALUE x, VALUE y)
/*
* call-seq:
- * fix < real => true or false
+ * fix < real -> true or false
*
* Returns <code>true</code> if the value of <code>fix</code> is
* less than that of <code>real</code>.
@@ -2636,7 +2636,7 @@ fix_lt(VALUE x, VALUE y)
/*
* call-seq:
- * fix <= rael => true or false
+ * fix <= rael -> true or false
*
* Returns <code>true</code> if the value of <code>fix</code> is
* less than or equal to that of <code>real</code>.
@@ -2661,7 +2661,7 @@ fix_le(VALUE x, VALUE y)
/*
* call-seq:
- * ~fix => integer
+ * ~fix -> integer
*
* One's complement: returns a number where each bit is flipped.
*/
@@ -2689,7 +2689,7 @@ bit_coerce(VALUE x)
/*
* call-seq:
- * fix & integer => integer_result
+ * fix & integer -> integer_result
*
* Bitwise AND.
*/
@@ -2708,7 +2708,7 @@ fix_and(VALUE x, VALUE y)
/*
* call-seq:
- * fix | integer => integer_result
+ * fix | integer -> integer_result
*
* Bitwise OR.
*/
@@ -2727,7 +2727,7 @@ fix_or(VALUE x, VALUE y)
/*
* call-seq:
- * fix ^ integer => integer_result
+ * fix ^ integer -> integer_result
*
* Bitwise EXCLUSIVE OR.
*/
@@ -2749,7 +2749,7 @@ static VALUE fix_rshift(long, unsigned long);
/*
* call-seq:
- * fix << count => integer
+ * fix << count -> integer
*
* Shifts _fix_ left _count_ positions (right if _count_ is negative).
*/
@@ -2781,7 +2781,7 @@ fix_lshift(long val, unsigned long width)
/*
* call-seq:
- * fix >> count => integer
+ * fix >> count -> integer
*
* Shifts _fix_ right _count_ positions (left if _count_ is negative).
*/
@@ -2814,7 +2814,7 @@ fix_rshift(long val, unsigned long i)
/*
* call-seq:
- * fix[n] => 0, 1
+ * fix[n] -> 0, 1
*
* Bit Reference---Returns the <em>n</em>th bit in the binary
* representation of <i>fix</i>, where <i>fix</i>[0] is the least
@@ -2857,7 +2857,7 @@ fix_aref(VALUE fix, VALUE idx)
/*
* call-seq:
- * fix.to_f => float
+ * fix.to_f -> float
*
* Converts <i>fix</i> to a <code>Float</code>.
*
@@ -2875,8 +2875,8 @@ fix_to_f(VALUE num)
/*
* call-seq:
- * fix.abs => integer
- * fix.magnitude => integer
+ * fix.abs -> integer
+ * fix.magnitude -> integer
*
* Returns the absolute value of <i>fix</i>.
*
@@ -2899,7 +2899,7 @@ fix_abs(VALUE fix)
/*
* call-seq:
- * fix.size => fixnum
+ * fix.size -> fixnum
*
* Returns the number of <em>bytes</em> in the machine representation
* of a <code>Fixnum</code>.
@@ -2917,8 +2917,8 @@ fix_size(VALUE fix)
/*
* call-seq:
- * int.upto(limit) {|i| block } => self
- * int.upto(limit) => enumerator
+ * int.upto(limit) {|i| block } -> self
+ * int.upto(limit) -> enumerator
*
* Iterates <em>block</em>, passing in integer values from <i>int</i>
* up to and including <i>limit</i>.
@@ -2956,8 +2956,8 @@ int_upto(VALUE from, VALUE to)
/*
* call-seq:
- * int.downto(limit) {|i| block } => self
- * int.downto(limit) => enumerator
+ * int.downto(limit) {|i| block } -> self
+ * int.downto(limit) -> enumerator
*
* Iterates <em>block</em>, passing decreasing values from <i>int</i>
* down to and including <i>limit</i>.
@@ -2996,8 +2996,8 @@ int_downto(VALUE from, VALUE to)
/*
* call-seq:
- * int.times {|i| block } => self
- * int.times => enumerator
+ * int.times {|i| block } -> self
+ * int.times -> enumerator
*
* Iterates block <i>int</i> times, passing in values from zero to
* <i>int</i> - 1.
@@ -3075,7 +3075,7 @@ int_round(int argc, VALUE* argv, VALUE num)
/*
* call-seq:
- * fix.zero? => true or false
+ * fix.zero? -> true or false
*
* Returns <code>true</code> if <i>fix</i> is zero.
*
@@ -3092,7 +3092,7 @@ fix_zero_p(VALUE num)
/*
* call-seq:
- * fix.odd? => true or false
+ * fix.odd? -> true or false
*
* Returns <code>true</code> if <i>fix</i> is an odd number.
*/
@@ -3108,7 +3108,7 @@ fix_odd_p(VALUE num)
/*
* call-seq:
- * fix.even? => true or false
+ * fix.even? -> true or false
*
* Returns <code>true</code> if <i>fix</i> is an even number.
*/
diff --git a/rational.c b/rational.c
index 707aa82600..218a14883c 100644
--- a/rational.c
+++ b/rational.c
@@ -502,6 +502,12 @@ f_rational_new_no_reduce2(VALUE klass, VALUE x, VALUE y)
return nurat_s_canonicalize_internal_no_reduce(klass, x, y);
}
+/*
+ * call-seq:
+ * Rational(x[, y]) -> numeric
+ *
+ * Returns x/y;
+ */
static VALUE
nurat_f_rational(int argc, VALUE *argv, VALUE klass)
{
@@ -510,17 +516,16 @@ nurat_f_rational(int argc, VALUE *argv, VALUE klass)
/*
* call-seq:
- * rat.numerator => integer
+ * rat.numerator -> integer
*
- * Returns the numerator of _rat_ as an +Integer+ object.
+ * Returns the numerator.
*
* For example:
*
- * Rational(7).numerator #=> 7
- * Rational(7, 1).numerator #=> 7
- * Rational(4.3, 40.3).numerator #=> 4841369599423283
- * Rational(9, -4).numerator #=> -9
- * Rational(-2, -10).numerator #=> 1
+ * Rational(7).numerator #=> 7
+ * Rational(7, 1).numerator #=> 7
+ * Rational(9, -4).numerator #=> -9
+ * Rational(-2, -10).numerator #=> 1
*/
static VALUE
nurat_numerator(VALUE self)
@@ -531,18 +536,17 @@ nurat_numerator(VALUE self)
/*
* call-seq:
- * rat.denominator => integer
+ * rat.denominator -> integer
*
- * Returns the denominator of _rat_ as an +Integer+ object. If _rat_ was
- * created without an explicit denominator, +1+ is returned.
+ * Returns the denominator (always positive).
*
* For example:
*
- * Rational(7).denominator #=> 1
- * Rational(7, 1).denominator #=> 1
- * Rational(4.3, 40.3).denominator #=> 45373766245757744
- * Rational(9, -4).denominator #=> 4
- * Rational(-2, -10).denominator #=> 5
+ * Rational(7).denominator #=> 1
+ * Rational(7, 1).denominator #=> 1
+ * Rational(9, -4).denominator #=> 4
+ * Rational(-2, -10).denominator #=> 5
+ * rat.numerator.gcd(rat.denominator) #=> 1
*/
static VALUE
nurat_denominator(VALUE self)
@@ -638,24 +642,18 @@ f_addsub(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
/*
* call-seq:
- * rat + numeric => numeric_result
- *
- * Performs addition. The class of the resulting object depends on
- * the class of _numeric_ and on the magnitude of the
- * result.
+ * rat + numeric -> numeric_result
*
- * A +TypeError+ is raised unless _numeric_ is a +Numeric+ object.
+ * Performs addition.
*
* For example:
*
- * Rational(2, 3) + Rational(2, 3) #=> (4/3)
- * Rational(900) + Rational(1) #=> (900/1)
- * Rational(-2, 9) + Rational(-9, 2) #=> (-85/18)
- * Rational(9, 8) + 4 #=> (41/8)
- * Rational(20, 9) + 9.8 #=> 12.022222222222222
- * Rational(8, 7) + 2**20 #=> (7340040/7)
+ * Rational(2, 3) + Rational(2, 3) #=> (4/3)
+ * Rational(900) + Rational(1) #=> (900/1)
+ * Rational(-2, 9) + Rational(-9, 2) #=> (-85/18)
+ * Rational(9, 8) + 4 #=> (41/8)
+ * Rational(20, 9) + 9.8 #=> 12.022222222222222
*/
-
static VALUE
nurat_add(VALUE self, VALUE other)
{
@@ -686,21 +684,17 @@ nurat_add(VALUE self, VALUE other)
/*
* call-seq:
- * rat - numeric => numeric_result
+ * rat - numeric -> numeric_result
*
- * Performs subtraction. The class of the resulting object depends on the
- * class of _numeric_ and on the magnitude of the result.
- *
- * A +TypeError+ is raised unless _numeric_ is a +Numeric+ object.
+ * Performs subtraction.
*
* For example:
*
- * Rational(2, 3) - Rational(2, 3) #=> (0/1)
- * Rational(900) - Rational(1) #=> (899/1)
- * Rational(-2, 9) - Rational(-9, 2) #=> (77/18)
- * Rational(9, 8) - 4 #=> (23/8)
- * Rational(20, 9) - 9.8 #=> -7.577777777777778
- * Rational(8, 7) - 2**20 #=> (-7340024/7)
+ * Rational(2, 3) - Rational(2, 3) #=> (0/1)
+ * Rational(900) - Rational(1) #=> (899/1)
+ * Rational(-2, 9) - Rational(-9, 2) #=> (77/18)
+ * Rational(9, 8) - 4 #=> (23/8)
+ * Rational(20, 9) - 9.8 #=> -7.577777777777778
*/
static VALUE
nurat_sub(VALUE self, VALUE other)
@@ -771,21 +765,17 @@ f_muldiv(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
/*
* call-seq:
- * rat * numeric => numeric_result
- *
- * Performs multiplication. The class of the resulting object depends on
- * the class of _numeric_ and on the magnitude of the result.
+ * rat * numeric -> numeric_result
*
- * A +TypeError+ is raised unless _numeric_ is a +Numeric+ object.
+ * Performs multiplication.
*
* For example:
*
- * Rational(2, 3) * Rational(2, 3) #=> (4/9)
- * Rational(900) * Rational(1) #=> (900/1)
- * Rational(-2, 9) * Rational(-9, 2) #=> (1/1)
- * Rational(9, 8) * 4 #=> (9/2)
- * Rational(20, 9) * 9.8 #=> 21.77777777777778
- * Rational(8, 7) * 2**20 #=> (8388608/7)
+ * Rational(2, 3) * Rational(2, 3) #=> (4/9)
+ * Rational(900) * Rational(1) #=> (900/1)
+ * Rational(-2, 9) * Rational(-9, 2) #=> (1/1)
+ * Rational(9, 8) * 4 #=> (9/2)
+ * Rational(20, 9) * 9.8 #=> 21.77777777777778
*/
static VALUE
nurat_mul(VALUE self, VALUE other)
@@ -817,25 +807,18 @@ nurat_mul(VALUE self, VALUE other)
/*
* call-seq:
- * rat / numeric => numeric_result
- * rat.quo(numeric) => numeric_result
- *
- * Performs division. The class of the resulting object depends on the class
- * of _numeric_ and on the magnitude of the result.
+ * rat / numeric -> numeric_result
+ * rat.quo(numeric) -> numeric_result
*
- * A +TypeError+ is raised unless _numeric_ is a +Numeric+ object. A
- * +ZeroDivisionError+ is raised if _numeric_ is 0.
+ * Performs division.
*
* For example:
*
- * Rational(2, 3) / Rational(2, 3) #=> (1/1)
- * Rational(900) / Rational(1) #=> (900/1)
- * Rational(-2, 9) / Rational(-9, 2) #=> (4/81)
- * Rational(9, 8) / 4 #=> (9/32)
- * Rational(20, 9) / 9.8 #=> 0.22675736961451246
- * Rational(8, 7) / 2**20 #=> (1/917504)
- * Rational(2, 13) / 0 #=> ZeroDivisionError: divided by zero
- * Rational(2, 13) / 0.0 #=> Infinity
+ * Rational(2, 3) / Rational(2, 3) #=> (1/1)
+ * Rational(900) / Rational(1) #=> (900/1)
+ * Rational(-2, 9) / Rational(-9, 2) #=> (4/81)
+ * Rational(9, 8) / 4 #=> (9/32)
+ * Rational(20, 9) / 9.8 #=> 0.22675736961451246
*/
static VALUE
nurat_div(VALUE self, VALUE other)
@@ -871,20 +854,15 @@ nurat_div(VALUE self, VALUE other)
/*
* call-seq:
- * rat.fdiv(numeric) => float
+ * rat.fdiv(numeric) -> float
*
- * Performs float division: dividing _rat_ by _numeric_. The return value is a
- * +Float+ object.
- *
- * A +TypeError+ is raised unless _numeric_ is a +Numeric+ object.
+ * Performs division and returns the value as a float.
*
* For example:
*
- * Rational(2, 3).fdiv(1) #=> 0.6666666666666666
- * Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333
- * Rational(2).fdiv(3) #=> 0.6666666666666666
- * Rational(-9, 6.6).fdiv(6.6) #=> -0.20661157024793392
- * Rational(-20).fdiv(0.0) #=> -Infinity
+ * Rational(2, 3).fdiv(1) #=> 0.6666666666666666
+ * Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333
+ * Rational(2).fdiv(3) #=> 0.6666666666666666
*/
static VALUE
nurat_fdiv(VALUE self, VALUE other)
@@ -894,23 +872,18 @@ nurat_fdiv(VALUE self, VALUE other)
/*
* call-seq:
- * rat ** numeric => numeric_result
+ * rat ** numeric -> numeric_result
*
- * Performs exponentiation, i.e. it raises _rat_ to the exponent _numeric_.
- * The class of the resulting object depends on the class of _numeric_ and on
- * the magnitude of the result. A +TypeError+ is raised unless _numeric_ is a
- * +Numeric+ object.
+ * Performs exponentiation.
*
* For example:
*
- * Rational(2, 3) ** Rational(2, 3) #=> 0.7631428283688879
- * Rational(900) ** Rational(1) #=> (900/1)
- * Rational(-2, 9) ** Rational(-9, 2) #=> (4.793639101185069e-13-869.8739233809262i)
- * Rational(9, 8) ** 4 #=> (6561/4096)
- * Rational(20, 9) ** 9.8 #=> 2503.325740344559
- * Rational(3, 2) ** 2**3 #=> (6561/256)
- * Rational(2, 13) ** 0 #=> (1/1)
- * Rational(2, 13) ** 0.0 #=> 1.0
+ * Rational(2) ** Rational(3) #=> (8/1)
+ * Rational(10) ** -2 #=> (1/100)
+ * Rational(10) ** -2.0 #=> 0.01
+ * Rational(-4) ** Rational(1,2) #=> (1.2246063538223773e-16+2.0i)
+ * Rational(1, 2) ** 0 #=> (1/1)
+ * Rational(1, 2) ** 0.0 #=> 1.0
*/
static VALUE
nurat_expt(VALUE self, VALUE other)
@@ -961,24 +934,17 @@ nurat_expt(VALUE self, VALUE other)
/*
* call-seq:
- * rat <=> numeric => -1, 0, +1
- *
- * Performs comparison. Returns -1, 0, or +1 depending on whether _rat_ is
- * less than, equal to, or greater than _numeric_. This is the basis for the
- * tests in +Comparable+.
+ * rat <=> numeric -> -1, 0 or +1
*
- * A +TypeError+ is raised unless _numeric_ is a +Numeric+ object.
+ * Performs comparison and returns -1, 0, or +1.
*
* For example:
*
- * Rational(2, 3) <=> Rational(2, 3) #=> 0
- * Rational(5) <=> 5 #=> 0
- * Rational(900) <=> Rational(1) #=> 1
- * Rational(-2, 9) <=> Rational(-9, 2) #=> 1
- * Rational(9, 8) <=> 4 #=> -1
- * Rational(20, 9) <=> 9.8 #=> -1
- * Rational(5, 3) <=> 'string' #=> TypeError: String can't
- * # be coerced into Rational
+ * Rational(2, 3) <=> Rational(2, 3) #=> 0
+ * Rational(5) <=> 5 #=> 0
+ * Rational(2,3) <=> Rational(1,3) #=> 1
+ * Rational(1,3) <=> 1 #=> -1
+ * Rational(1,3) <=> 0.3 #=> 1
*/
static VALUE
nurat_cmp(VALUE self, VALUE other)
@@ -1019,19 +985,17 @@ nurat_cmp(VALUE self, VALUE other)
/*
* call-seq:
- * rat == object => true or false
+ * rat == object -> true or false
*
- * Tests for equality. Returns +true+ if _rat_ is equal to _object_; +false+
- * otherwise.
+ * Returns true if rat equals object numerically.
*
* For example:
*
- * Rational(2, 3) == Rational(2, 3) #=> true
- * Rational(5) == 5 #=> true
- * Rational(7, 1) == Rational(7) #=> true
- * Rational(-2, 9) == Rational(-9, 2) #=> false
- * Rational(9, 8) == 4 #=> false
- * Rational(5, 3) == 'string' #=> false
+ * Rational(2, 3) == Rational(2, 3) #=> true
+ * Rational(5) == 5 #=> true
+ * Rational(0) == 0.0 #=> true
+ * Rational('1/3') == 0.33 #=> false
+ * Rational('1/2') == '1/2' #=> false
*/
static VALUE
nurat_equal_p(VALUE self, VALUE other)
@@ -1070,6 +1034,7 @@ nurat_equal_p(VALUE self, VALUE other)
}
}
+/* :nodoc: */
static VALUE
nurat_coerce(VALUE self, VALUE other)
{
@@ -1095,12 +1060,18 @@ nurat_coerce(VALUE self, VALUE other)
#if 0
/* :nodoc: */
static VALUE
+nurat_idiv(VALUE self, VALUE other)
+{
+ return f_idiv(self, other);
+}
+
+/* :nodoc: */
+static VALUE
nurat_quot(VALUE self, VALUE other)
{
return f_truncate(f_div(self, other));
}
-
/* :nodoc: */
static VALUE
nurat_quotrem(VALUE self, VALUE other)
@@ -1136,20 +1107,20 @@ nurat_ceil(VALUE self)
/*
* call-seq:
- * rat.to_i => integer
+ * rat.to_i -> integer
*
- * Returns _rat_ truncated to an integer as an +Integer+ object.
+ * Returns the truncated value as an integer.
*
- * Equivalent to
- * <i>rat</i>.<code>truncate(</code>.
+ * Equivalent to
+ * rat.truncate.
*
* For example:
*
- * Rational(2, 3).to_i #=> 0
- * Rational(3).to_i #=> 3
- * Rational(300.6).to_i #=> 300
- * Rational(98,71).to_i #=> 1
- * Rational(-30,2).to_i #=> -15
+ * Rational(2, 3).to_i #=> 0
+ * Rational(3).to_i #=> 3
+ * Rational(300.6).to_i #=> 300
+ * Rational(98,71).to_i #=> 1
+ * Rational(-30,2).to_i #=> -15
*/
static VALUE
nurat_truncate(VALUE self)
@@ -1213,32 +1184,23 @@ nurat_round_common(int argc, VALUE *argv, VALUE self,
/*
* call-seq:
- * rat.floor => integer
- * rat.floor(precision=0) => rational
- *
- * Returns the largest integer less than or equal to _rat_ as an +Integer+
- * object. Contrast with +Rational#ceil+.
+ * rat.floor -> integer
+ * rat.floor(precision=0) -> rational
*
- * An optional _precision_ argument can be supplied as an +Integer+. If
- * _precision_ is positive the result is rounded downwards to that number of
- * decimal places. If _precision_ is negative, the result is rounded downwards
- * to the nearest 10**_precision_. By default _precision_ is equal to 0,
- * causing the result to be a whole number.
+ * Returns the truncated value (toward negative infinity).
*
* For example:
*
- * Rational(2, 3).floor #=> 0
- * Rational(3).floor #=> 3
- * Rational(300.6).floor #=> 300
- * Rational(98,71).floor #=> 1
- * Rational(-30,2).floor #=> -15
- * Rational(-30,-11).floor #=> 2
- *
- * Rational(-1.125).floor(2).to_f #=> -1.13
- * Rational(-1.125).floor(1).to_f #=> -1.2
- * Rational(-1.125).floor.to_f #=> -2.0
- * Rational(-1.125).floor(-1).to_f #=> -10.0
- * Rational(-1.125).floor(-2).to_f #=> -100.0
+ * Rational(3).floor #=> 3
+ * Rational(2, 3).floor #=> 0
+ * Rational(-3, 2).floor #=> -1
+ *
+ * decimal - 1 2 3 . 4 5 6
+ * ^ ^ ^ ^ ^ ^
+ * precision -3 -2 -1 0 +1 +2
+ *
+ * '%f' % Rational('-123.456').floor(+1) #=> "-123.500000"
+ * '%f' % Rational('-123.456').floor(-1) #=> "-130.000000"
*/
static VALUE
nurat_floor_n(int argc, VALUE *argv, VALUE self)
@@ -1248,32 +1210,23 @@ nurat_floor_n(int argc, VALUE *argv, VALUE self)
/*
* call-seq:
- * rat.ceil => integer
- * rat.ceil(precision=0) => rational
- *
- * Returns the smallest integer greater than or equal to _rat_ as an +Integer+
- * object. Contrast with +Rational#floor+.
+ * rat.ceil -> integer
+ * rat.ceil(precision=0) -> rational
*
- * An optional _precision_ argument can be supplied as an +Integer+. If
- * _precision_ is positive the result is rounded upwards to that number of
- * decimal places. If _precision_ is negative, the result is rounded upwards
- * to the nearest 10**_precision_. By default _precision_ is equal to 0,
- * causing the result to be a whole number.
+ * Returns the truncated value (toward positive infinity).
*
* For example:
*
- * Rational(2, 3).ceil #=> 1
- * Rational(3).ceil #=> 3
- * Rational(300.6).ceil #=> 301
- * Rational(98, 71).ceil #=> 2
- * Rational(-30, 2).ceil #=> -15
- * Rational(-30,-11).ceil #=> 3
- *
- * Rational(-1.125).ceil(2).to_f #=> -1.12
- * Rational(-1.125).ceil(1).to_f #=> -1.1
- * Rational(-1.125).ceil.to_f #=> -1.0
- * Rational(-1.125).ceil(-1).to_f #=> 0.0
- * Rational(-1.125).ceil(-2).to_f #=> 0.0
+ * Rational(3).ceil #=> 3
+ * Rational(2, 3).ceil #=> 1
+ * Rational(-3, 2).ceil #=> -1
+ *
+ * decimal - 1 2 3 . 4 5 6
+ * ^ ^ ^ ^ ^ ^
+ * precision -3 -2 -1 0 +1 +2
+ *
+ * '%f' % Rational('-123.456').ceil(+1) #=> "-123.400000"
+ * '%f' % Rational('-123.456').ceil(-1) #=> "-120.000000"
*/
static VALUE
nurat_ceil_n(int argc, VALUE *argv, VALUE self)
@@ -1283,31 +1236,23 @@ nurat_ceil_n(int argc, VALUE *argv, VALUE self)
/*
* call-seq:
- * rat.truncate => integer
- * rat.truncate(precision=0) => rational
- *
- * Truncates self to an integer and returns the result as an +Integer+ object.
+ * rat.truncate -> integer
+ * rat.truncate(precision=0) -> rational
*
- * An optional _precision_ argument can be supplied as an +Integer+. If
- * _precision_ is positive the result is rounded downwards to that number of
- * decimal places. If _precision_ is negative, the result is rounded downwards
- * to the nearest 10**_precision_. By default _precision_ is equal to 0,
- * causing the result to be a whole number.
+ * Returns the truncated value (toward zero).
*
* For example:
*
- * Rational(2, 3).truncate #=> 0
- * Rational(3).truncate #=> 3
- * Rational(300.6).truncate #=> 300
- * Rational(98,71).truncate #=> 1
- * Rational(-30,2).truncate #=> -15
- * Rational(-30, -11).truncate #=> 2
- *
- * Rational(-123.456).truncate(2).to_f #=> -123.45
- * Rational(-123.456).truncate(1).to_f #=> -123.4
- * Rational(-123.456).truncate.to_f #=> -123.0
- * Rational(-123.456).truncate(-1).to_f #=> -120.0
- * Rational(-123.456).truncate(-2).to_f #=> -100.0
+ * Rational(3).truncate #=> 3
+ * Rational(2, 3).truncate #=> 0
+ * Rational(-3, 2).truncate #=> -1
+ *
+ * decimal - 1 2 3 . 4 5 6
+ * ^ ^ ^ ^ ^ ^
+ * precision -3 -2 -1 0 +1 +2
+ *
+ * '%f' % Rational('-123.456').truncate(+1) #=> "-123.400000"
+ * '%f' % Rational('-123.456').truncate(-1) #=> "-120.000000"
*/
static VALUE
nurat_truncate_n(int argc, VALUE *argv, VALUE self)
@@ -1317,33 +1262,24 @@ nurat_truncate_n(int argc, VALUE *argv, VALUE self)
/*
* call-seq:
- * rat.round => integer
- * rat.round(precision=0) => rational
- *
- * Rounds _rat_ to an integer, and returns the result as an +Integer+ object.
+ * rat.round -> integer
+ * rat.round(precision=0) -> rational
*
- * An optional _precision_ argument can be supplied as an +Integer+. If
- * _precision_ is positive the result is rounded to that number of decimal
- * places. If _precision_ is negative, the result is rounded to the nearest
- * 10**_precision_. By default _precision_ is equal to 0, causing the result
- * to be a whole number.
- *
- * A +TypeError+ is raised if _integer_ is given and not an +Integer+ object.
+ * Returns the truncated value (toward the nearest integer;
+ * 0.5 => 1; -0.5 => -1).
*
* For example:
*
- * Rational(9, 3.3).round #=> 3
- * Rational(9, 3.3).round(1) #=> (27/10)
- * Rational(9,3.3).round(2) #=> (273/100)
- * Rational(8, 7).round(5) #=> (57143/50000)
- * Rational(-20, -3).round #=> 7
+ * Rational(3).round #=> 3
+ * Rational(2, 3).round #=> 1
+ * Rational(-3, 2).round #=> -2
*
- * Rational(-123.456).round(2).to_f #=> -123.46
- * Rational(-123.456).round(1).to_f #=> -123.5
- * Rational(-123.456).round.to_f #=> -123.0
- * Rational(-123.456).round(-1).to_f #=> -120.0
- * Rational(-123.456).round(-2).to_f #=> -100.0
+ * decimal - 1 2 3 . 4 5 6
+ * ^ ^ ^ ^ ^ ^
+ * precision -3 -2 -1 0 +1 +2
*
+ * '%f' % Rational('-123.456').round(+1) #=> "-123.500000"
+ * '%f' % Rational('-123.456').round(-1) #=> "-120.000000"
*/
static VALUE
nurat_round_n(int argc, VALUE *argv, VALUE self)
@@ -1353,17 +1289,16 @@ nurat_round_n(int argc, VALUE *argv, VALUE self)
/*
* call-seq:
- * rat.to_f => float
+ * rat.to_f -> float
*
- * Converts _rat_ to a floating point number and returns the result as a
- * +Float+ object.
+ * Return the value as a float.
*
* For example:
*
- * Rational(2).to_f #=> 2.0
- * Rational(9, 4).to_f #=> 2.25
- * Rational(-3, 4).to_f #=> -0.75
- * Rational(20, 3).to_f #=> 6.666666666666667
+ * Rational(2).to_f #=> 2.0
+ * Rational(9, 4).to_f #=> 2.25
+ * Rational(-3, 4).to_f #=> -0.75
+ * Rational(20, 3).to_f #=> 6.666666666666667
*/
static VALUE
nurat_to_f(VALUE self)
@@ -1374,15 +1309,14 @@ nurat_to_f(VALUE self)
/*
* call-seq:
- * rat.to_r => self
+ * rat.to_r -> self
*
- * Returns self, i.e. a +Rational+ object representing _rat_.
+ * Returns self.
*
* For example:
*
- * Rational(2).to_r #=> (2/1)
- * Rational(-8, 6).to_r #=> (-4/3)
- * Rational(39.2).to_r #=> (2758454771764429/70368744177664)
+ * Rational(2).to_r #=> (2/1)
+ * Rational(-8, 6).to_r #=> (-4/3)
*/
static VALUE
nurat_to_r(VALUE self)
@@ -1390,6 +1324,7 @@ nurat_to_r(VALUE self)
return self;
}
+/* :nodoc: */
static VALUE
nurat_hash(VALUE self)
{
@@ -1421,16 +1356,15 @@ nurat_format(VALUE self, VALUE (*func)(VALUE))
/*
* call-seq:
- * rat.to_s => string
+ * rat.to_s -> string
*
- * Returns a +String+ representation of _rat_ in the form
- * "_numerator_/_denominator_".
+ * Returns the value as a string.
*
* For example:
*
- * Rational(2).to_s #=> "2/1"
- * Rational(-8, 6).to_s #=> "-4/3"
- * Rational(0.5).to_s #=> "1/2"
+ * Rational(2).to_s #=> "2/1"
+ * Rational(-8, 6).to_s #=> "-4/3"
+ * Rational('0.5').to_s #=> "1/2"
*/
static VALUE
nurat_to_s(VALUE self)
@@ -1440,16 +1374,15 @@ nurat_to_s(VALUE self)
/*
* call-seq:
- * rat.inspect => string
+ * rat.inspect -> string
*
- * Returns a +String+ containing a human-readable representation of _rat_ in
- * the form "(_numerator_/_denominator_)".
+ * Returns the value as a string for inspection.
*
* For example:
*
- * Rational(2).to_s #=> "(2/1)"
- * Rational(-8, 6).to_s #=> "(-4/3)"
- * Rational(0.5).to_s #=> "(1/2)"
+ * Rational(2).inspect #=> "(2/1)"
+ * Rational(-8, 6).inspect #=> "(-4/3)"
+ * Rational('0.5').inspect #=> "(1/2)"
*/
static VALUE
nurat_inspect(VALUE self)
@@ -1494,20 +1427,16 @@ nurat_marshal_load(VALUE self, VALUE a)
/*
* call-seq:
- * int.gcd(_int2_) => integer
+ * int.gcd(int2) -> integer
*
- * Returns the greatest common divisor of _int_ and _int2_: the largest
- * positive integer that divides the two without a remainder. The result is an
- * +Integer+ object.
- *
- * An +ArgumentError+ is raised unless _int2_ is an +Integer+ object.
+ * Returns the greatest common divisor (always positive). 0.gcd(x)
+ * and x.gcd(0) return abs(x).
*
* For example:
*
- * 2.gcd(2) #=> 2
- * -2.gcd(2) #=> 2
- * 8.gcd(6) #=> 2
- * 25.gcd(5) #=> 5
+ * 2.gcd(2) #=> 2
+ * 3.gcd(-7) #=> 1
+ * ((1<<31)-1).gcd((1<<61)-1) #=> 1
*/
VALUE
rb_gcd(VALUE self, VALUE other)
@@ -1518,20 +1447,16 @@ rb_gcd(VALUE self, VALUE other)
/*
* call-seq:
- * int.lcm(_int2_) => integer
- *
- * Returns the least common multiple (or "lowest common multiple") of _int_
- * and _int2_: the smallest positive integer that is a multiple of both
- * integers. The result is an +Integer+ object.
+ * int.lcm(int2) -> integer
*
- * An +ArgumentError+ is raised unless _int2_ is an +Integer+ object.
+ * Returns the least common multiple (always positive). 0.lcm(x) and
+ * x.lcm(0) return zero.
*
* For example:
*
- * 2.lcm(2) #=> 2
- * -2.gcd(2) #=> 2
- * 8.gcd(6) #=> 24
- * 8.lcm(9) #=> 72
+ * 2.lcm(2) #=> 2
+ * 3.lcm(-7) #=> 21
+ * ((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
*/
VALUE
rb_lcm(VALUE self, VALUE other)
@@ -1542,22 +1467,15 @@ rb_lcm(VALUE self, VALUE other)
/*
* call-seq:
- * int.gcdlcm(_int2_) => array
+ * int.gcdlcm(int2) -> array
*
- * Returns a two-element +Array+ containing _int_.gcd(_int2_) and
- * _int_.lcm(_int2_) respectively. That is, the greatest common divisor of
- * _int_ and _int2_, then the least common multiple of _int_ and _int2_. Both
- * elements are +Integer+ objects.
- *
- * An +ArgumentError+ is raised unless _int2_ is an +Integer+ object.
+ * Returns an array; [int.gcd(int2), int.lcm(int2)].
*
* For example:
*
- * 2.gcdlcm(2) #=> [2, 2]
- * -2.gcdlcm(2) #=> [2, 2]
- * 8.gcdlcm(6) #=> [2, 24]
- * 8.gcdlcm(9) #=> [1, 72]
- * 9.gcdlcm(9**9) #=> [9, 387420489]
+ * 2.gcdlcm(2) #=> [2, 2]
+ * 3.gcdlcm(-7) #=> [1, 21]
+ * ((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
*/
VALUE
rb_gcdlcm(VALUE self, VALUE other)
@@ -1600,9 +1518,9 @@ rb_Rational(VALUE x, VALUE y)
/*
* call-seq:
- * num.numerator => integer
+ * num.numerator -> integer
*
- * Returns the numerator of _num_ as an +Integer+ object.
+ * Returns the numerator.
*/
static VALUE
numeric_numerator(VALUE self)
@@ -1612,9 +1530,9 @@ numeric_numerator(VALUE self)
/*
* call-seq:
- * num.denominator => integer
+ * num.denominator -> integer
*
- * Returns the denominator of _num_ as an +Integer+ object.
+ * Returns the denominator (always positive).
*/
static VALUE
numeric_denominator(VALUE self)
@@ -1624,7 +1542,7 @@ numeric_denominator(VALUE self)
/*
* call-seq:
- * int.numerator => self
+ * int.numerator -> self
*
* Returns self.
*/
@@ -1636,7 +1554,7 @@ integer_numerator(VALUE self)
/*
* call-seq:
- * int.numerator => 1
+ * int.numerator -> 1
*
* Returns 1.
*/
@@ -1648,15 +1566,15 @@ integer_denominator(VALUE self)
/*
* call-seq:
- * flo.numerator => integer
+ * flo.numerator -> integer
*
- * Returns the numerator of _flo_ as an +Integer+ object.
+ * Returns the numerator. The result is machine dependent.
*
* For example:
*
- * n = 0.3.numerator #=> 5404319552844595 # machine dependent
- * d = 0.3.denominator #=> 18014398509481984 # machine dependent
- * n.fdiv(d) #=> 0.3
+ * n = 0.3.numerator #=> 5404319552844595
+ * d = 0.3.denominator #=> 18014398509481984
+ * n.fdiv(d) #=> 0.3
*/
static VALUE
float_numerator(VALUE self)
@@ -1669,11 +1587,12 @@ float_numerator(VALUE self)
/*
* call-seq:
- * flo.denominator => integer
+ * flo.denominator -> integer
*
- * Returns the denominator of _flo_ as an +Integer+ object.
+ * Returns the denominator (always positive). The result is machine
+ * dependent.
*
- * See Float#numerator.
+ * See numerator.
*/
static VALUE
float_denominator(VALUE self)
@@ -1686,9 +1605,9 @@ float_denominator(VALUE self)
/*
* call-seq:
- * nil.to_r => (0/1)
+ * nil.to_r -> (0/1)
*
- * Returns a +Rational+ object representing _nil_ as a rational number.
+ * Returns zero as a rational.
*/
static VALUE
nilclass_to_r(VALUE self)
@@ -1698,14 +1617,14 @@ nilclass_to_r(VALUE self)
/*
* call-seq:
- * int.to_r => rational
+ * int.to_r -> rational
*
- * Returns a +Rational+ object representing _int_ as a rational number.
+ * Returns the value as a rational.
*
* For example:
*
- * 1.to_r #=> (1/1)
- * 12.to_r #=> (12/1)
+ * 1.to_r #=> (1/1)
+ * (1<<64).to_r #=> (18446744073709551616/1)
*/
static VALUE
integer_to_r(VALUE self)
@@ -1739,18 +1658,19 @@ float_decode(VALUE self)
/*
* call-seq:
- * flt.to_r => rational
+ * flt.to_r -> rational
+ *
+ * Returns the value as a rational.
*
- * Returns _flt_ as an +Rational+ object. Raises a +FloatDomainError+ if _flt_
- * is +Infinity+ or +NaN+.
+ * NOTE: 0.3.to_r isn't the same as '0.3'.to_r. The latter is
+ * equivalent to '3/10'.to_r, but the former isn't so.
*
* For example:
*
- * 2.0.to_r #=> (2/1)
- * 2.5.to_r #=> (5/2)
- * -0.75.to_r #=> (-3/4)
- * 0.0.to_r #=> (0/1)
- * (1/0.0).to_r #=> FloatDomainError: Infinity
+ * 2.0.to_r #=> (2/1)
+ * 2.5.to_r #=> (5/2)
+ * -0.75.to_r #=> (-3/4)
+ * 0.0.to_r #=> (0/1)
*/
static VALUE
float_to_r(VALUE self)
@@ -1898,21 +1818,26 @@ string_to_r_strict(VALUE self)
/*
* call-seq:
- * str.to_r => rational
+ * str.to_r -> rational
+ *
+ * Returns a rational which denotes the string form. The parser
+ * ignores leading whitespaces and trailing garbage. Any digit
+ * sequences can be separeted by an underscore. Returns zero for null
+ * or garbage string.
*
- * Returns a +Rational+ object representing _string_ as a rational number.
- * Leading and trailing whitespace is ignored. Underscores may be used to
- * separate numbers. If _string_ is not recognised as a rational, (0/1) is
- * returned.
+ * NOTE: '0.3'.to_r isn't the same as 0.3.to_r. The former is
+ * equivalent to '3/10'.to_r, but the latter isn't so.
*
* For example:
*
- * "2".to_r #=> (2/1)
- * "300/2".to_r #=> (150/1)
- * "-9.2/3".to_r #=> (-46/15)
- * " 2/9 ".to_r #=> (2/9)
- * "2_9".to_r #=> (29/1)
- * "?".to_r #=> (0/1)
+ * ' 2 '.to_r #=> (2/1)
+ * '300/2'.to_r #=> (150/1)
+ * '-9.2'.to_r #=> (-46/5)
+ * '-9.2e2'.to_r #=> (-920/1)
+ * '1_234_567'.to_r #=> (1234567/1)
+ * '21 june 09'.to_r #=> (21/1)
+ * '21/06/09'.to_r #=> (7/2)
+ * 'bwv 1079'.to_r #=> (0/1)
*/
static VALUE
string_to_r(VALUE self)
@@ -2011,68 +1936,43 @@ nurat_s_convert(int argc, VALUE *argv, VALUE klass)
}
/*
- * A +Rational+ object represents a rational number, which is any number that
- * can be expressed as the quotient a/b of two integers (where the denominator
- * is nonzero). Given that b may be equal to 1, every integer is rational.
- *
- * A +Rational+ object can be created with the +Rational()+ constructor:
- *
- * Rational(1) #=> (1/1)
- * Rational(2, 3) #=> (2/3)
- * Rational(0.5) #=> (1/2)
- * Rational("2/7") #=> (2/7)
- * Rational("0.25") #=> (1/4)
- * Rational("10e3") #=> (10000/1)
- *
- * The first argument is the numerator, the second the denominator. If the
- * denominator is not supplied it defaults to 1. The arguments can be
- * +Numeric+ or +String+ objects.
- *
- * Rational(12) == Rational(12, 1) #=> true
- *
- * A +ZeroDivisionError+ will be raised if 0 is specified as the denominator:
- *
- * Rational(3, 0) #=> ZeroDivisionError: divided by zero
- *
- * The numerator and denominator of a +Rational+ object can be retrieved with
- * the +Rational#numerator+ and +Rational#denominator+ accessors,
- * respectively.
- *
- * rational = Rational(4, 7) #=> (4/7)
- * rational.numerator #=> 4
- * rational.denominator #=> 7
+ * A rational number can be represented as a paired integer number;
+ * a/b (b>0). Where a is numerator and b is denominator. Integer a
+ * equals rational a/1 mathematically.
*
- * A +Rational+ is automatically reduced into its simplest form:
+ * In ruby, you can create rational object with Rational or to_r
+ * method. The return values will be irreducible.
*
- * Rational(10, 2) #=> (5/1)
+ * Rational(1) #=> (1/1)
+ * Rational(2, 3) #=> (2/3)
+ * Rational(4, -6) #=> (-2/3)
+ * 3.to_r #=> (3/1)
*
- * +Numeric+ and +String+ objects can be converted into a +Rational+ with
- * their +#to_r+ methods.
+ * You can also create ratioanl object from floating-point numbers or
+ * strings.
*
- * 30.to_r #=> (30/1)
- * 3.33.to_r #=> (1874623344892969/562949953421312)
- * '33/3'.to_r #=> (11/1)
+ * Rational(0.3) #=> (5404319552844595/18014398509481984)
+ * Rational('0.3') #=> (3/10)
+ * Rational('2/3') #=> (2/3)
*
- * The reverse operations work as you would expect:
+ * 0.3.to_r #=> (5404319552844595/18014398509481984)
+ * '0.3'.to_r #=> (3/10)
+ * '2/3'.to_r #=> (2/3)
*
- * Rational(30, 1).to_i #=> 30
- * Rational(1874623344892969, 562949953421312).to_f #=> 3.33
- * Rational(11, 1).to_s #=> "11/1"
+ * A rational object is an exact number, which helps you to write
+ * program without any rounding errors.
*
- * +Rational+ objects can be compared with other +Numeric+ objects using the
- * normal semantics:
+ * 10.times.inject(0){|t,| t + 0.1} #=> 0.9999999999999999
+ * 10.times.inject(0){|t,| t + Rational('0.1')} #=> (1/1)
*
- * Rational(20, 10) == Rational(2, 1) #=> true
- * Rational(10) > Rational(1) #=> true
- * Rational(9, 2) <=> Rational(8, 3) #=> 1
+ * However, when an expression has inexact factor (numerical value or
+ * operation), will produce an inexact result.
*
- * Similarly, standard mathematical operations support +Rational+ objects, too:
+ * Rational(10) / 3 #=> (10/3)
+ * Rational(10) / 3.0 #=> 3.3333333333333335
*
- * Rational(9, 2) * 2 #=> (9/1)
- * Rational(12, 29) / Rational(2,3) #=> (18/29)
- * Rational(7,5) + Rational(60) #=> (307/5)
- * Rational(22, 5) - Rational(5, 22) #=> (459/110)
- * Rational(2,3) ** 3 #=> (8/27)
+ * Rational(-8) ** Rational(1, 3)
+ * #=> (1.0000000000000002+1.7320508075688772i)
*/
void
Init_Rational(void)