summaryrefslogtreecommitdiff
path: root/zjit/src/hir_type/mod.rs
blob: 061fe1657885a454a72674550f309d74a2094454 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
//! High-level intermediate representation types.

#![allow(non_upper_case_globals)]
use crate::cruby::{rb_block_param_proxy, Qfalse, Qnil, Qtrue, RUBY_T_ARRAY, RUBY_T_CLASS, RUBY_T_HASH, RUBY_T_MODULE, RUBY_T_STRING, VALUE};
use crate::cruby::{rb_cInteger, rb_cFloat, rb_cArray, rb_cHash, rb_cString, rb_cSymbol, rb_cRange, rb_cModule, rb_zjit_singleton_class_p};
use crate::cruby::ClassRelationship;
use crate::cruby::get_class_name;
use crate::cruby::ruby_sym_to_rust_string;
use crate::cruby::rb_mRubyVMFrozenCore;
use crate::cruby::rb_obj_class;
use crate::hir::{Const, PtrPrintMap};
use crate::profile::ProfiledType;

#[derive(Copy, Clone, Debug, PartialEq)]
/// Specialization of the type. If we know additional information about the object, we put it here.
/// This includes information about its value as a cvalue. For Ruby objects, type specialization
/// is split into three sub-cases:
///
/// * Object, where we know exactly what object (pointer) the Type corresponds to
/// * Type exact, where we know exactly what class the Type represents (which could be because we
///   have an instance of it; includes Object specialization)
/// * Type, where we know that the Type could represent the given class or any of its subclasses
///
/// It is also a lattice but a much shallower one. It is not meant to be used directly, just by
/// Type internals.
pub enum Specialization {
    /// We know nothing about the specialization of this Type.
    Any,
    /// We know that this Type is an instance of the given Ruby class in the VALUE or any of its subclasses.
    Type(VALUE),
    /// We know that this Type is an instance of exactly the Ruby class in the VALUE.
    TypeExact(VALUE),
    /// We know that this Type is exactly the Ruby object in the VALUE.
    Object(VALUE),
    /// We know that this Type is exactly the given cvalue/C integer value (use the type bits to
    /// inform how we should interpret the u64, e.g. as CBool or CInt32).
    Int(u64),
    /// We know that this Type is exactly the given cvalue/C double.
    Double(f64),
    /// We know that the Type is [`types::Empty`] and therefore the instruction that produces this
    /// value never returns.
    Empty,
}

// NOTE: Type very intentionally does not support Eq or PartialEq; we almost never want to check
// bit equality of types in the compiler but instead check subtyping, intersection, union, etc.
#[derive(Copy, Clone, Debug)]
/// The main work horse of intraprocedural type inference and specialization. The main interfaces
/// will look like:
///
/// * is type A a subset of type B
/// * union/meet type A and type B
///
/// Most questions can be rewritten in terms of these operations.
pub struct Type {
    /// A bitset representing type information about the object. Specific bits are assigned for
    /// leaf types (for example, static symbols) and union-ing bitsets together represents
    /// union-ing sets of types. These sets form a lattice (with Any as "could be anything" and
    /// Empty as "can be nothing").
    ///
    /// Capable of also representing cvalue types (bool, i32, etc).
    ///
    /// This field should not be directly read or written except by internal `Type` APIs.
    bits: u64,
    /// Specialization of the type. See [`Specialization`].
    ///
    /// This field should not be directly read or written except by internal `Type` APIs.
    spec: Specialization
}

include!("hir_type.inc.rs");

fn write_spec(f: &mut std::fmt::Formatter, printer: &TypePrinter) -> std::fmt::Result {
    let ty = printer.inner;
    match ty.spec {
        Specialization::Any | Specialization::Empty => { Ok(()) },
        Specialization::Object(val) if val == unsafe { rb_mRubyVMFrozenCore } => write!(f, "[VMFrozenCore]"),
        Specialization::Object(val) if val == unsafe { rb_block_param_proxy } => write!(f, "[BlockParamProxy]"),
        Specialization::Object(val) if ty.is_subtype(types::Symbol) => write!(f, "[:{}]", ruby_sym_to_rust_string(val)),
        Specialization::Object(val) if ty.is_subtype(types::Class) =>
            write!(f, "[{}@{:p}]", get_class_name(val), printer.ptr_map.map_ptr(val.0 as *const std::ffi::c_void)),
        Specialization::Object(val) => write!(f, "[{}]", val.print(printer.ptr_map)),
        // TODO(max): Ensure singleton classes never have Type specialization
        Specialization::Type(val) if unsafe { rb_zjit_singleton_class_p(val) } =>
            write!(f, "[class*:{}@{}]", get_class_name(val), val.print(printer.ptr_map)),
        Specialization::Type(val) => write!(f, "[class:{}]", get_class_name(val)),
        Specialization::TypeExact(val) if unsafe { rb_zjit_singleton_class_p(val) } =>
            write!(f, "[class_exact*:{}@{}]", get_class_name(val), val.print(printer.ptr_map)),
        Specialization::TypeExact(val) =>
            write!(f, "[class_exact:{}]", get_class_name(val)),
        Specialization::Int(val) if ty.is_subtype(types::CBool) => write!(f, "[{}]", val != 0),
        Specialization::Int(val) if ty.is_subtype(types::CInt8) => write!(f, "[{}]", (val & u8::MAX as u64) as i8),
        Specialization::Int(val) if ty.is_subtype(types::CInt16) => write!(f, "[{}]", (val & u16::MAX as u64) as i16),
        Specialization::Int(val) if ty.is_subtype(types::CInt32) => write!(f, "[{}]", (val & u32::MAX as u64) as i32),
        Specialization::Int(val) if ty.is_subtype(types::CShape) =>
            write!(f, "[{:p}]", printer.ptr_map.map_shape(crate::cruby::ShapeId((val & u32::MAX as u64) as u32))),
        Specialization::Int(val) if ty.is_subtype(types::CInt64) => write!(f, "[{}]", val as i64),
        Specialization::Int(val) if ty.is_subtype(types::CUInt8) => write!(f, "[{}]", val & u8::MAX as u64),
        Specialization::Int(val) if ty.is_subtype(types::CUInt16) => write!(f, "[{}]", val & u16::MAX as u64),
        Specialization::Int(val) if ty.is_subtype(types::CUInt32) => write!(f, "[{}]", val & u32::MAX as u64),
        Specialization::Int(val) if ty.is_subtype(types::CUInt64) => write!(f, "[{val}]"),
        Specialization::Int(val) if ty.is_subtype(types::CPtr) => write!(f, "[{}]", Const::CPtr(val as *const u8).print(printer.ptr_map)),
        Specialization::Int(val) => write!(f, "[{val}]"),
        Specialization::Double(val) => write!(f, "[{val}]"),
    }
}

/// Print adaptor for [`Type`]. See [`PtrPrintMap`].
pub struct TypePrinter<'a> {
    inner: Type,
    ptr_map: &'a PtrPrintMap,
}

impl<'a> std::fmt::Display for TypePrinter<'a> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        let ty = self.inner;
        for (name, pattern) in bits::AllBitPatterns {
            if ty.bits == pattern {
                write!(f, "{name}")?;
                return write_spec(f, self);
            }
        }
        assert!(bits::AllBitPatterns.is_sorted_by(|(_, left), (_, right)| left > right));
        let mut bits = ty.bits;
        let mut sep = "";
        for (name, pattern) in bits::AllBitPatterns {
            if bits == 0 { break; }
            if (bits & pattern) == pattern {
                write!(f, "{sep}{name}")?;
                sep = "|";
                bits &= !pattern;
            }
        }
        assert_eq!(bits, 0, "Should have eliminated all bits by iterating over all patterns");
        write_spec(f, self)
    }
}

impl std::fmt::Display for Type {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        self.print(&PtrPrintMap::identity()).fmt(f)
    }
}

fn is_array_exact(val: VALUE) -> bool {
    // Prism hides array values in the constant pool from the GC, so class_of will return 0
    val.class_of() == unsafe { rb_cArray } || (val.class_of() == VALUE(0) && val.builtin_type() == RUBY_T_ARRAY)
}

fn is_string_exact(val: VALUE) -> bool {
    // Prism hides string values in the constant pool from the GC, so class_of will return 0
    val.class_of() == unsafe { rb_cString } || (val.class_of() == VALUE(0) && val.builtin_type() == RUBY_T_STRING)
}

fn is_hash_exact(val: VALUE) -> bool {
    // Prism hides hash values in the constant pool from the GC, so class_of will return 0
    val.class_of() == unsafe { rb_cHash } || (val.class_of() == VALUE(0) && val.builtin_type() == RUBY_T_HASH)
}

fn is_range_exact(val: VALUE) -> bool {
    val.class_of() == unsafe { rb_cRange }
}

fn is_module_exact(val: VALUE) -> bool {
    if val.builtin_type() != RUBY_T_MODULE {
        return false;
    }

    // For Class and Module instances, `class_of` will return the singleton class of the object.
    // Using `rb_obj_class` will give us the actual class of the module so we can check if the
    // object is an instance of Module, or an instance of Module subclass.
    let klass = unsafe { rb_obj_class(val) };
    klass == unsafe { rb_cModule }
}

impl Type {
    /// Create a `Type` from the given integer.
    pub const fn fixnum(val: i64) -> Type {
        Type {
            bits: bits::Fixnum,
            spec: Specialization::Object(VALUE::fixnum_from_usize(val as usize)),
        }
    }

    fn bits_from_exact_class(class: VALUE) -> Option<u64> {
        types::ExactBitsAndClass
            .iter()
            .find(|&(_, class_object)| unsafe { **class_object } == class)
            .map(|&(bits, _)| bits)
    }

    fn bits_from_subclass(class: VALUE) -> Option<u64> {
        types::InexactBitsAndClass
            .iter()
            .find(|&(_, class_object)| class.is_subclass_of(unsafe { **class_object }) == ClassRelationship::Subclass)
            // Can't be an immediate if it's a subclass.
            .map(|&(bits, _)| bits & !bits::Immediate)
    }

    fn from_heap_object(val: VALUE) -> Type {
        assert!(!val.special_const_p(), "val should be a heap object");
        let bits =
            // GC-hidden types
            if is_array_exact(val) { bits::ArrayExact }
            else if is_hash_exact(val) { bits::HashExact }
            else if is_string_exact(val) { bits::StringExact }
            // Singleton classes
            else if is_module_exact(val) { bits::ModuleExact }
            else if val.builtin_type() == RUBY_T_CLASS { bits::Class }
            // Classes that have an immediate/heap split
            else if val.class_of() == unsafe { rb_cInteger } { bits::Bignum }
            else if val.class_of() == unsafe { rb_cFloat } { bits::HeapFloat }
            else if val.class_of() == unsafe { rb_cSymbol } { bits::DynamicSymbol }
            else if let Some(bits) = Self::bits_from_exact_class(val.class_of()) { bits }
            else if let Some(bits) = Self::bits_from_subclass(val.class_of()) { bits }
            else {
                unreachable!("Class {} is not a subclass of BasicObject! Don't know what to do.",
                             get_class_name(val.class_of()))
            };
        let spec = Specialization::Object(val);
        Type { bits, spec }
    }

    /// Create a `Type` from a Ruby `VALUE`. The type is not guaranteed to have object
    /// specialization in its `specialization` field (for example, `Qnil` will just be
    /// `types::NilClass`), but will be available via `ruby_object()`.
    pub fn from_value(val: VALUE) -> Type {
        // Immediates
        if val.fixnum_p() {
            Type { bits: bits::Fixnum, spec: Specialization::Object(val) }
        }
        else if val.flonum_p() {
            Type { bits: bits::Flonum, spec: Specialization::Object(val) }
        }
        else if val.static_sym_p() {
            Type { bits: bits::StaticSymbol, spec: Specialization::Object(val) }
        }
        // Singleton objects; don't specialize
        else if val == Qnil { types::NilClass }
        else if val == Qtrue { types::TrueClass }
        else if val == Qfalse { types::FalseClass }
        else if val.cme_p() {
            // NB: Checking for CME has to happen before looking at class_of because that's not
            // valid on imemo.
            Type { bits: bits::CallableMethodEntry, spec: Specialization::Object(val) }
        }
        else {
            Self::from_heap_object(val)
        }
    }

    pub fn from_const(val: Const) -> Type {
        match val {
            Const::Value(v) => Self::from_value(v),
            Const::CBool(v) => Self::from_cbool(v),
            Const::CInt8(v) => Self::from_cint(types::CInt8, v as i64),
            Const::CInt16(v) => Self::from_cint(types::CInt16, v as i64),
            Const::CInt32(v) => Self::from_cint(types::CInt32, v as i64),
            Const::CInt64(v) => Self::from_cint(types::CInt64, v),
            Const::CUInt8(v) => Self::from_cint(types::CUInt8, v as i64),
            Const::CUInt16(v) => Self::from_cint(types::CUInt16, v as i64),
            Const::CUInt32(v) => Self::from_cint(types::CUInt32, v as i64),
            Const::CShape(v) => Self::from_cint(types::CShape, v.0 as i64),
            Const::CUInt64(v) => Self::from_cint(types::CUInt64, v as i64),
            Const::CPtr(v) => Self::from_cptr(v),
            Const::CDouble(v) => Self::from_double(v),
        }
    }

    pub fn from_profiled_type(val: ProfiledType) -> Type {
        if val.is_fixnum() { types::Fixnum }
        else if val.is_flonum() { types::Flonum }
        else if val.is_static_symbol() { types::StaticSymbol }
        else if val.is_nil() { types::NilClass }
        else if val.is_true() { types::TrueClass }
        else if val.is_false() { types::FalseClass }
        else { Self::from_class(val.class()) }
    }

    pub fn from_class(class: VALUE) -> Type {
        if let Some(bits) = Self::bits_from_exact_class(class) {
            return Type::from_bits(bits);
        }
        if let Some(bits) = Self::bits_from_subclass(class) {
            return Type { bits, spec: Specialization::TypeExact(class) }
        }
        unreachable!("Class {} is not a subclass of BasicObject! Don't know what to do.",
                     get_class_name(class))
    }

    /// Private. Only for creating type globals.
    const fn from_bits(bits: u64) -> Type {
        Type {
            bits,
            spec: if bits == bits::Empty {
                Specialization::Empty
            } else {
                Specialization::Any
            },
        }
    }

    /// Create a `Type` from a cvalue integer. Use the `ty` given to specify what size the
    /// `specialization` represents. For example, `Type::from_cint(types::CBool, 1)` or
    /// `Type::from_cint(types::CUInt16, 12)`.
    pub fn from_cint(ty: Type, val: i64) -> Type {
        assert_eq!(ty.spec, Specialization::Any);
        assert!((ty.is_subtype(types::CUnsigned) || ty.is_subtype(types::CSigned)) &&
                ty.bits != types::CUnsigned.bits && ty.bits != types::CSigned.bits,
                "ty must be a specific int size");
        Type { bits: ty.bits, spec: Specialization::Int(val as u64) }
    }

    pub fn from_cptr(val: *const u8) -> Type {
        Type { bits: bits::CPtr, spec: Specialization::Int(val as u64) }
    }

    /// Create a `Type` (a `CDouble` with double specialization) from a f64.
    pub fn from_double(val: f64) -> Type {
        Type { bits: bits::CDouble, spec: Specialization::Double(val) }
    }

    /// Create a `Type` from a cvalue boolean.
    pub fn from_cbool(val: bool) -> Type {
        Type { bits: bits::CBool, spec: Specialization::Int(val as u64) }
    }

    /// Return true if the value with this type is definitely truthy.
    pub fn is_known_truthy(&self) -> bool {
        !self.could_be(types::NilClass) && !self.could_be(types::FalseClass)
    }

    /// Return true if the value with this type is definitely falsy.
    pub fn is_known_falsy(&self) -> bool {
        self.is_subtype(types::NilClass) || self.is_subtype(types::FalseClass)
    }

    pub fn has_value(&self, val: Const) -> bool {
        match (self.spec, val) {
            (Specialization::Object(v1), Const::Value(v2)) => v1 == v2,
            (Specialization::Int(v1), Const::CBool(v2)) if self.is_subtype(types::CBool) => v1 == (v2 as u64),
            (Specialization::Int(v1), Const::CInt8(v2)) if self.is_subtype(types::CInt8) => v1 == (v2 as u64),
            (Specialization::Int(v1), Const::CInt16(v2)) if self.is_subtype(types::CInt16) => v1 == (v2 as u64),
            (Specialization::Int(v1), Const::CInt32(v2)) if self.is_subtype(types::CInt32) => v1 == (v2 as u64),
            (Specialization::Int(v1), Const::CInt64(v2)) if self.is_subtype(types::CInt64) => v1 == (v2 as u64),
            (Specialization::Int(v1), Const::CUInt8(v2)) if self.is_subtype(types::CUInt8) => v1 == (v2 as u64),
            (Specialization::Int(v1), Const::CUInt16(v2)) if self.is_subtype(types::CUInt16) => v1 == (v2 as u64),
            (Specialization::Int(v1), Const::CUInt32(v2)) if self.is_subtype(types::CUInt32) => v1 == (v2 as u64),
            (Specialization::Int(v1), Const::CShape(v2)) if self.is_subtype(types::CShape) => v1 == (v2.0 as u64),
            (Specialization::Int(v1), Const::CUInt64(v2)) if self.is_subtype(types::CUInt64) => v1 == v2,
            (Specialization::Int(v1), Const::CPtr(v2)) if self.is_subtype(types::CPtr) => v1 == (v2 as u64),
            (Specialization::Double(v1), Const::CDouble(v2)) => v1.to_bits() == v2.to_bits(),
            _ => false,
        }
    }

    /// Return the object specialization, if any.
    pub fn ruby_object(&self) -> Option<VALUE> {
        match self.spec {
            Specialization::Object(val) => Some(val),
            _ => None,
        }
    }

    /// Return a Ruby object that needs to be marked on GC.
    /// This covers Type and TypeExact unlike ruby_object().
    pub fn gc_object(&self) -> Option<VALUE> {
        match self.spec {
            Specialization::Type(val) |
            Specialization::TypeExact(val) |
            Specialization::Object(val) => Some(val),
            _ => None,
        }
    }

    /// Mutable version of gc_object().
    pub fn gc_object_mut(&mut self) -> Option<&mut VALUE> {
        match &mut self.spec {
            Specialization::Type(val) |
            Specialization::TypeExact(val) |
            Specialization::Object(val) => Some(val),
            _ => None,
        }
    }

    pub fn unspecialized(&self) -> Self {
        Type { spec: Specialization::Any, ..*self }
    }

    pub fn fixnum_value(&self) -> Option<i64> {
        if self.is_subtype(types::Fixnum) {
            self.ruby_object().map(|val| val.as_fixnum())
        } else {
            None
        }
    }

    /// Return true if the Type has object specialization and false otherwise.
    pub fn ruby_object_known(&self) -> bool {
        matches!(self.spec, Specialization::Object(_))
    }

    fn is_builtin(class: VALUE) -> bool {
        types::ExactBitsAndClass
            .iter()
            .any(|&(_, class_object)| unsafe { *class_object } == class)
    }

    /// Union both types together, preserving specialization if possible.
    pub fn union(&self, other: Type) -> Type {
        // Easy cases first
        if self.is_subtype(other) { return other; }
        if other.is_subtype(*self) { return *self; }
        let bits = self.bits | other.bits;
        let result = Type::from_bits(bits);
        // If one type isn't type specialized, we can't return a specialized Type
        if !self.type_known() || !other.type_known() { return result; }
        let self_class = self.inexact_ruby_class().unwrap();
        let other_class = other.inexact_ruby_class().unwrap();
        // Pick one of self/other as the least upper bound. This is not the most specific (there
        // could be intermediate classes in the inheritance hierarchy) but it is fast to compute.
        let super_class = match self_class.is_subclass_of(other_class) {
            ClassRelationship::Subclass => other_class,
            ClassRelationship::Superclass => self_class,
            ClassRelationship::NoRelation => return result,
        };
        // Don't specialize built-in types; we can represent them perfectly with type bits.
        if Type::is_builtin(super_class) { return result; }
        // Supertype specialization can be exact only if the exact type specializations are identical
        if let Some(self_class) = self.exact_ruby_class() {
            if let Some(other_class) = other.exact_ruby_class() {
                if self_class == other_class {
                    return Type { bits, spec: Specialization::TypeExact(self_class) };
                }
            }
        }
        Type { bits, spec: Specialization::Type(super_class) }
    }

    /// Intersect both types, preserving specialization if possible.
    pub fn intersection(&self, other: Type) -> Type {
        let bits = self.bits & other.bits;
        if bits == bits::Empty { return types::Empty; }
        if self.spec_is_subtype_of(other) { return Type { bits, spec: self.spec }; }
        if other.spec_is_subtype_of(*self) { return Type { bits, spec: other.spec }; }
        types::Empty
    }

    pub fn could_be(&self, other: Type) -> bool {
        !self.intersection(other).bit_equal(types::Empty)
    }

    /// Check if the type field of `self` is a subtype of the type field of `other` and also check
    /// if the specialization of `self` is a subtype of the specialization of `other`.
    pub fn is_subtype(&self, other: Type) -> bool {
        (self.bits & other.bits) == self.bits && self.spec_is_subtype_of(other)
    }

    /// Return the type specialization, if any. Type specialization asks if we know the Ruby type
    /// (including potentially its subclasses) corresponding to a `Type`, including knowing exactly
    /// what object is is.
    pub fn type_known(&self) -> bool {
        matches!(self.spec, Specialization::TypeExact(_) | Specialization::Type(_) | Specialization::Object(_))
    }

    /// Return the exact type specialization, if any. Type specialization asks if we know the
    /// *exact* Ruby type corresponding to a `Type`, including knowing exactly what object is is.
    pub fn exact_class_known(&self) -> bool {
        matches!(self.spec, Specialization::TypeExact(_) | Specialization::Object(_))
    }

    /// Return the exact type specialization, if any. Type specialization asks if we know the exact
    /// Ruby type corresponding to a `Type` (no subclasses), including knowing exactly what object
    /// it is.
    pub fn exact_ruby_class(&self) -> Option<VALUE> {
        match self.spec {
            // If we're looking at a precise object, we can pull out its class.
            Specialization::Object(val) => Some(val.class_of()),
            Specialization::TypeExact(val) => Some(val),
            _ => None,
        }
    }

    /// Return the type specialization, if any. Type specialization asks if we know the inexact
    /// Ruby type corresponding to a `Type`, including knowing exactly what object is is.
    pub fn inexact_ruby_class(&self) -> Option<VALUE> {
        match self.spec {
            // If we're looking at a precise object, we can pull out its class.
            Specialization::Object(val) => Some(val.class_of()),
            Specialization::TypeExact(val) | Specialization::Type(val) => Some(val),
            _ => None,
        }
    }

    /// Return a pointer to the Ruby class that an object of this Type would have at run-time, if
    /// known. This includes classes for HIR types such as ArrayExact or NilClass, which have
    /// canonical Type representations that lack an explicit specialization in their `spec` fields.
    pub fn runtime_exact_ruby_class(&self) -> Option<VALUE> {
        if let Some(val) = self.exact_ruby_class() {
            return Some(val);
        }
        types::ExactBitsAndClass
            .iter()
            .find(|&(bits, _)| self.is_subtype(Type::from_bits(*bits)))
            .map(|&(_, class_object)| unsafe { *class_object })
    }

    /// Check bit equality of two `Type`s. Do not use! You are probably looking for [`Type::is_subtype`].
    pub fn bit_equal(&self, other: Type) -> bool {
        self.bits == other.bits && self.spec == other.spec
    }

    /// Check *only* if `self`'s specialization is a subtype of `other`'s specialization. Private.
    /// You probably want [`Type::is_subtype`] instead.
    fn spec_is_subtype_of(&self, other: Type) -> bool {
        match (self.spec, other.spec) {
            // Empty is a subtype of everything; Any is a supertype of everything
            (Specialization::Empty, _) | (_, Specialization::Any) => true,
            // Other is not Any from the previous case, so Any is definitely not a subtype
            (Specialization::Any, _) | (_, Specialization::Empty) => false,
            // Int and double specialization requires exact equality
            (Specialization::Int(_), _) | (_, Specialization::Int(_)) |
            (Specialization::Double(_), _) | (_, Specialization::Double(_)) =>
                self.bits == other.bits && self.spec == other.spec,
            // Check other's specialization type in decreasing order of specificity
            (_, Specialization::Object(_)) =>
                self.ruby_object_known() && self.ruby_object() == other.ruby_object(),
            (_, Specialization::TypeExact(_)) =>
                self.exact_class_known() && self.inexact_ruby_class() == other.inexact_ruby_class(),
            (_, Specialization::Type(other_class)) =>
                self.inexact_ruby_class().unwrap().is_subclass_of(other_class) == ClassRelationship::Subclass,
        }
    }

    pub fn is_immediate(&self) -> bool {
        self.is_subtype(types::Immediate)
    }

    pub fn print(self, ptr_map: &PtrPrintMap) -> TypePrinter<'_> {
        TypePrinter { inner: self, ptr_map }
    }

    pub fn num_bits(&self) -> u8 {
        self.num_bytes() * crate::cruby::BITS_PER_BYTE as u8
    }

    pub fn num_bytes(&self) -> u8 {
        if self.is_subtype(types::CUInt8) || self.is_subtype(types::CInt8) { return 1; }
        if self.is_subtype(types::CUInt16) || self.is_subtype(types::CInt16) { return 2; }
        if self.is_subtype(types::CUInt32) || self.is_subtype(types::CInt32) { return 4; }
        if self.is_subtype(types::CShape) {
            use crate::cruby::{SHAPE_ID_NUM_BITS, BITS_PER_BYTE};
            return (SHAPE_ID_NUM_BITS as usize / BITS_PER_BYTE).try_into().unwrap();
        }
        // CUInt64, CInt64, CPtr, CNull, CDouble, or anything else defaults to 8 bytes
        crate::cruby::SIZEOF_VALUE as u8
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::cruby::rust_str_to_ruby;
    use crate::cruby::rust_str_to_sym;
    use crate::cruby::rb_ary_new_capa;
    use crate::cruby::rb_hash_new;
    use crate::cruby::rb_float_new;
    use crate::cruby::define_class;
    use crate::cruby::rb_cObject;
    use crate::cruby::rb_cSet;
    use crate::cruby::rb_cTrueClass;
    use crate::cruby::rb_cFalseClass;
    use crate::cruby::rb_cNilClass;

    #[track_caller]
    fn assert_bit_equal(left: Type, right: Type) {
        assert_eq!(left.bits, right.bits, "{left} bits are not equal to {right} bits");
        assert_eq!(left.spec, right.spec, "{left} spec is not equal to {right} spec");
    }

    #[track_caller]
    fn assert_subtype(left: Type, right: Type) {
        assert!(left.is_subtype(right), "{left} is not a subtype of {right}");
    }

    #[track_caller]
    fn assert_not_subtype(left: Type, right: Type) {
        assert!(!left.is_subtype(right), "{left} is a subtype of {right}");
    }

    #[test]
    fn empty_is_subtype_of_everything() {
        // Spot check a few cases
        assert_subtype(types::Empty, types::NilClass);
        assert_subtype(types::Empty, types::Array);
        assert_subtype(types::Empty, types::Object);
        assert_subtype(types::Empty, types::CUInt16);
        assert_subtype(types::Empty, Type::from_cint(types::CInt32, 10));
        assert_subtype(types::Empty, types::Any);
        assert_subtype(types::Empty, types::Empty);
    }

    #[test]
    fn everything_is_a_subtype_of_any() {
        // Spot check a few cases
        assert_subtype(types::NilClass, types::Any);
        assert_subtype(types::Array, types::Any);
        assert_subtype(types::Object, types::Any);
        assert_subtype(types::CUInt16, types::Any);
        assert_subtype(Type::from_cint(types::CInt32, 10), types::Any);
        assert_subtype(types::Empty, types::Any);
        assert_subtype(types::Any, types::Any);
    }

    #[test]
    fn from_const() {
        let cint32 = Type::from_const(Const::CInt32(12));
        assert_subtype(cint32, types::CInt32);
        assert_eq!(cint32.spec, Specialization::Int(12));
        assert_eq!(format!("{}", cint32), "CInt32[12]");

        let cint32 = Type::from_const(Const::CInt32(-12));
        assert_subtype(cint32, types::CInt32);
        assert_eq!(cint32.spec, Specialization::Int((-12i64) as u64));
        assert_eq!(format!("{}", cint32), "CInt32[-12]");

        let cuint32 = Type::from_const(Const::CInt32(12));
        assert_subtype(cuint32, types::CInt32);
        assert_eq!(cuint32.spec, Specialization::Int(12));

        let cuint32 = Type::from_const(Const::CUInt32(0xffffffff));
        assert_subtype(cuint32, types::CUInt32);
        assert_eq!(cuint32.spec, Specialization::Int(0xffffffff));
        assert_eq!(format!("{}", cuint32), "CUInt32[4294967295]");

        let cuint32 = Type::from_const(Const::CUInt32(0xc00087));
        assert_subtype(cuint32, types::CUInt32);
        assert_eq!(cuint32.spec, Specialization::Int(0xc00087));
        assert_eq!(format!("{}", cuint32), "CUInt32[12583047]");
    }

    #[test]
    fn integer() {
        assert_subtype(Type::fixnum(123), types::Fixnum);
        assert_subtype(Type::fixnum(123), Type::fixnum(123));
        assert_not_subtype(Type::fixnum(123), Type::fixnum(200));
        assert_subtype(Type::from_value(VALUE::fixnum_from_usize(123)), types::Fixnum);
        assert_subtype(types::Fixnum, types::Integer);
        assert_subtype(types::Bignum, types::Integer);
    }

    #[test]
    fn float() {
        assert_subtype(types::Flonum, types::Float);
        assert_subtype(types::HeapFloat, types::Float);
    }

    #[test]
    fn numeric() {
        assert_subtype(types::Integer, types::Numeric);
        assert_subtype(types::Float, types::Numeric);
        assert_subtype(types::Float.union(types::Integer), types::Numeric);
        assert_bit_equal(types::Float
            .union(types::Integer)
            .union(types::NumericExact)
            .union(types::NumericSubclass), types::Numeric);
    }

    #[test]
    fn symbol() {
        assert_subtype(types::StaticSymbol, types::Symbol);
        assert_subtype(types::DynamicSymbol, types::Symbol);
    }

    #[test]
    fn immediate() {
        assert_subtype(Type::fixnum(123), types::Immediate);
        assert_subtype(types::Fixnum, types::Immediate);
        assert_not_subtype(types::Bignum, types::Immediate);
        assert_not_subtype(types::Integer, types::Immediate);
        assert_subtype(types::NilClass, types::Immediate);
        assert_subtype(types::TrueClass, types::Immediate);
        assert_subtype(types::FalseClass, types::Immediate);
        assert_subtype(types::StaticSymbol, types::Immediate);
        assert_not_subtype(types::DynamicSymbol, types::Immediate);
        assert_subtype(types::Flonum, types::Immediate);
        assert_not_subtype(types::HeapFloat, types::Immediate);
    }

    #[test]
    fn heap_basic_object() {
        assert_not_subtype(Type::fixnum(123), types::HeapBasicObject);
        assert_not_subtype(types::Fixnum, types::HeapBasicObject);
        assert_subtype(types::Bignum, types::HeapBasicObject);
        assert_not_subtype(types::Integer, types::HeapBasicObject);
        assert_not_subtype(types::NilClass, types::HeapBasicObject);
        assert_not_subtype(types::TrueClass, types::HeapBasicObject);
        assert_not_subtype(types::FalseClass, types::HeapBasicObject);
        assert_not_subtype(types::StaticSymbol, types::HeapBasicObject);
        assert_subtype(types::DynamicSymbol, types::HeapBasicObject);
        assert_not_subtype(types::Flonum, types::HeapBasicObject);
        assert_subtype(types::HeapFloat, types::HeapBasicObject);
        assert_not_subtype(types::BasicObject, types::HeapBasicObject);
        assert_not_subtype(types::Object, types::HeapBasicObject);
        assert_not_subtype(types::Immediate, types::HeapBasicObject);
        assert_not_subtype(types::HeapBasicObject, types::Immediate);
        crate::cruby::with_rubyvm(|| {
            let left = Type::from_value(rust_str_to_ruby("hello"));
            let right = Type::from_value(rust_str_to_ruby("world"));
            assert_subtype(left, types::HeapBasicObject);
            assert_subtype(right, types::HeapBasicObject);
            assert_subtype(left.union(right), types::HeapBasicObject);
        });
    }

    #[test]
    fn heap_object() {
        assert_not_subtype(Type::fixnum(123), types::HeapObject);
        assert_not_subtype(types::Fixnum, types::HeapObject);
        assert_subtype(types::Bignum, types::HeapObject);
        assert_not_subtype(types::Integer, types::HeapObject);
        assert_not_subtype(types::NilClass, types::HeapObject);
        assert_not_subtype(types::TrueClass, types::HeapObject);
        assert_not_subtype(types::FalseClass, types::HeapObject);
        assert_not_subtype(types::StaticSymbol, types::HeapObject);
        assert_subtype(types::DynamicSymbol, types::HeapObject);
        assert_not_subtype(types::Flonum, types::HeapObject);
        assert_subtype(types::HeapFloat, types::HeapObject);
        assert_not_subtype(types::BasicObject, types::HeapObject);
        assert_not_subtype(types::Object, types::HeapObject);
        assert_not_subtype(types::Immediate, types::HeapObject);
        assert_not_subtype(types::HeapObject, types::Immediate);
        crate::cruby::with_rubyvm(|| {
            let left = Type::from_value(rust_str_to_ruby("hello"));
            let right = Type::from_value(rust_str_to_ruby("world"));
            assert_subtype(left, types::HeapObject);
            assert_subtype(right, types::HeapObject);
            assert_subtype(left.union(right), types::HeapObject);
        });
    }

    #[test]
    fn fixnum_has_ruby_object() {
        assert_eq!(Type::fixnum(3).ruby_object(), Some(VALUE::fixnum_from_usize(3)));
        assert_eq!(types::Fixnum.ruby_object(), None);
        assert_eq!(types::Integer.ruby_object(), None);
    }

    #[test]
    fn singletons_do_not_have_ruby_object() {
        assert_eq!(Type::from_value(Qnil).ruby_object(), None);
        assert_eq!(types::NilClass.ruby_object(), None);
        assert_eq!(Type::from_value(Qtrue).ruby_object(), None);
        assert_eq!(types::TrueClass.ruby_object(), None);
        assert_eq!(Type::from_value(Qfalse).ruby_object(), None);
        assert_eq!(types::FalseClass.ruby_object(), None);
    }

    #[test]
    fn integer_has_exact_ruby_class() {
        assert_eq!(Type::fixnum(3).exact_ruby_class(), Some(unsafe { rb_cInteger }));
        assert_eq!(types::Fixnum.exact_ruby_class(), None);
        assert_eq!(types::Integer.exact_ruby_class(), None);
    }

    #[test]
    fn singletons_do_not_have_exact_ruby_class() {
        assert_eq!(Type::from_value(Qnil).exact_ruby_class(), None);
        assert_eq!(types::NilClass.exact_ruby_class(), None);
        assert_eq!(Type::from_value(Qtrue).exact_ruby_class(), None);
        assert_eq!(types::TrueClass.exact_ruby_class(), None);
        assert_eq!(Type::from_value(Qfalse).exact_ruby_class(), None);
        assert_eq!(types::FalseClass.exact_ruby_class(), None);
    }

    #[test]
    fn singletons_do_not_have_ruby_class() {
        assert_eq!(Type::from_value(Qnil).inexact_ruby_class(), None);
        assert_eq!(types::NilClass.inexact_ruby_class(), None);
        assert_eq!(Type::from_value(Qtrue).inexact_ruby_class(), None);
        assert_eq!(types::TrueClass.inexact_ruby_class(), None);
        assert_eq!(Type::from_value(Qfalse).inexact_ruby_class(), None);
        assert_eq!(types::FalseClass.inexact_ruby_class(), None);
    }

    #[test]
    fn from_class() {
        crate::cruby::with_rubyvm(|| {
            assert_bit_equal(Type::from_class(unsafe { rb_cInteger }), types::Integer);
            assert_bit_equal(Type::from_class(unsafe { rb_cString }), types::StringExact);
            assert_bit_equal(Type::from_class(unsafe { rb_cArray }), types::ArrayExact);
            assert_bit_equal(Type::from_class(unsafe { rb_cHash }), types::HashExact);
            assert_bit_equal(Type::from_class(unsafe { rb_cNilClass }), types::NilClass);
            assert_bit_equal(Type::from_class(unsafe { rb_cTrueClass }), types::TrueClass);
            assert_bit_equal(Type::from_class(unsafe { rb_cFalseClass }), types::FalseClass);
            let c_class = define_class("C", unsafe { rb_cObject });
            assert_bit_equal(Type::from_class(c_class), Type { bits: bits::HeapObject, spec: Specialization::TypeExact(c_class) });
        });
    }

    #[test]
    fn integer_has_ruby_class() {
        crate::cruby::with_rubyvm(|| {
            assert_eq!(Type::fixnum(3).inexact_ruby_class(), Some(unsafe { rb_cInteger }));
            assert_eq!(types::Fixnum.inexact_ruby_class(), None);
            assert_eq!(types::Integer.inexact_ruby_class(), None);
        });
    }

    #[test]
    fn set() {
        assert_subtype(types::SetExact, types::Set);
        assert_subtype(types::SetSubclass, types::Set);
    }

    #[test]
    fn set_has_ruby_class() {
        crate::cruby::with_rubyvm(|| {
            assert_eq!(types::SetExact.runtime_exact_ruby_class(), Some(unsafe { rb_cSet }));
            assert_eq!(types::Set.runtime_exact_ruby_class(), None);
            assert_eq!(types::SetSubclass.runtime_exact_ruby_class(), None);
        });
    }

    #[test]
    fn display_exact_bits_match() {
        assert_eq!(format!("{}", Type::fixnum(4)), "Fixnum[4]");
        assert_eq!(format!("{}", Type::from_cint(types::CInt8, -1)), "CInt8[-1]");
        assert_eq!(format!("{}", Type::from_cint(types::CUInt8, -1)), "CUInt8[255]");
        assert_eq!(format!("{}", Type::from_cint(types::CInt16, -1)), "CInt16[-1]");
        assert_eq!(format!("{}", Type::from_cint(types::CUInt16, -1)), "CUInt16[65535]");
        assert_eq!(format!("{}", Type::from_cint(types::CInt32, -1)), "CInt32[-1]");
        assert_eq!(format!("{}", Type::from_cint(types::CUInt32, -1)), "CUInt32[4294967295]");
        assert_eq!(format!("{}", Type::from_cint(types::CInt64, -1)), "CInt64[-1]");
        assert_eq!(format!("{}", Type::from_cint(types::CUInt64, -1)), "CUInt64[18446744073709551615]");
        assert_eq!(format!("{}", Type::from_cbool(true)), "CBool[true]");
        assert_eq!(format!("{}", Type::from_cbool(false)), "CBool[false]");
        assert_eq!(format!("{}", types::Fixnum), "Fixnum");
        assert_eq!(format!("{}", types::Integer), "Integer");
    }

    #[test]
    fn display_multiple_bits() {
        assert_eq!(format!("{}", types::CSigned), "CSigned");
        assert_eq!(format!("{}", types::CUInt8.union(types::CInt32)), "CUInt8|CInt32");
        assert_eq!(format!("{}", types::HashExact.union(types::HashSubclass)), "Hash");
    }

    #[test]
    fn union_equal() {
        assert_bit_equal(types::Fixnum.union(types::Fixnum), types::Fixnum);
        assert_bit_equal(Type::fixnum(3).union(Type::fixnum(3)), Type::fixnum(3));
    }

    #[test]
    fn union_bits_subtype() {
        assert_bit_equal(types::Fixnum.union(types::Integer), types::Integer);
        assert_bit_equal(types::Fixnum.union(types::Object), types::Object);
        assert_bit_equal(Type::fixnum(3).union(types::Fixnum), types::Fixnum);

        assert_bit_equal(types::Integer.union(types::Fixnum), types::Integer);
        assert_bit_equal(types::Object.union(types::Fixnum), types::Object);
        assert_bit_equal(types::Fixnum.union(Type::fixnum(3)), types::Fixnum);
    }

    #[test]
    fn union_bits_unions_bits() {
        assert_bit_equal(types::Fixnum.union(types::StaticSymbol), Type { bits: bits::Fixnum | bits::StaticSymbol, spec: Specialization::Any });
    }

    #[test]
    fn union_int_specialized() {
        assert_bit_equal(Type::from_cbool(true).union(Type::from_cbool(true)), Type::from_cbool(true));
        assert_bit_equal(Type::from_cbool(true).union(Type::from_cbool(false)), types::CBool);
        assert_bit_equal(Type::from_cbool(true).union(types::CBool), types::CBool);

        assert_bit_equal(Type::from_cbool(false).union(Type::from_cbool(true)), types::CBool);
        assert_bit_equal(types::CBool.union(Type::from_cbool(true)), types::CBool);
    }

    #[test]
    fn union_one_type_specialized_returns_unspecialized() {
        crate::cruby::with_rubyvm(|| {
            let specialized = Type::from_value(unsafe { rb_ary_new_capa(0) });
            let unspecialized = types::StringExact;
            assert_bit_equal(specialized.union(unspecialized), Type { bits: bits::ArrayExact | bits::StringExact, spec: Specialization::Any });
            assert_bit_equal(unspecialized.union(specialized), Type { bits: bits::ArrayExact | bits::StringExact, spec: Specialization::Any });
        });
    }

    #[test]
    fn union_specialized_builtin_subtype_returns_unspecialized() {
        crate::cruby::with_rubyvm(|| {
            let hello = Type::from_value(rust_str_to_ruby("hello"));
            let world = Type::from_value(rust_str_to_ruby("world"));
            assert_bit_equal(hello.union(world), types::StringExact);
        });
        crate::cruby::with_rubyvm(|| {
            let hello = Type::from_value(rust_str_to_sym("hello"));
            let world = Type::from_value(rust_str_to_sym("world"));
            assert_bit_equal(hello.union(world), types::StaticSymbol);
        });
        crate::cruby::with_rubyvm(|| {
            let left = Type::from_value(rust_str_to_ruby("hello"));
            let right = Type::from_value(rust_str_to_ruby("hello"));
            assert_bit_equal(left.union(right), types::StringExact);
        });
        crate::cruby::with_rubyvm(|| {
            let left = Type::from_value(rust_str_to_sym("hello"));
            let right = Type::from_value(rust_str_to_sym("hello"));
            assert_bit_equal(left.union(right), left);
        });
        crate::cruby::with_rubyvm(|| {
            let left = Type::from_value(unsafe { rb_ary_new_capa(0) });
            let right = Type::from_value(unsafe { rb_ary_new_capa(0) });
            assert_bit_equal(left.union(right), types::ArrayExact);
        });
        crate::cruby::with_rubyvm(|| {
            let left = Type::from_value(unsafe { rb_hash_new() });
            let right = Type::from_value(unsafe { rb_hash_new() });
            assert_bit_equal(left.union(right), types::HashExact);
        });
        crate::cruby::with_rubyvm(|| {
            let left = Type::from_value(unsafe { rb_float_new(1.0) });
            let right = Type::from_value(unsafe { rb_float_new(2.0) });
            assert_bit_equal(left.union(right), types::Flonum);
        });
        crate::cruby::with_rubyvm(|| {
            let left = Type::from_value(unsafe { rb_float_new(1.7976931348623157e+308) });
            let right = Type::from_value(unsafe { rb_float_new(1.7976931348623157e+308) });
            assert_bit_equal(left.union(right), types::HeapFloat);
        });
    }

    #[test]
    fn cme() {
        use crate::cruby::{rb_callable_method_entry, ID};
        crate::cruby::with_rubyvm(|| {
            let cme = unsafe { rb_callable_method_entry(rb_cInteger, ID!(to_s)) };
            assert!(!cme.is_null());
            let cme_value: VALUE = cme.into();
            let ty = Type::from_value(cme_value);
            assert_subtype(ty, types::CallableMethodEntry);
            assert!(ty.ruby_object_known());
        });
    }

    #[test]
    fn string_subclass_is_string_subtype() {
        crate::cruby::with_rubyvm(|| {
            assert_subtype(types::StringExact, types::String);
            assert_subtype(Type::from_class(unsafe { rb_cString }), types::String);
            assert_subtype(Type::from_class(unsafe { rb_cString }), types::StringExact);
            let c_class = define_class("C", unsafe { rb_cString });
            assert_subtype(Type::from_class(c_class), types::String);
        });
    }

    #[test]
    fn union_specialized_with_no_relation_returns_unspecialized() {
        crate::cruby::with_rubyvm(|| {
            let string = Type::from_value(rust_str_to_ruby("hello"));
            let array = Type::from_value(unsafe { rb_ary_new_capa(0) });
            assert_bit_equal(string.union(array), Type { bits: bits::ArrayExact | bits::StringExact, spec: Specialization::Any });
        });
    }

    #[test]
    fn union_specialized_with_subclass_relationship_returns_superclass() {
        crate::cruby::with_rubyvm(|| {
            let c_class = define_class("C", unsafe { rb_cObject });
            let d_class = define_class("D", c_class);
            let c_instance = Type { bits: bits::ObjectSubclass, spec: Specialization::TypeExact(c_class) };
            let d_instance = Type { bits: bits::ObjectSubclass, spec: Specialization::TypeExact(d_class) };
            assert_bit_equal(c_instance.union(c_instance), Type { bits: bits::ObjectSubclass, spec: Specialization::TypeExact(c_class)});
            assert_bit_equal(c_instance.union(d_instance), Type { bits: bits::ObjectSubclass, spec: Specialization::Type(c_class)});
            assert_bit_equal(d_instance.union(c_instance), Type { bits: bits::ObjectSubclass, spec: Specialization::Type(c_class)});
        });
    }

    #[test]
    fn has_value() {
        // With known values
        crate::cruby::with_rubyvm(|| {
            let a = rust_str_to_sym("a");
            let b = rust_str_to_sym("b");
            let ty = Type::from_value(a);
            assert!(ty.has_value(Const::Value(a)));
            assert!(!ty.has_value(Const::Value(b)));
        });

        let true_ty = Type::from_cbool(true);
        assert!(true_ty.has_value(Const::CBool(true)));
        assert!(!true_ty.has_value(Const::CBool(false)));

        let int8_ty = Type::from_cint(types::CInt8, 42);
        assert!(int8_ty.has_value(Const::CInt8(42)));
        assert!(!int8_ty.has_value(Const::CInt8(-1)));
        let neg_int8_ty = Type::from_cint(types::CInt8, -1);
        assert!(neg_int8_ty.has_value(Const::CInt8(-1)));

        let int16_ty = Type::from_cint(types::CInt16, 1000);
        assert!(int16_ty.has_value(Const::CInt16(1000)));
        assert!(!int16_ty.has_value(Const::CInt16(2000)));

        let int32_ty = Type::from_cint(types::CInt32, 100000);
        assert!(int32_ty.has_value(Const::CInt32(100000)));
        assert!(!int32_ty.has_value(Const::CInt32(-100000)));

        let int64_ty = Type::from_cint(types::CInt64, i64::MAX);
        assert!(int64_ty.has_value(Const::CInt64(i64::MAX)));
        assert!(!int64_ty.has_value(Const::CInt64(0)));

        let uint8_ty = Type::from_cint(types::CUInt8, u8::MAX as i64);
        assert!(uint8_ty.has_value(Const::CUInt8(u8::MAX)));
        assert!(!uint8_ty.has_value(Const::CUInt8(0)));

        let uint16_ty = Type::from_cint(types::CUInt16, u16::MAX as i64);
        assert!(uint16_ty.has_value(Const::CUInt16(u16::MAX)));
        assert!(!uint16_ty.has_value(Const::CUInt16(1)));

        let uint32_ty = Type::from_cint(types::CUInt32, u32::MAX as i64);
        assert!(uint32_ty.has_value(Const::CUInt32(u32::MAX)));
        assert!(!uint32_ty.has_value(Const::CUInt32(42)));

        let uint64_ty = Type::from_cint(types::CUInt64, i64::MAX);
        assert!(uint64_ty.has_value(Const::CUInt64(i64::MAX as u64)));
        assert!(!uint64_ty.has_value(Const::CUInt64(123)));

        let shape_ty = Type::from_cint(types::CShape, 0x1234);
        assert!(shape_ty.has_value(Const::CShape(crate::cruby::ShapeId(0x1234))));
        assert!(!shape_ty.has_value(Const::CShape(crate::cruby::ShapeId(0x5678))));

        let ptr = 0x1000 as *const u8;
        let ptr_ty = Type::from_cptr(ptr);
        assert!(ptr_ty.has_value(Const::CPtr(ptr)));
        assert!(!ptr_ty.has_value(Const::CPtr(0x2000 as *const u8)));

        let double_ty = Type::from_double(std::f64::consts::PI);
        assert!(double_ty.has_value(Const::CDouble(std::f64::consts::PI)));
        assert!(!double_ty.has_value(Const::CDouble(3.123)));

        let nan_ty = Type::from_double(f64::NAN);
        assert!(nan_ty.has_value(Const::CDouble(f64::NAN)));

        // Mismatched types
        assert!(!int8_ty.has_value(Const::CInt16(42)));
        assert!(!int16_ty.has_value(Const::CInt32(1000)));
        assert!(!uint8_ty.has_value(Const::CInt8(-1i8)));

        // Wrong specialization (unknown value)
        assert!(!types::CInt8.has_value(Const::CInt8(42)));
        assert!(!types::CBool.has_value(Const::CBool(true)));
        assert!(!types::CShape.has_value(Const::CShape(crate::cruby::ShapeId(0x1234))));
    }
}