summaryrefslogtreecommitdiff
path: root/yjit_codegen.c
blob: b5edf86460db265b390d87a1e0eb5219485a4c37 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
#include <assert.h>
#include "insns.inc"
#include "internal.h"
#include "vm_core.h"
#include "vm_sync.h"
#include "vm_callinfo.h"
#include "builtin.h"
#include "internal/compile.h"
#include "internal/class.h"
#include "internal/object.h"
#include "internal/string.h"
#include "insns_info.inc"
#include "yjit.h"
#include "yjit_iface.h"
#include "yjit_core.h"
#include "yjit_codegen.h"
#include "yjit_asm.h"
#include "yjit_utils.h"

// Map from YARV opcodes to code generation functions
static codegen_fn gen_fns[VM_INSTRUCTION_SIZE] = { NULL };

// Map from method entries to code generation functions
static st_table *yjit_method_codegen_table = NULL;

// Code block into which we write machine code
static codeblock_t block;
codeblock_t* cb = NULL;

// Code block into which we write out-of-line machine code
static codeblock_t outline_block;
codeblock_t* ocb = NULL;

// Code for exiting back to the interpreter from the leave insn
static void *leave_exit_code;

// Print the current source location for debugging purposes
RBIMPL_ATTR_MAYBE_UNUSED()
static void
jit_print_loc(jitstate_t* jit, const char* msg)
{
    char *ptr;
    long len;
    VALUE path = rb_iseq_path(jit->iseq);
    RSTRING_GETMEM(path, ptr, len);
    fprintf(stderr, "%s %.*s:%u\n", msg, (int)len, ptr, rb_iseq_line_no(jit->iseq, jit->insn_idx));
}

// Get the current instruction's opcode
static int
jit_get_opcode(jitstate_t* jit)
{
    return jit->opcode;
}

// Get the index of the next instruction
static uint32_t
jit_next_idx(jitstate_t* jit)
{
    return jit->insn_idx + insn_len(jit_get_opcode(jit));
}

// Get an instruction argument by index
static VALUE
jit_get_arg(jitstate_t* jit, size_t arg_idx)
{
    RUBY_ASSERT(arg_idx + 1 < (size_t)insn_len(jit_get_opcode(jit)));
    return *(jit->pc + arg_idx + 1);
}

// Load a VALUE into a register and keep track of the reference if it is on the GC heap.
static void
jit_mov_gc_ptr(jitstate_t* jit, codeblock_t* cb, x86opnd_t reg, VALUE ptr)
{
    RUBY_ASSERT(reg.type == OPND_REG && reg.num_bits == 64);

    // Load the pointer constant into the specified register
    mov(cb, reg, const_ptr_opnd((void*)ptr));

    // The pointer immediate is encoded as the last part of the mov written out
    uint32_t ptr_offset = cb->write_pos - sizeof(VALUE);

    if (!SPECIAL_CONST_P(ptr)) {
        if (!rb_darray_append(&jit->block->gc_object_offsets, ptr_offset)) {
            rb_bug("allocation failed");
        }
    }
}

// Check if we are compiling the instruction at the stub PC
// Meaning we are compiling the instruction that is next to execute
static bool
jit_at_current_insn(jitstate_t* jit)
{
    const VALUE* ec_pc = jit->ec->cfp->pc;
    return (ec_pc == jit->pc);
}

// Peek at the nth topmost value on the Ruby stack.
// Returns the topmost value when n == 0.
static VALUE
jit_peek_at_stack(jitstate_t* jit, ctx_t* ctx, int n)
{
    RUBY_ASSERT(jit_at_current_insn(jit));

    // Note: this does not account for ctx->sp_offset because
    // this is only available when hitting a stub, and while
    // hitting a stub, cfp->sp needs to be up to date in case
    // codegen functions trigger GC. See :stub-sp-flush:.
    VALUE *sp = jit->ec->cfp->sp;

    return *(sp - 1 - n);
}

static VALUE
jit_peek_at_self(jitstate_t *jit, ctx_t *ctx)
{
    return jit->ec->cfp->self;
}

// When we know a VALUE to be static, this returns an appropriate val_type_t
static val_type_t
jit_type_of_value(VALUE val)
{
    if (SPECIAL_CONST_P(val)) {
        if (FIXNUM_P(val)) {
            return TYPE_FIXNUM;
        } else if (NIL_P(val)) {
            return TYPE_NIL;
        } else {
            // generic immediate
            return TYPE_IMM;
        }
    } else {
        switch (BUILTIN_TYPE(val)) {
            case T_ARRAY:
               return TYPE_ARRAY;
            case T_HASH:
               return TYPE_HASH;
            case T_STRING:
               return TYPE_STRING;
            default:
                // generic heap object
                return TYPE_HEAP;
        }
    }
}

// Save the incremented PC on the CFP
// This is necessary when calleees can raise or allocate
void
jit_save_pc(jitstate_t* jit, x86opnd_t scratch_reg)
{
    mov(cb, scratch_reg, const_ptr_opnd(jit->pc + insn_len(jit->opcode)));
    mov(cb, mem_opnd(64, REG_CFP, offsetof(rb_control_frame_t, pc)), scratch_reg);
}

// Save the current SP on the CFP
// This realigns the interpreter SP with the JIT SP
// Note: this will change the current value of REG_SP,
//       which could invalidate memory operands
void
jit_save_sp(jitstate_t* jit, ctx_t* ctx)
{
    if (ctx->sp_offset != 0) {
        x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 0);
        lea(cb, REG_SP, stack_pointer);
        mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP);
        ctx->sp_offset = 0;
    }
}

static bool jit_guard_known_klass(jitstate_t *jit, ctx_t* ctx, VALUE known_klass, insn_opnd_t insn_opnd, VALUE sample_instance, const int max_chain_depth, uint8_t *side_exit);

#if RUBY_DEBUG

// Increment a profiling counter with counter_name
#define GEN_COUNTER_INC(cb, counter_name) _gen_counter_inc(cb, &(yjit_runtime_counters . counter_name))
static void
_gen_counter_inc(codeblock_t *cb, int64_t *counter)
{
    if (!rb_yjit_opts.gen_stats) return;
     mov(cb, REG0, const_ptr_opnd(counter));
     cb_write_lock_prefix(cb); // for ractors.
     add(cb, mem_opnd(64, REG0, 0), imm_opnd(1));
}

// Increment a counter then take an existing side exit.
#define COUNTED_EXIT(side_exit, counter_name) _counted_side_exit(side_exit, &(yjit_runtime_counters . counter_name))
static uint8_t *
_counted_side_exit(uint8_t *existing_side_exit, int64_t *counter)
{
    if (!rb_yjit_opts.gen_stats) return existing_side_exit;

    uint8_t *start = cb_get_ptr(ocb, ocb->write_pos);
    _gen_counter_inc(ocb, counter);
    jmp_ptr(ocb, existing_side_exit);
    return start;
}

// Add a comment at the current position in the code block
static void
_add_comment(codeblock_t* cb, const char* comment_str)
{
    // We can't add comments to the outlined code block
    if (cb == ocb)
        return;

    // Avoid adding duplicate comment strings (can happen due to deferred codegen)
    size_t num_comments = rb_darray_size(yjit_code_comments);
    if (num_comments > 0) {
        struct yjit_comment last_comment = rb_darray_get(yjit_code_comments, num_comments - 1);
        if (last_comment.offset == cb->write_pos && strcmp(last_comment.comment, comment_str) == 0) {
            return;
        }
    }

    struct yjit_comment new_comment = (struct yjit_comment){ cb->write_pos, comment_str };
    rb_darray_append(&yjit_code_comments, new_comment);
}

// Comments for generated machine code
#define ADD_COMMENT(cb, comment) _add_comment((cb), (comment))
yjit_comment_array_t yjit_code_comments;

#else

#define GEN_COUNTER_INC(cb, counter_name) ((void)0)
#define COUNTED_EXIT(side_exit, counter_name) side_exit
#define ADD_COMMENT(cb, comment) ((void)0)

#endif // if RUBY_DEBUG

// Save YJIT registers prior to a C call
static void
yjit_save_regs(codeblock_t* cb)
{
    push(cb, REG_CFP);
    push(cb, REG_EC);
    push(cb, REG_SP);
    push(cb, REG_SP); // Maintain 16-byte RSP alignment
}

// Restore YJIT registers after a C call
static void
yjit_load_regs(codeblock_t* cb)
{
    pop(cb, REG_SP); // Maintain 16-byte RSP alignment
    pop(cb, REG_SP);
    pop(cb, REG_EC);
    pop(cb, REG_CFP);
}

// Generate an exit to return to the interpreter
static uint8_t *
yjit_gen_exit(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    uint8_t *code_ptr = cb_get_ptr(cb, cb->write_pos);

    ADD_COMMENT(cb, "exit to interpreter");

    VALUE *exit_pc = jit->pc;

    // YJIT only ever patches the first instruction in an iseq
    if (jit->insn_idx == 0) {
        // Table mapping opcodes to interpreter handlers
        const void *const *handler_table = rb_vm_get_insns_address_table();

        // Write back the old instruction at the exit PC
        // Otherwise the interpreter may jump right back to the
        // JITted code we're trying to exit
        int exit_opcode = yjit_opcode_at_pc(jit->iseq, exit_pc);
        void* handler_addr = (void*)handler_table[exit_opcode];
        mov(cb, REG0, const_ptr_opnd(exit_pc));
        mov(cb, REG1, const_ptr_opnd(handler_addr));
        mov(cb, mem_opnd(64, REG0, 0), REG1);
    }

    // Generate the code to exit to the interpreters
    // Write the adjusted SP back into the CFP
    if (ctx->sp_offset != 0) {
        x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 0);
        lea(cb, REG_SP, stack_pointer);
        mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP);
    }

    // Update the CFP on the EC
    mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);

    // Put PC into the return register, which the post call bytes dispatches to
    mov(cb, RAX, const_ptr_opnd(exit_pc));
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), RAX);

    // Accumulate stats about interpreter exits
#if RUBY_DEBUG
    if (rb_yjit_opts.gen_stats) {
        mov(cb, RDI, const_ptr_opnd(exit_pc));
        call_ptr(cb, RSI, (void *)&rb_yjit_count_side_exit_op);
    }
#endif

    cb_write_post_call_bytes(cb);

    return code_ptr;
}

// Generate a continuation for gen_leave() that exits to the interpreter at REG_CFP->pc.
static uint8_t *
yjit_gen_leave_exit(codeblock_t *cb)
{
    uint8_t *code_ptr = cb_get_ptr(cb, cb->write_pos);

    // Note, gen_leave() fully reconstructs interpreter state before
    // coming here.

    // Every exit to the interpreter should be counted
    GEN_COUNTER_INC(cb, leave_interp_return);

    // Put PC into the return register, which the post call bytes dispatches to
    mov(cb, RAX, member_opnd(REG_CFP, rb_control_frame_t, pc));

    cb_write_post_call_bytes(cb);

    return code_ptr;
}

// A shorthand for generating an exit in the outline block
static uint8_t *
yjit_side_exit(jitstate_t *jit, ctx_t *ctx)
{
    return yjit_gen_exit(jit, ctx, ocb);
}

/*
Compile an interpreter entry block to be inserted into an iseq
Returns `NULL` if compilation fails.
*/
uint8_t *
yjit_entry_prologue(void)
{
    RUBY_ASSERT(cb != NULL);

    if (cb->write_pos + 1024 >= cb->mem_size) {
        rb_bug("out of executable memory");
    }

    // Align the current write positon to cache line boundaries
    cb_align_pos(cb, 64);

    uint8_t *code_ptr = cb_get_ptr(cb, cb->write_pos);

    // Write the interpreter entry prologue
    cb_write_pre_call_bytes(cb);

    // Load the current SP from the CFP into REG_SP
    mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));

    // Setup cfp->jit_return
    // TODO: this could use an IP relative LEA instead of an 8 byte immediate
    mov(cb, REG0, const_ptr_opnd(leave_exit_code));
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, jit_return), REG0);

    return code_ptr;
}

// Generate code to check for interrupts and take a side-exit
static void
yjit_check_ints(codeblock_t* cb, uint8_t* side_exit)
{
    // Check for interrupts
    // see RUBY_VM_CHECK_INTS(ec) macro
    ADD_COMMENT(cb, "RUBY_VM_CHECK_INTS(ec)");
    mov(cb, REG0_32, member_opnd(REG_EC, rb_execution_context_t, interrupt_mask));
    not(cb, REG0_32);
    test(cb, member_opnd(REG_EC, rb_execution_context_t, interrupt_flag), REG0_32);
    jnz_ptr(cb, side_exit);
}

// Generate a stubbed unconditional jump to the next bytecode instruction.
// Blocks that are part of a guard chain can use this to share the same successor.
static void
jit_jump_to_next_insn(jitstate_t *jit, const ctx_t *current_context)
{
    // Reset the depth since in current usages we only ever jump to to
    // chain_depth > 0 from the same instruction.
    ctx_t reset_depth = *current_context;
    reset_depth.chain_depth = 0;

    blockid_t jump_block = { jit->iseq, jit_next_insn_idx(jit) };

    // Generate the jump instruction
    gen_direct_jump(
        jit->block,
        &reset_depth,
        jump_block
    );
}

// Compile a sequence of bytecode instructions for a given basic block version
void
yjit_gen_block(block_t *block, rb_execution_context_t *ec)
{
    RUBY_ASSERT(cb != NULL);
    RUBY_ASSERT(block != NULL);
    RUBY_ASSERT(!(block->blockid.idx == 0 && block->ctx.stack_size > 0));

    // Copy the block's context to avoid mutating it
    ctx_t ctx_copy = block->ctx;
    ctx_t* ctx = &ctx_copy;

    const rb_iseq_t *iseq = block->blockid.iseq;
    uint32_t insn_idx = block->blockid.idx;
    const uint32_t starting_insn_idx = insn_idx;

    // NOTE: if we are ever deployed in production, we
    // should probably just log an error and return NULL here,
    // so we can fail more gracefully
    if (cb->write_pos + 1024 >= cb->mem_size) {
        rb_bug("out of executable memory");
    }
    if (ocb->write_pos + 1024 >= ocb->mem_size) {
        rb_bug("out of executable memory (outlined block)");
    }

    // Initialize a JIT state object
    jitstate_t jit = {
        .block = block,
        .iseq = iseq,
        .ec = ec
    };

    // Mark the start position of the block
    block->start_pos = cb->write_pos;

    // For each instruction to compile
    for (;;) {
        // Get the current pc and opcode
        VALUE *pc = yjit_iseq_pc_at_idx(iseq, insn_idx);
        int opcode = yjit_opcode_at_pc(iseq, pc);
        RUBY_ASSERT(opcode >= 0 && opcode < VM_INSTRUCTION_SIZE);

        // opt_getinlinecache wants to be in a block all on its own. Cut the block short
        // if we run into it. See gen_opt_getinlinecache for details.
        if (opcode == BIN(opt_getinlinecache) && insn_idx > starting_insn_idx) {
            jit_jump_to_next_insn(&jit, ctx);
            break;
        }

        // Set the current instruction
        jit.insn_idx = insn_idx;
        jit.pc = pc;
        jit.opcode = opcode;

        // Lookup the codegen function for this instruction
        codegen_fn gen_fn = gen_fns[opcode];
        if (!gen_fn) {
            // If we reach an unknown instruction,
            // exit to the interpreter and stop compiling
            yjit_gen_exit(&jit, ctx, cb);
            break;
        }

        if (0) {
            fprintf(stderr, "compiling %d: %s\n", insn_idx, insn_name(opcode));
            print_str(cb, insn_name(opcode));
        }

        // :count-placement:
        // Count bytecode instructions that execute in generated code.
        // Note that the increment happens even when the output takes side exit.
        GEN_COUNTER_INC(cb, exec_instruction);

        // Add a comment for the name of the YARV instruction
        ADD_COMMENT(cb, insn_name(opcode));

        // Call the code generation function
        bool continue_generating = p_desc->gen_fn(&jit, ctx);

        // For now, reset the chain depth after each instruction as only the
        // first instruction in the block can concern itself with the depth.
        ctx->chain_depth = 0;

        // If we can't compile this instruction
        // exit to the interpreter and stop compiling
        if (status == YJIT_CANT_COMPILE) {
            // TODO: if the codegen funcion makes changes to ctx and then return YJIT_CANT_COMPILE,
            // the exit this generates would be wrong. We could save a copy of the entry context
            // and assert that ctx is the same here.
            yjit_gen_exit(&jit, ctx, cb);
            break;
        }

        // Move to the next instruction
        p_last_op = p_desc;
        insn_idx += insn_len(opcode);

        // If the instruction terminates this block
        if (status == YJIT_END_BLOCK) {
            break;
        }
    }

    // Mark the end position of the block
    block->end_pos = cb->write_pos;

    // Store the index of the last instruction in the block
    block->end_idx = insn_idx;

    if (YJIT_DUMP_MODE >= 2) {
        // Dump list of compiled instrutions
        fprintf(stderr, "Compiled the following for iseq=%p:\n", (void *)iseq);
        for (uint32_t idx = block->blockid.idx; idx < insn_idx; ) {
            int opcode = yjit_opcode_at_pc(iseq, yjit_iseq_pc_at_idx(iseq, idx));
            fprintf(stderr, "  %04d %s\n", idx, insn_name(opcode));
            idx += insn_len(opcode);
        }
    }
}

static codegen_status_t
gen_nop(jitstate_t* jit, ctx_t* ctx)
{
    // Do nothing
    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_dup(jitstate_t* jit, ctx_t* ctx)
{
    // Get the top value and its type
    val_type_t dup_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
    x86opnd_t dup_val = ctx_stack_pop(ctx, 0);

    // Push the same value on top
    x86opnd_t loc0 = ctx_stack_push(ctx, dup_type);
    mov(cb, REG0, dup_val);
    mov(cb, loc0, REG0);

    return YJIT_KEEP_COMPILING;
}

// duplicate stack top n elements
static codegen_status_t
gen_dupn(jitstate_t* jit, ctx_t* ctx)
{
    rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);

    // In practice, seems to be only used for n==2
    if (n != 2) {
        return YJIT_CANT_COMPILE;
    }

    val_type_t type1 = ctx_get_opnd_type(ctx, OPND_STACK(1));
    x86opnd_t opnd1 = ctx_stack_opnd(ctx, 1);

    val_type_t type0 = ctx_get_opnd_type(ctx, OPND_STACK(0));
    x86opnd_t opnd0 = ctx_stack_opnd(ctx, 0);

    x86opnd_t dst1 = ctx_stack_push(ctx, type1);
    mov(cb, REG0, opnd1);
    mov(cb, dst1, REG0);

    x86opnd_t dst0 = ctx_stack_push(ctx, type0);
    mov(cb, REG0, opnd0);
    mov(cb, dst0, REG0);

    return YJIT_KEEP_COMPILING;
}

// set Nth stack entry to stack top
static codegen_status_t
gen_setn(jitstate_t* jit, ctx_t* ctx)
{
    rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);

    // Get the top value and its type
    val_type_t top_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
    x86opnd_t top_val = ctx_stack_pop(ctx, 0);

    // Set the destination and its type
    ctx_set_opnd_type(ctx, OPND_STACK(n), top_type);
    x86opnd_t dst_opnd = ctx_stack_opnd(ctx, (int32_t)n);
    mov(cb, REG0, top_val);
    mov(cb, dst_opnd, REG0);

    return YJIT_KEEP_COMPILING;
}

// get nth stack value, then push it
static codegen_status_t
gen_topn(jitstate_t* jit, ctx_t* ctx)
{
    int32_t n = (int32_t)jit_get_arg(jit, 0);

    // Get top n type / operand
    val_type_t top_n_type = ctx_get_opnd_type(ctx, OPND_STACK(n));
    x86opnd_t top_n_val = ctx_stack_opnd(ctx, n);

    x86opnd_t loc0 = ctx_stack_push(ctx, top_n_type);
    mov(cb, REG0, top_n_val);
    mov(cb, loc0, REG0);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_pop(jitstate_t* jit, ctx_t* ctx)
{
    // Decrement SP
    ctx_stack_pop(ctx, 1);
    return YJIT_KEEP_COMPILING;
}

// Pop n values off the stack
static codegen_status_t
gen_adjuststack(jitstate_t* jit, ctx_t* ctx)
{
    rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);
    ctx_stack_pop(ctx, n);
    return YJIT_KEEP_COMPILING;
}

// new array initialized from top N values
static codegen_status_t
gen_newarray(jitstate_t* jit, ctx_t* ctx)
{
    rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);

    // Save the PC and SP because we are allocating
    jit_save_pc(jit, REG0);
    jit_save_sp(jit, ctx);

    x86opnd_t values_ptr = ctx_sp_opnd(ctx, -(sizeof(VALUE) * (uint32_t)n));

    // call rb_ec_ary_new_from_values(struct rb_execution_context_struct *ec, long n, const VALUE *elts);
    yjit_save_regs(cb);
    mov(cb, C_ARG_REGS[0], REG_EC);
    mov(cb, C_ARG_REGS[1], imm_opnd(n));
    lea(cb, C_ARG_REGS[2], values_ptr);
    call_ptr(cb, REG0, (void *)rb_ec_ary_new_from_values);
    yjit_load_regs(cb);

    ctx_stack_pop(ctx, n);
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_ARRAY);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

// dup array
static codegen_status_t
gen_duparray(jitstate_t* jit, ctx_t* ctx)
{
    VALUE ary = jit_get_arg(jit, 0);

    // Save the PC and SP because we are allocating
    jit_save_pc(jit, REG0);
    jit_save_sp(jit, ctx);

    // call rb_ary_resurrect(VALUE ary);
    yjit_save_regs(cb);
    jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], ary);
    call_ptr(cb, REG0, (void *)rb_ary_resurrect);
    yjit_load_regs(cb);

    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_ARRAY);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

// new hash initialized from top N values
static codegen_status_t
gen_newhash(jitstate_t* jit, ctx_t* ctx)
{
    rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);

    if (n == 0) {
        // Save the PC and SP because we are allocating
        jit_save_pc(jit, REG0);
        jit_save_sp(jit, ctx);

        // val = rb_hash_new();
        yjit_save_regs(cb);
        call_ptr(cb, REG0, (void *)rb_hash_new);
        yjit_load_regs(cb);

        x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HASH);
        mov(cb, stack_ret, RAX);

        return YJIT_KEEP_COMPILING;
    } else {
        return YJIT_CANT_COMPILE;
    }
}

static codegen_status_t
gen_putnil(jitstate_t* jit, ctx_t* ctx)
{
    // Write constant at SP
    x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_NIL);
    mov(cb, stack_top, imm_opnd(Qnil));
    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_putobject(jitstate_t* jit, ctx_t* ctx)
{
    VALUE arg = jit_get_arg(jit, 0);

    if (FIXNUM_P(arg))
    {
        // Keep track of the fixnum type tag
        x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_FIXNUM);
        x86opnd_t imm = imm_opnd((int64_t)arg);

        // 64-bit immediates can't be directly written to memory
        if (imm.num_bits <= 32)
        {
            mov(cb, stack_top, imm);
        }
        else
        {
            mov(cb, REG0, imm);
            mov(cb, stack_top, REG0);
        }
    }
    else if (arg == Qtrue || arg == Qfalse)
    {
        x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_IMM);
        mov(cb, stack_top, imm_opnd((int64_t)arg));
    }
    else
    {
        // Load the value to push into REG0
        // Note that this value may get moved by the GC
        VALUE put_val = jit_get_arg(jit, 0);
        jit_mov_gc_ptr(jit, cb, REG0, put_val);

        val_type_t val_type = jit_type_of_value(put_val);

        // Write argument at SP
        x86opnd_t stack_top = ctx_stack_push(ctx, val_type);
        mov(cb, stack_top, REG0);
    }

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_putobject_int2fix(jitstate_t* jit, ctx_t* ctx)
{
    int opcode = jit_get_opcode(jit);
    int cst_val = (opcode == BIN(putobject_INT2FIX_0_))? 0:1;

    // Write constant at SP
    x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_FIXNUM);
    mov(cb, stack_top, imm_opnd(INT2FIX(cst_val)));

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_putself(jitstate_t* jit, ctx_t* ctx)
{
    // Load self from CFP
    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));

    // Write it on the stack
    x86opnd_t stack_top = ctx_stack_push_self(ctx);
    mov(cb, stack_top, REG0);

    return YJIT_KEEP_COMPILING;
}

// Compute the index of a local variable from its slot index
static uint32_t
slot_to_local_idx(const rb_iseq_t *iseq, int32_t slot_idx)
{
    // Convoluted rules from local_var_name() in iseq.c
    int32_t local_table_size = iseq->body->local_table_size;
    int32_t op = slot_idx - VM_ENV_DATA_SIZE;
    int32_t local_idx = local_idx = local_table_size - op - 1;
    RUBY_ASSERT(local_idx >= 0 && local_idx < local_table_size);
    return (uint32_t)local_idx;
}

static codegen_status_t
gen_getlocal_wc0(jitstate_t* jit, ctx_t* ctx)
{
    // Compute the offset from BP to the local
    int32_t slot_idx = (int32_t)jit_get_arg(jit, 0);
    const int32_t offs = -(SIZEOF_VALUE * slot_idx);
    uint32_t local_idx = slot_to_local_idx(jit->iseq, slot_idx);

    // Load environment pointer EP from CFP
    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));

    // Load the local from the EP
    mov(cb, REG0, mem_opnd(64, REG0, offs));

    // Write the local at SP
    x86opnd_t stack_top = ctx_stack_push_local(ctx, local_idx);
    mov(cb, stack_top, REG0);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_getlocal_generic(ctx_t* ctx, uint32_t local_idx, uint32_t level)
{
    // Load environment pointer EP from CFP
    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));

    while (level--) {
        // Get the previous EP from the current EP
        // See GET_PREV_EP(ep) macro
        // VALUE* prev_ep = ((VALUE *)((ep)[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03))
        mov(cb, REG0, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL));
        and(cb, REG0, imm_opnd(~0x03));
    }

    // Load the local from the block
    // val = *(vm_get_ep(GET_EP(), level) - idx);
    const int32_t offs = -(SIZEOF_VALUE * local_idx);
    mov(cb, REG0, mem_opnd(64, REG0, offs));

    // Write the local at SP
    x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, stack_top, REG0);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_getlocal(jitstate_t* jit, ctx_t* ctx)
{
    int32_t idx = (int32_t)jit_get_arg(jit, 0);
    int32_t level = (int32_t)jit_get_arg(jit, 1);
    return gen_getlocal_generic(ctx, idx, level);
}

static codegen_status_t
gen_getlocal_wc1(jitstate_t* jit, ctx_t* ctx)
{
    int32_t idx = (int32_t)jit_get_arg(jit, 0);
    return gen_getlocal_generic(ctx, idx, 1);
}

static codegen_status_t
gen_setlocal_wc0(jitstate_t* jit, ctx_t* ctx)
{
    /*
    vm_env_write(const VALUE *ep, int index, VALUE v)
    {
        VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS];
        if (LIKELY((flags & VM_ENV_FLAG_WB_REQUIRED) == 0)) {
            VM_STACK_ENV_WRITE(ep, index, v);
        }
        else {
            vm_env_write_slowpath(ep, index, v);
        }
    }
    */

    int32_t slot_idx = (int32_t)jit_get_arg(jit, 0);
    uint32_t local_idx = slot_to_local_idx(jit->iseq, slot_idx);

    // Load environment pointer EP from CFP
    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));

    // flags & VM_ENV_FLAG_WB_REQUIRED
    x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS);
    test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED));

    // Create a size-exit to fall back to the interpreter
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    // if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
    jnz_ptr(cb, side_exit);

    // Set the type of the local variable in the context
    val_type_t temp_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
    ctx_set_local_type(ctx, local_idx, temp_type);

    // Pop the value to write from the stack
    x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
    mov(cb, REG1, stack_top);

    // Write the value at the environment pointer
    const int32_t offs = -8 * slot_idx;
    mov(cb, mem_opnd(64, REG0, offs), REG1);

    return YJIT_KEEP_COMPILING;
}

// Check that `self` is a pointer to an object on the GC heap
static void
guard_self_is_heap(codeblock_t *cb, x86opnd_t self_opnd, uint8_t *side_exit, ctx_t *ctx)
{

    // `self` is constant throughout the entire region, so we only need to do this check once.
    if (!ctx->self_type.is_heap) {
        ADD_COMMENT(cb, "guard self is heap");
        RUBY_ASSERT(Qfalse < Qnil);
        test(cb, self_opnd, imm_opnd(RUBY_IMMEDIATE_MASK));
        jnz_ptr(cb, side_exit);
        cmp(cb, self_opnd, imm_opnd(Qnil));
        jbe_ptr(cb, side_exit);

        ctx->self_type.is_heap = 1;
    }
}

static void
gen_jnz_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
{
    switch (shape)
    {
        case SHAPE_NEXT0:
        case SHAPE_NEXT1:
        RUBY_ASSERT(false);
        break;

        case SHAPE_DEFAULT:
        jnz_ptr(cb, target0);
        break;
    }
}

static void
gen_jz_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
{
    switch (shape)
    {
        case SHAPE_NEXT0:
        case SHAPE_NEXT1:
        RUBY_ASSERT(false);
        break;

        case SHAPE_DEFAULT:
        jz_ptr(cb, target0);
        break;
    }
}

static void
gen_jbe_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
{
    switch (shape)
    {
        case SHAPE_NEXT0:
        case SHAPE_NEXT1:
        RUBY_ASSERT(false);
        break;

        case SHAPE_DEFAULT:
        jbe_ptr(cb, target0);
        break;
    }
}

enum jcc_kinds {
    JCC_JNE,
    JCC_JNZ,
    JCC_JZ,
    JCC_JE,
    JCC_JBE,
    JCC_JNA,
};

// Generate a jump to a stub that recompiles the current YARV instruction on failure.
// When depth_limitk is exceeded, generate a jump to a side exit.
static void
jit_chain_guard(enum jcc_kinds jcc, jitstate_t *jit, const ctx_t *ctx, uint8_t depth_limit, uint8_t *side_exit)
{
    branchgen_fn target0_gen_fn;

    switch (jcc) {
        case JCC_JNE:
        case JCC_JNZ:
            target0_gen_fn = gen_jnz_to_target0;
            break;
        case JCC_JZ:
        case JCC_JE:
            target0_gen_fn = gen_jz_to_target0;
            break;
        case JCC_JBE:
        case JCC_JNA:
            target0_gen_fn = gen_jbe_to_target0;
            break;
        default:
            RUBY_ASSERT(false && "unimplemented jump kind");
            break;
    };

    if (ctx->chain_depth < depth_limit) {
        ctx_t deeper = *ctx;
        deeper.chain_depth++;

        gen_branch(
            jit->block,
            ctx,
            (blockid_t) { jit->iseq, jit->insn_idx },
            &deeper,
            BLOCKID_NULL,
            NULL,
            target0_gen_fn
        );
    }
    else {
        target0_gen_fn(cb, side_exit, NULL, SHAPE_DEFAULT);
    }
}

bool rb_iv_index_tbl_lookup(struct st_table *iv_index_tbl, ID id, struct rb_iv_index_tbl_entry **ent); // vm_insnhelper.c

enum {
    GETIVAR_MAX_DEPTH = 10,       // up to 5 different classes, and embedded or not for each
    OPT_AREF_MAX_CHAIN_DEPTH = 2, // hashes and arrays
    SEND_MAX_DEPTH = 5,           // up to 5 different classes
};

/*
// Codegen for setting an instance variable.
// Preconditions:
//   - receiver is in REG0
//   - receiver has the same class as CLASS_OF(comptime_receiver)
//   - no stack push or pops to ctx since the entry to the codegen of the instruction being compiled
static codegen_status_t
gen_set_ivar(jitstate_t *jit, ctx_t *ctx, const int max_chain_depth, VALUE comptime_receiver, ID ivar_name, insn_opnd_t reg0_opnd, uint8_t *side_exit)
{
    VALUE comptime_val_klass = CLASS_OF(comptime_receiver);
    const ctx_t starting_context = *ctx; // make a copy for use with jit_chain_guard

    // If the class uses the default allocator, instances should all be T_OBJECT
    // NOTE: This assumes nobody changes the allocator of the class after allocation.
    //       Eventually, we can encode whether an object is T_OBJECT or not
    //       inside object shapes.
    if (rb_get_alloc_func(comptime_val_klass) != rb_class_allocate_instance) {
        GEN_COUNTER_INC(cb, setivar_not_object);
        return YJIT_CANT_COMPILE;
    }
    RUBY_ASSERT(BUILTIN_TYPE(comptime_receiver) == T_OBJECT); // because we checked the allocator

    // ID for the name of the ivar
    ID id = ivar_name;
    struct rb_iv_index_tbl_entry *ent;
    struct st_table *iv_index_tbl = ROBJECT_IV_INDEX_TBL(comptime_receiver);

    // Lookup index for the ivar the instruction loads
    if (iv_index_tbl && rb_iv_index_tbl_lookup(iv_index_tbl, id, &ent)) {
        uint32_t ivar_index = ent->index;

        val_type_t val_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
        x86opnd_t val_to_write = ctx_stack_opnd(ctx, 0);
        mov(cb, REG1, val_to_write);

        // Bail if the value to write is a heap object, because this needs a write barrier
        if (!val_type.is_imm) {
            ADD_COMMENT(cb, "guard value is immediate");
            test(cb, REG1, imm_opnd(RUBY_IMMEDIATE_MASK));
            jz_ptr(cb, COUNTED_EXIT(side_exit, setivar_val_heapobject));
            ctx_set_opnd_type(ctx, OPND_STACK(0), TYPE_IMM);
        }

        // Pop the value to write
        ctx_stack_pop(ctx, 1);

        // Bail if this object is frozen
        ADD_COMMENT(cb, "guard self is not frozen");
        x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
        test(cb, flags_opnd, imm_opnd(RUBY_FL_FREEZE));
        jnz_ptr(cb, COUNTED_EXIT(side_exit, setivar_frozen));

        // Pop receiver if it's on the temp stack
        if (!reg0_opnd.is_self) {
            (void)ctx_stack_pop(ctx, 1);
        }

        // Compile time self is embedded and the ivar index lands within the object
        if (RB_FL_TEST_RAW(comptime_receiver, ROBJECT_EMBED) && ivar_index < ROBJECT_EMBED_LEN_MAX) {
            // See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h

            // Guard that self is embedded
            // TODO: BT and JC is shorter
            ADD_COMMENT(cb, "guard embedded setivar");
            test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
            jit_chain_guard(JCC_JZ, jit, &starting_context, max_chain_depth, side_exit);

            // Store the ivar on the object
            x86opnd_t ivar_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.ary) + ivar_index * SIZEOF_VALUE);
            mov(cb, ivar_opnd, REG1);

            // Push the ivar on the stack
            // For attr_writer we'll need to push the value on the stack
            //x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN);
        }
        else {
            // Compile time value is *not* embeded.

            // Guard that value is *not* embedded
            // See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
            ADD_COMMENT(cb, "guard extended setivar");
            x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
            test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
            jit_chain_guard(JCC_JNZ, jit, &starting_context, max_chain_depth, side_exit);

            // check that the extended table is big enough
            if (ivar_index >= ROBJECT_EMBED_LEN_MAX + 1) {
                // Check that the slot is inside the extended table (num_slots > index)
                ADD_COMMENT(cb, "check index in extended table");
                x86opnd_t num_slots = mem_opnd(32, REG0, offsetof(struct RObject, as.heap.numiv));
                cmp(cb, num_slots, imm_opnd(ivar_index));
                jle_ptr(cb, COUNTED_EXIT(side_exit, setivar_idx_out_of_range));
            }

            // Get a pointer to the extended table
            x86opnd_t tbl_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.heap.ivptr));
            mov(cb, REG0, tbl_opnd);

            // Write the ivar to the extended table
            x86opnd_t ivar_opnd = mem_opnd(64, REG0, sizeof(VALUE) * ivar_index);
            mov(cb, ivar_opnd, REG1);
        }

        // Jump to next instruction. This allows guard chains to share the same successor.
        jit_jump_to_next_insn(jit, ctx);
        return YJIT_END_BLOCK;
    }

    GEN_COUNTER_INC(cb, setivar_name_not_mapped);
    return YJIT_CANT_COMPILE;
}
*/

// Codegen for getting an instance variable.
// Preconditions:
//   - receiver is in REG0
//   - receiver has the same class as CLASS_OF(comptime_receiver)
//   - no stack push or pops to ctx since the entry to the codegen of the instruction being compiled
static codegen_status_t
gen_get_ivar(jitstate_t *jit, ctx_t *ctx, const int max_chain_depth, VALUE comptime_receiver, ID ivar_name, insn_opnd_t reg0_opnd, uint8_t *side_exit)
{
    VALUE comptime_val_klass = CLASS_OF(comptime_receiver);
    const ctx_t starting_context = *ctx; // make a copy for use with jit_chain_guard

    // If the class uses the default allocator, instances should all be T_OBJECT
    // NOTE: This assumes nobody changes the allocator of the class after allocation.
    //       Eventually, we can encode whether an object is T_OBJECT or not
    //       inside object shapes.
    if (!RB_TYPE_P(comptime_receiver, T_OBJECT) ||
            rb_get_alloc_func(comptime_val_klass) != rb_class_allocate_instance) {
        // General case. Call rb_ivar_get(). No need to reconstruct interpreter
        // state since the routine never raises exceptions or allocate objects
        // visibile to Ruby.
        // VALUE rb_ivar_get(VALUE obj, ID id)
        ADD_COMMENT(cb, "call rb_ivar_get()");
        yjit_save_regs(cb);
        mov(cb, C_ARG_REGS[0], REG0);
        mov(cb, C_ARG_REGS[1], imm_opnd((int64_t)ivar_name));
        call_ptr(cb, REG1, (void *)rb_ivar_get);
        yjit_load_regs(cb);

        if (!reg0_opnd.is_self) {
            (void)ctx_stack_pop(ctx, 1);
        }
        // Push the ivar on the stack
        x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN);
        mov(cb, out_opnd, RAX);

        // Jump to next instruction. This allows guard chains to share the same successor.
        jit_jump_to_next_insn(jit, ctx);
        return YJIT_END_BLOCK;
    }

    /*
    // FIXME:
    // This check was added because of a failure in a test involving the
    // Nokogiri Document class where we see a T_DATA that still has the default
    // allocator.
    // Aaron Patterson argues that this is a bug in the C extension, because
    // people could call .allocate() on the class and still get a T_OBJECT
    // For now I added an extra dynamic check that the receiver is T_OBJECT
    // so we can safely pass all the tests in Shopify Core.
    //
    // Guard that the receiver is T_OBJECT
    // #define RB_BUILTIN_TYPE(x) (int)(((struct RBasic*)(x))->flags & RUBY_T_MASK)
    ADD_COMMENT(cb, "guard receiver is T_OBJECT");
    mov(cb, REG1, member_opnd(REG0, struct RBasic, flags));
    and(cb, REG1, imm_opnd(RUBY_T_MASK));
    cmp(cb, REG1, imm_opnd(T_OBJECT));
    jit_chain_guard(JCC_JNE, jit, &starting_context, max_chain_depth, side_exit);
    */

    // ID for the name of the ivar
    ID id = ivar_name;
    struct rb_iv_index_tbl_entry *ent;
    struct st_table *iv_index_tbl = ROBJECT_IV_INDEX_TBL(comptime_receiver);

    // Lookup index for the ivar the instruction loads
    if (iv_index_tbl && rb_iv_index_tbl_lookup(iv_index_tbl, id, &ent)) {
        uint32_t ivar_index = ent->index;

        // Pop receiver if it's on the temp stack
        if (!reg0_opnd.is_self) {
            (void)ctx_stack_pop(ctx, 1);
        }

        // Compile time self is embedded and the ivar index lands within the object
        if (RB_FL_TEST_RAW(comptime_receiver, ROBJECT_EMBED) && ivar_index < ROBJECT_EMBED_LEN_MAX) {
            // See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h

            // Guard that self is embedded
            // TODO: BT and JC is shorter
            ADD_COMMENT(cb, "guard embedded getivar");
            x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
            test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
            jit_chain_guard(JCC_JZ, jit, &starting_context, max_chain_depth, side_exit);

            // Load the variable
            x86opnd_t ivar_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.ary) + ivar_index * SIZEOF_VALUE);
            mov(cb, REG1, ivar_opnd);

            // Guard that the variable is not Qundef
            // TODO: use cmov to push Qnil in this case
            cmp(cb, REG1, imm_opnd(Qundef));
            je_ptr(cb, COUNTED_EXIT(side_exit, getivar_undef));

            // Push the ivar on the stack
            x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN);
            mov(cb, out_opnd, REG1);
        }
        else {
            // Compile time value is *not* embeded.

            // Guard that value is *not* embedded
            // See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
            ADD_COMMENT(cb, "guard extended getivar");
            x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
            test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
            jit_chain_guard(JCC_JNZ, jit, &starting_context, max_chain_depth, side_exit);

            // check that the extended table is big enough
            if (ivar_index >= ROBJECT_EMBED_LEN_MAX + 1) {
                // Check that the slot is inside the extended table (num_slots > index)
                x86opnd_t num_slots = mem_opnd(32, REG0, offsetof(struct RObject, as.heap.numiv));
                cmp(cb, num_slots, imm_opnd(ivar_index));
                jle_ptr(cb, COUNTED_EXIT(side_exit, getivar_idx_out_of_range));
            }

            // Get a pointer to the extended table
            x86opnd_t tbl_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.heap.ivptr));
            mov(cb, REG0, tbl_opnd);

            // Read the ivar from the extended table
            x86opnd_t ivar_opnd = mem_opnd(64, REG0, sizeof(VALUE) * ivar_index);
            mov(cb, REG0, ivar_opnd);

            // Check that the ivar is not Qundef
            cmp(cb, REG0, imm_opnd(Qundef));
            je_ptr(cb, COUNTED_EXIT(side_exit, getivar_undef));

            // Push the ivar on the stack
            x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN);
            mov(cb, out_opnd, REG0);
        }

        // Jump to next instruction. This allows guard chains to share the same successor.
        jit_jump_to_next_insn(jit, ctx);
        return YJIT_END_BLOCK;
    }

    GEN_COUNTER_INC(cb, getivar_name_not_mapped);
    return YJIT_CANT_COMPILE;
}

static codegen_status_t
gen_getinstancevariable(jitstate_t *jit, ctx_t *ctx)
{
    // Defer compilation so we can specialize on a runtime `self`
    if (!jit_at_current_insn(jit)) {
        defer_compilation(jit->block, jit->insn_idx, ctx);
        return YJIT_END_BLOCK;
    }

    ID ivar_name = (ID)jit_get_arg(jit, 0);

    VALUE comptime_val = jit_peek_at_self(jit, ctx);
    VALUE comptime_val_klass = CLASS_OF(comptime_val);

    // Generate a side exit
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    // Guard that the receiver has the same class as the one from compile time.
    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));
    guard_self_is_heap(cb, REG0, COUNTED_EXIT(side_exit, getivar_se_self_not_heap), ctx);

    jit_guard_known_klass(jit, ctx, comptime_val_klass, OPND_SELF, comptime_val, GETIVAR_MAX_DEPTH, side_exit);

    return gen_get_ivar(jit, ctx, GETIVAR_MAX_DEPTH, comptime_val, ivar_name, OPND_SELF, side_exit);
}

void rb_vm_setinstancevariable(const rb_iseq_t *iseq, VALUE obj, ID id, VALUE val, IVC ic);

static codegen_status_t
gen_setinstancevariable(jitstate_t* jit, ctx_t* ctx)
{
    ID id = (ID)jit_get_arg(jit, 0);
    IVC ic = (IVC)jit_get_arg(jit, 1);

    // Save the PC and SP because the callee may allocate
    // Note that this modifies REG_SP, which is why we do it first
    jit_save_pc(jit, REG0);
    jit_save_sp(jit, ctx);

    // Get the operands from the stack
    x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);

    // Call rb_vm_setinstancevariable(iseq, obj, id, val, ic);
    // Out of order because we're going to corrupt REG_SP and REG_CFP
    yjit_save_regs(cb);
    mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, self));
    mov(cb, C_ARG_REGS[3], val_opnd);
    mov(cb, C_ARG_REGS[2], imm_opnd(id));
    mov(cb, C_ARG_REGS[4], const_ptr_opnd(ic));
    jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], (VALUE)jit->iseq);
    call_ptr(cb, REG0, (void *)rb_vm_setinstancevariable);
    yjit_load_regs(cb);

    return YJIT_KEEP_COMPILING;

    /*
    // Defer compilation so we can specialize on a runtime `self`
    if (!jit_at_current_insn(jit)) {
        defer_compilation(jit->block, jit->insn_idx, ctx);
        return YJIT_END_BLOCK;
    }

    ID ivar_name = (ID)jit_get_arg(jit, 0);

    VALUE comptime_val = jit_peek_at_self(jit, ctx);
    VALUE comptime_val_klass = CLASS_OF(comptime_val);

    // Generate a side exit
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    // Guard that the receiver has the same class as the one from compile time.
    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));
    guard_self_is_heap(cb, REG0, COUNTED_EXIT(side_exit, setivar_se_self_not_heap), ctx);

    jit_guard_known_klass(jit, ctx, comptime_val_klass, OPND_SELF, GETIVAR_MAX_DEPTH, side_exit);

    return gen_set_ivar(jit, ctx, GETIVAR_MAX_DEPTH, comptime_val, ivar_name, OPND_SELF, side_exit);
    */
}

bool rb_vm_defined(rb_execution_context_t *ec, rb_control_frame_t *reg_cfp, rb_num_t op_type, VALUE obj, VALUE v);

static codegen_status_t
gen_defined(jitstate_t* jit, ctx_t* ctx)
{
    rb_num_t op_type = (rb_num_t)jit_get_arg(jit, 0);
    VALUE obj = (VALUE)jit_get_arg(jit, 1);
    VALUE pushval = (VALUE)jit_get_arg(jit, 2);

    // Save the PC and SP because the callee may allocate
    // Note that this modifies REG_SP, which is why we do it first
    jit_save_pc(jit, REG0);
    jit_save_sp(jit, ctx);

    // Get the operands from the stack
    x86opnd_t v_opnd = ctx_stack_pop(ctx, 1);

    // Call vm_defined(ec, reg_cfp, op_type, obj, v)
    // Out of order because we're going to corrupt REG_SP and REG_CFP
    yjit_save_regs(cb);
    mov(cb, R9, REG_CFP);
    mov(cb, C_ARG_REGS[0], REG_EC);
    mov(cb, C_ARG_REGS[1], R9);
    mov(cb, C_ARG_REGS[4], v_opnd); // depends on REG_SP
    mov(cb, C_ARG_REGS[2], imm_opnd(op_type)); // clobers REG_SP
    jit_mov_gc_ptr(jit, cb, C_ARG_REGS[3], (VALUE)obj);
    call_ptr(cb, REG0, (void *)rb_vm_defined);
    yjit_load_regs(cb);

    // if (vm_defined(ec, GET_CFP(), op_type, obj, v)) {
    //  val = pushval;
    // }
    jit_mov_gc_ptr(jit, cb, REG1, (VALUE)pushval);
    cmp(cb, AL, imm_opnd(0));
    mov(cb, RAX, imm_opnd(Qnil));
    cmovnz(cb, RAX, REG1);

    // Push the return value onto the stack
    val_type_t out_type = SPECIAL_CONST_P(pushval)? TYPE_IMM:TYPE_UNKNOWN;
    x86opnd_t stack_ret = ctx_stack_push(ctx, out_type);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_checktype(jitstate_t* jit, ctx_t* ctx)
{
    // TODO: could we specialize on the type we detect
    uint8_t* side_exit = yjit_side_exit(jit, ctx);

    enum ruby_value_type type_val = (enum ruby_value_type)jit_get_arg(jit, 0);
    // Only three types are emitted by compile.c
    if (type_val == T_STRING || type_val == T_ARRAY || type_val == T_HASH) {
        val_type_t val_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
        x86opnd_t val = ctx_stack_pop(ctx, 1);

        x86opnd_t stack_ret;

        // Check if we know from type information
        if ((type_val == T_STRING && val_type.type == ETYPE_STRING) ||
                (type_val == T_ARRAY && val_type.type == ETYPE_ARRAY) ||
                (type_val == T_HASH && val_type.type == ETYPE_HASH)) {
            // guaranteed type match
            stack_ret = ctx_stack_push(ctx, TYPE_TRUE);
            mov(cb, stack_ret, imm_opnd(Qtrue));
            return YJIT_KEEP_COMPILING;
        } else if (val_type.is_imm || val_type.type != ETYPE_UNKNOWN) {
            // guaranteed not to match T_STRING/T_ARRAY/T_HASH
            stack_ret = ctx_stack_push(ctx, TYPE_FALSE);
            mov(cb, stack_ret, imm_opnd(Qfalse));
            return YJIT_KEEP_COMPILING;
        }

        mov(cb, REG0, val);

        if (!val_type.is_heap) {
            // if (SPECIAL_CONST_P(val)) {
            // Bail if receiver is not a heap object
            test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
            jnz_ptr(cb, side_exit);
            cmp(cb, REG0, imm_opnd(Qfalse));
            je_ptr(cb, side_exit);
            cmp(cb, REG0, imm_opnd(Qnil));
            je_ptr(cb, side_exit);
        }

        // Check type on object
        mov(cb, REG0, mem_opnd(64, REG0, offsetof(struct RBasic, flags)));
        and(cb, REG0, imm_opnd(RUBY_T_MASK));
        cmp(cb, REG0, imm_opnd(type_val));
        mov(cb, REG0, imm_opnd(Qtrue));
        mov(cb, REG1, imm_opnd(Qfalse));
        cmovne(cb, REG0, REG1);

        stack_ret = ctx_stack_push(ctx, TYPE_IMM);
        mov(cb, stack_ret, REG0);

        return YJIT_KEEP_COMPILING;
    } else {
        return YJIT_CANT_COMPILE;
    }
}

static codegen_status_t
gen_concatstrings(jitstate_t* jit, ctx_t* ctx)
{
    rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);

    // Save the PC and SP because we are allocating
    jit_save_pc(jit, REG0);
    jit_save_sp(jit, ctx);

    x86opnd_t values_ptr = ctx_sp_opnd(ctx, -(sizeof(VALUE) * (uint32_t)n));

    // call rb_str_concat_literals(long n, const VALUE *strings);
    yjit_save_regs(cb);
    mov(cb, C_ARG_REGS[0], imm_opnd(n));
    lea(cb, C_ARG_REGS[1], values_ptr);
    call_ptr(cb, REG0, (void *)rb_str_concat_literals);
    yjit_load_regs(cb);

    ctx_stack_pop(ctx, n);
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

static void
guard_two_fixnums(ctx_t* ctx, uint8_t* side_exit)
{
    // Get the stack operand types
    val_type_t arg1_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
    val_type_t arg0_type = ctx_get_opnd_type(ctx, OPND_STACK(1));

    // Get stack operands without popping them
    x86opnd_t arg1 = ctx_stack_opnd(ctx, 0);
    x86opnd_t arg0 = ctx_stack_opnd(ctx, 1);

    // If not fixnums, fall back
    if (arg0_type.type != ETYPE_FIXNUM) {
        ADD_COMMENT(cb, "guard arg0 fixnum");
        test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
        jz_ptr(cb, side_exit);
    }
    if (arg1_type.type != ETYPE_FIXNUM) {
        ADD_COMMENT(cb, "guard arg1 fixnum");
        test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
        jz_ptr(cb, side_exit);
    }

    // Set stack types in context
    ctx_set_opnd_type(ctx, OPND_STACK(0), TYPE_FIXNUM);
    ctx_set_opnd_type(ctx, OPND_STACK(1), TYPE_FIXNUM);
}

// Conditional move operation used by comparison operators
typedef void (*cmov_fn)(codeblock_t* cb, x86opnd_t opnd0, x86opnd_t opnd1);

static codegen_status_t
gen_fixnum_cmp(jitstate_t* jit, ctx_t* ctx, cmov_fn cmov_op)
{
    // Create a size-exit to fall back to the interpreter
    // Note: we generate the side-exit before popping operands from the stack
    uint8_t* side_exit = yjit_side_exit(jit, ctx);

    if (!assume_bop_not_redefined(jit->block, INTEGER_REDEFINED_OP_FLAG, BOP_LT)) {
        return YJIT_CANT_COMPILE;
    }

    // Check that both operands are fixnums
    guard_two_fixnums(ctx, side_exit);

    // Get the operands from the stack
    x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
    x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

    // Compare the arguments
    xor(cb, REG0_32, REG0_32); // REG0 = Qfalse
    mov(cb, REG1, arg0);
    cmp(cb, REG1, arg1);
    mov(cb, REG1, imm_opnd(Qtrue));
    cmov_op(cb, REG0, REG1);

    // Push the output on the stack
    x86opnd_t dst = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, dst, REG0);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_opt_lt(jitstate_t* jit, ctx_t* ctx)
{
    return gen_fixnum_cmp(jit, ctx, cmovl);
}

static codegen_status_t
gen_opt_le(jitstate_t* jit, ctx_t* ctx)
{
    return gen_fixnum_cmp(jit, ctx, cmovle);
}

static codegen_status_t
gen_opt_ge(jitstate_t* jit, ctx_t* ctx)
{
    return gen_fixnum_cmp(jit, ctx, cmovge);
}

static codegen_status_t
gen_opt_gt(jitstate_t* jit, ctx_t* ctx)
{
    return gen_fixnum_cmp(jit, ctx, cmovg);
}

VALUE rb_opt_equality_specialized(VALUE recv, VALUE obj);

static codegen_status_t
gen_opt_eq(jitstate_t* jit, ctx_t* ctx)
{
    uint8_t* side_exit = yjit_side_exit(jit, ctx);

    // Get the operands from the stack
    x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
    x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

    // Call rb_opt_equality_specialized(VALUE recv, VALUE obj)
    // We know this method won't allocate or perform calls
    yjit_save_regs(cb);
    mov(cb, C_ARG_REGS[0], arg0);
    mov(cb, C_ARG_REGS[1], arg1);
    call_ptr(cb, REG0, (void *)rb_opt_equality_specialized);
    yjit_load_regs(cb);

    // If val == Qundef, bail to do a method call
    cmp(cb, RAX, imm_opnd(Qundef));
    je_ptr(cb, side_exit);

    // Push the return value onto the stack
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_IMM);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t gen_opt_send_without_block(jitstate_t *jit, ctx_t *ctx);

static codegen_status_t gen_send_general(jitstate_t *jit, ctx_t *ctx, struct rb_call_data *cd, rb_iseq_t *block);

static codegen_status_t
gen_opt_neq(jitstate_t* jit, ctx_t* ctx)
{
    // opt_neq is passed two rb_call_data as arguments:
    // first for ==, second for !=
    struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 1);
    return gen_send_general(jit, ctx, cd, NULL);
}

static codegen_status_t
gen_opt_aref(jitstate_t *jit, ctx_t *ctx)
{
    struct rb_call_data * cd = (struct rb_call_data *)jit_get_arg(jit, 0);
    int32_t argc = (int32_t)vm_ci_argc(cd->ci);

    // Only JIT one arg calls like `ary[6]`
    if (argc != 1) {
        GEN_COUNTER_INC(cb, oaref_argc_not_one);
        return YJIT_CANT_COMPILE;
    }

    // Defer compilation so we can specialize base on a runtime receiver
    if (!jit_at_current_insn(jit)) {
        defer_compilation(jit->block, jit->insn_idx, ctx);
        return YJIT_END_BLOCK;
    }

    // Remember the context on entry for adding guard chains
    const ctx_t starting_context = *ctx;

    // Specialize base on compile time values
    VALUE comptime_idx = jit_peek_at_stack(jit, ctx, 0);
    VALUE comptime_recv = jit_peek_at_stack(jit, ctx, 1);

    // Create a size-exit to fall back to the interpreter
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    if (CLASS_OF(comptime_recv) == rb_cArray && RB_FIXNUM_P(comptime_idx)) {
        if (!assume_bop_not_redefined(jit->block, ARRAY_REDEFINED_OP_FLAG, BOP_AREF)) {
            return YJIT_CANT_COMPILE;
        }

        // Pop the stack operands
        x86opnd_t idx_opnd = ctx_stack_pop(ctx, 1);
        x86opnd_t recv_opnd = ctx_stack_pop(ctx, 1);
        mov(cb, REG0, recv_opnd);

        // if (SPECIAL_CONST_P(recv)) {
        // Bail if receiver is not a heap object
        test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
        jnz_ptr(cb, side_exit);
        cmp(cb, REG0, imm_opnd(Qfalse));
        je_ptr(cb, side_exit);
        cmp(cb, REG0, imm_opnd(Qnil));
        je_ptr(cb, side_exit);

        // Bail if recv has a class other than ::Array.
        // BOP_AREF check above is only good for ::Array.
        mov(cb, REG1, mem_opnd(64, REG0, offsetof(struct RBasic, klass)));
        mov(cb, REG0, const_ptr_opnd((void *)rb_cArray));
        cmp(cb, REG0, REG1);
        jit_chain_guard(JCC_JNE, jit, &starting_context, OPT_AREF_MAX_CHAIN_DEPTH, side_exit);

        // Bail if idx is not a FIXNUM
        mov(cb, REG1, idx_opnd);
        test(cb, REG1, imm_opnd(RUBY_FIXNUM_FLAG));
        jz_ptr(cb, COUNTED_EXIT(side_exit, oaref_arg_not_fixnum));

        // Call VALUE rb_ary_entry_internal(VALUE ary, long offset).
        // It never raises or allocates, so we don't need to write to cfp->pc.
        {
            yjit_save_regs(cb);

            mov(cb, RDI, recv_opnd);
            sar(cb, REG1, imm_opnd(1)); // Convert fixnum to int
            mov(cb, RSI, REG1);
            call_ptr(cb, REG0, (void *)rb_ary_entry_internal);

            yjit_load_regs(cb);

            // Push the return value onto the stack
            x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
            mov(cb, stack_ret, RAX);
        }

        // Jump to next instruction. This allows guard chains to share the same successor.
        jit_jump_to_next_insn(jit, ctx);
        return YJIT_END_BLOCK;
    }
    else if (CLASS_OF(comptime_recv) == rb_cHash) {
        if (!assume_bop_not_redefined(jit->block, HASH_REDEFINED_OP_FLAG, BOP_AREF)) {
            return YJIT_CANT_COMPILE;
        }

        // Pop the stack operands
        x86opnd_t idx_opnd = ctx_stack_pop(ctx, 1);
        x86opnd_t recv_opnd = ctx_stack_pop(ctx, 1);
        mov(cb, REG0, recv_opnd);

        // if (SPECIAL_CONST_P(recv)) {
        // Bail if receiver is not a heap object
        test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
        jnz_ptr(cb, side_exit);
        cmp(cb, REG0, imm_opnd(Qfalse));
        je_ptr(cb, side_exit);
        cmp(cb, REG0, imm_opnd(Qnil));
        je_ptr(cb, side_exit);

        // Bail if recv has a class other than ::Hash.
        // BOP_AREF check above is only good for ::Hash.
        mov(cb, REG1, mem_opnd(64, REG0, offsetof(struct RBasic, klass)));
        mov(cb, REG0, const_ptr_opnd((void *)rb_cHash));
        cmp(cb, REG0, REG1);
        jit_chain_guard(JCC_JNE, jit, &starting_context, OPT_AREF_MAX_CHAIN_DEPTH, side_exit);

        // Call VALUE rb_hash_aref(VALUE hash, VALUE key).
        {
            // Write incremented pc to cfp->pc as the routine can raise and allocate
            jit_save_pc(jit, REG0);

            // About to change REG_SP which these operands depend on. Yikes.
            mov(cb, R8, recv_opnd);
            mov(cb, R9, idx_opnd);

            // Write sp to cfp->sp since rb_hash_aref might need to call #hash on the key
            jit_save_sp(jit, ctx);

            yjit_save_regs(cb);

            mov(cb, C_ARG_REGS[0], R8);
            mov(cb, C_ARG_REGS[1], R9);
            call_ptr(cb, REG0, (void *)rb_hash_aref);

            yjit_load_regs(cb);

            // Push the return value onto the stack
            x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
            mov(cb, stack_ret, RAX);
        }

        // Jump to next instruction. This allows guard chains to share the same successor.
        jit_jump_to_next_insn(jit, ctx);
        return YJIT_END_BLOCK;
    }
    else {
        // General case. Call the [] method.
        return gen_opt_send_without_block(jit, ctx);
    }
}

VALUE rb_vm_opt_aset(VALUE recv, VALUE obj, VALUE set);

static codegen_status_t
gen_opt_aset(jitstate_t *jit, ctx_t *ctx)
{
    // Save the PC and SP because the callee may allocate
    // Note that this modifies REG_SP, which is why we do it first
    jit_save_pc(jit, REG0);
    jit_save_sp(jit, ctx);

    uint8_t* side_exit = yjit_side_exit(jit, ctx);

    // Get the operands from the stack
    x86opnd_t arg2 = ctx_stack_pop(ctx, 1);
    x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
    x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

    // Call rb_vm_opt_mod(VALUE recv, VALUE obj)
    yjit_save_regs(cb);
    mov(cb, C_ARG_REGS[0], arg0);
    mov(cb, C_ARG_REGS[1], arg1);
    mov(cb, C_ARG_REGS[2], arg2);
    call_ptr(cb, REG0, (void *)rb_vm_opt_aset);
    yjit_load_regs(cb);

    // If val == Qundef, bail to do a method call
    cmp(cb, RAX, imm_opnd(Qundef));
    je_ptr(cb, side_exit);

    // Push the return value onto the stack
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_opt_and(jitstate_t* jit, ctx_t* ctx)
{
    // Create a size-exit to fall back to the interpreter
    // Note: we generate the side-exit before popping operands from the stack
    uint8_t* side_exit = yjit_side_exit(jit, ctx);

    if (!assume_bop_not_redefined(jit->block, INTEGER_REDEFINED_OP_FLAG, BOP_AND)) {
        return YJIT_CANT_COMPILE;
    }

    // Check that both operands are fixnums
    guard_two_fixnums(ctx, side_exit);

    // Get the operands and destination from the stack
    x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
    x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

    // Do the bitwise and arg0 & arg1
    mov(cb, REG0, arg0);
    and(cb, REG0, arg1);

    // Push the output on the stack
    x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM);
    mov(cb, dst, REG0);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_opt_or(jitstate_t* jit, ctx_t* ctx)
{
    // Create a size-exit to fall back to the interpreter
    // Note: we generate the side-exit before popping operands from the stack
    uint8_t* side_exit = yjit_side_exit(jit, ctx);

    if (!assume_bop_not_redefined(jit->block, INTEGER_REDEFINED_OP_FLAG, BOP_OR)) {
        return YJIT_CANT_COMPILE;
    }

    // Check that both operands are fixnums
    guard_two_fixnums(ctx, side_exit);

    // Get the operands and destination from the stack
    x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
    x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

    // Do the bitwise or arg0 | arg1
    mov(cb, REG0, arg0);
    or(cb, REG0, arg1);

    // Push the output on the stack
    x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM);
    mov(cb, dst, REG0);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_opt_minus(jitstate_t* jit, ctx_t* ctx)
{
    // Create a size-exit to fall back to the interpreter
    // Note: we generate the side-exit before popping operands from the stack
    uint8_t* side_exit = yjit_side_exit(jit, ctx);

    if (!assume_bop_not_redefined(jit->block, INTEGER_REDEFINED_OP_FLAG, BOP_MINUS)) {
        return YJIT_CANT_COMPILE;
    }

    // Check that both operands are fixnums
    guard_two_fixnums(ctx, side_exit);

    // Get the operands and destination from the stack
    x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
    x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

    // Subtract arg0 - arg1 and test for overflow
    mov(cb, REG0, arg0);
    sub(cb, REG0, arg1);
    jo_ptr(cb, side_exit);
    add(cb, REG0, imm_opnd(1));

    // Push the output on the stack
    x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM);
    mov(cb, dst, REG0);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_opt_plus(jitstate_t* jit, ctx_t* ctx)
{
    // Create a size-exit to fall back to the interpreter
    // Note: we generate the side-exit before popping operands from the stack
    uint8_t* side_exit = yjit_side_exit(jit, ctx);

    if (!assume_bop_not_redefined(jit->block, INTEGER_REDEFINED_OP_FLAG, BOP_PLUS)) {
        return YJIT_CANT_COMPILE;
    }

    // Check that both operands are fixnums
    guard_two_fixnums(ctx, side_exit);

    // Get the operands and destination from the stack
    x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
    x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

    // Add arg0 + arg1 and test for overflow
    mov(cb, REG0, arg0);
    sub(cb, REG0, imm_opnd(1));
    add(cb, REG0, arg1);
    jo_ptr(cb, side_exit);

    // Push the output on the stack
    x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM);
    mov(cb, dst, REG0);

    return YJIT_KEEP_COMPILING;
}

VALUE rb_vm_opt_mod(VALUE recv, VALUE obj);

static codegen_status_t
gen_opt_mod(jitstate_t* jit, ctx_t* ctx)
{
    // Save the PC and SP because the callee may allocate bignums
    // Note that this modifies REG_SP, which is why we do it first
    jit_save_pc(jit, REG0);
    jit_save_sp(jit, ctx);

    uint8_t* side_exit = yjit_side_exit(jit, ctx);

    // Get the operands from the stack
    x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
    x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

    // Call rb_vm_opt_mod(VALUE recv, VALUE obj)
    yjit_save_regs(cb);
    mov(cb, C_ARG_REGS[0], arg0);
    mov(cb, C_ARG_REGS[1], arg1);
    call_ptr(cb, REG0, (void *)rb_vm_opt_mod);
    yjit_load_regs(cb);

    // If val == Qundef, bail to do a method call
    cmp(cb, RAX, imm_opnd(Qundef));
    je_ptr(cb, side_exit);

    // Push the return value onto the stack
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_opt_ltlt(jitstate_t* jit, ctx_t* ctx)
{
    // Delegate to send, call the method on the recv
    return gen_opt_send_without_block(jit, ctx);
}

static codegen_status_t
gen_opt_nil_p(jitstate_t* jit, ctx_t* ctx)
{
    // Delegate to send, call the method on the recv
    return gen_opt_send_without_block(jit, ctx);
}

static codegen_status_t
gen_opt_empty_p(jitstate_t* jit, ctx_t* ctx)
{
    // Delegate to send, call the method on the recv
    return gen_opt_send_without_block(jit, ctx);
}

static codegen_status_t
gen_opt_str_freeze(jitstate_t* jit, ctx_t* ctx)
{
    if (!assume_bop_not_redefined(jit->block, STRING_REDEFINED_OP_FLAG, BOP_FREEZE)) {
        return YJIT_CANT_COMPILE;
    }

    VALUE str = jit_get_arg(jit, 0);
    jit_mov_gc_ptr(jit, cb, REG0, str);

    // Push the return value onto the stack
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING);
    mov(cb, stack_ret, REG0);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_opt_str_uminus(jitstate_t* jit, ctx_t* ctx)
{
    if (!assume_bop_not_redefined(jit->block, STRING_REDEFINED_OP_FLAG, BOP_UMINUS)) {
        return YJIT_CANT_COMPILE;
    }

    VALUE str = jit_get_arg(jit, 0);
    jit_mov_gc_ptr(jit, cb, REG0, str);

    // Push the return value onto the stack
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING);
    mov(cb, stack_ret, REG0);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_opt_not(jitstate_t *jit, ctx_t *ctx)
{
    return gen_opt_send_without_block(jit, ctx);
}

static codegen_status_t
gen_opt_size(jitstate_t *jit, ctx_t *ctx)
{
    return gen_opt_send_without_block(jit, ctx);
}

static codegen_status_t
gen_opt_length(jitstate_t *jit, ctx_t *ctx)
{
    return gen_opt_send_without_block(jit, ctx);
}

void
gen_branchif_branch(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape)
{
    switch (shape)
    {
        case SHAPE_NEXT0:
        jz_ptr(cb, target1);
        break;

        case SHAPE_NEXT1:
        jnz_ptr(cb, target0);
        break;

        case SHAPE_DEFAULT:
        jnz_ptr(cb, target0);
        jmp_ptr(cb, target1);
        break;
    }
}

static codegen_status_t
gen_branchif(jitstate_t* jit, ctx_t* ctx)
{
    int32_t jump_offset = (int32_t)jit_get_arg(jit, 0);

    // Check for interrupts, but only on backward branches that may create loops
    if (jump_offset < 0) {
        uint8_t* side_exit = yjit_side_exit(jit, ctx);
        yjit_check_ints(cb, side_exit);
    }

    // Test if any bit (outside of the Qnil bit) is on
    // RUBY_Qfalse  /* ...0000 0000 */
    // RUBY_Qnil    /* ...0000 1000 */
    x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
    test(cb, val_opnd, imm_opnd(~Qnil));

    // Get the branch target instruction offsets
    uint32_t next_idx = jit_next_insn_idx(jit);
    uint32_t jump_idx = next_idx + jump_offset;
    blockid_t next_block = { jit->iseq, next_idx };
    blockid_t jump_block = { jit->iseq, jump_idx };

    // Generate the branch instructions
    gen_branch(
        jit->block,
        ctx,
        jump_block,
        ctx,
        next_block,
        ctx,
        gen_branchif_branch
    );

    return YJIT_END_BLOCK;
}

void
gen_branchunless_branch(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape)
{
    switch (shape)
    {
        case SHAPE_NEXT0:
        jnz_ptr(cb, target1);
        break;

        case SHAPE_NEXT1:
        jz_ptr(cb, target0);
        break;

        case SHAPE_DEFAULT:
        jz_ptr(cb, target0);
        jmp_ptr(cb, target1);
        break;
    }
}

static codegen_status_t
gen_branchunless(jitstate_t* jit, ctx_t* ctx)
{
    int32_t jump_offset = (int32_t)jit_get_arg(jit, 0);

    // Check for interrupts, but only on backward branches that may create loops
    if (jump_offset < 0) {
        uint8_t* side_exit = yjit_side_exit(jit, ctx);
        yjit_check_ints(cb, side_exit);
    }

    // Test if any bit (outside of the Qnil bit) is on
    // RUBY_Qfalse  /* ...0000 0000 */
    // RUBY_Qnil    /* ...0000 1000 */
    x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
    test(cb, val_opnd, imm_opnd(~Qnil));

    // Get the branch target instruction offsets
    uint32_t next_idx = jit_next_insn_idx(jit);
    uint32_t jump_idx = next_idx + jump_offset;
    blockid_t next_block = { jit->iseq, next_idx };
    blockid_t jump_block = { jit->iseq, jump_idx };

    // Generate the branch instructions
    gen_branch(
        jit->block,
        ctx,
        jump_block,
        ctx,
        next_block,
        ctx,
        gen_branchunless_branch
    );

    return YJIT_END_BLOCK;
}

void
gen_branchnil_branch(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape)
{
    switch (shape)
    {
        case SHAPE_NEXT0:
        jne_ptr(cb, target1);
        break;

        case SHAPE_NEXT1:
        je_ptr(cb, target0);
        break;

        case SHAPE_DEFAULT:
        je_ptr(cb, target0);
        jmp_ptr(cb, target1);
        break;
    }
}

static codegen_status_t
gen_branchnil(jitstate_t* jit, ctx_t* ctx)
{
    int32_t jump_offset = (int32_t)jit_get_arg(jit, 0);

    // Check for interrupts, but only on backward branches that may create loops
    if (jump_offset < 0) {
        uint8_t* side_exit = yjit_side_exit(jit, ctx);
        yjit_check_ints(cb, side_exit);
    }

    // Test if the value is Qnil
    // RUBY_Qnil    /* ...0000 1000 */
    x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
    cmp(cb, val_opnd, imm_opnd(Qnil));

    // Get the branch target instruction offsets
    uint32_t next_idx = jit_next_insn_idx(jit);
    uint32_t jump_idx = next_idx + jump_offset;
    blockid_t next_block = { jit->iseq, next_idx };
    blockid_t jump_block = { jit->iseq, jump_idx };

    // Generate the branch instructions
    gen_branch(
        jit->block,
        ctx,
        jump_block,
        ctx,
        next_block,
        ctx,
        gen_branchnil_branch
    );

    return YJIT_END_BLOCK;
}

static codegen_status_t
gen_jump(jitstate_t* jit, ctx_t* ctx)
{
    int32_t jump_offset = (int32_t)jit_get_arg(jit, 0);

    // Check for interrupts, but only on backward branches that may create loops
    if (jump_offset < 0) {
        uint8_t* side_exit = yjit_side_exit(jit, ctx);
        yjit_check_ints(cb, side_exit);
    }

    // Get the branch target instruction offsets
    uint32_t jump_idx = jit_next_insn_idx(jit) + jump_offset;
    blockid_t jump_block = { jit->iseq, jump_idx };

    // Generate the jump instruction
    gen_direct_jump(
        jit->block,
        ctx,
        jump_block
    );

    return YJIT_END_BLOCK;
}

/*
Guard that a stack operand has the same class as known_klass.
Recompile as contingency if possible, or take side exit a last resort.
*/
static bool
jit_guard_known_klass(jitstate_t *jit, ctx_t *ctx, VALUE known_klass, insn_opnd_t insn_opnd, VALUE sample_instance, const int max_chain_depth, uint8_t *side_exit)
{
    val_type_t val_type = ctx_get_opnd_type(ctx, insn_opnd);

    if (known_klass == rb_cNilClass) {
        if (val_type.type != ETYPE_NIL) {
            ADD_COMMENT(cb, "guard object is nil");
            cmp(cb, REG0, imm_opnd(Qnil));
            jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);

            ctx_set_opnd_type(ctx, insn_opnd, TYPE_NIL);
        }
    }
    else if (known_klass == rb_cTrueClass) {
        if (val_type.type != ETYPE_TRUE) {
            ADD_COMMENT(cb, "guard object is true");
            cmp(cb, REG0, imm_opnd(Qtrue));
            jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);

            ctx_set_opnd_type(ctx, insn_opnd, TYPE_TRUE);
        }
    }
    else if (known_klass == rb_cFalseClass) {
        if (val_type.type != ETYPE_FALSE) {
            ADD_COMMENT(cb, "guard object is false");
            STATIC_ASSERT(qfalse_is_zero, Qfalse == 0);
            test(cb, REG0, REG0);
            jit_chain_guard(JCC_JNZ, jit, ctx, max_chain_depth, side_exit);

            ctx_set_opnd_type(ctx, insn_opnd, TYPE_FALSE);
        }
    }
    else if (known_klass == rb_cInteger ||
            known_klass == rb_cSymbol ||
            known_klass == rb_cFloat) {
        // Can't guard for for these classes because they can have both
        // immediate (special const) instances and instances on the heap. Can
        // remove this by adding appropriate dynamic checks.
        return false;
    }
    else if (FL_TEST(known_klass, FL_SINGLETON) && sample_instance == rb_attr_get(known_klass, id__attached__)) {
        // Singleton classes are attached to one specific object, so we can
        // avoid one memory access (and potentially the is_heap check) by
        // looking for the expected object directly.
        // Note that in case the sample instance has a singleton class that
        // doesn't attach to the sample instance, it means the sample instance
        // has an empty singleton class that hasn't been materialized yet. In
        // this case, comparing against the sample instance doesn't gurantee
        // that its singleton class is empty, so we can't avoid the memory
        // access. As an example, `Object.new.singleton_class` is an object in
        // this situation.
        ADD_COMMENT(cb, "guard known object with singleton class");
        // TODO: jit_mov_gc_ptr keeps a strong reference, which leaks the object.
        jit_mov_gc_ptr(jit, cb, REG1, sample_instance);
        cmp(cb, REG0, REG1);
        jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
    }
    else {
        // Check that the receiver is a heap object
        // Note: if we get here, the class doesn't have immediate instances.
        if (!val_type.is_heap) {
            ADD_COMMENT(cb, "guard not immediate");
            RUBY_ASSERT(Qfalse < Qnil);
            test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
            jit_chain_guard(JCC_JNZ, jit, ctx, max_chain_depth, side_exit);
            cmp(cb, REG0, imm_opnd(Qnil));
            jit_chain_guard(JCC_JBE, jit, ctx, max_chain_depth, side_exit);

            ctx_set_opnd_type(ctx, insn_opnd, TYPE_HEAP);
        }

        x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));

        // Bail if receiver class is different from known_klass
        // TODO: jit_mov_gc_ptr keeps a strong reference, which leaks the class.
        ADD_COMMENT(cb, "guard known class");
        jit_mov_gc_ptr(jit, cb, REG1, known_klass);
        cmp(cb, klass_opnd, REG1);
        jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
    }

    return true;
}

// Generate ancestry guard for protected callee.
// Calls to protected callees only go through when self.is_a?(klass_that_defines_the_callee).
static void
jit_protected_callee_ancestry_guard(jitstate_t *jit, codeblock_t *cb, const rb_callable_method_entry_t *cme, uint8_t *side_exit)
{
    // See vm_call_method().
    yjit_save_regs(cb);
    mov(cb, C_ARG_REGS[0], member_opnd(REG_CFP, rb_control_frame_t, self));
    jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], cme->defined_class);
    // Note: PC isn't written to current control frame as rb_is_kind_of() shouldn't raise.
    // VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass);
    call_ptr(cb, REG0, (void *)&rb_obj_is_kind_of);
    yjit_load_regs(cb);
    test(cb, RAX, RAX);
    jz_ptr(cb, COUNTED_EXIT(side_exit, send_se_protected_check_failed));
}

// Return true when the codegen function generates code.
typedef bool (*method_codegen_t)(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc);

// Codegen for rb_obj_not().
// Note, caller is responsible for generating all the right guards, including
// arity guards.
static bool
jit_rb_obj_not(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc)
{
    const val_type_t recv_opnd = ctx_get_opnd_type(ctx, OPND_STACK(0));
    x86opnd_t out_opnd = ctx_stack_opnd(ctx, 0);

    if (recv_opnd.type == ETYPE_NIL || recv_opnd.type == ETYPE_FALSE) {
        ADD_COMMENT(cb, "rb_obj_not(nil_or_false)");
        mov(cb, out_opnd, imm_opnd(Qtrue));
        ctx_set_opnd_type(ctx, OPND_STACK(0), TYPE_TRUE);
    }
    else if (recv_opnd.is_heap || recv_opnd.type != ETYPE_UNKNOWN) {
        // Note: recv_opnd.type != ETYPE_NIL && recv_opnd.type != ETYPE_FALSE.
        ADD_COMMENT(cb, "rb_obj_not(truthy)");
        mov(cb, out_opnd, imm_opnd(Qfalse));
        ctx_set_opnd_type(ctx, OPND_STACK(0), TYPE_FALSE);
    }
    else {
        // jit_guard_known_klass() already ran on the receiver which should
        // have deduced deduced the type of the receiver. This case should be
        // rare if not unreachable.
        return false;
    }
    return true;
}

// Check if we know how to codegen for a particular cfunc method
static method_codegen_t
lookup_cfunc_codegen(const rb_method_definition_t *def)
{
    method_codegen_t gen_fn;
    if (st_lookup(yjit_method_codegen_table, def->method_serial, (st_data_t *)&gen_fn)) {
        return gen_fn;
    }
    return NULL;
}

static codegen_status_t
gen_send_cfunc(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc)
{
    const rb_method_cfunc_t *cfunc = UNALIGNED_MEMBER_PTR(cme->def, body.cfunc);

    // If the function expects a Ruby array of arguments
    if (cfunc->argc < 0 && cfunc->argc != -1) {
        GEN_COUNTER_INC(cb, send_cfunc_ruby_array_varg);
        return YJIT_CANT_COMPILE;
    }

    // If the argument count doesn't match
    if (cfunc->argc >= 0 && cfunc->argc != argc) {
        GEN_COUNTER_INC(cb, send_cfunc_argc_mismatch);
        return YJIT_CANT_COMPILE;
    }

    // Don't JIT functions that need C stack arguments for now
    if (argc + 1 > NUM_C_ARG_REGS) {
        GEN_COUNTER_INC(cb, send_cfunc_toomany_args);
        return YJIT_CANT_COMPILE;
    }

    // Delegate to codegen for C methods if we have it.
    {
        method_codegen_t known_cfunc_codegen;
        if ((known_cfunc_codegen = lookup_cfunc_codegen(cme->def))) {
            if (known_cfunc_codegen(jit, ctx, ci, cme, block, argc)) {
                // cfunc codegen generated code. Terminate the block so
                // there isn't multiple calls in the same block.
                jit_jump_to_next_insn(jit, ctx);
                return YJIT_END_BLOCK;
            }
        }
    }

    // Callee method ID
    //ID mid = vm_ci_mid(ci);
    //printf("JITting call to C function \"%s\", argc: %lu\n", rb_id2name(mid), argc);
    //print_str(cb, "");
    //print_str(cb, "calling CFUNC:");
    //print_str(cb, rb_id2name(mid));
    //print_str(cb, "recv");
    //print_ptr(cb, recv);

    // Create a size-exit to fall back to the interpreter
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    // Check for interrupts
    yjit_check_ints(cb, side_exit);

    // Stack overflow check
    // #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
    // REG_CFP <= REG_SP + 4 * sizeof(VALUE) + sizeof(rb_control_frame_t)
    lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 4 + sizeof(rb_control_frame_t)));
    cmp(cb, REG_CFP, REG0);
    jle_ptr(cb, COUNTED_EXIT(side_exit, send_se_cf_overflow));

    // Points to the receiver operand on the stack
    x86opnd_t recv = ctx_stack_opnd(ctx, argc);

    // Store incremented PC into current control frame in case callee raises.
    jit_save_pc(jit, REG0);

    if (block) {
        // Change cfp->block_code in the current frame. See vm_caller_setup_arg_block().
        // VM_CFP_TO_CAPTURED_BLCOK does &cfp->self, rb_captured_block->code.iseq aliases
        // with cfp->block_code.
        jit_mov_gc_ptr(jit, cb, REG0, (VALUE)block);
        mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), REG0);
    }

    // Increment the stack pointer by 3 (in the callee)
    // sp += 3
    lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 3));

    // Write method entry at sp[-3]
    // sp[-3] = me;
    // Put compile time cme into REG1. It's assumed to be valid because we are notified when
    // any cme we depend on become outdated. See rb_yjit_method_lookup_change().
    jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme);
    mov(cb, mem_opnd(64, REG0, 8 * -3), REG1);

    // Write block handler at sp[-2]
    // sp[-2] = block_handler;
    if (block) {
        // reg1 = VM_BH_FROM_ISEQ_BLOCK(VM_CFP_TO_CAPTURED_BLOCK(reg_cfp));
        lea(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, self));
        or(cb, REG1, imm_opnd(1));
        mov(cb, mem_opnd(64, REG0, 8 * -2), REG1);
    }
    else {
        mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE));
    }

    // Write env flags at sp[-1]
    // sp[-1] = frame_type;
    uint64_t frame_type = VM_FRAME_MAGIC_CFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL;
    mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type));

    // Allocate a new CFP (ec->cfp--)
    sub(
        cb,
        member_opnd(REG_EC, rb_execution_context_t, cfp),
        imm_opnd(sizeof(rb_control_frame_t))
    );

    // Setup the new frame
    // *cfp = (const struct rb_control_frame_struct) {
    //    .pc         = 0,
    //    .sp         = sp,
    //    .iseq       = 0,
    //    .self       = recv,
    //    .ep         = sp - 1,
    //    .block_code = 0,
    //    .__bp__     = sp,
    // };
    mov(cb, REG1, member_opnd(REG_EC, rb_execution_context_t, cfp));
    mov(cb, member_opnd(REG1, rb_control_frame_t, pc), imm_opnd(0));
    mov(cb, member_opnd(REG1, rb_control_frame_t, sp), REG0);
    mov(cb, member_opnd(REG1, rb_control_frame_t, iseq), imm_opnd(0));
    mov(cb, member_opnd(REG1, rb_control_frame_t, block_code), imm_opnd(0));
    mov(cb, member_opnd(REG1, rb_control_frame_t, __bp__), REG0);
    sub(cb, REG0, imm_opnd(sizeof(VALUE)));
    mov(cb, member_opnd(REG1, rb_control_frame_t, ep), REG0);
    mov(cb, REG0, recv);
    mov(cb, member_opnd(REG1, rb_control_frame_t, self), REG0);

    // Verify that we are calling the right function
    if (YJIT_CHECK_MODE > 0) {
        // Save YJIT registers
        yjit_save_regs(cb);

        // Call check_cfunc_dispatch
        mov(cb, C_ARG_REGS[0], recv);
        jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], (VALUE)ci);
        mov(cb, C_ARG_REGS[2], const_ptr_opnd((void *)cfunc->func));
        jit_mov_gc_ptr(jit, cb, C_ARG_REGS[3], (VALUE)cme);
        call_ptr(cb, REG0, (void *)&check_cfunc_dispatch);

        // Load YJIT registers
        yjit_load_regs(cb);
    }

    // Copy SP into RAX because REG_SP will get overwritten
    lea(cb, RAX, ctx_sp_opnd(ctx, 0));

    // Pop the C function arguments from the stack (in the caller)
    ctx_stack_pop(ctx, argc + 1);

    if (block) {
        // Write interpreter SP into CFP.
        // Needed in case the callee yields to the block.
        jit_save_sp(jit, ctx);
    }

    // Save YJIT registers
    yjit_save_regs(cb);

    // Non-variadic method
    if (cfunc->argc >= 0) {
        // Copy the arguments from the stack to the C argument registers
        // self is the 0th argument and is at index argc from the stack top
        for (int32_t i = 0; i < argc + 1; ++i)
        {
            x86opnd_t stack_opnd = mem_opnd(64, RAX, -(argc + 1 - i) * SIZEOF_VALUE);
            x86opnd_t c_arg_reg = C_ARG_REGS[i];
            mov(cb, c_arg_reg, stack_opnd);
        }
    }
    // Variadic method
    if (cfunc->argc == -1) {
        // The method gets a pointer to the first argument
        // rb_f_puts(int argc, VALUE *argv, VALUE recv)
        mov(cb, C_ARG_REGS[0], imm_opnd(argc));
        lea(cb, C_ARG_REGS[1], mem_opnd(64, RAX, -(argc) * SIZEOF_VALUE));
        mov(cb, C_ARG_REGS[2], mem_opnd(64, RAX, -(argc + 1) * SIZEOF_VALUE));
    }

    // Call the C function
    // VALUE ret = (cfunc->func)(recv, argv[0], argv[1]);
    // cfunc comes from compile-time cme->def, which we assume to be stable.
    // Invalidation logic is in rb_yjit_method_lookup_change()
    call_ptr(cb, REG0, (void*)cfunc->func);

    // Load YJIT registers
    yjit_load_regs(cb);

    // Push the return value on the Ruby stack
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, stack_ret, RAX);

    // Pop the stack frame (ec->cfp++)
    add(
        cb,
        member_opnd(REG_EC, rb_execution_context_t, cfp),
        imm_opnd(sizeof(rb_control_frame_t))
    );

    // cfunc calls may corrupt types
    ctx_clear_local_types(ctx);

    // Note: gen_oswb_iseq() jumps to the next instruction with ctx->sp_offset == 0
    // after the call, while this does not. This difference prevents
    // the two call types from sharing the same successor.

    // Jump (fall through) to the call continuation block
    // We do this to end the current block after the call
    jit_jump_to_next_insn(jit, ctx);
    return YJIT_END_BLOCK;
}

static void
gen_return_branch(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape)
{
    switch (shape)
    {
        case SHAPE_NEXT0:
        case SHAPE_NEXT1:
        RUBY_ASSERT(false);
        break;

        case SHAPE_DEFAULT:
        mov(cb, REG0, const_ptr_opnd(target0));
        mov(cb, member_opnd(REG_CFP, rb_control_frame_t, jit_return), REG0);
        break;
    }
}

// Returns whether the iseq only needs positional (lead) argument setup.
static bool
iseq_lead_only_arg_setup_p(const rb_iseq_t *iseq)
{
    // When iseq->body->local_iseq == iseq, setup_parameters_complex()
    // doesn't do anything to setup the block parameter.
    bool takes_block = iseq->body->param.flags.has_block;
    return (!takes_block || iseq->body->local_iseq == iseq) &&
        iseq->body->param.flags.has_opt          == false &&
        iseq->body->param.flags.has_rest         == false &&
        iseq->body->param.flags.has_post         == false &&
        iseq->body->param.flags.has_kw           == false &&
        iseq->body->param.flags.has_kwrest       == false &&
        iseq->body->param.flags.accepts_no_kwarg == false;
}

bool rb_iseq_only_optparam_p(const rb_iseq_t *iseq);
bool rb_iseq_only_kwparam_p(const rb_iseq_t *iseq);

// If true, the iseq is leaf and it can be replaced by a single C call.
static bool
rb_leaf_invokebuiltin_iseq_p(const rb_iseq_t *iseq)
{
    unsigned int invokebuiltin_len = insn_len(BIN(opt_invokebuiltin_delegate_leave));
    unsigned int leave_len = insn_len(BIN(leave));

    return (iseq->body->iseq_size == (invokebuiltin_len + leave_len) &&
        rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[0]) == BIN(opt_invokebuiltin_delegate_leave) &&
        rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[invokebuiltin_len]) == BIN(leave) &&
        iseq->body->builtin_inline_p
    );
 }

// Return an rb_builtin_function if the iseq contains only that leaf builtin function.
static const struct rb_builtin_function*
rb_leaf_builtin_function(const rb_iseq_t *iseq)
{
    if (!rb_leaf_invokebuiltin_iseq_p(iseq))
        return NULL;
    return (const struct rb_builtin_function *)iseq->body->iseq_encoded[1];
}

static codegen_status_t
gen_send_iseq(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc)
{
    const rb_iseq_t *iseq = def_iseq_ptr(cme->def);

    if (vm_ci_flag(ci) & VM_CALL_TAILCALL) {
        // We can't handle tailcalls
        GEN_COUNTER_INC(cb, send_iseq_tailcall);
        return YJIT_CANT_COMPILE;
    }

    // Arity handling and optional parameter setup
    int num_params = iseq->body->param.size;
    uint32_t start_pc_offset = 0;
    if (iseq_lead_only_arg_setup_p(iseq)) {
        num_params = iseq->body->param.lead_num;

        if (num_params != argc) {
            GEN_COUNTER_INC(cb, send_iseq_arity_error);
            return YJIT_CANT_COMPILE;
        }
    }
    else if (rb_iseq_only_optparam_p(iseq)) {
        // These are iseqs with 0 or more required parameters followed by 1
        // or more optional parameters.
        // We follow the logic of vm_call_iseq_setup_normal_opt_start()
        // and these are the preconditions required for using that fast path.
        RUBY_ASSERT(vm_ci_markable(ci) && ((vm_ci_flag(ci) &
                        (VM_CALL_KW_SPLAT | VM_CALL_KWARG | VM_CALL_ARGS_SPLAT)) == 0));

        const int required_num = iseq->body->param.lead_num;
        const int opts_filled = argc - required_num;
        const int opt_num = iseq->body->param.opt_num;

        if (opts_filled < 0 || opts_filled > opt_num) {
            GEN_COUNTER_INC(cb, send_iseq_arity_error);
            return YJIT_CANT_COMPILE;
        }

        num_params -= opt_num - opts_filled;
        start_pc_offset = (uint32_t)iseq->body->param.opt_table[opts_filled];
    }
    else if (rb_iseq_only_kwparam_p(iseq)) {
        // vm_callee_setup_arg() has a fast path for this.
        GEN_COUNTER_INC(cb, send_iseq_only_keywords);
        return YJIT_CANT_COMPILE;
    }
    else {
        // Only handle iseqs that have simple parameter setup.
        // See vm_callee_setup_arg().
        GEN_COUNTER_INC(cb, send_iseq_complex_callee);
        return YJIT_CANT_COMPILE;
    }

    // The starting pc of the callee frame
    const VALUE *start_pc = &iseq->body->iseq_encoded[start_pc_offset];

    // Number of locals that are not parameters
    const int num_locals = iseq->body->local_table_size - num_params;

    // Create a size-exit to fall back to the interpreter
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    // Check for interrupts
    yjit_check_ints(cb, side_exit);

    const struct rb_builtin_function *leaf_builtin = rb_leaf_builtin_function(iseq);

    if (leaf_builtin && !block && leaf_builtin->argc + 1 <= NUM_C_ARG_REGS) {
        ADD_COMMENT(cb, "inlined leaf builtin");

        // TODO: figure out if this is necessary
        // If the calls don't allocate, do they need up to date PC, SP?
        // Save YJIT registers
        yjit_save_regs(cb);

        // Get a pointer to the top of the stack
        lea(cb, REG0, ctx_stack_opnd(ctx, 0));

        // Call the builtin func (ec, recv, arg1, arg2, ...)
        mov(cb, C_ARG_REGS[0], REG_EC);

        // Copy self and arguments
        for (int32_t i = 0; i < leaf_builtin->argc + 1; i++) {
            x86opnd_t stack_opnd = mem_opnd(64, REG0, -(leaf_builtin->argc - i) * SIZEOF_VALUE);
            x86opnd_t c_arg_reg = C_ARG_REGS[i + 1];
            mov(cb, c_arg_reg, stack_opnd);
        }
        ctx_stack_pop(ctx, leaf_builtin->argc + 1);
        call_ptr(cb, REG0, (void *)leaf_builtin->func_ptr);

        // Load YJIT registers
        yjit_load_regs(cb);

        // Push the return value
        x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
        mov(cb, stack_ret, RAX);

        // Note: assuming that the leaf builtin doesn't change local variables here.
        // Seems like a safe assumption.

        return YJIT_KEEP_COMPILING;
    }

    // Stack overflow check
    // #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
    ADD_COMMENT(cb, "stack overflow check");
    lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (num_locals + iseq->body->stack_max) + sizeof(rb_control_frame_t)));
    cmp(cb, REG_CFP, REG0);
    jle_ptr(cb, COUNTED_EXIT(side_exit, send_se_cf_overflow));

    // Points to the receiver operand on the stack
    x86opnd_t recv = ctx_stack_opnd(ctx, argc);

    // Store the updated SP on the current frame (pop arguments and receiver)
    lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * -(argc + 1)));
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0);

    // Store the next PC in the current frame
    jit_save_pc(jit, REG0);

    if (block) {
        // Change cfp->block_code in the current frame. See vm_caller_setup_arg_block().
        // VM_CFP_TO_CAPTURED_BLCOK does &cfp->self, rb_captured_block->code.iseq aliases
        // with cfp->block_code.
        jit_mov_gc_ptr(jit, cb, REG0, (VALUE)block);
        mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), REG0);
    }

    // Adjust the callee's stack pointer
    lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (3 + num_locals)));

    // Initialize local variables to Qnil
    for (int i = 0; i < num_locals; i++) {
        mov(cb, mem_opnd(64, REG0, sizeof(VALUE) * (i - num_locals - 3)), imm_opnd(Qnil));
    }

    // Put compile time cme into REG1. It's assumed to be valid because we are notified when
    // any cme we depend on become outdated. See rb_yjit_method_lookup_change().
    jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme);
    // Write method entry at sp[-3]
    // sp[-3] = me;
    mov(cb, mem_opnd(64, REG0, 8 * -3), REG1);

    // Write block handler at sp[-2]
    // sp[-2] = block_handler;
    if (block) {
        // reg1 = VM_BH_FROM_ISEQ_BLOCK(VM_CFP_TO_CAPTURED_BLOCK(reg_cfp));
        lea(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, self));
        or(cb, REG1, imm_opnd(1));
        mov(cb, mem_opnd(64, REG0, 8 * -2), REG1);
    }
    else {
        mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE));
    }

    // Write env flags at sp[-1]
    // sp[-1] = frame_type;
    uint64_t frame_type = VM_FRAME_MAGIC_METHOD | VM_ENV_FLAG_LOCAL;
    mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type));

    // Allocate a new CFP (ec->cfp--)
    sub(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t)));
    mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);

    // Setup the new frame
    // *cfp = (const struct rb_control_frame_struct) {
    //    .pc         = pc,
    //    .sp         = sp,
    //    .iseq       = iseq,
    //    .self       = recv,
    //    .ep         = sp - 1,
    //    .block_code = 0,
    //    .__bp__     = sp,
    // };
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), imm_opnd(0));
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0);
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, __bp__), REG0);
    sub(cb, REG0, imm_opnd(sizeof(VALUE)));
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, ep), REG0);
    mov(cb, REG0, recv);
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, self), REG0);
    jit_mov_gc_ptr(jit, cb, REG0, (VALUE)iseq);
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, iseq), REG0);
    mov(cb, REG0, const_ptr_opnd(start_pc));
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), REG0);

    // Stub so we can return to JITted code
    blockid_t return_block = { jit->iseq, jit_next_insn_idx(jit) };

    // Create a context for the callee
    ctx_t callee_ctx = DEFAULT_CTX;

    // Set the argument types in the callee's context
    for (int32_t arg_idx = 0; arg_idx < argc; ++arg_idx) {
        val_type_t arg_type = ctx_get_opnd_type(ctx, OPND_STACK(argc - arg_idx - 1));
        ctx_set_local_type(&callee_ctx, arg_idx, arg_type);
    }
    val_type_t recv_type = ctx_get_opnd_type(ctx, OPND_STACK(argc));
    ctx_set_opnd_type(&callee_ctx, OPND_SELF, recv_type);

    // The callee might change locals through Kernel#binding and other means.
    ctx_clear_local_types(ctx);

    // Pop arguments and receiver in return context, push the return value
    // After the return, the JIT and interpreter SP will match up
    ctx_t return_ctx = *ctx;
    ctx_stack_pop(&return_ctx, argc + 1);
    ctx_stack_push(&return_ctx, TYPE_UNKNOWN);
    return_ctx.sp_offset = 0;
    return_ctx.chain_depth = 0;

    // Write the JIT return address on the callee frame
    gen_branch(
        jit->block,
        ctx,
        return_block,
        &return_ctx,
        return_block,
        &return_ctx,
        gen_return_branch
    );

    //print_str(cb, "calling Ruby func:");
    //print_str(cb, rb_id2name(vm_ci_mid(ci)));

    // Load the updated SP from the CFP
    mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));

    // Directly jump to the entry point of the callee
    gen_direct_jump(
        jit->block,
        &callee_ctx,
        (blockid_t){ iseq, start_pc_offset }
    );

    return true;
}

const rb_callable_method_entry_t *
rb_aliased_callable_method_entry(const rb_callable_method_entry_t *me);

static codegen_status_t
gen_send_general(jitstate_t *jit, ctx_t *ctx, struct rb_call_data *cd, rb_iseq_t *block)
{
    // Relevant definitions:
    // rb_execution_context_t       : vm_core.h
    // invoker, cfunc logic         : method.h, vm_method.c
    // rb_callinfo                  : vm_callinfo.h
    // rb_callable_method_entry_t   : method.h
    // vm_call_cfunc_with_frame     : vm_insnhelper.c
    //
    // For a general overview for how the interpreter calls methods,
    // see vm_call_method().

    const struct rb_callinfo *ci = cd->ci; // info about the call site

    int32_t argc = (int32_t)vm_ci_argc(ci);
    ID mid = vm_ci_mid(ci);

    // Don't JIT calls with keyword splat
    if (vm_ci_flag(ci) & VM_CALL_KW_SPLAT) {
        GEN_COUNTER_INC(cb, send_kw_splat);
        return YJIT_CANT_COMPILE;
    }

    // Don't JIT calls that aren't simple
    // Note, not using VM_CALL_ARGS_SIMPLE because sometimes we pass a block.
    if ((vm_ci_flag(ci) & (VM_CALL_KW_SPLAT | VM_CALL_KWARG | VM_CALL_ARGS_SPLAT | VM_CALL_ARGS_BLOCKARG)) != 0) {
        GEN_COUNTER_INC(cb, send_callsite_not_simple);
        return YJIT_CANT_COMPILE;
    }

    // Defer compilation so we can specialize on class of receiver
    if (!jit_at_current_insn(jit)) {
        defer_compilation(jit->block, jit->insn_idx, ctx);
        return YJIT_END_BLOCK;
    }

    VALUE comptime_recv = jit_peek_at_stack(jit, ctx, argc);
    VALUE comptime_recv_klass = CLASS_OF(comptime_recv);

    // Guard that the receiver has the same class as the one from compile time
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    // Points to the receiver operand on the stack
    x86opnd_t recv = ctx_stack_opnd(ctx, argc);
    insn_opnd_t recv_opnd = OPND_STACK(argc);
    mov(cb, REG0, recv);
    if (!jit_guard_known_klass(jit, ctx, comptime_recv_klass, recv_opnd, comptime_recv, SEND_MAX_DEPTH, side_exit)) {
        return YJIT_CANT_COMPILE;
    }

    // Do method lookup
    const rb_callable_method_entry_t *cme = rb_callable_method_entry(comptime_recv_klass, mid);
    if (!cme) {
        // TODO: counter
        return YJIT_CANT_COMPILE;
    }

    switch (METHOD_ENTRY_VISI(cme)) {
    case METHOD_VISI_PUBLIC:
        // Can always call public methods
        break;
    case METHOD_VISI_PRIVATE:
        if (!(vm_ci_flag(ci) & VM_CALL_FCALL)) {
            // Can only call private methods with FCALL callsites.
            // (at the moment they are callsites without a receiver or an explicit `self` receiver)
            return YJIT_CANT_COMPILE;
        }
        break;
    case METHOD_VISI_PROTECTED:
        jit_protected_callee_ancestry_guard(jit, cb, cme, side_exit);
        break;
    case METHOD_VISI_UNDEF:
        RUBY_ASSERT(false && "cmes should always have a visibility");
        break;
    }

    // Register block for invalidation
    RUBY_ASSERT(cme->called_id == mid);
    assume_method_lookup_stable(comptime_recv_klass, cme, jit->block);

    // To handle the aliased method case (VM_METHOD_TYPE_ALIAS)
    while (true) {
        // switch on the method type
        switch (cme->def->type) {
        case VM_METHOD_TYPE_ISEQ:
            return gen_send_iseq(jit, ctx, ci, cme, block, argc);
        case VM_METHOD_TYPE_CFUNC:
            return gen_send_cfunc(jit, ctx, ci, cme, block, argc);
        case VM_METHOD_TYPE_IVAR:
            if (argc != 0) {
                // Argument count mismatch. Getters take no arguments.
                GEN_COUNTER_INC(cb, send_getter_arity);
                return YJIT_CANT_COMPILE;
            }
            else {
                mov(cb, REG0, recv);

                ID ivar_name = cme->def->body.attr.id;
                return gen_get_ivar(jit, ctx, SEND_MAX_DEPTH, comptime_recv, ivar_name, recv_opnd, side_exit);
            }
        case VM_METHOD_TYPE_ATTRSET:
            GEN_COUNTER_INC(cb, send_ivar_set_method);
            return YJIT_CANT_COMPILE;
        case VM_METHOD_TYPE_BMETHOD:
            GEN_COUNTER_INC(cb, send_bmethod);
            return YJIT_CANT_COMPILE;
        case VM_METHOD_TYPE_ZSUPER:
            GEN_COUNTER_INC(cb, send_zsuper_method);
            return YJIT_CANT_COMPILE;
        case VM_METHOD_TYPE_ALIAS: {
            // Retrieve the alised method and re-enter the switch
            cme = rb_aliased_callable_method_entry(cme);
            continue;
        }
        case VM_METHOD_TYPE_UNDEF:
            GEN_COUNTER_INC(cb, send_undef_method);
            return YJIT_CANT_COMPILE;
        case VM_METHOD_TYPE_NOTIMPLEMENTED:
            GEN_COUNTER_INC(cb, send_not_implemented_method);
            return YJIT_CANT_COMPILE;
        case VM_METHOD_TYPE_OPTIMIZED:
            GEN_COUNTER_INC(cb, send_optimized_method);
            return YJIT_CANT_COMPILE;
        case VM_METHOD_TYPE_MISSING:
            GEN_COUNTER_INC(cb, send_missing_method);
            return YJIT_CANT_COMPILE;
        case VM_METHOD_TYPE_REFINED:
            GEN_COUNTER_INC(cb, send_refined_method);
            return YJIT_CANT_COMPILE;
        // no default case so compiler issues a warning if this is not exhaustive
        }

        // Unreachable
        RUBY_ASSERT(false);
    }
}

static codegen_status_t
gen_opt_send_without_block(jitstate_t *jit, ctx_t *ctx)
{
    struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0);
    return gen_send_general(jit, ctx, cd, NULL);
}

static codegen_status_t
gen_send(jitstate_t *jit, ctx_t *ctx)
{
    struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0);
    rb_iseq_t *block = (rb_iseq_t *)jit_get_arg(jit, 1);
    return gen_send_general(jit, ctx, cd, block);
}

// Not in use as it's incorrect in some situations. See comments.
RBIMPL_ATTR_MAYBE_UNUSED()
static codegen_status_t
gen_invokesuper(jitstate_t *jit, ctx_t *ctx)
{
    struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0);
    rb_iseq_t *block = (rb_iseq_t *)jit_get_arg(jit, 1);

    // Defer compilation so we can specialize on class of receiver
    if (!jit_at_current_insn(jit)) {
        defer_compilation(jit->block, jit->insn_idx, ctx);
        return YJIT_END_BLOCK;
    }

    const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(jit->ec->cfp);
    if (!me) {
        return YJIT_CANT_COMPILE;
    } else if (me->def->type == VM_METHOD_TYPE_BMETHOD) {
        // In the interpreter the method id can change which is tested for and
        // invalidates the cache.
        // By skipping super calls inside a BMETHOD definition, I believe we
        // avoid this case
        return YJIT_CANT_COMPILE;
    }

    VALUE current_defined_class = me->defined_class;
    ID mid = me->def->original_id;

    // vm_search_normal_superclass
    if (BUILTIN_TYPE(current_defined_class) == T_ICLASS && FL_TEST_RAW(RBASIC(current_defined_class)->klass, RMODULE_IS_REFINEMENT)) {
        return YJIT_CANT_COMPILE;
    }
    VALUE comptime_superclass = RCLASS_SUPER(RCLASS_ORIGIN(current_defined_class));

    const struct rb_callinfo *ci = cd->ci;
    int32_t argc = (int32_t)vm_ci_argc(ci);

    // Don't JIT calls that aren't simple
    // Note, not using VM_CALL_ARGS_SIMPLE because sometimes we pass a block.
    if ((vm_ci_flag(ci) & (VM_CALL_KW_SPLAT | VM_CALL_KWARG | VM_CALL_ARGS_SPLAT | VM_CALL_ARGS_BLOCKARG)) != 0) {
        GEN_COUNTER_INC(cb, send_callsite_not_simple);
        return YJIT_CANT_COMPILE;
    }

    VALUE comptime_recv = jit_peek_at_stack(jit, ctx, argc);
    VALUE comptime_recv_klass = CLASS_OF(comptime_recv);

    // Ensure we haven't rebound this method onto an incompatible class.
    // In the interpreter we try to avoid making this check by performing some
    // cheaper calculations first, but since we specialize on the receiver
    // class and so only have to do this once at compile time this is fine to
    // always check and side exit.
    if (!rb_obj_is_kind_of(comptime_recv, current_defined_class)) {
        return YJIT_CANT_COMPILE;
    }

    // Because we're assuming only one current_defined_class for a given
    // receiver class we need to check that the superclass doesn't also
    // re-include the same module.
    if (rb_class_search_ancestor(comptime_superclass, current_defined_class)) {
        return YJIT_CANT_COMPILE;
    }

    // Do method lookup
    const rb_callable_method_entry_t *cme = rb_callable_method_entry(comptime_superclass, mid);

    if (!cme) {
        return YJIT_CANT_COMPILE;
    }

    // Check that we'll be able to write this method dispatch before generating checks
    switch (cme->def->type) {
        case VM_METHOD_TYPE_ISEQ:
        case VM_METHOD_TYPE_CFUNC:
            break;
        default:
            // others unimplemented
            return YJIT_CANT_COMPILE;
    }

    // Guard that the receiver has the same class as the one from compile time
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    if (!block) {
        // Guard no block passed
        // rb_vm_frame_block_handler(GET_EC()->cfp) == VM_BLOCK_HANDLER_NONE
        // note, we assume VM_ASSERT(VM_ENV_LOCAL_P(ep))
        //
        // TODO: this could properly forward the current block handler, but
        // would require changes to gen_send_*
        ADD_COMMENT(cb, "guard no block given");
        mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
        mov(cb, REG0, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL));
        cmp(cb, REG0, imm_opnd(VM_BLOCK_HANDLER_NONE));
        jne_ptr(cb, side_exit);
    }

    // Points to the receiver operand on the stack
    x86opnd_t recv = ctx_stack_opnd(ctx, argc);
    insn_opnd_t recv_opnd = OPND_STACK(argc);
    mov(cb, REG0, recv);

    // FIXME: This guard and the assume_method_lookup_stable() call below isn't
    // always enough to correctly replicate the interpreter's behavior of
    // searching at runtime for the callee through the method entry of the stack frame.
    if (!jit_guard_known_klass(jit, ctx, comptime_recv_klass, recv_opnd, comptime_recv, SEND_MAX_DEPTH, side_exit)) {
        return YJIT_CANT_COMPILE;
    }

    assume_method_lookup_stable(comptime_recv_klass, cme, jit->block);

    // Method calls may corrupt types
    ctx_clear_local_types(ctx);

    switch (cme->def->type) {
        case VM_METHOD_TYPE_ISEQ:
            return gen_send_iseq(jit, ctx, ci, cme, block, argc);
        case VM_METHOD_TYPE_CFUNC:
            return gen_send_cfunc(jit, ctx, ci, cme, block, argc);
        default:
            break;
    }

    RUBY_ASSERT_ALWAYS(false);
}

static codegen_status_t
gen_leave(jitstate_t* jit, ctx_t* ctx)
{
    // Only the return value should be on the stack
    RUBY_ASSERT(ctx->stack_size == 1);

    // Create a size-exit to fall back to the interpreter
    uint8_t* side_exit = yjit_side_exit(jit, ctx);

    // Load environment pointer EP from CFP
    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));

    // if (flags & VM_FRAME_FLAG_FINISH) != 0
    ADD_COMMENT(cb, "check for finish frame");
    x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS);
    test(cb, flags_opnd, imm_opnd(VM_FRAME_FLAG_FINISH));
    jnz_ptr(cb, COUNTED_EXIT(side_exit, leave_se_finish_frame));

    // Check for interrupts
    yjit_check_ints(cb, COUNTED_EXIT(side_exit, leave_se_interrupt));

    // Load the return value
    mov(cb, REG0, ctx_stack_pop(ctx, 1));

    // Pop the current frame (ec->cfp++)
    // Note: the return PC is already in the previous CFP
    add(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t)));
    mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);

    // Push the return value on the caller frame
    // The SP points one above the topmost value
    add(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), imm_opnd(SIZEOF_VALUE));
    mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
    mov(cb, mem_opnd(64, REG_SP, -SIZEOF_VALUE), REG0);

    // Jump to the JIT return address on the frame that was just popped
    const int32_t offset_to_jit_return = -((int32_t)sizeof(rb_control_frame_t)) + (int32_t)offsetof(rb_control_frame_t, jit_return);
    jmp_rm(cb, mem_opnd(64, REG_CFP, offset_to_jit_return));

    return YJIT_END_BLOCK;
}

RUBY_EXTERN rb_serial_t ruby_vm_global_constant_state;

static codegen_status_t
gen_opt_getinlinecache(jitstate_t *jit, ctx_t *ctx)
{
    VALUE jump_offset = jit_get_arg(jit, 0);
    VALUE const_cache_as_value = jit_get_arg(jit, 1);
    IC ic = (IC)const_cache_as_value;

    // See vm_ic_hit_p().
    struct iseq_inline_constant_cache_entry *ice = ic->entry;
    if (!ice || // cache not filled
        ice->ic_serial != ruby_vm_global_constant_state || // cache out of date
        ice->ic_cref /* cache only valid for certain lexical scopes */) {
        // In these cases, leave a block that unconditionally side exits
        // for the interpreter to invalidate.
        return YJIT_CANT_COMPILE;
    }

    // Optimize for single ractor mode.
    // FIXME: This leaks when st_insert raises NoMemoryError
    if (!assume_single_ractor_mode(jit->block)) return YJIT_CANT_COMPILE;

    // Invalidate output code on any and all constant writes
    // FIXME: This leaks when st_insert raises NoMemoryError
    assume_stable_global_constant_state(jit->block);

    val_type_t type = jit_type_of_value(ice->value);
    x86opnd_t stack_top = ctx_stack_push(ctx, type);
    jit_mov_gc_ptr(jit, cb, REG0, ice->value);
    mov(cb, stack_top, REG0);

    // Jump over the code for filling the cache
    uint32_t jump_idx = jit_next_insn_idx(jit) + (int32_t)jump_offset;
    gen_direct_jump(
        jit->block,
        ctx,
        (blockid_t){ .iseq = jit->iseq, .idx = jump_idx }
    );

    return YJIT_END_BLOCK;
}

// Push the explict block parameter onto the temporary stack. Part of the
// interpreter's scheme for avoiding Proc allocations when delegating
// explict block parameters.
static codegen_status_t
gen_getblockparamproxy(jitstate_t *jit, ctx_t *ctx)
{
    // A mirror of the interpreter code. Checking for the case
    // where it's pushing rb_block_param_proxy.
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    // EP level
    VALUE level = jit_get_arg(jit, 1);

    if (level != 0) {
        // Bail on non zero level to make getting the ep simple
        return YJIT_CANT_COMPILE;
    }

    // Load environment pointer EP from CFP
    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));

    // Bail when VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) is non zero
    test(cb, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_FLAGS), imm_opnd(VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM));
    jnz_ptr(cb, side_exit);

    // Load the block handler for the current frame
    // note, VM_ASSERT(VM_ENV_LOCAL_P(ep))
    mov(cb, REG0, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL));

    // Block handler is a tagged pointer. Look at the tag. 0x03 is from VM_BH_ISEQ_BLOCK_P().
    and(cb, REG0_8, imm_opnd(0x3));

    // Bail unless VM_BH_ISEQ_BLOCK_P(bh). This also checks for null.
    cmp(cb, REG0_8, imm_opnd(0x1));
    jne_ptr(cb, side_exit);

    // Push rb_block_param_proxy. It's a root, so no need to use jit_mov_gc_ptr.
    mov(cb, REG0, const_ptr_opnd((void *)rb_block_param_proxy));
    RUBY_ASSERT(!SPECIAL_CONST_P(rb_block_param_proxy));
    x86opnd_t top = ctx_stack_push(ctx, TYPE_HEAP);
    mov(cb, top, REG0);

    return YJIT_KEEP_COMPILING;
}

// opt_invokebuiltin_delegate calls a builtin function, like
// invokebuiltin does, but instead of taking arguments from the top of the
// stack uses the argument locals (and self) from the current method.
static codegen_status_t
gen_opt_invokebuiltin_delegate(jitstate_t *jit, ctx_t *ctx)
{
    const struct rb_builtin_function *bf = (struct rb_builtin_function *)jit_get_arg(jit, 0);
    int32_t start_index = (int32_t)jit_get_arg(jit, 1);

    if (bf->argc + 2 >= NUM_C_ARG_REGS) {
        return YJIT_CANT_COMPILE;
    }

    // If the calls don't allocate, do they need up to date PC, SP?
    jit_save_pc(jit, REG0);
    jit_save_sp(jit, ctx);

    // Save YJIT registers
    yjit_save_regs(cb);

    if (bf->argc > 0) {
        // Load environment pointer EP from CFP
        mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
    }

    // Save self from CFP
    mov(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, self));

    // Call the builtin func (ec, recv, arg1, arg2, ...)
    mov(cb, C_ARG_REGS[0], REG_EC); // clobbers REG_CFP
    mov(cb, C_ARG_REGS[1], REG1); // self, clobbers REG_EC

    // Copy arguments from locals
    for (int32_t i = 0; i < bf->argc; i++) {
        const int32_t offs = -jit->iseq->body->local_table_size - VM_ENV_DATA_SIZE + 1 + start_index + i;
        x86opnd_t local_opnd = mem_opnd(64, REG0, offs * SIZEOF_VALUE);
        x86opnd_t c_arg_reg = C_ARG_REGS[i + 2];
        mov(cb, c_arg_reg, local_opnd);
    }
    call_ptr(cb, REG0, (void *)bf->func_ptr);

    // Load YJIT registers
    yjit_load_regs(cb);

    // Push the return value
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

static void
yjit_reg_method(VALUE klass, const char *mid_str, method_codegen_t gen_fn)
{
    ID mid = rb_intern(mid_str);
    const rb_method_entry_t *me = rb_method_entry_at(klass, mid);

    if (!me) {
        rb_bug("undefined optimized method: %s", rb_id2name(mid));
    }

    // For now, only cfuncs are supported
    VM_ASSERT(me && me->def);
    VM_ASSERT(me->def->type == VM_METHOD_TYPE_CFUNC);

    st_insert(yjit_method_codegen_table, (st_data_t)me->def->method_serial, (st_data_t)gen_fn);
}

static void
yjit_reg_op(int opcode, codegen_fn gen_fn)
{
    RUBY_ASSERT(opcode >= 0 && opcode < VM_INSTRUCTION_SIZE);
    // Check that the op wasn't previously registered
    RUBY_ASSERT(gen_fns[opcode] == NULL);

    gen_fns[opcode] = gen_fn;
}

void
yjit_init_codegen(void)
{
    // Initialize the code blocks
    uint32_t mem_size = rb_yjit_opts.exec_mem_size * 1024 * 1024;
    uint8_t *mem_block = alloc_exec_mem(mem_size);

    cb = &block;
    cb_init(cb, mem_block, mem_size/2);

    ocb = &outline_block;
    cb_init(ocb, mem_block + mem_size/2, mem_size/2);

    // Generate the interpreter exit code for leave
    leave_exit_code = yjit_gen_leave_exit(cb);

    // Map YARV opcodes to the corresponding codegen functions
    yjit_reg_op(BIN(nop), gen_nop);
    yjit_reg_op(BIN(dup), gen_dup);
    yjit_reg_op(BIN(dupn), gen_dupn);
    yjit_reg_op(BIN(setn), gen_setn);
    yjit_reg_op(BIN(topn), gen_topn);
    yjit_reg_op(BIN(pop), gen_pop);
    yjit_reg_op(BIN(adjuststack), gen_adjuststack);
    yjit_reg_op(BIN(newarray), gen_newarray);
    yjit_reg_op(BIN(duparray), gen_duparray);
    yjit_reg_op(BIN(newhash), gen_newhash);
    yjit_reg_op(BIN(concatstrings), gen_concatstrings);
    yjit_reg_op(BIN(putnil), gen_putnil);
    yjit_reg_op(BIN(putobject), gen_putobject);
    yjit_reg_op(BIN(putobject_INT2FIX_0_), gen_putobject_int2fix);
    yjit_reg_op(BIN(putobject_INT2FIX_1_), gen_putobject_int2fix);
    yjit_reg_op(BIN(putself), gen_putself);
    yjit_reg_op(BIN(getlocal), gen_getlocal);
    yjit_reg_op(BIN(getlocal_WC_0), gen_getlocal_wc0);
    yjit_reg_op(BIN(getlocal_WC_1), gen_getlocal_wc1);
    yjit_reg_op(BIN(setlocal_WC_0), gen_setlocal_wc0);
    yjit_reg_op(BIN(getinstancevariable), gen_getinstancevariable);
    yjit_reg_op(BIN(setinstancevariable), gen_setinstancevariable);
    yjit_reg_op(BIN(defined), gen_defined);
    yjit_reg_op(BIN(checktype), gen_checktype);
    yjit_reg_op(BIN(opt_lt), gen_opt_lt);
    yjit_reg_op(BIN(opt_le), gen_opt_le);
    yjit_reg_op(BIN(opt_ge), gen_opt_ge);
    yjit_reg_op(BIN(opt_gt), gen_opt_gt);
    yjit_reg_op(BIN(opt_eq), gen_opt_eq);
    yjit_reg_op(BIN(opt_neq), gen_opt_neq);
    yjit_reg_op(BIN(opt_aref), gen_opt_aref);
    yjit_reg_op(BIN(opt_aset), gen_opt_aset);
    yjit_reg_op(BIN(opt_and), gen_opt_and);
    yjit_reg_op(BIN(opt_or), gen_opt_or);
    yjit_reg_op(BIN(opt_minus), gen_opt_minus);
    yjit_reg_op(BIN(opt_plus), gen_opt_plus);
    yjit_reg_op(BIN(opt_mod), gen_opt_mod);
    yjit_reg_op(BIN(opt_ltlt), gen_opt_ltlt);
    yjit_reg_op(BIN(opt_nil_p), gen_opt_nil_p);
    yjit_reg_op(BIN(opt_empty_p), gen_opt_empty_p);
    yjit_reg_op(BIN(opt_str_freeze), gen_opt_str_freeze);
    yjit_reg_op(BIN(opt_str_uminus), gen_opt_str_uminus);
    yjit_reg_op(BIN(opt_not), gen_opt_not);
    yjit_reg_op(BIN(opt_size), gen_opt_size);
    yjit_reg_op(BIN(opt_length), gen_opt_length);
    yjit_reg_op(BIN(opt_getinlinecache), gen_opt_getinlinecache);
    yjit_reg_op(BIN(opt_invokebuiltin_delegate), gen_opt_invokebuiltin_delegate);
    yjit_reg_op(BIN(opt_invokebuiltin_delegate_leave), gen_opt_invokebuiltin_delegate);
    yjit_reg_op(BIN(branchif), gen_branchif);
    yjit_reg_op(BIN(branchunless), gen_branchunless);
    yjit_reg_op(BIN(branchnil), gen_branchnil);
    yjit_reg_op(BIN(jump), gen_jump);
    yjit_reg_op(BIN(getblockparamproxy), gen_getblockparamproxy);
    yjit_reg_op(BIN(opt_send_without_block), gen_opt_send_without_block);
    yjit_reg_op(BIN(send), gen_send);
    yjit_reg_op(BIN(leave), gen_leave);

    yjit_method_codegen_table = st_init_numtable();

    yjit_reg_method(rb_cBasicObject, "!", jit_rb_obj_not);
}