1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
|
//! This module is for native code generation.
#![allow(clippy::let_and_return)]
use std::cell::{Cell, RefCell};
use std::rc::Rc;
use std::ffi::{c_int, c_long, c_void};
use std::slice;
use crate::backend::current::ALLOC_REGS;
use crate::invariants::{
track_bop_assumption, track_cme_assumption, track_no_ep_escape_assumption, track_no_trace_point_assumption,
track_single_ractor_assumption, track_stable_constant_names_assumption, track_no_singleton_class_assumption
};
use crate::gc::append_gc_offsets;
use crate::payload::{get_or_create_iseq_payload, IseqCodePtrs, IseqVersion, IseqVersionRef, IseqStatus};
use crate::state::ZJITState;
use crate::stats::{CompileError, exit_counter_for_compile_error, exit_counter_for_unhandled_hir_insn, incr_counter, incr_counter_by, send_fallback_counter, send_fallback_counter_for_method_type, send_fallback_counter_ptr_for_opcode, send_without_block_fallback_counter_for_method_type, send_without_block_fallback_counter_for_optimized_method_type};
use crate::stats::{counter_ptr, with_time_stat, Counter, Counter::{compile_time_ns, exit_compile_error}};
use crate::{asm::CodeBlock, cruby::*, options::debug, virtualmem::CodePtr};
use crate::backend::lir::{self, Assembler, C_ARG_OPNDS, C_RET_OPND, CFP, EC, NATIVE_BASE_PTR, NATIVE_STACK_PTR, Opnd, SP, SideExit, Target, asm_ccall, asm_comment};
use crate::hir::{iseq_to_hir, BlockId, BranchEdge, Invariant, RangeType, SideExitReason::{self, *}, SpecialBackrefSymbol, SpecialObjectType};
use crate::hir::{Const, FrameState, Function, Insn, InsnId, SendFallbackReason};
use crate::hir_type::{types, Type};
use crate::options::get_option;
use crate::cast::IntoUsize;
/// At the moment, we support recompiling each ISEQ only once.
pub const MAX_ISEQ_VERSIONS: usize = 2;
/// Sentinel program counter stored in C frames when runtime checks are enabled.
const PC_POISON: Option<*const VALUE> = if cfg!(feature = "runtime_checks") {
Some(usize::MAX as *const VALUE)
} else {
None
};
/// Ephemeral code generation state
struct JITState {
/// Instruction sequence for the method being compiled
iseq: IseqPtr,
/// ISEQ version that is being compiled, which will be used by PatchPoint
version: IseqVersionRef,
/// Low-level IR Operands indexed by High-level IR's Instruction ID
opnds: Vec<Option<Opnd>>,
/// Labels for each basic block indexed by the BlockId
labels: Vec<Option<Target>>,
/// JIT entry point for the `iseq`
jit_entries: Vec<Rc<RefCell<JITEntry>>>,
/// ISEQ calls that need to be compiled later
iseq_calls: Vec<IseqCallRef>,
}
impl JITState {
/// Create a new JITState instance
fn new(iseq: IseqPtr, version: IseqVersionRef, num_insns: usize, num_blocks: usize) -> Self {
JITState {
iseq,
version,
opnds: vec![None; num_insns],
labels: vec![None; num_blocks],
jit_entries: Vec::default(),
iseq_calls: Vec::default(),
}
}
/// Retrieve the output of a given instruction that has been compiled
fn get_opnd(&self, insn_id: InsnId) -> lir::Opnd {
self.opnds[insn_id.0].unwrap_or_else(|| panic!("Failed to get_opnd({insn_id})"))
}
/// Find or create a label for a given BlockId
fn get_label(&mut self, asm: &mut Assembler, block_id: BlockId) -> Target {
match &self.labels[block_id.0] {
Some(label) => label.clone(),
None => {
let label = asm.new_label(&format!("{block_id}"));
self.labels[block_id.0] = Some(label.clone());
label
}
}
}
}
/// CRuby API to compile a given ISEQ.
/// If jit_exception is true, compile JIT code for handling exceptions.
/// See jit_compile_exception() for details.
#[unsafe(no_mangle)]
pub extern "C" fn rb_zjit_iseq_gen_entry_point(iseq: IseqPtr, jit_exception: bool) -> *const u8 {
// Take a lock to avoid writing to ISEQ in parallel with Ractors.
// with_vm_lock() does nothing if the program doesn't use Ractors.
with_vm_lock(src_loc!(), || {
let cb = ZJITState::get_code_block();
let mut code_ptr = with_time_stat(compile_time_ns, || gen_iseq_entry_point(cb, iseq, jit_exception));
if let Err(err) = &code_ptr {
// Assert that the ISEQ compiles if RubyVM::ZJIT.assert_compiles is enabled.
// We assert only `jit_exception: false` cases until we support exception handlers.
if ZJITState::assert_compiles_enabled() && !jit_exception {
let iseq_location = iseq_get_location(iseq, 0);
panic!("Failed to compile: {iseq_location}");
}
// For --zjit-stats, generate an entry that just increments exit_compilation_failure and exits
if get_option!(stats) {
code_ptr = gen_compile_error_counter(cb, err);
}
}
// Always mark the code region executable if asm.compile() has been used.
// We need to do this even if code_ptr is None because gen_iseq() may have already used asm.compile().
cb.mark_all_executable();
code_ptr.map_or(std::ptr::null(), |ptr| ptr.raw_ptr(cb))
})
}
/// Compile an entry point for a given ISEQ
fn gen_iseq_entry_point(cb: &mut CodeBlock, iseq: IseqPtr, jit_exception: bool) -> Result<CodePtr, CompileError> {
// We don't support exception handlers yet
if jit_exception {
return Err(CompileError::ExceptionHandler);
}
// Compile ISEQ into High-level IR
let function = compile_iseq(iseq).inspect_err(|_| {
incr_counter!(failed_iseq_count);
})?;
// Compile the High-level IR
let IseqCodePtrs { start_ptr, .. } = gen_iseq(cb, iseq, Some(&function)).inspect_err(|err| {
debug!("{err:?}: gen_iseq failed: {}", iseq_get_location(iseq, 0));
})?;
Ok(start_ptr)
}
/// Stub a branch for a JIT-to-JIT call
pub fn gen_iseq_call(cb: &mut CodeBlock, iseq_call: &IseqCallRef) -> Result<(), CompileError> {
// Compile a function stub
let stub_ptr = gen_function_stub(cb, iseq_call.clone()).inspect_err(|err| {
debug!("{err:?}: gen_function_stub failed: {}", iseq_get_location(iseq_call.iseq.get(), 0));
})?;
// Update the JIT-to-JIT call to call the stub
let stub_addr = stub_ptr.raw_ptr(cb);
let iseq = iseq_call.iseq.get();
iseq_call.regenerate(cb, |asm| {
asm_comment!(asm, "call function stub: {}", iseq_get_location(iseq, 0));
asm.ccall(stub_addr, vec![]);
});
Ok(())
}
/// Write an entry to the perf map in /tmp
fn register_with_perf(iseq_name: String, start_ptr: usize, code_size: usize) {
use std::io::Write;
let perf_map = format!("/tmp/perf-{}.map", std::process::id());
let Ok(file) = std::fs::OpenOptions::new().create(true).append(true).open(&perf_map) else {
debug!("Failed to open perf map file: {perf_map}");
return;
};
let mut file = std::io::BufWriter::new(file);
let Ok(_) = writeln!(file, "{start_ptr:#x} {code_size:#x} zjit::{iseq_name}") else {
debug!("Failed to write {iseq_name} to perf map file: {perf_map}");
return;
};
}
/// Compile a shared JIT entry trampoline
pub fn gen_entry_trampoline(cb: &mut CodeBlock) -> Result<CodePtr, CompileError> {
// Set up registers for CFP, EC, SP, and basic block arguments
let mut asm = Assembler::new();
gen_entry_prologue(&mut asm);
// Jump to the first block using a call instruction. This trampoline is used
// as rb_zjit_func_t in jit_exec(), which takes (EC, CFP, rb_jit_func_t).
// So C_ARG_OPNDS[2] is rb_jit_func_t, which is (EC, CFP) -> VALUE.
asm.ccall_reg(C_ARG_OPNDS[2], VALUE_BITS);
// Restore registers for CFP, EC, and SP after use
asm_comment!(asm, "return to the interpreter");
asm.frame_teardown(lir::JIT_PRESERVED_REGS);
asm.cret(C_RET_OPND);
let (code_ptr, gc_offsets) = asm.compile(cb)?;
assert!(gc_offsets.is_empty());
if get_option!(perf) {
let start_ptr = code_ptr.raw_addr(cb);
let end_ptr = cb.get_write_ptr().raw_addr(cb);
let code_size = end_ptr - start_ptr;
register_with_perf("ZJIT entry trampoline".into(), start_ptr, code_size);
}
Ok(code_ptr)
}
/// Compile an ISEQ into machine code if not compiled yet
fn gen_iseq(cb: &mut CodeBlock, iseq: IseqPtr, function: Option<&Function>) -> Result<IseqCodePtrs, CompileError> {
// Return an existing pointer if it's already compiled
let payload = get_or_create_iseq_payload(iseq);
let last_status = payload.versions.last().map(|version| &unsafe { version.as_ref() }.status);
match last_status {
Some(IseqStatus::Compiled(code_ptrs)) => return Ok(code_ptrs.clone()),
Some(IseqStatus::CantCompile(err)) => return Err(err.clone()),
_ => {},
}
// If the ISEQ already hax MAX_ISEQ_VERSIONS, do not compile a new version.
if payload.versions.len() == MAX_ISEQ_VERSIONS {
return Err(CompileError::IseqVersionLimitReached);
}
// Compile the ISEQ
let mut version = IseqVersion::new(iseq);
let code_ptrs = gen_iseq_body(cb, iseq, version, function);
match &code_ptrs {
Ok(code_ptrs) => {
unsafe { version.as_mut() }.status = IseqStatus::Compiled(code_ptrs.clone());
incr_counter!(compiled_iseq_count);
}
Err(err) => {
unsafe { version.as_mut() }.status = IseqStatus::CantCompile(err.clone());
incr_counter!(failed_iseq_count);
}
}
payload.versions.push(version);
code_ptrs
}
/// Compile an ISEQ into machine code
fn gen_iseq_body(cb: &mut CodeBlock, iseq: IseqPtr, mut version: IseqVersionRef, function: Option<&Function>) -> Result<IseqCodePtrs, CompileError> {
// If we ran out of code region, we shouldn't attempt to generate new code.
if cb.has_dropped_bytes() {
return Err(CompileError::OutOfMemory);
}
// Convert ISEQ into optimized High-level IR if not given
let function = match function {
Some(function) => function,
None => &compile_iseq(iseq)?,
};
// Compile the High-level IR
let (iseq_code_ptrs, gc_offsets, iseq_calls) = gen_function(cb, iseq, version, function)?;
// Stub callee ISEQs for JIT-to-JIT calls
for iseq_call in iseq_calls.iter() {
gen_iseq_call(cb, iseq_call)?;
}
// Prepare for GC
unsafe { version.as_mut() }.outgoing.extend(iseq_calls);
append_gc_offsets(iseq, version, &gc_offsets);
Ok(iseq_code_ptrs)
}
/// Compile a function
fn gen_function(cb: &mut CodeBlock, iseq: IseqPtr, version: IseqVersionRef, function: &Function) -> Result<(IseqCodePtrs, Vec<CodePtr>, Vec<IseqCallRef>), CompileError> {
let num_spilled_params = max_num_params(function).saturating_sub(ALLOC_REGS.len());
let mut jit = JITState::new(iseq, version, function.num_insns(), function.num_blocks());
let mut asm = Assembler::new_with_stack_slots(num_spilled_params);
// Compile each basic block
let reverse_post_order = function.rpo();
for &block_id in reverse_post_order.iter() {
// Write a label to jump to the basic block
let label = jit.get_label(&mut asm, block_id);
asm.write_label(label);
let block = function.block(block_id);
asm_comment!(
asm, "{block_id}({}): {}",
block.params().map(|param| format!("{param}")).collect::<Vec<_>>().join(", "),
iseq_get_location(iseq, block.insn_idx),
);
// Compile all parameters
for (idx, &insn_id) in block.params().enumerate() {
match function.find(insn_id) {
Insn::Param => {
jit.opnds[insn_id.0] = Some(gen_param(&mut asm, idx));
},
insn => unreachable!("Non-param insn found in block.params: {insn:?}"),
}
}
// Compile all instructions
for &insn_id in block.insns() {
let insn = function.find(insn_id);
if let Err(last_snapshot) = gen_insn(cb, &mut jit, &mut asm, function, insn_id, &insn) {
debug!("ZJIT: gen_function: Failed to compile insn: {insn_id} {insn}. Generating side-exit.");
gen_incr_counter(&mut asm, exit_counter_for_unhandled_hir_insn(&insn));
gen_side_exit(&mut jit, &mut asm, &SideExitReason::UnhandledHIRInsn(insn_id), &function.frame_state(last_snapshot));
// Don't bother generating code after a side-exit. We won't run it.
// TODO(max): Generate ud2 or equivalent.
break;
};
// It's fine; we generated the instruction
}
// Make sure the last patch point has enough space to insert a jump
asm.pad_patch_point();
}
// Generate code if everything can be compiled
let result = asm.compile(cb);
if let Ok((start_ptr, _)) = result {
if get_option!(perf) {
let start_usize = start_ptr.raw_addr(cb);
let end_usize = cb.get_write_ptr().raw_addr(cb);
let code_size = end_usize - start_usize;
let iseq_name = iseq_get_location(iseq, 0);
register_with_perf(iseq_name, start_usize, code_size);
}
if ZJITState::should_log_compiled_iseqs() {
let iseq_name = iseq_get_location(iseq, 0);
ZJITState::log_compile(iseq_name);
}
}
result.map(|(start_ptr, gc_offsets)| {
// Make sure jit_entry_ptrs can be used as a parallel vector to jit_entry_insns()
jit.jit_entries.sort_by_key(|jit_entry| jit_entry.borrow().jit_entry_idx);
let jit_entry_ptrs = jit.jit_entries.iter().map(|jit_entry|
jit_entry.borrow().start_addr.get().expect("start_addr should have been set by pos_marker in gen_entry_point")
).collect();
(IseqCodePtrs { start_ptr, jit_entry_ptrs }, gc_offsets, jit.iseq_calls)
})
}
/// Compile an instruction
fn gen_insn(cb: &mut CodeBlock, jit: &mut JITState, asm: &mut Assembler, function: &Function, insn_id: InsnId, insn: &Insn) -> Result<(), InsnId> {
// Convert InsnId to lir::Opnd
macro_rules! opnd {
($insn_id:ident) => {
jit.get_opnd($insn_id.clone())
};
}
macro_rules! opnds {
($insn_ids:ident) => {
{
$insn_ids.iter().map(|insn_id| jit.get_opnd(*insn_id)).collect::<Vec<_>>()
}
};
}
macro_rules! no_output {
($call:expr) => {
{ let () = $call; return Ok(()); }
};
}
if !matches!(*insn, Insn::Snapshot { .. }) {
asm_comment!(asm, "Insn: {insn_id} {insn}");
}
let out_opnd = match insn {
&Insn::Const { val: Const::Value(val) } => gen_const_value(val),
&Insn::Const { val: Const::CPtr(val) } => gen_const_cptr(val),
&Insn::Const { val: Const::CInt64(val) } => gen_const_long(val),
&Insn::Const { val: Const::CUInt16(val) } => gen_const_uint16(val),
&Insn::Const { val: Const::CUInt32(val) } => gen_const_uint32(val),
&Insn::Const { val: Const::CShape(val) } => {
assert_eq!(SHAPE_ID_NUM_BITS, 32);
gen_const_uint32(val.0)
}
Insn::Const { .. } => panic!("Unexpected Const in gen_insn: {insn}"),
Insn::NewArray { elements, state } => gen_new_array(asm, opnds!(elements), &function.frame_state(*state)),
Insn::NewHash { elements, state } => gen_new_hash(jit, asm, opnds!(elements), &function.frame_state(*state)),
Insn::NewRange { low, high, flag, state } => gen_new_range(jit, asm, opnd!(low), opnd!(high), *flag, &function.frame_state(*state)),
Insn::NewRangeFixnum { low, high, flag, state } => gen_new_range_fixnum(asm, opnd!(low), opnd!(high), *flag, &function.frame_state(*state)),
Insn::ArrayDup { val, state } => gen_array_dup(asm, opnd!(val), &function.frame_state(*state)),
Insn::ArrayArefFixnum { array, index, .. } => gen_aref_fixnum(asm, opnd!(array), opnd!(index)),
Insn::ArrayAset { array, index, val } => {
no_output!(gen_array_aset(asm, opnd!(array), opnd!(index), opnd!(val)))
}
Insn::ArrayPop { array, state } => gen_array_pop(asm, opnd!(array), &function.frame_state(*state)),
Insn::ArrayLength { array } => gen_array_length(asm, opnd!(array)),
Insn::ObjectAlloc { val, state } => gen_object_alloc(jit, asm, opnd!(val), &function.frame_state(*state)),
&Insn::ObjectAllocClass { class, state } => gen_object_alloc_class(asm, class, &function.frame_state(state)),
Insn::StringCopy { val, chilled, state } => gen_string_copy(asm, opnd!(val), *chilled, &function.frame_state(*state)),
// concatstrings shouldn't have 0 strings
// If it happens we abort the compilation for now
Insn::StringConcat { strings, state, .. } if strings.is_empty() => return Err(*state),
Insn::StringConcat { strings, state } => gen_string_concat(jit, asm, opnds!(strings), &function.frame_state(*state)),
&Insn::StringGetbyte { string, index } => gen_string_getbyte(asm, opnd!(string), opnd!(index)),
Insn::StringSetbyteFixnum { string, index, value } => gen_string_setbyte_fixnum(asm, opnd!(string), opnd!(index), opnd!(value)),
Insn::StringAppend { recv, other, state } => gen_string_append(jit, asm, opnd!(recv), opnd!(other), &function.frame_state(*state)),
Insn::StringAppendCodepoint { recv, other, state } => gen_string_append_codepoint(jit, asm, opnd!(recv), opnd!(other), &function.frame_state(*state)),
Insn::StringIntern { val, state } => gen_intern(asm, opnd!(val), &function.frame_state(*state)),
Insn::ToRegexp { opt, values, state } => gen_toregexp(jit, asm, *opt, opnds!(values), &function.frame_state(*state)),
Insn::Param => unreachable!("block.insns should not have Insn::Param"),
Insn::Snapshot { .. } => return Ok(()), // we don't need to do anything for this instruction at the moment
Insn::Jump(branch) => no_output!(gen_jump(jit, asm, branch)),
Insn::IfTrue { val, target } => no_output!(gen_if_true(jit, asm, opnd!(val), target)),
Insn::IfFalse { val, target } => no_output!(gen_if_false(jit, asm, opnd!(val), target)),
&Insn::Send { cd, blockiseq, state, reason, .. } => gen_send(jit, asm, cd, blockiseq, &function.frame_state(state), reason),
&Insn::SendForward { cd, blockiseq, state, reason, .. } => gen_send_forward(jit, asm, cd, blockiseq, &function.frame_state(state), reason),
&Insn::SendWithoutBlock { cd, state, reason, .. } => gen_send_without_block(jit, asm, cd, &function.frame_state(state), reason),
// Give up SendWithoutBlockDirect for 6+ args since asm.ccall() doesn't support it.
Insn::SendWithoutBlockDirect { cd, state, args, .. } if args.len() + 1 > C_ARG_OPNDS.len() => // +1 for self
gen_send_without_block(jit, asm, *cd, &function.frame_state(*state), SendFallbackReason::TooManyArgsForLir),
Insn::SendWithoutBlockDirect { cme, iseq, recv, args, state, .. } => gen_send_without_block_direct(cb, jit, asm, *cme, *iseq, opnd!(recv), opnds!(args), &function.frame_state(*state)),
&Insn::InvokeSuper { cd, blockiseq, state, reason, .. } => gen_invokesuper(jit, asm, cd, blockiseq, &function.frame_state(state), reason),
&Insn::InvokeBlock { cd, state, reason, .. } => gen_invokeblock(jit, asm, cd, &function.frame_state(state), reason),
// Ensure we have enough room fit ec, self, and arguments
// TODO remove this check when we have stack args (we can use Time.new to test it)
Insn::InvokeBuiltin { bf, state, .. } if bf.argc + 2 > (C_ARG_OPNDS.len() as i32) => return Err(*state),
Insn::InvokeBuiltin { bf, leaf, args, state, .. } => gen_invokebuiltin(jit, asm, &function.frame_state(*state), bf, *leaf, opnds!(args)),
&Insn::EntryPoint { jit_entry_idx } => no_output!(gen_entry_point(jit, asm, jit_entry_idx)),
Insn::Return { val } => no_output!(gen_return(asm, opnd!(val))),
Insn::FixnumAdd { left, right, state } => gen_fixnum_add(jit, asm, opnd!(left), opnd!(right), &function.frame_state(*state)),
Insn::FixnumSub { left, right, state } => gen_fixnum_sub(jit, asm, opnd!(left), opnd!(right), &function.frame_state(*state)),
Insn::FixnumMult { left, right, state } => gen_fixnum_mult(jit, asm, opnd!(left), opnd!(right), &function.frame_state(*state)),
Insn::FixnumDiv { left, right, state } => gen_fixnum_div(jit, asm, opnd!(left), opnd!(right), &function.frame_state(*state)),
Insn::FixnumEq { left, right } => gen_fixnum_eq(asm, opnd!(left), opnd!(right)),
Insn::FixnumNeq { left, right } => gen_fixnum_neq(asm, opnd!(left), opnd!(right)),
Insn::FixnumLt { left, right } => gen_fixnum_lt(asm, opnd!(left), opnd!(right)),
Insn::FixnumLe { left, right } => gen_fixnum_le(asm, opnd!(left), opnd!(right)),
Insn::FixnumGt { left, right } => gen_fixnum_gt(asm, opnd!(left), opnd!(right)),
Insn::FixnumGe { left, right } => gen_fixnum_ge(asm, opnd!(left), opnd!(right)),
Insn::FixnumAnd { left, right } => gen_fixnum_and(asm, opnd!(left), opnd!(right)),
Insn::FixnumOr { left, right } => gen_fixnum_or(asm, opnd!(left), opnd!(right)),
Insn::FixnumXor { left, right } => gen_fixnum_xor(asm, opnd!(left), opnd!(right)),
&Insn::FixnumLShift { left, right, state } => {
// We only create FixnumLShift when we know the shift amount statically and it's in [0,
// 63].
let shift_amount = function.type_of(right).fixnum_value().unwrap() as u64;
gen_fixnum_lshift(jit, asm, opnd!(left), shift_amount, &function.frame_state(state))
}
&Insn::FixnumRShift { left, right } => {
// We only create FixnumRShift when we know the shift amount statically and it's in [0,
// 63].
let shift_amount = function.type_of(right).fixnum_value().unwrap() as u64;
gen_fixnum_rshift(asm, opnd!(left), shift_amount)
}
&Insn::FixnumMod { left, right, state } => gen_fixnum_mod(jit, asm, opnd!(left), opnd!(right), &function.frame_state(state)),
&Insn::FixnumAref { recv, index } => gen_fixnum_aref(asm, opnd!(recv), opnd!(index)),
Insn::IsNil { val } => gen_isnil(asm, opnd!(val)),
&Insn::IsMethodCfunc { val, cd, cfunc, state: _ } => gen_is_method_cfunc(jit, asm, opnd!(val), cd, cfunc),
&Insn::IsBitEqual { left, right } => gen_is_bit_equal(asm, opnd!(left), opnd!(right)),
&Insn::IsBitNotEqual { left, right } => gen_is_bit_not_equal(asm, opnd!(left), opnd!(right)),
&Insn::BoxBool { val } => gen_box_bool(asm, opnd!(val)),
&Insn::BoxFixnum { val, state } => gen_box_fixnum(jit, asm, opnd!(val), &function.frame_state(state)),
&Insn::UnboxFixnum { val } => gen_unbox_fixnum(asm, opnd!(val)),
Insn::Test { val } => gen_test(asm, opnd!(val)),
Insn::GuardType { val, guard_type, state } => gen_guard_type(jit, asm, opnd!(val), *guard_type, &function.frame_state(*state)),
Insn::GuardTypeNot { val, guard_type, state } => gen_guard_type_not(jit, asm, opnd!(val), *guard_type, &function.frame_state(*state)),
&Insn::GuardBitEquals { val, expected, reason, state } => gen_guard_bit_equals(jit, asm, opnd!(val), expected, reason, &function.frame_state(state)),
&Insn::GuardBlockParamProxy { level, state } => no_output!(gen_guard_block_param_proxy(jit, asm, level, &function.frame_state(state))),
Insn::GuardNotFrozen { recv, state } => gen_guard_not_frozen(jit, asm, opnd!(recv), &function.frame_state(*state)),
Insn::GuardNotShared { recv, state } => gen_guard_not_shared(jit, asm, opnd!(recv), &function.frame_state(*state)),
&Insn::GuardLess { left, right, state } => gen_guard_less(jit, asm, opnd!(left), opnd!(right), &function.frame_state(state)),
&Insn::GuardGreaterEq { left, right, state } => gen_guard_greater_eq(jit, asm, opnd!(left), opnd!(right), &function.frame_state(state)),
Insn::PatchPoint { invariant, state } => no_output!(gen_patch_point(jit, asm, invariant, &function.frame_state(*state))),
Insn::CCall { cfunc, recv, args, name, return_type: _, elidable: _ } => gen_ccall(asm, *cfunc, *name, opnd!(recv), opnds!(args)),
// Give up CCallWithFrame for 7+ args since asm.ccall() supports at most 6 args (recv + args).
// There's no test case for this because no core cfuncs have this many parameters. But C extensions could have such methods.
Insn::CCallWithFrame { cd, state, args, .. } if args.len() + 1 > C_ARG_OPNDS.len() =>
gen_send_without_block(jit, asm, *cd, &function.frame_state(*state), SendFallbackReason::CCallWithFrameTooManyArgs),
Insn::CCallWithFrame { cfunc, recv, name, args, cme, state, blockiseq, .. } =>
gen_ccall_with_frame(jit, asm, *cfunc, *name, opnd!(recv), opnds!(args), *cme, *blockiseq, &function.frame_state(*state)),
Insn::CCallVariadic { cfunc, recv, name, args, cme, state, blockiseq, return_type: _, elidable: _ } => {
gen_ccall_variadic(jit, asm, *cfunc, *name, opnd!(recv), opnds!(args), *cme, *blockiseq, &function.frame_state(*state))
}
Insn::GetIvar { self_val, id, ic, state: _ } => gen_getivar(jit, asm, opnd!(self_val), *id, *ic),
Insn::SetGlobal { id, val, state } => no_output!(gen_setglobal(jit, asm, *id, opnd!(val), &function.frame_state(*state))),
Insn::GetGlobal { id, state } => gen_getglobal(jit, asm, *id, &function.frame_state(*state)),
&Insn::GetLocal { ep_offset, level, use_sp, .. } => gen_getlocal(asm, ep_offset, level, use_sp),
&Insn::SetLocal { val, ep_offset, level } => no_output!(gen_setlocal(asm, opnd!(val), function.type_of(val), ep_offset, level)),
Insn::GetConstantPath { ic, state } => gen_get_constant_path(jit, asm, *ic, &function.frame_state(*state)),
Insn::GetClassVar { id, ic, state } => gen_getclassvar(jit, asm, *id, *ic, &function.frame_state(*state)),
Insn::SetClassVar { id, val, ic, state } => no_output!(gen_setclassvar(jit, asm, *id, opnd!(val), *ic, &function.frame_state(*state))),
Insn::SetIvar { self_val, id, ic, val, state } => no_output!(gen_setivar(jit, asm, opnd!(self_val), *id, *ic, opnd!(val), &function.frame_state(*state))),
Insn::FixnumBitCheck { val, index } => gen_fixnum_bit_check(asm, opnd!(val), *index),
Insn::SideExit { state, reason } => no_output!(gen_side_exit(jit, asm, reason, &function.frame_state(*state))),
Insn::PutSpecialObject { value_type } => gen_putspecialobject(asm, *value_type),
Insn::AnyToString { val, str, state } => gen_anytostring(asm, opnd!(val), opnd!(str), &function.frame_state(*state)),
Insn::Defined { op_type, obj, pushval, v, state } => gen_defined(jit, asm, *op_type, *obj, *pushval, opnd!(v), &function.frame_state(*state)),
Insn::GetSpecialSymbol { symbol_type, state: _ } => gen_getspecial_symbol(asm, *symbol_type),
Insn::GetSpecialNumber { nth, state } => gen_getspecial_number(asm, *nth, &function.frame_state(*state)),
&Insn::IncrCounter(counter) => no_output!(gen_incr_counter(asm, counter)),
Insn::IncrCounterPtr { counter_ptr } => no_output!(gen_incr_counter_ptr(asm, *counter_ptr)),
Insn::ObjToString { val, cd, state, .. } => gen_objtostring(jit, asm, opnd!(val), *cd, &function.frame_state(*state)),
&Insn::CheckInterrupts { state } => no_output!(gen_check_interrupts(jit, asm, &function.frame_state(state))),
&Insn::HashDup { val, state } => { gen_hash_dup(asm, opnd!(val), &function.frame_state(state)) },
&Insn::HashAref { hash, key, state } => { gen_hash_aref(jit, asm, opnd!(hash), opnd!(key), &function.frame_state(state)) },
&Insn::HashAset { hash, key, val, state } => { no_output!(gen_hash_aset(jit, asm, opnd!(hash), opnd!(key), opnd!(val), &function.frame_state(state))) },
&Insn::ArrayPush { array, val, state } => { no_output!(gen_array_push(asm, opnd!(array), opnd!(val), &function.frame_state(state))) },
&Insn::ToNewArray { val, state } => { gen_to_new_array(jit, asm, opnd!(val), &function.frame_state(state)) },
&Insn::ToArray { val, state } => { gen_to_array(jit, asm, opnd!(val), &function.frame_state(state)) },
&Insn::DefinedIvar { self_val, id, pushval, .. } => { gen_defined_ivar(asm, opnd!(self_val), id, pushval) },
&Insn::ArrayExtend { left, right, state } => { no_output!(gen_array_extend(jit, asm, opnd!(left), opnd!(right), &function.frame_state(state))) },
&Insn::GuardShape { val, shape, state } => gen_guard_shape(jit, asm, opnd!(val), shape, &function.frame_state(state)),
Insn::LoadPC => gen_load_pc(asm),
Insn::LoadEC => gen_load_ec(),
Insn::LoadSelf => gen_load_self(),
&Insn::LoadField { recv, id, offset, return_type } => gen_load_field(asm, opnd!(recv), id, offset, return_type),
&Insn::StoreField { recv, id, offset, val } => no_output!(gen_store_field(asm, opnd!(recv), id, offset, opnd!(val), function.type_of(val))),
&Insn::WriteBarrier { recv, val } => no_output!(gen_write_barrier(asm, opnd!(recv), opnd!(val), function.type_of(val))),
&Insn::IsBlockGiven => gen_is_block_given(jit, asm),
Insn::ArrayInclude { elements, target, state } => gen_array_include(jit, asm, opnds!(elements), opnd!(target), &function.frame_state(*state)),
Insn::ArrayPackBuffer { elements, fmt, buffer, state } => gen_array_pack_buffer(jit, asm, opnds!(elements), opnd!(fmt), opnd!(buffer), &function.frame_state(*state)),
&Insn::DupArrayInclude { ary, target, state } => gen_dup_array_include(jit, asm, ary, opnd!(target), &function.frame_state(state)),
Insn::ArrayHash { elements, state } => gen_opt_newarray_hash(jit, asm, opnds!(elements), &function.frame_state(*state)),
&Insn::IsA { val, class } => gen_is_a(asm, opnd!(val), opnd!(class)),
&Insn::ArrayMax { state, .. }
| &Insn::Throw { state, .. }
=> return Err(state),
};
assert!(insn.has_output(), "Cannot write LIR output of HIR instruction with no output: {insn}");
// If the instruction has an output, remember it in jit.opnds
jit.opnds[insn_id.0] = Some(out_opnd);
Ok(())
}
/// Gets the EP of the ISeq of the containing method, or "local level".
/// Equivalent of GET_LEP() macro.
fn gen_get_lep(jit: &JITState, asm: &mut Assembler) -> Opnd {
// Equivalent of get_lvar_level() in compile.c
fn get_lvar_level(mut iseq: IseqPtr) -> u32 {
let local_iseq = unsafe { rb_get_iseq_body_local_iseq(iseq) };
let mut level = 0;
while iseq != local_iseq {
iseq = unsafe { rb_get_iseq_body_parent_iseq(iseq) };
level += 1;
}
level
}
let level = get_lvar_level(jit.iseq);
gen_get_ep(asm, level)
}
// Get EP at `level` from CFP
fn gen_get_ep(asm: &mut Assembler, level: u32) -> Opnd {
// Load environment pointer EP from CFP into a register
let ep_opnd = Opnd::mem(64, CFP, RUBY_OFFSET_CFP_EP);
let mut ep_opnd = asm.load(ep_opnd);
for _ in 0..level {
// Get the previous EP from the current EP
// See GET_PREV_EP(ep) macro
// VALUE *prev_ep = ((VALUE *)((ep)[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03))
const UNTAGGING_MASK: Opnd = Opnd::Imm(!0x03);
let offset = SIZEOF_VALUE_I32 * VM_ENV_DATA_INDEX_SPECVAL;
ep_opnd = asm.load(Opnd::mem(64, ep_opnd, offset));
ep_opnd = asm.and(ep_opnd, UNTAGGING_MASK);
}
ep_opnd
}
fn gen_objtostring(jit: &mut JITState, asm: &mut Assembler, val: Opnd, cd: *const rb_call_data, state: &FrameState) -> Opnd {
gen_prepare_non_leaf_call(jit, asm, state);
// TODO: Specialize for immediate types
// Call rb_vm_objtostring(iseq, recv, cd)
let ret = asm_ccall!(asm, rb_vm_objtostring, VALUE::from(jit.iseq).into(), val, Opnd::const_ptr(cd));
// TODO: Call `to_s` on the receiver if rb_vm_objtostring returns Qundef
// Need to replicate what CALL_SIMPLE_METHOD does
asm_comment!(asm, "side-exit if rb_vm_objtostring returns Qundef");
asm.cmp(ret, Qundef.into());
asm.je(side_exit(jit, state, ObjToStringFallback));
ret
}
fn gen_defined(jit: &JITState, asm: &mut Assembler, op_type: usize, obj: VALUE, pushval: VALUE, tested_value: Opnd, state: &FrameState) -> Opnd {
match op_type as defined_type {
DEFINED_YIELD => {
// `yield` goes to the block handler stowed in the "local" iseq which is
// the current iseq or a parent. Only the "method" iseq type can be passed a
// block handler. (e.g. `yield` in the top level script is a syntax error.)
//
// Similar to gen_is_block_given
let local_iseq = unsafe { rb_get_iseq_body_local_iseq(jit.iseq) };
if unsafe { rb_get_iseq_body_type(local_iseq) } == ISEQ_TYPE_METHOD {
let lep = gen_get_lep(jit, asm);
let block_handler = asm.load(Opnd::mem(64, lep, SIZEOF_VALUE_I32 * VM_ENV_DATA_INDEX_SPECVAL));
let pushval = asm.load(pushval.into());
asm.cmp(block_handler, VM_BLOCK_HANDLER_NONE.into());
asm.csel_e(Qnil.into(), pushval)
} else {
Qnil.into()
}
}
_ => {
// Save the PC and SP because the callee may allocate or call #respond_to?
gen_prepare_non_leaf_call(jit, asm, state);
// TODO: Inline the cases for each op_type
// Call vm_defined(ec, reg_cfp, op_type, obj, v)
let def_result = asm_ccall!(asm, rb_vm_defined, EC, CFP, op_type.into(), obj.into(), tested_value);
asm.cmp(def_result.with_num_bits(8), 0.into());
asm.csel_ne(pushval.into(), Qnil.into())
}
}
}
/// Similar to gen_defined for DEFINED_YIELD
fn gen_is_block_given(jit: &JITState, asm: &mut Assembler) -> Opnd {
let local_iseq = unsafe { rb_get_iseq_body_local_iseq(jit.iseq) };
if unsafe { rb_get_iseq_body_type(local_iseq) } == ISEQ_TYPE_METHOD {
let lep = gen_get_lep(jit, asm);
let block_handler = asm.load(Opnd::mem(64, lep, SIZEOF_VALUE_I32 * VM_ENV_DATA_INDEX_SPECVAL));
asm.cmp(block_handler, VM_BLOCK_HANDLER_NONE.into());
asm.csel_e(Qfalse.into(), Qtrue.into())
} else {
Qfalse.into()
}
}
fn gen_unbox_fixnum(asm: &mut Assembler, val: Opnd) -> Opnd {
asm.rshift(val, Opnd::UImm(1))
}
/// Get a local variable from a higher scope or the heap. `local_ep_offset` is in number of VALUEs.
/// We generate this instruction with level=0 only when the local variable is on the heap, so we
/// can't optimize the level=0 case using the SP register.
fn gen_getlocal(asm: &mut Assembler, local_ep_offset: u32, level: u32, use_sp: bool) -> lir::Opnd {
let local_ep_offset = i32::try_from(local_ep_offset).unwrap_or_else(|_| panic!("Could not convert local_ep_offset {local_ep_offset} to i32"));
if level > 0 {
gen_incr_counter(asm, Counter::vm_read_from_parent_iseq_local_count);
}
let local = if use_sp {
assert_eq!(level, 0, "use_sp optimization should be used only for level=0 locals");
let offset = -(SIZEOF_VALUE_I32 * (local_ep_offset + 1));
Opnd::mem(64, SP, offset)
} else {
let ep = gen_get_ep(asm, level);
let offset = -(SIZEOF_VALUE_I32 * local_ep_offset);
Opnd::mem(64, ep, offset)
};
asm.load(local)
}
/// Set a local variable from a higher scope or the heap. `local_ep_offset` is in number of VALUEs.
/// We generate this instruction with level=0 only when the local variable is on the heap, so we
/// can't optimize the level=0 case using the SP register.
fn gen_setlocal(asm: &mut Assembler, val: Opnd, val_type: Type, local_ep_offset: u32, level: u32) {
let local_ep_offset = c_int::try_from(local_ep_offset).unwrap_or_else(|_| panic!("Could not convert local_ep_offset {local_ep_offset} to i32"));
if level > 0 {
gen_incr_counter(asm, Counter::vm_write_to_parent_iseq_local_count);
}
let ep = gen_get_ep(asm, level);
// When we've proved that we're writing an immediate,
// we can skip the write barrier.
if val_type.is_immediate() {
let offset = -(SIZEOF_VALUE_I32 * local_ep_offset);
asm.mov(Opnd::mem(64, ep, offset), val);
} else {
// We're potentially writing a reference to an IMEMO/env object,
// so take care of the write barrier with a function.
let local_index = -local_ep_offset;
asm_ccall!(asm, rb_vm_env_write, ep, local_index.into(), val);
}
}
fn gen_guard_block_param_proxy(jit: &JITState, asm: &mut Assembler, level: u32, state: &FrameState) {
// Bail out if the `&block` local variable has been modified
let ep = gen_get_ep(asm, level);
let flags = Opnd::mem(64, ep, SIZEOF_VALUE_I32 * (VM_ENV_DATA_INDEX_FLAGS as i32));
asm.test(flags, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM.into());
asm.jnz(side_exit(jit, state, SideExitReason::BlockParamProxyModified));
// This handles two cases which are nearly identical
// Block handler is a tagged pointer. Look at the tag.
// VM_BH_ISEQ_BLOCK_P(): block_handler & 0x03 == 0x01
// VM_BH_IFUNC_P(): block_handler & 0x03 == 0x03
// So to check for either of those cases we can use: val & 0x1 == 0x1
const _: () = assert!(RUBY_SYMBOL_FLAG & 1 == 0, "guard below rejects symbol block handlers");
// Bail ouf if the block handler is neither ISEQ nor ifunc
let block_handler = asm.load(Opnd::mem(64, ep, SIZEOF_VALUE_I32 * VM_ENV_DATA_INDEX_SPECVAL));
asm.test(block_handler, 0x1.into());
asm.jz(side_exit(jit, state, SideExitReason::BlockParamProxyNotIseqOrIfunc));
}
fn gen_guard_not_frozen(jit: &JITState, asm: &mut Assembler, recv: Opnd, state: &FrameState) -> Opnd {
let recv = asm.load(recv);
// It's a heap object, so check the frozen flag
let flags = asm.load(Opnd::mem(64, recv, RUBY_OFFSET_RBASIC_FLAGS));
asm.test(flags, (RUBY_FL_FREEZE as u64).into());
// Side-exit if frozen
asm.jnz(side_exit(jit, state, GuardNotFrozen));
recv
}
fn gen_guard_not_shared(jit: &JITState, asm: &mut Assembler, recv: Opnd, state: &FrameState) -> Opnd {
let recv = asm.load(recv);
// It's a heap object, so check the shared flag
let flags = asm.load(Opnd::mem(VALUE_BITS, recv, RUBY_OFFSET_RBASIC_FLAGS));
asm.test(flags, (RUBY_ELTS_SHARED as u64).into());
asm.jnz(side_exit(jit, state, SideExitReason::GuardNotShared));
recv
}
fn gen_guard_less(jit: &JITState, asm: &mut Assembler, left: Opnd, right: Opnd, state: &FrameState) -> Opnd {
asm.cmp(left, right);
asm.jge(side_exit(jit, state, SideExitReason::GuardLess));
left
}
fn gen_guard_greater_eq(jit: &JITState, asm: &mut Assembler, left: Opnd, right: Opnd, state: &FrameState) -> Opnd {
asm.cmp(left, right);
asm.jl(side_exit(jit, state, SideExitReason::GuardGreaterEq));
left
}
fn gen_get_constant_path(jit: &JITState, asm: &mut Assembler, ic: *const iseq_inline_constant_cache, state: &FrameState) -> Opnd {
unsafe extern "C" {
fn rb_vm_opt_getconstant_path(ec: EcPtr, cfp: CfpPtr, ic: *const iseq_inline_constant_cache) -> VALUE;
}
// Anything could be called on const_missing
gen_prepare_non_leaf_call(jit, asm, state);
asm_ccall!(asm, rb_vm_opt_getconstant_path, EC, CFP, Opnd::const_ptr(ic))
}
fn gen_fixnum_bit_check(asm: &mut Assembler, val: Opnd, index: u8) -> Opnd {
let bit_test: u64 = 0x01 << (index + 1);
asm.test(val, bit_test.into());
asm.csel_z(Qtrue.into(), Qfalse.into())
}
fn gen_invokebuiltin(jit: &JITState, asm: &mut Assembler, state: &FrameState, bf: &rb_builtin_function, leaf: bool, args: Vec<Opnd>) -> lir::Opnd {
assert!(bf.argc + 2 <= C_ARG_OPNDS.len() as i32,
"gen_invokebuiltin should not be called for builtin function {} with too many arguments: {}",
unsafe { std::ffi::CStr::from_ptr(bf.name).to_str().unwrap() },
bf.argc);
if leaf {
gen_prepare_leaf_call_with_gc(asm, state);
} else {
// Anything can happen inside builtin functions
gen_prepare_non_leaf_call(jit, asm, state);
}
let mut cargs = vec![EC];
cargs.extend(args);
asm.count_call_to(unsafe { std::ffi::CStr::from_ptr(bf.name).to_str().unwrap() });
asm.ccall(bf.func_ptr as *const u8, cargs)
}
/// Record a patch point that should be invalidated on a given invariant
fn gen_patch_point(jit: &mut JITState, asm: &mut Assembler, invariant: &Invariant, state: &FrameState) {
let invariant = *invariant;
let exit = build_side_exit(jit, state);
// Let compile_exits compile a side exit. Let scratch_split lower it with split_patch_point.
asm.patch_point(Target::SideExit { exit, reason: PatchPoint(invariant) }, invariant, jit.version);
}
/// This is used by scratch_split to lower PatchPoint into PadPatchPoint and PosMarker.
/// It's called at scratch_split so that we can use the Label after side-exit deduplication in compile_exits.
pub fn split_patch_point(asm: &mut Assembler, target: &Target, invariant: Invariant, version: IseqVersionRef) {
let Target::Label(exit_label) = *target else {
unreachable!("PatchPoint's target should have been lowered to Target::Label by compile_exits: {target:?}");
};
// Fill nop instructions if the last patch point is too close.
asm.pad_patch_point();
// Remember the current address as a patch point
asm.pos_marker(move |code_ptr, cb| {
let side_exit_ptr = cb.resolve_label(exit_label);
match invariant {
Invariant::BOPRedefined { klass, bop } => {
track_bop_assumption(klass, bop, code_ptr, side_exit_ptr, version);
}
Invariant::MethodRedefined { klass: _, method: _, cme } => {
track_cme_assumption(cme, code_ptr, side_exit_ptr, version);
}
Invariant::StableConstantNames { idlist } => {
track_stable_constant_names_assumption(idlist, code_ptr, side_exit_ptr, version);
}
Invariant::NoTracePoint => {
track_no_trace_point_assumption(code_ptr, side_exit_ptr, version);
}
Invariant::NoEPEscape(iseq) => {
track_no_ep_escape_assumption(iseq, code_ptr, side_exit_ptr, version);
}
Invariant::SingleRactorMode => {
track_single_ractor_assumption(code_ptr, side_exit_ptr, version);
}
Invariant::NoSingletonClass { klass } => {
track_no_singleton_class_assumption(klass, code_ptr, side_exit_ptr, version);
}
}
});
}
/// Generate code for a C function call that pushes a frame
fn gen_ccall_with_frame(
jit: &mut JITState,
asm: &mut Assembler,
cfunc: *const u8,
name: ID,
recv: Opnd,
args: Vec<Opnd>,
cme: *const rb_callable_method_entry_t,
blockiseq: Option<IseqPtr>,
state: &FrameState,
) -> lir::Opnd {
gen_incr_counter(asm, Counter::non_variadic_cfunc_optimized_send_count);
gen_stack_overflow_check(jit, asm, state, state.stack_size());
let args_with_recv_len = args.len() + 1;
let caller_stack_size = state.stack().len() - args_with_recv_len;
// Can't use gen_prepare_non_leaf_call() because we need to adjust the SP
// to account for the receiver and arguments (and block arguments if any)
gen_save_pc_for_gc(asm, state);
gen_save_sp(asm, caller_stack_size);
gen_spill_stack(jit, asm, state);
gen_spill_locals(jit, asm, state);
let block_handler_specval = if let Some(block_iseq) = blockiseq {
// Change cfp->block_code in the current frame. See vm_caller_setup_arg_block().
// VM_CFP_TO_CAPTURED_BLOCK then turns &cfp->self into a block handler.
// rb_captured_block->code.iseq aliases with cfp->block_code.
asm.store(Opnd::mem(64, CFP, RUBY_OFFSET_CFP_BLOCK_CODE), VALUE::from(block_iseq).into());
let cfp_self_addr = asm.lea(Opnd::mem(64, CFP, RUBY_OFFSET_CFP_SELF));
asm.or(cfp_self_addr, Opnd::Imm(1))
} else {
VM_BLOCK_HANDLER_NONE.into()
};
gen_push_frame(asm, args_with_recv_len, state, ControlFrame {
recv,
iseq: None,
cme,
frame_type: VM_FRAME_MAGIC_CFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL,
pc: PC_POISON,
specval: block_handler_specval,
});
asm_comment!(asm, "switch to new SP register");
let sp_offset = (caller_stack_size + VM_ENV_DATA_SIZE.to_usize()) * SIZEOF_VALUE;
let new_sp = asm.add(SP, sp_offset.into());
asm.mov(SP, new_sp);
asm_comment!(asm, "switch to new CFP");
let new_cfp = asm.sub(CFP, RUBY_SIZEOF_CONTROL_FRAME.into());
asm.mov(CFP, new_cfp);
asm.store(Opnd::mem(64, EC, RUBY_OFFSET_EC_CFP as i32), CFP);
let mut cfunc_args = vec![recv];
cfunc_args.extend(args);
asm.count_call_to(&name.contents_lossy());
let result = asm.ccall(cfunc, cfunc_args);
asm_comment!(asm, "pop C frame");
let new_cfp = asm.add(CFP, RUBY_SIZEOF_CONTROL_FRAME.into());
asm.mov(CFP, new_cfp);
asm.store(Opnd::mem(64, EC, RUBY_OFFSET_EC_CFP as i32), CFP);
asm_comment!(asm, "restore SP register for the caller");
let new_sp = asm.sub(SP, sp_offset.into());
asm.mov(SP, new_sp);
result
}
/// Lowering for [`Insn::CCall`]. This is a low-level raw call that doesn't know
/// anything about the callee, so handling for e.g. GC safety is dealt with elsewhere.
fn gen_ccall(asm: &mut Assembler, cfunc: *const u8, name: ID, recv: Opnd, args: Vec<Opnd>) -> lir::Opnd {
let mut cfunc_args = vec![recv];
cfunc_args.extend(args);
asm.count_call_to(&name.contents_lossy());
asm.ccall(cfunc, cfunc_args)
}
/// Generate code for a variadic C function call
/// func(int argc, VALUE *argv, VALUE recv)
fn gen_ccall_variadic(
jit: &mut JITState,
asm: &mut Assembler,
cfunc: *const u8,
name: ID,
recv: Opnd,
args: Vec<Opnd>,
cme: *const rb_callable_method_entry_t,
blockiseq: Option<IseqPtr>,
state: &FrameState,
) -> lir::Opnd {
gen_incr_counter(asm, Counter::variadic_cfunc_optimized_send_count);
gen_stack_overflow_check(jit, asm, state, state.stack_size());
let args_with_recv_len = args.len() + 1;
// Compute the caller's stack size after consuming recv and args.
// state.stack() includes recv + args, so subtract both.
let caller_stack_size = state.stack_size() - args_with_recv_len;
// Can't use gen_prepare_non_leaf_call() because we need to adjust the SP
// to account for the receiver and arguments (like gen_ccall_with_frame does)
gen_save_pc_for_gc(asm, state);
gen_save_sp(asm, caller_stack_size);
gen_spill_stack(jit, asm, state);
gen_spill_locals(jit, asm, state);
let block_handler_specval = if let Some(block_iseq) = blockiseq {
// Change cfp->block_code in the current frame. See vm_caller_setup_arg_block().
// VM_CFP_TO_CAPTURED_BLOCK then turns &cfp->self into a block handler.
// rb_captured_block->code.iseq aliases with cfp->block_code.
asm.store(Opnd::mem(64, CFP, RUBY_OFFSET_CFP_BLOCK_CODE), VALUE::from(block_iseq).into());
let cfp_self_addr = asm.lea(Opnd::mem(64, CFP, RUBY_OFFSET_CFP_SELF));
asm.or(cfp_self_addr, Opnd::Imm(1))
} else {
VM_BLOCK_HANDLER_NONE.into()
};
gen_push_frame(asm, args_with_recv_len, state, ControlFrame {
recv,
iseq: None,
cme,
frame_type: VM_FRAME_MAGIC_CFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL,
specval: block_handler_specval,
pc: PC_POISON,
});
asm_comment!(asm, "switch to new SP register");
let sp_offset = (caller_stack_size + VM_ENV_DATA_SIZE.to_usize()) * SIZEOF_VALUE;
let new_sp = asm.add(SP, sp_offset.into());
asm.mov(SP, new_sp);
asm_comment!(asm, "switch to new CFP");
let new_cfp = asm.sub(CFP, RUBY_SIZEOF_CONTROL_FRAME.into());
asm.mov(CFP, new_cfp);
asm.store(Opnd::mem(64, EC, RUBY_OFFSET_EC_CFP as i32), CFP);
let argv_ptr = gen_push_opnds(asm, &args);
asm.count_call_to(&name.contents_lossy());
let result = asm.ccall(cfunc, vec![args.len().into(), argv_ptr, recv]);
gen_pop_opnds(asm, &args);
asm_comment!(asm, "pop C frame");
let new_cfp = asm.add(CFP, RUBY_SIZEOF_CONTROL_FRAME.into());
asm.mov(CFP, new_cfp);
asm.store(Opnd::mem(64, EC, RUBY_OFFSET_EC_CFP as i32), CFP);
asm_comment!(asm, "restore SP register for the caller");
let new_sp = asm.sub(SP, sp_offset.into());
asm.mov(SP, new_sp);
result
}
/// Emit an uncached instance variable lookup
fn gen_getivar(jit: &mut JITState, asm: &mut Assembler, recv: Opnd, id: ID, ic: *const iseq_inline_iv_cache_entry) -> Opnd {
if ic.is_null() {
asm_ccall!(asm, rb_ivar_get, recv, id.0.into())
} else {
let iseq = Opnd::Value(jit.iseq.into());
asm_ccall!(asm, rb_vm_getinstancevariable, iseq, recv, id.0.into(), Opnd::const_ptr(ic))
}
}
/// Emit an uncached instance variable store
fn gen_setivar(jit: &mut JITState, asm: &mut Assembler, recv: Opnd, id: ID, ic: *const iseq_inline_iv_cache_entry, val: Opnd, state: &FrameState) {
// Setting an ivar can raise FrozenError, so we need proper frame state for exception handling.
gen_prepare_non_leaf_call(jit, asm, state);
if ic.is_null() {
asm_ccall!(asm, rb_ivar_set, recv, id.0.into(), val);
} else {
let iseq = Opnd::Value(jit.iseq.into());
asm_ccall!(asm, rb_vm_setinstancevariable, iseq, recv, id.0.into(), val, Opnd::const_ptr(ic));
}
}
fn gen_getclassvar(jit: &mut JITState, asm: &mut Assembler, id: ID, ic: *const iseq_inline_cvar_cache_entry, state: &FrameState) -> Opnd {
gen_prepare_non_leaf_call(jit, asm, state);
asm_ccall!(asm, rb_vm_getclassvariable, VALUE::from(jit.iseq).into(), CFP, id.0.into(), Opnd::const_ptr(ic))
}
fn gen_setclassvar(jit: &mut JITState, asm: &mut Assembler, id: ID, val: Opnd, ic: *const iseq_inline_cvar_cache_entry, state: &FrameState) {
gen_prepare_non_leaf_call(jit, asm, state);
asm_ccall!(asm, rb_vm_setclassvariable, VALUE::from(jit.iseq).into(), CFP, id.0.into(), val, Opnd::const_ptr(ic));
}
/// Look up global variables
fn gen_getglobal(jit: &mut JITState, asm: &mut Assembler, id: ID, state: &FrameState) -> Opnd {
// `Warning` module's method `warn` can be called when reading certain global variables
gen_prepare_non_leaf_call(jit, asm, state);
asm_ccall!(asm, rb_gvar_get, id.0.into())
}
/// Intern a string
fn gen_intern(asm: &mut Assembler, val: Opnd, state: &FrameState) -> Opnd {
gen_prepare_leaf_call_with_gc(asm, state);
asm_ccall!(asm, rb_str_intern, val)
}
/// Set global variables
fn gen_setglobal(jit: &mut JITState, asm: &mut Assembler, id: ID, val: Opnd, state: &FrameState) {
// When trace_var is used, setting a global variable can cause exceptions
gen_prepare_non_leaf_call(jit, asm, state);
asm_ccall!(asm, rb_gvar_set, id.0.into(), val);
}
/// Side-exit into the interpreter
fn gen_side_exit(jit: &mut JITState, asm: &mut Assembler, reason: &SideExitReason, state: &FrameState) {
asm.jmp(side_exit(jit, state, *reason));
}
/// Emit a special object lookup
fn gen_putspecialobject(asm: &mut Assembler, value_type: SpecialObjectType) -> Opnd {
// Get the EP of the current CFP and load it into a register
let ep_opnd = Opnd::mem(64, CFP, RUBY_OFFSET_CFP_EP);
let ep_reg = asm.load(ep_opnd);
asm_ccall!(asm, rb_vm_get_special_object, ep_reg, Opnd::UImm(u64::from(value_type)))
}
fn gen_getspecial_symbol(asm: &mut Assembler, symbol_type: SpecialBackrefSymbol) -> Opnd {
// Fetch a "special" backref based on the symbol type
let backref = asm_ccall!(asm, rb_backref_get,);
match symbol_type {
SpecialBackrefSymbol::LastMatch => {
asm_ccall!(asm, rb_reg_last_match, backref)
}
SpecialBackrefSymbol::PreMatch => {
asm_ccall!(asm, rb_reg_match_pre, backref)
}
SpecialBackrefSymbol::PostMatch => {
asm_ccall!(asm, rb_reg_match_post, backref)
}
SpecialBackrefSymbol::LastGroup => {
asm_ccall!(asm, rb_reg_match_last, backref)
}
}
}
fn gen_getspecial_number(asm: &mut Assembler, nth: u64, state: &FrameState) -> Opnd {
// Fetch the N-th match from the last backref based on type shifted by 1
let backref = asm_ccall!(asm, rb_backref_get,);
gen_prepare_leaf_call_with_gc(asm, state);
asm_ccall!(asm, rb_reg_nth_match, Opnd::Imm((nth >> 1).try_into().unwrap()), backref)
}
fn gen_check_interrupts(jit: &mut JITState, asm: &mut Assembler, state: &FrameState) {
// Check for interrupts
// see RUBY_VM_CHECK_INTS(ec) macro
asm_comment!(asm, "RUBY_VM_CHECK_INTS(ec)");
// Not checking interrupt_mask since it's zero outside finalize_deferred_heap_pages,
// signal_exec, or rb_postponed_job_flush.
let interrupt_flag = asm.load(Opnd::mem(32, EC, RUBY_OFFSET_EC_INTERRUPT_FLAG as i32));
asm.test(interrupt_flag, interrupt_flag);
asm.jnz(side_exit(jit, state, SideExitReason::Interrupt));
}
fn gen_hash_dup(asm: &mut Assembler, val: Opnd, state: &FrameState) -> lir::Opnd {
gen_prepare_leaf_call_with_gc(asm, state);
asm_ccall!(asm, rb_hash_resurrect, val)
}
fn gen_hash_aref(jit: &mut JITState, asm: &mut Assembler, hash: Opnd, key: Opnd, state: &FrameState) -> lir::Opnd {
gen_prepare_non_leaf_call(jit, asm, state);
asm_ccall!(asm, rb_hash_aref, hash, key)
}
fn gen_hash_aset(jit: &mut JITState, asm: &mut Assembler, hash: Opnd, key: Opnd, val: Opnd, state: &FrameState) {
gen_prepare_non_leaf_call(jit, asm, state);
asm_ccall!(asm, rb_hash_aset, hash, key, val);
}
fn gen_array_push(asm: &mut Assembler, array: Opnd, val: Opnd, state: &FrameState) {
gen_prepare_leaf_call_with_gc(asm, state);
asm_ccall!(asm, rb_ary_push, array, val);
}
fn gen_to_new_array(jit: &mut JITState, asm: &mut Assembler, val: Opnd, state: &FrameState) -> lir::Opnd {
gen_prepare_non_leaf_call(jit, asm, state);
asm_ccall!(asm, rb_vm_splat_array, Opnd::Value(Qtrue), val)
}
fn gen_to_array(jit: &mut JITState, asm: &mut Assembler, val: Opnd, state: &FrameState) -> lir::Opnd {
gen_prepare_non_leaf_call(jit, asm, state);
asm_ccall!(asm, rb_vm_splat_array, Opnd::Value(Qfalse), val)
}
fn gen_defined_ivar(asm: &mut Assembler, self_val: Opnd, id: ID, pushval: VALUE) -> lir::Opnd {
asm_ccall!(asm, rb_zjit_defined_ivar, self_val, id.0.into(), Opnd::Value(pushval))
}
fn gen_array_extend(jit: &mut JITState, asm: &mut Assembler, left: Opnd, right: Opnd, state: &FrameState) {
gen_prepare_non_leaf_call(jit, asm, state);
asm_ccall!(asm, rb_ary_concat, left, right);
}
fn gen_guard_shape(jit: &mut JITState, asm: &mut Assembler, val: Opnd, shape: ShapeId, state: &FrameState) -> Opnd {
gen_incr_counter(asm, Counter::guard_shape_count);
let shape_id_offset = unsafe { rb_shape_id_offset() };
let val = asm.load(val);
let shape_opnd = Opnd::mem(SHAPE_ID_NUM_BITS as u8, val, shape_id_offset);
asm.cmp(shape_opnd, Opnd::UImm(shape.0 as u64));
asm.jne(side_exit(jit, state, SideExitReason::GuardShape(shape)));
val
}
fn gen_load_pc(asm: &mut Assembler) -> Opnd {
asm.load(Opnd::mem(64, CFP, RUBY_OFFSET_CFP_PC))
}
fn gen_load_ec() -> Opnd {
EC
}
fn gen_load_self() -> Opnd {
Opnd::mem(64, CFP, RUBY_OFFSET_CFP_SELF)
}
fn gen_load_field(asm: &mut Assembler, recv: Opnd, id: ID, offset: i32, return_type: Type) -> Opnd {
asm_comment!(asm, "Load field id={} offset={}", id.contents_lossy(), offset);
let recv = asm.load(recv);
asm.load(Opnd::mem(return_type.num_bits(), recv, offset))
}
fn gen_store_field(asm: &mut Assembler, recv: Opnd, id: ID, offset: i32, val: Opnd, val_type: Type) {
asm_comment!(asm, "Store field id={} offset={}", id.contents_lossy(), offset);
let recv = asm.load(recv);
asm.store(Opnd::mem(val_type.num_bits(), recv, offset), val);
}
fn gen_write_barrier(asm: &mut Assembler, recv: Opnd, val: Opnd, val_type: Type) {
// See RB_OBJ_WRITE/rb_obj_write: it's just assignment and rb_obj_written().
// rb_obj_written() does: if (!RB_SPECIAL_CONST_P(val)) { rb_gc_writebarrier(recv, val); }
if !val_type.is_immediate() {
asm_comment!(asm, "Write barrier");
let recv = asm.load(recv);
asm_ccall!(asm, rb_zjit_writebarrier_check_immediate, recv, val);
}
}
/// Compile an interpreter entry block to be inserted into an ISEQ
fn gen_entry_prologue(asm: &mut Assembler) {
asm_comment!(asm, "ZJIT entry trampoline");
// Save the registers we'll use for CFP, EP, SP
asm.frame_setup(lir::JIT_PRESERVED_REGS);
// EC and CFP are passed as arguments
asm.mov(EC, C_ARG_OPNDS[0]);
asm.mov(CFP, C_ARG_OPNDS[1]);
// Load the current SP from the CFP into REG_SP
asm.mov(SP, Opnd::mem(64, CFP, RUBY_OFFSET_CFP_SP));
}
/// Set branch params to basic block arguments
fn gen_branch_params(jit: &mut JITState, asm: &mut Assembler, branch: &BranchEdge) {
if branch.args.is_empty() {
return;
}
asm_comment!(asm, "set branch params: {}", branch.args.len());
asm.parallel_mov(branch.args.iter().enumerate().map(|(idx, &arg)|
(param_opnd(idx), jit.get_opnd(arg))
).collect());
}
/// Compile a constant
fn gen_const_value(val: VALUE) -> lir::Opnd {
// Just propagate the constant value and generate nothing
Opnd::Value(val)
}
/// Compile Const::CPtr
fn gen_const_cptr(val: *const u8) -> lir::Opnd {
Opnd::const_ptr(val)
}
fn gen_const_long(val: i64) -> lir::Opnd {
Opnd::Imm(val)
}
fn gen_const_uint16(val: u16) -> lir::Opnd {
Opnd::UImm(val as u64)
}
fn gen_const_uint32(val: u32) -> lir::Opnd {
Opnd::UImm(val as u64)
}
/// Compile a basic block argument
fn gen_param(asm: &mut Assembler, idx: usize) -> lir::Opnd {
// Allocate a register or a stack slot
match param_opnd(idx) {
// If it's a register, insert LiveReg instruction to reserve the register
// in the register pool for register allocation.
param @ Opnd::Reg(_) => asm.live_reg_opnd(param),
param => param,
}
}
/// Compile a jump to a basic block
fn gen_jump(jit: &mut JITState, asm: &mut Assembler, branch: &BranchEdge) {
// Set basic block arguments
gen_branch_params(jit, asm, branch);
// Jump to the basic block
let target = jit.get_label(asm, branch.target);
asm.jmp(target);
}
/// Compile a conditional branch to a basic block
fn gen_if_true(jit: &mut JITState, asm: &mut Assembler, val: lir::Opnd, branch: &BranchEdge) {
// If val is zero, move on to the next instruction.
let if_false = asm.new_label("if_false");
asm.test(val, val);
asm.jz(if_false.clone());
// If val is not zero, set basic block arguments and jump to the branch target.
// TODO: Consider generating the loads out-of-line
let if_true = jit.get_label(asm, branch.target);
gen_branch_params(jit, asm, branch);
asm.jmp(if_true);
asm.write_label(if_false);
}
/// Compile a conditional branch to a basic block
fn gen_if_false(jit: &mut JITState, asm: &mut Assembler, val: lir::Opnd, branch: &BranchEdge) {
// If val is not zero, move on to the next instruction.
let if_true = asm.new_label("if_true");
asm.test(val, val);
asm.jnz(if_true.clone());
// If val is zero, set basic block arguments and jump to the branch target.
// TODO: Consider generating the loads out-of-line
let if_false = jit.get_label(asm, branch.target);
gen_branch_params(jit, asm, branch);
asm.jmp(if_false);
asm.write_label(if_true);
}
/// Compile a dynamic dispatch with block
fn gen_send(
jit: &mut JITState,
asm: &mut Assembler,
cd: *const rb_call_data,
blockiseq: IseqPtr,
state: &FrameState,
reason: SendFallbackReason,
) -> lir::Opnd {
gen_incr_send_fallback_counter(asm, reason);
gen_prepare_non_leaf_call(jit, asm, state);
asm_comment!(asm, "call #{} with dynamic dispatch", ruby_call_method_name(cd));
unsafe extern "C" {
fn rb_vm_send(ec: EcPtr, cfp: CfpPtr, cd: VALUE, blockiseq: IseqPtr) -> VALUE;
}
asm_ccall!(
asm,
rb_vm_send,
EC, CFP, Opnd::const_ptr(cd), VALUE::from(blockiseq).into()
)
}
/// Compile a dynamic dispatch with `...`
fn gen_send_forward(
jit: &mut JITState,
asm: &mut Assembler,
cd: *const rb_call_data,
blockiseq: IseqPtr,
state: &FrameState,
reason: SendFallbackReason,
) -> lir::Opnd {
gen_incr_send_fallback_counter(asm, reason);
gen_prepare_non_leaf_call(jit, asm, state);
asm_comment!(asm, "call #{} with dynamic dispatch", ruby_call_method_name(cd));
unsafe extern "C" {
fn rb_vm_sendforward(ec: EcPtr, cfp: CfpPtr, cd: VALUE, blockiseq: IseqPtr) -> VALUE;
}
asm_ccall!(
asm,
rb_vm_sendforward,
EC, CFP, Opnd::const_ptr(cd), VALUE::from(blockiseq).into()
)
}
/// Compile a dynamic dispatch without block
fn gen_send_without_block(
jit: &mut JITState,
asm: &mut Assembler,
cd: *const rb_call_data,
state: &FrameState,
reason: SendFallbackReason,
) -> lir::Opnd {
gen_incr_send_fallback_counter(asm, reason);
gen_prepare_non_leaf_call(jit, asm, state);
asm_comment!(asm, "call #{} with dynamic dispatch", ruby_call_method_name(cd));
unsafe extern "C" {
fn rb_vm_opt_send_without_block(ec: EcPtr, cfp: CfpPtr, cd: VALUE) -> VALUE;
}
asm_ccall!(
asm,
rb_vm_opt_send_without_block,
EC, CFP, Opnd::const_ptr(cd)
)
}
/// Compile a direct jump to an ISEQ call without block
fn gen_send_without_block_direct(
cb: &mut CodeBlock,
jit: &mut JITState,
asm: &mut Assembler,
cme: *const rb_callable_method_entry_t,
iseq: IseqPtr,
recv: Opnd,
args: Vec<Opnd>,
state: &FrameState,
) -> lir::Opnd {
gen_incr_counter(asm, Counter::iseq_optimized_send_count);
let local_size = unsafe { get_iseq_body_local_table_size(iseq) }.to_usize();
let stack_growth = state.stack_size() + local_size + unsafe { get_iseq_body_stack_max(iseq) }.to_usize();
gen_stack_overflow_check(jit, asm, state, stack_growth);
// Save cfp->pc and cfp->sp for the caller frame
// Can't use gen_prepare_non_leaf_call because we need special SP math.
gen_save_pc_for_gc(asm, state);
gen_save_sp(asm, state.stack().len() - args.len() - 1); // -1 for receiver
gen_spill_locals(jit, asm, state);
gen_spill_stack(jit, asm, state);
let (frame_type, specval) = if VM_METHOD_TYPE_BMETHOD == unsafe { get_cme_def_type(cme) } {
// Extract EP from the Proc instance
let procv = unsafe { rb_get_def_bmethod_proc((*cme).def) };
let proc = unsafe { rb_jit_get_proc_ptr(procv) };
let proc_block = unsafe { &(*proc).block };
let capture = unsafe { proc_block.as_.captured.as_ref() };
let bmethod_frame_type = VM_FRAME_MAGIC_BLOCK | VM_FRAME_FLAG_BMETHOD | VM_FRAME_FLAG_LAMBDA;
// Tag the captured EP like VM_GUARDED_PREV_EP() in vm_call_iseq_bmethod()
let bmethod_specval = (capture.ep.addr() | 1).into();
(bmethod_frame_type, bmethod_specval)
} else {
(VM_FRAME_MAGIC_METHOD | VM_ENV_FLAG_LOCAL, VM_BLOCK_HANDLER_NONE.into())
};
// Set up the new frame
// TODO: Lazily materialize caller frames on side exits or when needed
gen_push_frame(asm, args.len(), state, ControlFrame {
recv,
iseq: Some(iseq),
cme,
frame_type,
pc: None,
specval,
});
// Write "keyword_bits" to the callee's frame if the callee accepts keywords.
// This is a synthetic local/parameter that the callee reads via checkkeyword to determine
// which optional keyword arguments need their defaults evaluated.
if unsafe { rb_get_iseq_flags_has_kw(iseq) } {
let keyword = unsafe { rb_get_iseq_body_param_keyword(iseq) };
let bits_start = unsafe { (*keyword).bits_start } as usize;
// Currently we only support required keywords, so all bits are 0 (all keywords specified).
// TODO: When supporting optional keywords, calculate actual unspecified_bits here.
let unspecified_bits = VALUE::fixnum_from_usize(0);
let bits_offset = (state.stack().len() - args.len() + bits_start) * SIZEOF_VALUE;
asm_comment!(asm, "write keyword bits to callee frame");
asm.store(Opnd::mem(64, SP, bits_offset as i32), unspecified_bits.into());
}
asm_comment!(asm, "switch to new SP register");
let sp_offset = (state.stack().len() + local_size - args.len() + VM_ENV_DATA_SIZE.to_usize()) * SIZEOF_VALUE;
let new_sp = asm.add(SP, sp_offset.into());
asm.mov(SP, new_sp);
asm_comment!(asm, "switch to new CFP");
let new_cfp = asm.sub(CFP, RUBY_SIZEOF_CONTROL_FRAME.into());
asm.mov(CFP, new_cfp);
asm.store(Opnd::mem(64, EC, RUBY_OFFSET_EC_CFP as i32), CFP);
// Set up arguments
let mut c_args = vec![recv];
c_args.extend(&args);
let params = unsafe { iseq.params() };
let num_optionals_passed = if params.flags.has_opt() != 0 {
// See vm_call_iseq_setup_normal_opt_start in vm_inshelper.c
let lead_num = params.lead_num as u32;
let opt_num = params.opt_num as u32;
let keyword = params.keyword;
let kw_req_num = if keyword.is_null() { 0 } else { unsafe { (*keyword).required_num } } as u32;
let req_num = lead_num + kw_req_num;
assert!(args.len() as u32 <= req_num + opt_num);
let num_optionals_passed = args.len() as u32 - req_num;
num_optionals_passed
} else {
0
};
// Fill non-parameter locals with nil (they may be read by eval before being written)
let num_params = params.size.to_usize();
if local_size > num_params {
asm_comment!(asm, "initialize non-parameter locals to nil");
for local_idx in num_params..local_size {
let offset = local_size_and_idx_to_bp_offset(local_size, local_idx);
asm.store(Opnd::mem(64, SP, -offset * SIZEOF_VALUE_I32), Qnil.into());
}
}
// Make a method call. The target address will be rewritten once compiled.
let iseq_call = IseqCall::new(iseq, num_optionals_passed);
let dummy_ptr = cb.get_write_ptr().raw_ptr(cb);
jit.iseq_calls.push(iseq_call.clone());
let ret = asm.ccall_with_iseq_call(dummy_ptr, c_args, &iseq_call);
// If a callee side-exits, i.e. returns Qundef, propagate the return value to the caller.
// The caller will side-exit the callee into the interpreter.
// TODO: Let side exit code pop all JIT frames to optimize away this cmp + je.
asm_comment!(asm, "side-exit if callee side-exits");
asm.cmp(ret, Qundef.into());
// Restore the C stack pointer on exit
asm.je(ZJITState::get_exit_trampoline().into());
asm_comment!(asm, "restore SP register for the caller");
let new_sp = asm.sub(SP, sp_offset.into());
asm.mov(SP, new_sp);
ret
}
/// Compile for invokeblock
fn gen_invokeblock(
jit: &mut JITState,
asm: &mut Assembler,
cd: *const rb_call_data,
state: &FrameState,
reason: SendFallbackReason,
) -> lir::Opnd {
gen_incr_send_fallback_counter(asm, reason);
gen_prepare_non_leaf_call(jit, asm, state);
asm_comment!(asm, "call invokeblock");
unsafe extern "C" {
fn rb_vm_invokeblock(ec: EcPtr, cfp: CfpPtr, cd: VALUE) -> VALUE;
}
asm_ccall!(
asm,
rb_vm_invokeblock,
EC, CFP, Opnd::const_ptr(cd)
)
}
/// Compile a dynamic dispatch for `super`
fn gen_invokesuper(
jit: &mut JITState,
asm: &mut Assembler,
cd: *const rb_call_data,
blockiseq: IseqPtr,
state: &FrameState,
reason: SendFallbackReason,
) -> lir::Opnd {
gen_incr_send_fallback_counter(asm, reason);
gen_prepare_non_leaf_call(jit, asm, state);
asm_comment!(asm, "call super with dynamic dispatch");
unsafe extern "C" {
fn rb_vm_invokesuper(ec: EcPtr, cfp: CfpPtr, cd: VALUE, blockiseq: IseqPtr) -> VALUE;
}
asm_ccall!(
asm,
rb_vm_invokesuper,
EC, CFP, Opnd::const_ptr(cd), VALUE::from(blockiseq).into()
)
}
/// Compile a string resurrection
fn gen_string_copy(asm: &mut Assembler, recv: Opnd, chilled: bool, state: &FrameState) -> Opnd {
// TODO: split rb_ec_str_resurrect into separate functions
gen_prepare_leaf_call_with_gc(asm, state);
let chilled = if chilled { Opnd::Imm(1) } else { Opnd::Imm(0) };
asm_ccall!(asm, rb_ec_str_resurrect, EC, recv, chilled)
}
/// Compile an array duplication instruction
fn gen_array_dup(
asm: &mut Assembler,
val: lir::Opnd,
state: &FrameState,
) -> lir::Opnd {
gen_prepare_leaf_call_with_gc(asm, state);
asm_ccall!(asm, rb_ary_resurrect, val)
}
/// Compile a new array instruction
fn gen_new_array(
asm: &mut Assembler,
elements: Vec<Opnd>,
state: &FrameState,
) -> lir::Opnd {
gen_prepare_leaf_call_with_gc(asm, state);
let num: c_long = elements.len().try_into().expect("Unable to fit length of elements into c_long");
if elements.is_empty() {
asm_ccall!(asm, rb_ec_ary_new_from_values, EC, 0i64.into(), Opnd::UImm(0))
} else {
let argv = gen_push_opnds(asm, &elements);
let new_array = asm_ccall!(asm, rb_ec_ary_new_from_values, EC, num.into(), argv);
gen_pop_opnds(asm, &elements);
new_array
}
}
/// Compile array access (`array[index]`)
fn gen_aref_fixnum(
asm: &mut Assembler,
array: Opnd,
index: Opnd,
) -> lir::Opnd {
let unboxed_idx = asm.rshift(index, Opnd::UImm(1));
asm_ccall!(asm, rb_ary_entry, array, unboxed_idx)
}
fn gen_array_aset(
asm: &mut Assembler,
array: Opnd,
index: Opnd,
val: Opnd,
) {
let unboxed_idx = asm.load(index);
let array = asm.load(array);
let array_ptr = gen_array_ptr(asm, array);
let elem_offset = asm.lshift(unboxed_idx, Opnd::UImm(SIZEOF_VALUE.trailing_zeros() as u64));
let elem_ptr = asm.add(array_ptr, elem_offset);
asm.store(Opnd::mem(VALUE_BITS, elem_ptr, 0), val);
}
fn gen_array_pop(asm: &mut Assembler, array: Opnd, state: &FrameState) -> lir::Opnd {
gen_prepare_leaf_call_with_gc(asm, state);
asm_ccall!(asm, rb_ary_pop, array)
}
fn gen_array_length(asm: &mut Assembler, array: Opnd) -> lir::Opnd {
let array = asm.load(array);
let flags = Opnd::mem(VALUE_BITS, array, RUBY_OFFSET_RBASIC_FLAGS);
let embedded_len = asm.and(flags, (RARRAY_EMBED_LEN_MASK as u64).into());
let embedded_len = asm.rshift(embedded_len, (RARRAY_EMBED_LEN_SHIFT as u64).into());
// cmov between the embedded length and heap length depending on the embed flag
asm.test(flags, (RARRAY_EMBED_FLAG as u64).into());
let heap_len = Opnd::mem(c_long::BITS as u8, array, RUBY_OFFSET_RARRAY_AS_HEAP_LEN);
asm.csel_nz(embedded_len, heap_len)
}
fn gen_array_ptr(asm: &mut Assembler, array: Opnd) -> lir::Opnd {
let flags = Opnd::mem(VALUE_BITS, array, RUBY_OFFSET_RBASIC_FLAGS);
asm.test(flags, (RARRAY_EMBED_FLAG as u64).into());
let heap_ptr = Opnd::mem(usize::BITS as u8, array, RUBY_OFFSET_RARRAY_AS_HEAP_PTR);
let embedded_ptr = asm.lea(Opnd::mem(VALUE_BITS, array, RUBY_OFFSET_RARRAY_AS_ARY));
asm.csel_nz(embedded_ptr, heap_ptr)
}
/// Compile opt_newarray_hash - create a hash from array elements
fn gen_opt_newarray_hash(
jit: &JITState,
asm: &mut Assembler,
elements: Vec<Opnd>,
state: &FrameState,
) -> lir::Opnd {
// `Array#hash` will hash the elements of the array.
gen_prepare_non_leaf_call(jit, asm, state);
let array_len: c_long = elements.len().try_into().expect("Unable to fit length of elements into c_long");
// After gen_prepare_non_leaf_call, the elements are spilled to the Ruby stack.
// Get a pointer to the first element on the Ruby stack.
let stack_bottom = state.stack().len() - elements.len();
let elements_ptr = asm.lea(Opnd::mem(64, SP, stack_bottom as i32 * SIZEOF_VALUE_I32));
unsafe extern "C" {
fn rb_vm_opt_newarray_hash(ec: EcPtr, array_len: u32, elts: *const VALUE) -> VALUE;
}
asm.ccall(
rb_vm_opt_newarray_hash as *const u8,
vec![EC, (array_len as u32).into(), elements_ptr],
)
}
fn gen_array_include(
jit: &JITState,
asm: &mut Assembler,
elements: Vec<Opnd>,
target: Opnd,
state: &FrameState,
) -> lir::Opnd {
gen_prepare_non_leaf_call(jit, asm, state);
let array_len: c_long = elements.len().try_into().expect("Unable to fit length of elements into c_long");
// After gen_prepare_non_leaf_call, the elements are spilled to the Ruby stack.
// The elements are at the bottom of the virtual stack, followed by the target.
// Get a pointer to the first element on the Ruby stack.
let stack_bottom = state.stack().len() - elements.len() - 1;
let elements_ptr = asm.lea(Opnd::mem(64, SP, stack_bottom as i32 * SIZEOF_VALUE_I32));
unsafe extern "C" {
fn rb_vm_opt_newarray_include_p(ec: EcPtr, num: c_long, elts: *const VALUE, target: VALUE) -> VALUE;
}
asm_ccall!(
asm,
rb_vm_opt_newarray_include_p,
EC, array_len.into(), elements_ptr, target
)
}
fn gen_array_pack_buffer(
jit: &JITState,
asm: &mut Assembler,
elements: Vec<Opnd>,
fmt: Opnd,
buffer: Opnd,
state: &FrameState,
) -> lir::Opnd {
gen_prepare_non_leaf_call(jit, asm, state);
let array_len: c_long = elements.len().try_into().expect("Unable to fit length of elements into c_long");
// After gen_prepare_non_leaf_call, the elements are spilled to the Ruby stack.
// The elements are at the bottom of the virtual stack, followed by the fmt, followed by the buffer.
// Get a pointer to the first element on the Ruby stack.
let stack_bottom = state.stack().len() - elements.len() - 2;
let elements_ptr = asm.lea(Opnd::mem(64, SP, stack_bottom as i32 * SIZEOF_VALUE_I32));
unsafe extern "C" {
fn rb_vm_opt_newarray_pack_buffer(ec: EcPtr, num: c_long, elts: *const VALUE, fmt: VALUE, buffer: VALUE) -> VALUE;
}
asm_ccall!(
asm,
rb_vm_opt_newarray_pack_buffer,
EC, array_len.into(), elements_ptr, fmt, buffer
)
}
fn gen_dup_array_include(
jit: &JITState,
asm: &mut Assembler,
ary: VALUE,
target: Opnd,
state: &FrameState,
) -> lir::Opnd {
gen_prepare_non_leaf_call(jit, asm, state);
unsafe extern "C" {
fn rb_vm_opt_duparray_include_p(ec: EcPtr, ary: VALUE, target: VALUE) -> VALUE;
}
asm_ccall!(
asm,
rb_vm_opt_duparray_include_p,
EC, ary.into(), target
)
}
fn gen_is_a(asm: &mut Assembler, obj: Opnd, class: Opnd) -> lir::Opnd {
asm_ccall!(asm, rb_obj_is_kind_of, obj, class)
}
/// Compile a new hash instruction
fn gen_new_hash(
jit: &mut JITState,
asm: &mut Assembler,
elements: Vec<Opnd>,
state: &FrameState,
) -> lir::Opnd {
gen_prepare_non_leaf_call(jit, asm, state);
let cap: c_long = elements.len().try_into().expect("Unable to fit length of elements into c_long");
let new_hash = asm_ccall!(asm, rb_hash_new_with_size, lir::Opnd::Imm(cap));
if !elements.is_empty() {
let argv = gen_push_opnds(asm, &elements);
asm_ccall!(asm, rb_hash_bulk_insert, elements.len().into(), argv, new_hash);
gen_pop_opnds(asm, &elements);
}
new_hash
}
/// Compile a new range instruction
fn gen_new_range(
jit: &JITState,
asm: &mut Assembler,
low: lir::Opnd,
high: lir::Opnd,
flag: RangeType,
state: &FrameState,
) -> lir::Opnd {
// Sometimes calls `low.<=>(high)`
gen_prepare_non_leaf_call(jit, asm, state);
// Call rb_range_new(low, high, flag)
asm_ccall!(asm, rb_range_new, low, high, (flag as i32).into())
}
fn gen_new_range_fixnum(
asm: &mut Assembler,
low: lir::Opnd,
high: lir::Opnd,
flag: RangeType,
state: &FrameState,
) -> lir::Opnd {
gen_prepare_leaf_call_with_gc(asm, state);
asm_ccall!(asm, rb_range_new, low, high, (flag as i64).into())
}
fn gen_object_alloc(jit: &JITState, asm: &mut Assembler, val: lir::Opnd, state: &FrameState) -> lir::Opnd {
// Allocating an object from an unknown class is non-leaf; see doc for `ObjectAlloc`.
gen_prepare_non_leaf_call(jit, asm, state);
asm_ccall!(asm, rb_obj_alloc, val)
}
fn gen_object_alloc_class(asm: &mut Assembler, class: VALUE, state: &FrameState) -> lir::Opnd {
// Allocating an object for a known class with default allocator is leaf; see doc for
// `ObjectAllocClass`.
gen_prepare_leaf_call_with_gc(asm, state);
if unsafe { rb_zjit_class_has_default_allocator(class) } {
// TODO(max): inline code to allocate an instance
asm_ccall!(asm, rb_class_allocate_instance, class.into())
} else {
assert!(class_has_leaf_allocator(class), "class passed to ObjectAllocClass must have a leaf allocator");
let alloc_func = unsafe { rb_zjit_class_get_alloc_func(class) };
assert!(alloc_func.is_some(), "class {} passed to ObjectAllocClass must have an allocator", get_class_name(class));
asm_comment!(asm, "call allocator for class {}", get_class_name(class));
asm.count_call_to(&format!("{}::allocator", get_class_name(class)));
asm.ccall(alloc_func.unwrap() as *const u8, vec![class.into()])
}
}
/// Compile a frame setup. If jit_entry_idx is Some, remember the address of it as a JIT entry.
fn gen_entry_point(jit: &mut JITState, asm: &mut Assembler, jit_entry_idx: Option<usize>) {
if let Some(jit_entry_idx) = jit_entry_idx {
let jit_entry = JITEntry::new(jit_entry_idx);
jit.jit_entries.push(jit_entry.clone());
asm.pos_marker(move |code_ptr, _| {
jit_entry.borrow_mut().start_addr.set(Some(code_ptr));
});
}
asm.frame_setup(&[]);
}
/// Compile code that exits from JIT code with a return value
fn gen_return(asm: &mut Assembler, val: lir::Opnd) {
// Pop the current frame (ec->cfp++)
// Note: the return PC is already in the previous CFP
asm_comment!(asm, "pop stack frame");
let incr_cfp = asm.add(CFP, RUBY_SIZEOF_CONTROL_FRAME.into());
asm.mov(CFP, incr_cfp);
asm.mov(Opnd::mem(64, EC, RUBY_OFFSET_EC_CFP as i32), CFP);
// Order here is important. Because we're about to tear down the frame,
// we need to load the return value, which might be part of the frame.
asm.load_into(C_RET_OPND, val);
// Return from the function
asm.frame_teardown(&[]); // matching the setup in gen_entry_point()
asm.cret(C_RET_OPND);
}
/// Compile Fixnum + Fixnum
fn gen_fixnum_add(jit: &mut JITState, asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd, state: &FrameState) -> lir::Opnd {
// Add left + right and test for overflow
let left_untag = asm.sub(left, Opnd::Imm(1));
let out_val = asm.add(left_untag, right);
asm.jo(side_exit(jit, state, FixnumAddOverflow));
out_val
}
/// Compile Fixnum - Fixnum
fn gen_fixnum_sub(jit: &mut JITState, asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd, state: &FrameState) -> lir::Opnd {
// Subtract left - right and test for overflow
let val_untag = asm.sub(left, right);
asm.jo(side_exit(jit, state, FixnumSubOverflow));
asm.add(val_untag, Opnd::Imm(1))
}
/// Compile Fixnum * Fixnum
fn gen_fixnum_mult(jit: &mut JITState, asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd, state: &FrameState) -> lir::Opnd {
// Do some bitwise gymnastics to handle tag bits
// x * y is translated to (x >> 1) * (y - 1) + 1
let left_untag = asm.rshift(left, Opnd::UImm(1));
let right_untag = asm.sub(right, Opnd::UImm(1));
let out_val = asm.mul(left_untag, right_untag);
// Test for overflow
asm.jo_mul(side_exit(jit, state, FixnumMultOverflow));
asm.add(out_val, Opnd::UImm(1))
}
/// Compile Fixnum / Fixnum
fn gen_fixnum_div(jit: &mut JITState, asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd, state: &FrameState) -> lir::Opnd {
gen_prepare_leaf_call_with_gc(asm, state);
// Side exit if rhs is 0
asm.cmp(right, Opnd::from(VALUE::fixnum_from_usize(0)));
asm.je(side_exit(jit, state, FixnumDivByZero));
asm_ccall!(asm, rb_jit_fix_div_fix, left, right)
}
/// Compile Fixnum == Fixnum
fn gen_fixnum_eq(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd {
asm.cmp(left, right);
asm.csel_e(Qtrue.into(), Qfalse.into())
}
/// Compile Fixnum != Fixnum
fn gen_fixnum_neq(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd {
asm.cmp(left, right);
asm.csel_ne(Qtrue.into(), Qfalse.into())
}
/// Compile Fixnum < Fixnum
fn gen_fixnum_lt(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd {
asm.cmp(left, right);
asm.csel_l(Qtrue.into(), Qfalse.into())
}
/// Compile Fixnum <= Fixnum
fn gen_fixnum_le(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd {
asm.cmp(left, right);
asm.csel_le(Qtrue.into(), Qfalse.into())
}
/// Compile Fixnum > Fixnum
fn gen_fixnum_gt(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd {
asm.cmp(left, right);
asm.csel_g(Qtrue.into(), Qfalse.into())
}
/// Compile Fixnum >= Fixnum
fn gen_fixnum_ge(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd {
asm.cmp(left, right);
asm.csel_ge(Qtrue.into(), Qfalse.into())
}
/// Compile Fixnum & Fixnum
fn gen_fixnum_and(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd {
asm.and(left, right)
}
/// Compile Fixnum | Fixnum
fn gen_fixnum_or(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd {
asm.or(left, right)
}
/// Compile Fixnum ^ Fixnum
fn gen_fixnum_xor(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd {
// XOR and then re-tag the resulting fixnum
let out_val = asm.xor(left, right);
asm.add(out_val, Opnd::UImm(1))
}
/// Compile Fixnum << Fixnum
fn gen_fixnum_lshift(jit: &mut JITState, asm: &mut Assembler, left: lir::Opnd, shift_amount: u64, state: &FrameState) -> lir::Opnd {
// Shift amount is known statically to be in the range [0, 63]
assert!(shift_amount < 64);
let in_val = asm.sub(left, Opnd::UImm(1)); // Drop tag bit
let out_val = asm.lshift(in_val, shift_amount.into());
let unshifted = asm.rshift(out_val, shift_amount.into());
asm.cmp(in_val, unshifted);
asm.jne(side_exit(jit, state, FixnumLShiftOverflow));
// Re-tag the output value
let out_val = asm.add(out_val, 1.into());
out_val
}
/// Compile Fixnum >> Fixnum
fn gen_fixnum_rshift(asm: &mut Assembler, left: lir::Opnd, shift_amount: u64) -> lir::Opnd {
// Shift amount is known statically to be in the range [0, 63]
assert!(shift_amount < 64);
let result = asm.rshift(left, shift_amount.into());
// Re-tag the output value
asm.or(result, 1.into())
}
fn gen_fixnum_mod(jit: &mut JITState, asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd, state: &FrameState) -> lir::Opnd {
// Check for left % 0, which raises ZeroDivisionError
asm.cmp(right, Opnd::from(VALUE::fixnum_from_usize(0)));
asm.je(side_exit(jit, state, FixnumModByZero));
asm_ccall!(asm, rb_fix_mod_fix, left, right)
}
fn gen_fixnum_aref(asm: &mut Assembler, recv: lir::Opnd, index: lir::Opnd) -> lir::Opnd {
asm_ccall!(asm, rb_fix_aref, recv, index)
}
// Compile val == nil
fn gen_isnil(asm: &mut Assembler, val: lir::Opnd) -> lir::Opnd {
asm.cmp(val, Qnil.into());
// TODO: Implement and use setcc
asm.csel_e(Opnd::Imm(1), Opnd::Imm(0))
}
fn gen_is_method_cfunc(jit: &JITState, asm: &mut Assembler, val: lir::Opnd, cd: *const rb_call_data, cfunc: *const u8) -> lir::Opnd {
unsafe extern "C" {
fn rb_vm_method_cfunc_is(iseq: IseqPtr, cd: *const rb_call_data, recv: VALUE, cfunc: *const u8) -> VALUE;
}
asm_ccall!(asm, rb_vm_method_cfunc_is, VALUE::from(jit.iseq).into(), Opnd::const_ptr(cd), val, Opnd::const_ptr(cfunc))
}
fn gen_is_bit_equal(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd {
asm.cmp(left, right);
asm.csel_e(Opnd::Imm(1), Opnd::Imm(0))
}
fn gen_is_bit_not_equal(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd {
asm.cmp(left, right);
asm.csel_ne(Opnd::Imm(1), Opnd::Imm(0))
}
fn gen_box_bool(asm: &mut Assembler, val: lir::Opnd) -> lir::Opnd {
asm.test(val, val);
asm.csel_nz(Opnd::Value(Qtrue), Opnd::Value(Qfalse))
}
fn gen_box_fixnum(jit: &mut JITState, asm: &mut Assembler, val: lir::Opnd, state: &FrameState) -> lir::Opnd {
// Load the value, then test for overflow and tag it
let val = asm.load(val);
let shifted = asm.lshift(val, Opnd::UImm(1));
asm.jo(side_exit(jit, state, BoxFixnumOverflow));
asm.or(shifted, Opnd::UImm(RUBY_FIXNUM_FLAG as u64))
}
fn gen_anytostring(asm: &mut Assembler, val: lir::Opnd, str: lir::Opnd, state: &FrameState) -> lir::Opnd {
gen_prepare_leaf_call_with_gc(asm, state);
asm_ccall!(asm, rb_obj_as_string_result, str, val)
}
/// Evaluate if a value is truthy
/// Produces a CBool type (0 or 1)
/// In Ruby, only nil and false are falsy
/// Everything else evaluates to true
fn gen_test(asm: &mut Assembler, val: lir::Opnd) -> lir::Opnd {
// Test if any bit (outside of the Qnil bit) is on
// See RB_TEST(), include/ruby/internal/special_consts.h
asm.test(val, Opnd::Imm(!Qnil.as_i64()));
asm.csel_e(0.into(), 1.into())
}
/// Compile a type check with a side exit
fn gen_guard_type(jit: &mut JITState, asm: &mut Assembler, val: lir::Opnd, guard_type: Type, state: &FrameState) -> lir::Opnd {
gen_incr_counter(asm, Counter::guard_type_count);
if guard_type.is_subtype(types::Fixnum) {
asm.test(val, Opnd::UImm(RUBY_FIXNUM_FLAG as u64));
asm.jz(side_exit(jit, state, GuardType(guard_type)));
} else if guard_type.is_subtype(types::Flonum) {
// Flonum: (val & RUBY_FLONUM_MASK) == RUBY_FLONUM_FLAG
let masked = asm.and(val, Opnd::UImm(RUBY_FLONUM_MASK as u64));
asm.cmp(masked, Opnd::UImm(RUBY_FLONUM_FLAG as u64));
asm.jne(side_exit(jit, state, GuardType(guard_type)));
} else if guard_type.is_subtype(types::StaticSymbol) {
// Static symbols have (val & 0xff) == RUBY_SYMBOL_FLAG
// Use 8-bit comparison like YJIT does. GuardType should not be used
// for a known VALUE, which with_num_bits() does not support.
asm.cmp(val.with_num_bits(8), Opnd::UImm(RUBY_SYMBOL_FLAG as u64));
asm.jne(side_exit(jit, state, GuardType(guard_type)));
} else if guard_type.is_subtype(types::NilClass) {
asm.cmp(val, Qnil.into());
asm.jne(side_exit(jit, state, GuardType(guard_type)));
} else if guard_type.is_subtype(types::TrueClass) {
asm.cmp(val, Qtrue.into());
asm.jne(side_exit(jit, state, GuardType(guard_type)));
} else if guard_type.is_subtype(types::FalseClass) {
asm.cmp(val, Qfalse.into());
asm.jne(side_exit(jit, state, GuardType(guard_type)));
} else if guard_type.is_immediate() {
// All immediate types' guard should have been handled above
panic!("unexpected immediate guard type: {guard_type}");
} else if let Some(expected_class) = guard_type.runtime_exact_ruby_class() {
asm_comment!(asm, "guard exact class for non-immediate types");
// If val isn't in a register, load it to use it as the base of Opnd::mem later.
// TODO: Max thinks codegen should not care about the shapes of the operands except to create them. (Shopify/ruby#685)
let val = match val {
Opnd::Reg(_) | Opnd::VReg { .. } => val,
_ => asm.load(val),
};
// Check if it's a special constant
let side_exit = side_exit(jit, state, GuardType(guard_type));
asm.test(val, (RUBY_IMMEDIATE_MASK as u64).into());
asm.jnz(side_exit.clone());
// Check if it's false
asm.cmp(val, Qfalse.into());
asm.je(side_exit.clone());
// Load the class from the object's klass field
let klass = asm.load(Opnd::mem(64, val, RUBY_OFFSET_RBASIC_KLASS));
asm.cmp(klass, Opnd::Value(expected_class));
asm.jne(side_exit);
} else if guard_type.is_subtype(types::String) {
let side = side_exit(jit, state, GuardType(guard_type));
// Check special constant
asm.test(val, Opnd::UImm(RUBY_IMMEDIATE_MASK as u64));
asm.jnz(side.clone());
// Check false
asm.cmp(val, Qfalse.into());
asm.je(side.clone());
let val = match val {
Opnd::Reg(_) | Opnd::VReg { .. } => val,
_ => asm.load(val),
};
let flags = asm.load(Opnd::mem(VALUE_BITS, val, RUBY_OFFSET_RBASIC_FLAGS));
let tag = asm.and(flags, Opnd::UImm(RUBY_T_MASK as u64));
asm.cmp(tag, Opnd::UImm(RUBY_T_STRING as u64));
asm.jne(side);
} else if guard_type.bit_equal(types::HeapBasicObject) {
let side_exit = side_exit(jit, state, GuardType(guard_type));
asm.cmp(val, Opnd::Value(Qfalse));
asm.je(side_exit.clone());
asm.test(val, (RUBY_IMMEDIATE_MASK as u64).into());
asm.jnz(side_exit);
} else {
unimplemented!("unsupported type: {guard_type}");
}
val
}
fn gen_guard_type_not(jit: &mut JITState, asm: &mut Assembler, val: lir::Opnd, guard_type: Type, state: &FrameState) -> lir::Opnd {
if guard_type.is_subtype(types::String) {
// We only exit if val *is* a String. Otherwise we fall through.
let cont = asm.new_label("guard_type_not_string_cont");
let side = side_exit(jit, state, GuardTypeNot(guard_type));
// Continue if special constant (not string)
asm.test(val, Opnd::UImm(RUBY_IMMEDIATE_MASK as u64));
asm.jnz(cont.clone());
// Continue if false (not string)
asm.cmp(val, Qfalse.into());
asm.je(cont.clone());
let val = match val {
Opnd::Reg(_) | Opnd::VReg { .. } => val,
_ => asm.load(val),
};
let flags = asm.load(Opnd::mem(VALUE_BITS, val, RUBY_OFFSET_RBASIC_FLAGS));
let tag = asm.and(flags, Opnd::UImm(RUBY_T_MASK as u64));
asm.cmp(tag, Opnd::UImm(RUBY_T_STRING as u64));
asm.je(side);
// Otherwise (non-string heap object), continue.
asm.write_label(cont);
} else {
unimplemented!("unsupported type: {guard_type}");
}
val
}
/// Compile an identity check with a side exit
fn gen_guard_bit_equals(jit: &mut JITState, asm: &mut Assembler, val: lir::Opnd, expected: crate::hir::Const, reason: SideExitReason, state: &FrameState) -> lir::Opnd {
let expected_opnd: Opnd = match expected {
crate::hir::Const::Value(v) => { Opnd::Value(v) }
crate::hir::Const::CInt64(v) => { v.into() }
crate::hir::Const::CShape(v) => { Opnd::UImm(v.0 as u64) }
_ => panic!("gen_guard_bit_equals: unexpected hir::Const {expected:?}"),
};
asm.cmp(val, expected_opnd);
asm.jnz(side_exit(jit, state, reason));
val
}
/// Generate code that records unoptimized C functions if --zjit-stats is enabled
fn gen_incr_counter_ptr(asm: &mut Assembler, counter_ptr: *mut u64) {
if get_option!(stats) {
asm.incr_counter(Opnd::const_ptr(counter_ptr as *const u8), Opnd::UImm(1));
}
}
/// Generate code that increments a counter if --zjit-stats
fn gen_incr_counter(asm: &mut Assembler, counter: Counter) {
if get_option!(stats) {
let ptr = counter_ptr(counter);
gen_incr_counter_ptr(asm, ptr);
}
}
/// Increment a counter for each DynamicSendReason. If the variant has
/// a counter prefix to break down the details, increment that as well.
fn gen_incr_send_fallback_counter(asm: &mut Assembler, reason: SendFallbackReason) {
gen_incr_counter(asm, send_fallback_counter(reason));
use SendFallbackReason::*;
match reason {
Uncategorized(opcode) => {
gen_incr_counter_ptr(asm, send_fallback_counter_ptr_for_opcode(opcode));
}
SendWithoutBlockNotOptimizedMethodType(method_type) => {
gen_incr_counter(asm, send_without_block_fallback_counter_for_method_type(method_type));
}
SendWithoutBlockNotOptimizedMethodTypeOptimized(method_type) => {
gen_incr_counter(asm, send_without_block_fallback_counter_for_optimized_method_type(method_type));
}
SendNotOptimizedMethodType(method_type) => {
gen_incr_counter(asm, send_fallback_counter_for_method_type(method_type));
}
_ => {}
}
}
/// Save only the PC to CFP. Use this when you need to call gen_save_sp()
/// immediately after with a custom stack size (e.g., gen_ccall_with_frame
/// adjusts SP to exclude receiver and arguments).
fn gen_save_pc_for_gc(asm: &mut Assembler, state: &FrameState) {
let opcode: usize = state.get_opcode().try_into().unwrap();
let next_pc: *const VALUE = unsafe { state.pc.offset(insn_len(opcode) as isize) };
gen_incr_counter(asm, Counter::vm_write_pc_count);
asm_comment!(asm, "save PC to CFP");
asm.mov(Opnd::mem(64, CFP, RUBY_OFFSET_CFP_PC), Opnd::const_ptr(next_pc));
}
/// Save the current PC on the CFP as a preparation for calling a C function
/// that may allocate objects and trigger GC. Use gen_prepare_non_leaf_call()
/// if it may raise exceptions or call arbitrary methods.
///
/// Unlike YJIT, we don't need to save the stack slots to protect them from GC
/// because the backend spills all live registers onto the C stack on CCall.
/// However, to avoid marking uninitialized stack slots, this also updates SP,
/// which may have cfp->sp for a past frame or a past non-leaf call.
fn gen_prepare_call_with_gc(asm: &mut Assembler, state: &FrameState, leaf: bool) {
gen_save_pc_for_gc(asm, state);
gen_save_sp(asm, state.stack_size());
if leaf {
asm.expect_leaf_ccall(state.stack_size());
}
}
fn gen_prepare_leaf_call_with_gc(asm: &mut Assembler, state: &FrameState) {
// In gen_prepare_call_with_gc(), we update cfp->sp for leaf calls too.
//
// Here, cfp->sp may be pointing to either of the following:
// 1. cfp->sp for a past frame, which gen_push_frame() skips to initialize
// 2. cfp->sp set by gen_prepare_non_leaf_call() for the current frame
//
// When (1), to avoid marking dead objects, we need to set cfp->sp for the current frame.
// When (2), setting cfp->sp at gen_push_frame() and not updating cfp->sp here could lead to
// keeping objects longer than it should, so we set cfp->sp at every call of this function.
//
// We use state.without_stack() to pass stack_size=0 to gen_save_sp() because we don't write
// VM stack slots on leaf calls, which leaves those stack slots uninitialized. ZJIT keeps
// live objects on the C stack, so they are protected from GC properly.
gen_prepare_call_with_gc(asm, &state.without_stack(), true);
}
/// Save the current SP on the CFP
fn gen_save_sp(asm: &mut Assembler, stack_size: usize) {
// Update cfp->sp which will be read by the interpreter. We also have the SP register in JIT
// code, and ZJIT's codegen currently assumes the SP register doesn't move, e.g. gen_param().
// So we don't update the SP register here. We could update the SP register to avoid using
// an extra register for asm.lea(), but you'll need to manage the SP offset like YJIT does.
gen_incr_counter(asm, Counter::vm_write_sp_count);
asm_comment!(asm, "save SP to CFP: {}", stack_size);
let sp_addr = asm.lea(Opnd::mem(64, SP, stack_size as i32 * SIZEOF_VALUE_I32));
let cfp_sp = Opnd::mem(64, CFP, RUBY_OFFSET_CFP_SP);
asm.mov(cfp_sp, sp_addr);
}
/// Spill locals onto the stack.
fn gen_spill_locals(jit: &JITState, asm: &mut Assembler, state: &FrameState) {
// TODO: Avoid spilling locals that have been spilled before and not changed.
gen_incr_counter(asm, Counter::vm_write_locals_count);
asm_comment!(asm, "spill locals");
for (idx, &insn_id) in state.locals().enumerate() {
asm.mov(Opnd::mem(64, SP, (-local_idx_to_ep_offset(jit.iseq, idx) - 1) * SIZEOF_VALUE_I32), jit.get_opnd(insn_id));
}
}
/// Spill the virtual stack onto the stack.
fn gen_spill_stack(jit: &JITState, asm: &mut Assembler, state: &FrameState) {
// This function does not call gen_save_sp() at the moment because
// gen_send_without_block_direct() spills stack slots above SP for arguments.
gen_incr_counter(asm, Counter::vm_write_stack_count);
asm_comment!(asm, "spill stack");
for (idx, &insn_id) in state.stack().enumerate() {
asm.mov(Opnd::mem(64, SP, idx as i32 * SIZEOF_VALUE_I32), jit.get_opnd(insn_id));
}
}
/// Prepare for calling a C function that may call an arbitrary method.
/// Use gen_prepare_leaf_call_with_gc() if the method is leaf but allocates objects.
fn gen_prepare_non_leaf_call(jit: &JITState, asm: &mut Assembler, state: &FrameState) {
// TODO: Lazily materialize caller frames when needed
// Save PC for backtraces and allocation tracing
// and SP to avoid marking uninitialized stack slots
gen_prepare_call_with_gc(asm, state, false);
// Spill the virtual stack in case it raises an exception
// and the interpreter uses the stack for handling the exception
gen_spill_stack(jit, asm, state);
// Spill locals in case the method looks at caller Bindings
gen_spill_locals(jit, asm, state);
}
/// Frame metadata written by gen_push_frame()
struct ControlFrame {
recv: Opnd,
iseq: Option<IseqPtr>,
cme: *const rb_callable_method_entry_t,
frame_type: u32,
/// The [`VM_ENV_DATA_INDEX_SPECVAL`] slot of the frame.
/// For the type of frames we push, block handler or the parent EP.
specval: lir::Opnd,
pc: Option<*const VALUE>,
}
/// Compile an interpreter frame
fn gen_push_frame(asm: &mut Assembler, argc: usize, state: &FrameState, frame: ControlFrame) {
// Locals are written by the callee frame on side-exits or non-leaf calls
// See vm_push_frame() for details
asm_comment!(asm, "push cme, specval, frame type");
// ep[-2]: cref of cme
let local_size = if let Some(iseq) = frame.iseq {
(unsafe { get_iseq_body_local_table_size(iseq) }) as i32
} else {
0
};
let ep_offset = state.stack().len() as i32 + local_size - argc as i32 + VM_ENV_DATA_SIZE as i32 - 1;
// ep[-2]: CME
asm.store(Opnd::mem(64, SP, (ep_offset - 2) * SIZEOF_VALUE_I32), VALUE::from(frame.cme).into());
// ep[-1]: specval
asm.store(Opnd::mem(64, SP, (ep_offset - 1) * SIZEOF_VALUE_I32), frame.specval);
// ep[0]: ENV_FLAGS
asm.store(Opnd::mem(64, SP, ep_offset * SIZEOF_VALUE_I32), frame.frame_type.into());
// Write to the callee CFP
fn cfp_opnd(offset: i32) -> Opnd {
Opnd::mem(64, CFP, offset - (RUBY_SIZEOF_CONTROL_FRAME as i32))
}
asm_comment!(asm, "push callee control frame");
if let Some(iseq) = frame.iseq {
// cfp_opnd(RUBY_OFFSET_CFP_PC): written by the callee frame on side-exits, non-leaf calls, or calls with GC
// cfp_opnd(RUBY_OFFSET_CFP_SP): written by the callee frame on side-exits, non-leaf calls, or calls with GC
asm.mov(cfp_opnd(RUBY_OFFSET_CFP_ISEQ), VALUE::from(iseq).into());
} else {
// C frames don't have a PC and ISEQ in normal operation.
// When runtime checks are enabled we poison the PC so accidental reads stand out.
if let Some(pc) = frame.pc {
asm.mov(cfp_opnd(RUBY_OFFSET_CFP_PC), Opnd::const_ptr(pc));
}
let new_sp = asm.lea(Opnd::mem(64, SP, (ep_offset + 1) * SIZEOF_VALUE_I32));
asm.mov(cfp_opnd(RUBY_OFFSET_CFP_SP), new_sp);
asm.mov(cfp_opnd(RUBY_OFFSET_CFP_ISEQ), 0.into());
}
asm.mov(cfp_opnd(RUBY_OFFSET_CFP_SELF), frame.recv);
let ep = asm.lea(Opnd::mem(64, SP, ep_offset * SIZEOF_VALUE_I32));
asm.mov(cfp_opnd(RUBY_OFFSET_CFP_EP), ep);
asm.mov(cfp_opnd(RUBY_OFFSET_CFP_BLOCK_CODE), 0.into());
}
/// Stack overflow check: fails if CFP<=SP at any point in the callee.
fn gen_stack_overflow_check(jit: &mut JITState, asm: &mut Assembler, state: &FrameState, stack_growth: usize) {
asm_comment!(asm, "stack overflow check");
// vm_push_frame() checks it against a decremented cfp, and CHECK_VM_STACK_OVERFLOW0
// adds to the margin another control frame with `&bounds[1]`.
const { assert!(RUBY_SIZEOF_CONTROL_FRAME % SIZEOF_VALUE == 0, "sizeof(rb_control_frame_t) is a multiple of sizeof(VALUE)"); }
let cfp_growth = 2 * (RUBY_SIZEOF_CONTROL_FRAME / SIZEOF_VALUE);
let peak_offset = (cfp_growth + stack_growth) * SIZEOF_VALUE;
let stack_limit = asm.lea(Opnd::mem(64, SP, peak_offset as i32));
asm.cmp(CFP, stack_limit);
asm.jbe(side_exit(jit, state, StackOverflow));
}
/// Return an operand we use for the basic block argument at a given index
fn param_opnd(idx: usize) -> Opnd {
// To simplify the implementation, allocate a fixed register or a stack slot for each basic block argument for now.
// Note that this is implemented here as opposed to automatically inside LIR machineries.
// TODO: Allow allocating arbitrary registers for basic block arguments
if idx < ALLOC_REGS.len() {
Opnd::Reg(ALLOC_REGS[idx])
} else {
// With FrameSetup, the address that NATIVE_BASE_PTR points to stores an old value in the register.
// To avoid clobbering it, we need to start from the next slot, hence `+ 1` for the index.
Opnd::mem(64, NATIVE_BASE_PTR, (idx - ALLOC_REGS.len() + 1) as i32 * -SIZEOF_VALUE_I32)
}
}
/// Inverse of ep_offset_to_local_idx(). See ep_offset_to_local_idx() for details.
pub fn local_idx_to_ep_offset(iseq: IseqPtr, local_idx: usize) -> i32 {
let local_size = unsafe { get_iseq_body_local_table_size(iseq) };
local_size_and_idx_to_ep_offset(local_size.to_usize(), local_idx)
}
/// Convert the number of locals and a local index to an offset from the EP
pub fn local_size_and_idx_to_ep_offset(local_size: usize, local_idx: usize) -> i32 {
local_size as i32 - local_idx as i32 - 1 + VM_ENV_DATA_SIZE as i32
}
/// Convert the number of locals and a local index to an offset from the BP.
/// We don't move the SP register after entry, so we often use SP as BP.
pub fn local_size_and_idx_to_bp_offset(local_size: usize, local_idx: usize) -> i32 {
local_size_and_idx_to_ep_offset(local_size, local_idx) + 1
}
/// Convert ISEQ into High-level IR
fn compile_iseq(iseq: IseqPtr) -> Result<Function, CompileError> {
// Convert ZJIT instructions back to bare instructions
unsafe { crate::cruby::rb_zjit_profile_disable(iseq) };
// Reject ISEQs with very large temp stacks.
// We cannot encode too large offsets to access locals in arm64.
let stack_max = unsafe { rb_get_iseq_body_stack_max(iseq) };
if stack_max >= i8::MAX as u32 {
debug!("ISEQ stack too large: {stack_max}");
return Err(CompileError::IseqStackTooLarge);
}
let mut function = match iseq_to_hir(iseq) {
Ok(function) => function,
Err(err) => {
debug!("ZJIT: iseq_to_hir: {err:?}: {}", iseq_get_location(iseq, 0));
return Err(CompileError::ParseError(err));
}
};
if !get_option!(disable_hir_opt) {
function.optimize();
}
function.dump_hir();
Ok(function)
}
/// Build a Target::SideExit
fn side_exit(jit: &JITState, state: &FrameState, reason: SideExitReason) -> Target {
let exit = build_side_exit(jit, state);
Target::SideExit { exit, reason }
}
/// Build a side-exit context
fn build_side_exit(jit: &JITState, state: &FrameState) -> SideExit {
let mut stack = Vec::new();
for &insn_id in state.stack() {
stack.push(jit.get_opnd(insn_id));
}
let mut locals = Vec::new();
for &insn_id in state.locals() {
locals.push(jit.get_opnd(insn_id));
}
SideExit{
pc: Opnd::const_ptr(state.pc),
stack,
locals,
}
}
/// Returne the maximum number of arguments for a block in a given function
fn max_num_params(function: &Function) -> usize {
let reverse_post_order = function.rpo();
reverse_post_order.iter().map(|&block_id| {
let block = function.block(block_id);
block.params().len()
}).max().unwrap_or(0)
}
#[cfg(target_arch = "x86_64")]
macro_rules! c_callable {
($(#[$outer:meta])*
fn $f:ident $args:tt $(-> $ret:ty)? $body:block) => {
$(#[$outer])*
extern "sysv64" fn $f $args $(-> $ret)? $body
};
}
#[cfg(target_arch = "aarch64")]
macro_rules! c_callable {
($(#[$outer:meta])*
fn $f:ident $args:tt $(-> $ret:ty)? $body:block) => {
$(#[$outer])*
extern "C" fn $f $args $(-> $ret)? $body
};
}
#[cfg(test)]
pub(crate) use c_callable;
c_callable! {
/// Generated code calls this function with the SysV calling convention. See [gen_function_stub].
/// This function is expected to be called repeatedly when ZJIT fails to compile the stub.
/// We should be able to compile most (if not all) function stubs by side-exiting at unsupported
/// instructions, so this should be used primarily for cb.has_dropped_bytes() situations.
fn function_stub_hit(iseq_call_ptr: *const c_void, cfp: CfpPtr, sp: *mut VALUE) -> *const u8 {
with_vm_lock(src_loc!(), || {
// gen_push_frame() doesn't set PC, so we need to set them before exit.
// function_stub_hit_body() may allocate and call gc_validate_pc(), so we always set PC.
let iseq_call = unsafe { Rc::from_raw(iseq_call_ptr as *const IseqCall) };
let iseq = iseq_call.iseq.get();
let entry_insn_idxs = crate::hir::jit_entry_insns(iseq);
let pc = unsafe { rb_iseq_pc_at_idx(iseq, entry_insn_idxs[iseq_call.jit_entry_idx.to_usize()]) };
unsafe { rb_set_cfp_pc(cfp, pc) };
// Successful JIT-to-JIT calls fill nils to non-parameter locals in generated code.
// If we side-exit from function_stub_hit (before JIT code runs), we need to set them here.
fn prepare_for_exit(iseq: IseqPtr, cfp: CfpPtr, sp: *mut VALUE, compile_error: &CompileError) {
unsafe {
// Set SP which gen_push_frame() doesn't set
rb_set_cfp_sp(cfp, sp);
// Fill nils to uninitialized (non-argument) locals
let local_size = get_iseq_body_local_table_size(iseq).to_usize();
let num_params = iseq.params().size.to_usize();
let base = sp.offset(-local_size_and_idx_to_bp_offset(local_size, num_params) as isize);
slice::from_raw_parts_mut(base, local_size - num_params).fill(Qnil);
}
// Increment a compile error counter for --zjit-stats
if get_option!(stats) {
incr_counter_by(exit_counter_for_compile_error(compile_error), 1);
}
}
// If we already know we can't compile the ISEQ, fail early without cb.mark_all_executable().
// TODO: Alan thinks the payload status part of this check can happen without the VM lock, since the whole
// code path can be made read-only. But you still need the check as is while holding the VM lock in any case.
let cb = ZJITState::get_code_block();
let payload = get_or_create_iseq_payload(iseq);
let last_status = payload.versions.last().map(|version| &unsafe { version.as_ref() }.status);
let compile_error = match last_status {
Some(IseqStatus::CantCompile(err)) => Some(err),
_ if cb.has_dropped_bytes() => Some(&CompileError::OutOfMemory),
_ => None,
};
if let Some(compile_error) = compile_error {
// We'll use this Rc again, so increment the ref count decremented by from_raw.
unsafe { Rc::increment_strong_count(iseq_call_ptr as *const IseqCall); }
prepare_for_exit(iseq, cfp, sp, compile_error);
return ZJITState::get_exit_trampoline_with_counter().raw_ptr(cb);
}
// Otherwise, attempt to compile the ISEQ. We have to mark_all_executable() beyond this point.
let code_ptr = with_time_stat(compile_time_ns, || function_stub_hit_body(cb, &iseq_call));
if code_ptr.is_ok() {
if let Some(version) = payload.versions.last_mut() {
unsafe { version.as_mut() }.incoming.push(iseq_call);
}
}
let code_ptr = code_ptr.unwrap_or_else(|compile_error| {
// We'll use this Rc again, so increment the ref count decremented by from_raw.
unsafe { Rc::increment_strong_count(iseq_call_ptr as *const IseqCall); }
prepare_for_exit(iseq, cfp, sp, &compile_error);
ZJITState::get_exit_trampoline_with_counter()
});
cb.mark_all_executable();
code_ptr.raw_ptr(cb)
})
}
}
/// Compile an ISEQ for a function stub
fn function_stub_hit_body(cb: &mut CodeBlock, iseq_call: &IseqCallRef) -> Result<CodePtr, CompileError> {
// Compile the stubbed ISEQ
let IseqCodePtrs { jit_entry_ptrs, .. } = gen_iseq(cb, iseq_call.iseq.get(), None).inspect_err(|err| {
debug!("{err:?}: gen_iseq failed: {}", iseq_get_location(iseq_call.iseq.get(), 0));
})?;
// Update the stub to call the code pointer
let jit_entry_ptr = jit_entry_ptrs[iseq_call.jit_entry_idx.to_usize()];
let code_addr = jit_entry_ptr.raw_ptr(cb);
let iseq = iseq_call.iseq.get();
iseq_call.regenerate(cb, |asm| {
asm_comment!(asm, "call compiled function: {}", iseq_get_location(iseq, 0));
asm.ccall(code_addr, vec![]);
});
Ok(jit_entry_ptr)
}
/// Compile a stub for an ISEQ called by SendWithoutBlockDirect
fn gen_function_stub(cb: &mut CodeBlock, iseq_call: IseqCallRef) -> Result<CodePtr, CompileError> {
let (mut asm, scratch_reg) = Assembler::new_with_scratch_reg();
asm_comment!(asm, "Stub: {}", iseq_get_location(iseq_call.iseq.get(), 0));
// Call function_stub_hit using the shared trampoline. See `gen_function_stub_hit_trampoline`.
// Use load_into instead of mov, which is split on arm64, to avoid clobbering ALLOC_REGS.
asm.load_into(scratch_reg, Opnd::const_ptr(Rc::into_raw(iseq_call)));
asm.jmp(ZJITState::get_function_stub_hit_trampoline().into());
asm.compile(cb).map(|(code_ptr, gc_offsets)| {
assert_eq!(gc_offsets.len(), 0);
code_ptr
})
}
/// Generate a trampoline that is used when a function stub is called.
/// See [gen_function_stub] for how it's used.
pub fn gen_function_stub_hit_trampoline(cb: &mut CodeBlock) -> Result<CodePtr, CompileError> {
let (mut asm, scratch_reg) = Assembler::new_with_scratch_reg();
asm_comment!(asm, "function_stub_hit trampoline");
// Maintain alignment for x86_64, and set up a frame for arm64 properly
asm.frame_setup(&[]);
asm_comment!(asm, "preserve argument registers");
for ® in ALLOC_REGS.iter() {
asm.cpush(Opnd::Reg(reg));
}
if cfg!(target_arch = "x86_64") && ALLOC_REGS.len() % 2 == 1 {
asm.cpush(Opnd::Reg(ALLOC_REGS[0])); // maintain alignment for x86_64
}
// Compile the stubbed ISEQ
let jump_addr = asm_ccall!(asm, function_stub_hit, scratch_reg, CFP, SP);
asm.mov(scratch_reg, jump_addr);
asm_comment!(asm, "restore argument registers");
if cfg!(target_arch = "x86_64") && ALLOC_REGS.len() % 2 == 1 {
asm.cpop_into(Opnd::Reg(ALLOC_REGS[0]));
}
for ® in ALLOC_REGS.iter().rev() {
asm.cpop_into(Opnd::Reg(reg));
}
// Discard the current frame since the JIT function will set it up again
asm.frame_teardown(&[]);
// Jump to scratch_reg so that cpop_into() doesn't clobber it
asm.jmp_opnd(scratch_reg);
asm.compile(cb).map(|(code_ptr, gc_offsets)| {
assert_eq!(gc_offsets.len(), 0);
code_ptr
})
}
/// Generate a trampoline that is used when a function exits without restoring PC and the stack
pub fn gen_exit_trampoline(cb: &mut CodeBlock) -> Result<CodePtr, CompileError> {
let mut asm = Assembler::new();
asm_comment!(asm, "side-exit trampoline");
asm.frame_teardown(&[]); // matching the setup in gen_entry_point()
asm.cret(Qundef.into());
asm.compile(cb).map(|(code_ptr, gc_offsets)| {
assert_eq!(gc_offsets.len(), 0);
code_ptr
})
}
/// Generate a trampoline that increments exit_compilation_failure and jumps to exit_trampoline.
pub fn gen_exit_trampoline_with_counter(cb: &mut CodeBlock, exit_trampoline: CodePtr) -> Result<CodePtr, CompileError> {
let mut asm = Assembler::new();
asm_comment!(asm, "function stub exit trampoline");
gen_incr_counter(&mut asm, exit_compile_error);
asm.jmp(Target::CodePtr(exit_trampoline));
asm.compile(cb).map(|(code_ptr, gc_offsets)| {
assert_eq!(gc_offsets.len(), 0);
code_ptr
})
}
fn gen_push_opnds(asm: &mut Assembler, opnds: &[Opnd]) -> lir::Opnd {
let n = opnds.len();
let allocation_size = aligned_stack_bytes(n);
// Bump the stack pointer to reserve the space for opnds
if n != 0 {
asm_comment!(asm, "allocate {} bytes on C stack for {} values", allocation_size, n);
asm.sub_into(NATIVE_STACK_PTR, allocation_size.into());
} else {
asm_comment!(asm, "no opnds to allocate");
}
// Load NATIVE_STACK_PTR to get the address of a returned array
// to allow the backend to move it for its own use.
let argv = asm.load(NATIVE_STACK_PTR);
for (idx, &opnd) in opnds.iter().enumerate() {
asm.mov(Opnd::mem(VALUE_BITS, argv, idx as i32 * SIZEOF_VALUE_I32), opnd);
}
argv
}
fn gen_pop_opnds(asm: &mut Assembler, opnds: &[Opnd]) {
if opnds.is_empty() {
asm_comment!(asm, "no opnds to restore");
return
}
asm_comment!(asm, "restore C stack pointer");
let allocation_size = aligned_stack_bytes(opnds.len());
asm.add_into(NATIVE_STACK_PTR, allocation_size.into());
}
fn gen_toregexp(jit: &mut JITState, asm: &mut Assembler, opt: usize, values: Vec<Opnd>, state: &FrameState) -> Opnd {
gen_prepare_non_leaf_call(jit, asm, state);
let first_opnd_ptr = gen_push_opnds(asm, &values);
let tmp_ary = asm_ccall!(asm, rb_ary_tmp_new_from_values, Opnd::Imm(0), values.len().into(), first_opnd_ptr);
let result = asm_ccall!(asm, rb_reg_new_ary, tmp_ary, opt.into());
asm_ccall!(asm, rb_ary_clear, tmp_ary);
gen_pop_opnds(asm, &values);
result
}
fn gen_string_concat(jit: &mut JITState, asm: &mut Assembler, strings: Vec<Opnd>, state: &FrameState) -> Opnd {
gen_prepare_non_leaf_call(jit, asm, state);
let first_string_ptr = gen_push_opnds(asm, &strings);
let result = asm_ccall!(asm, rb_str_concat_literals, strings.len().into(), first_string_ptr);
gen_pop_opnds(asm, &strings);
result
}
// Generate RSTRING_PTR
fn get_string_ptr(asm: &mut Assembler, string: Opnd) -> Opnd {
asm_comment!(asm, "get string pointer for embedded or heap");
let string = asm.load(string);
let flags = Opnd::mem(VALUE_BITS, string, RUBY_OFFSET_RBASIC_FLAGS);
asm.test(flags, (RSTRING_NOEMBED as u64).into());
let heap_ptr = asm.load(Opnd::mem(
usize::BITS as u8,
string,
RUBY_OFFSET_RSTRING_AS_HEAP_PTR,
));
// Load the address of the embedded array
// (struct RString *)(obj)->as.ary
let ary = asm.lea(Opnd::mem(VALUE_BITS, string, RUBY_OFFSET_RSTRING_AS_ARY));
asm.csel_nz(heap_ptr, ary)
}
fn gen_string_getbyte(asm: &mut Assembler, string: Opnd, index: Opnd) -> Opnd {
let string_ptr = get_string_ptr(asm, string);
// TODO(max): Use SIB indexing here once the backend supports it
let string_ptr = asm.add(string_ptr, index);
let byte = asm.load(Opnd::mem(8, string_ptr, 0));
// Zero-extend the byte to 64 bits
let byte = byte.with_num_bits(64);
let byte = asm.and(byte, 0xFF.into());
// Tag the byte
let byte = asm.lshift(byte, Opnd::UImm(1));
asm.or(byte, Opnd::UImm(1))
}
fn gen_string_setbyte_fixnum(asm: &mut Assembler, string: Opnd, index: Opnd, value: Opnd) -> Opnd {
// rb_str_setbyte is not leaf, but we guard types and index ranges in HIR
asm_ccall!(asm, rb_str_setbyte, string, index, value)
}
fn gen_string_append(jit: &mut JITState, asm: &mut Assembler, string: Opnd, val: Opnd, state: &FrameState) -> Opnd {
gen_prepare_non_leaf_call(jit, asm, state);
asm_ccall!(asm, rb_str_buf_append, string, val)
}
fn gen_string_append_codepoint(jit: &mut JITState, asm: &mut Assembler, string: Opnd, val: Opnd, state: &FrameState) -> Opnd {
gen_prepare_non_leaf_call(jit, asm, state);
asm_ccall!(asm, rb_jit_str_concat_codepoint, string, val)
}
/// Generate a JIT entry that just increments exit_compilation_failure and exits
fn gen_compile_error_counter(cb: &mut CodeBlock, compile_error: &CompileError) -> Result<CodePtr, CompileError> {
let mut asm = Assembler::new();
gen_incr_counter(&mut asm, exit_compile_error);
gen_incr_counter(&mut asm, exit_counter_for_compile_error(compile_error));
asm.cret(Qundef.into());
asm.compile(cb).map(|(code_ptr, gc_offsets)| {
assert_eq!(0, gc_offsets.len());
code_ptr
})
}
/// Given the number of spill slots needed for a function, return the number of bytes
/// the function needs to allocate on the stack for the stack frame.
fn aligned_stack_bytes(num_slots: usize) -> usize {
// Both x86_64 and arm64 require the stack to be aligned to 16 bytes.
// Since SIZEOF_VALUE is 8 bytes, we need to round up the size to the nearest even number.
let num_slots = num_slots + (num_slots % 2);
num_slots * SIZEOF_VALUE
}
impl Assembler {
/// Make a C call while marking the start and end positions for IseqCall
fn ccall_with_iseq_call(&mut self, fptr: *const u8, opnds: Vec<Opnd>, iseq_call: &IseqCallRef) -> Opnd {
// We need to create our own branch rc objects so that we can move the closure below
let start_iseq_call = iseq_call.clone();
let end_iseq_call = iseq_call.clone();
self.ccall_with_pos_markers(
fptr,
opnds,
move |code_ptr, _| {
start_iseq_call.start_addr.set(Some(code_ptr));
},
move |code_ptr, _| {
end_iseq_call.end_addr.set(Some(code_ptr));
},
)
}
}
/// Store info about a JIT entry point
pub struct JITEntry {
/// Index that corresponds to [crate::hir::jit_entry_insns]
jit_entry_idx: usize,
/// Position where the entry point starts
start_addr: Cell<Option<CodePtr>>,
}
impl JITEntry {
/// Allocate a new JITEntry
fn new(jit_entry_idx: usize) -> Rc<RefCell<Self>> {
let jit_entry = JITEntry {
jit_entry_idx,
start_addr: Cell::new(None),
};
Rc::new(RefCell::new(jit_entry))
}
}
/// Store info about a JIT-to-JIT call
#[derive(Debug)]
pub struct IseqCall {
/// Callee ISEQ that start_addr jumps to
pub iseq: Cell<IseqPtr>,
/// Index that corresponds to [crate::hir::jit_entry_insns]
jit_entry_idx: u32,
/// Position where the call instruction starts
start_addr: Cell<Option<CodePtr>>,
/// Position where the call instruction ends (exclusive)
end_addr: Cell<Option<CodePtr>>,
}
pub type IseqCallRef = Rc<IseqCall>;
impl IseqCall {
/// Allocate a new IseqCall
fn new(iseq: IseqPtr, jit_entry_idx: u32) -> IseqCallRef {
let iseq_call = IseqCall {
iseq: Cell::new(iseq),
start_addr: Cell::new(None),
end_addr: Cell::new(None),
jit_entry_idx,
};
Rc::new(iseq_call)
}
/// Regenerate a IseqCall with a given callback
fn regenerate(&self, cb: &mut CodeBlock, callback: impl Fn(&mut Assembler)) {
cb.with_write_ptr(self.start_addr.get().unwrap(), |cb| {
let mut asm = Assembler::new();
callback(&mut asm);
asm.compile(cb).unwrap();
assert_eq!(self.end_addr.get().unwrap(), cb.get_write_ptr());
});
}
}
#[cfg(test)]
mod tests {
use crate::codegen::MAX_ISEQ_VERSIONS;
use crate::cruby::test_utils::*;
use crate::payload::*;
#[test]
fn test_max_iseq_versions() {
eval(&format!("
TEST = -1
def test = TEST
# compile and invalidate MAX+1 times
i = 0
while i < {MAX_ISEQ_VERSIONS} + 1
test; test # compile a version
Object.send(:remove_const, :TEST)
TEST = i
i += 1
end
"));
// It should not exceed MAX_ISEQ_VERSIONS
let iseq = get_method_iseq("self", "test");
let payload = get_or_create_iseq_payload(iseq);
assert_eq!(payload.versions.len(), MAX_ISEQ_VERSIONS);
// The last call should not discard the JIT code
assert!(matches!(unsafe { payload.versions.last().unwrap().as_ref() }.status, IseqStatus::Compiled(_)));
}
}
|