summaryrefslogtreecommitdiff
path: root/yjit/src/core.rs
blob: cd6e649aa00c81a228550694037ed268262e4199 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
//! Code versioning, retained live control flow graph mutations, type tracking, etc.

// So we can comment on individual uses of `unsafe` in `unsafe` functions
#![warn(unsafe_op_in_unsafe_fn)]

use crate::asm::*;
use crate::backend::ir::*;
use crate::codegen::*;
use crate::virtualmem::CodePtr;
use crate::cruby::*;
use crate::options::*;
use crate::stats::*;
use crate::utils::*;
#[cfg(feature="disasm")]
use crate::disasm::*;
use core::ffi::c_void;
use std::cell::*;
use std::collections::HashSet;
use std::fmt;
use std::mem;
use std::mem::transmute;
use std::ops::Range;
use std::rc::Rc;
use mem::MaybeUninit;
use std::ptr;
use ptr::NonNull;
use YARVOpnd::*;
use TempMappingKind::*;
use crate::invariants::*;

// Maximum number of temp value types we keep track of
pub const MAX_TEMP_TYPES: usize = 8;

// Maximum number of local variable types we keep track of
const MAX_LOCAL_TYPES: usize = 8;

/// An index into `ISEQ_BODY(iseq)->iseq_encoded`. Points
/// to a YARV instruction or an instruction operand.
pub type IseqIdx = u16;

// Represent the type of a value (local/stack/self) in YJIT
#[derive(Copy, Clone, Hash, PartialEq, Eq, Debug)]
#[repr(u8)]
pub enum Type {
    Unknown = 0,
    UnknownImm,
    UnknownHeap,
    Nil,
    True,
    False,
    Fixnum,
    Flonum,
    ImmSymbol,

    TString, // An object with the T_STRING flag set, possibly an rb_cString
    CString, // An object that at one point had its class field equal rb_cString (creating a singleton class changes it)
    TArray, // An object with the T_ARRAY flag set, possibly an rb_cArray
    CArray, // An object that at one point had its class field equal rb_cArray (creating a singleton class changes it)
    THash, // An object with the T_HASH flag set, possibly an rb_cHash
    CHash, // An object that at one point had its class field equal rb_cHash (creating a singleton class changes it)

    BlockParamProxy, // A special sentinel value indicating the block parameter should be read from
                     // the current surrounding cfp

    // The context currently relies on types taking at most 4 bits (max value 15)
    // to encode, so if we add any more, we will need to refactor the context.
}

// Default initialization
impl Default for Type {
    fn default() -> Self {
        Type::Unknown
    }
}

impl Type {
    /// This returns an appropriate Type based on a known value
    pub fn from(val: VALUE) -> Type {
        if val.special_const_p() {
            if val.fixnum_p() {
                Type::Fixnum
            } else if val.nil_p() {
                Type::Nil
            } else if val == Qtrue {
                Type::True
            } else if val == Qfalse {
                Type::False
            } else if val.static_sym_p() {
                Type::ImmSymbol
            } else if val.flonum_p() {
                Type::Flonum
            } else {
                unreachable!("Illegal value: {:?}", val)
            }
        } else {
            // Core.rs can't reference rb_cString because it's linked by Rust-only tests.
            // But CString vs TString is only an optimisation and shouldn't affect correctness.
            #[cfg(not(test))]
            match val.class_of() {
                class if class == unsafe { rb_cArray }  => return Type::CArray,
                class if class == unsafe { rb_cHash }   => return Type::CHash,
                class if class == unsafe { rb_cString } => return Type::CString,
                _ => {}
            }
            // We likewise can't reference rb_block_param_proxy, but it's again an optimisation;
            // we can just treat it as a normal Object.
            #[cfg(not(test))]
            if val == unsafe { rb_block_param_proxy } {
                return Type::BlockParamProxy;
            }
            match val.builtin_type() {
                RUBY_T_ARRAY => Type::TArray,
                RUBY_T_HASH => Type::THash,
                RUBY_T_STRING => Type::TString,
                _ => Type::UnknownHeap,
            }
        }
    }

    /// Check if the type is an immediate
    pub fn is_imm(&self) -> bool {
        match self {
            Type::UnknownImm => true,
            Type::Nil => true,
            Type::True => true,
            Type::False => true,
            Type::Fixnum => true,
            Type::Flonum => true,
            Type::ImmSymbol => true,
            _ => false,
        }
    }

    /// Returns true when the type is not specific.
    pub fn is_unknown(&self) -> bool {
        match self {
            Type::Unknown | Type::UnknownImm | Type::UnknownHeap => true,
            _ => false,
        }
    }

    /// Returns true when we know the VALUE is a specific handle type,
    /// such as a static symbol ([Type::ImmSymbol], i.e. true from RB_STATIC_SYM_P()).
    /// Opposite of [Self::is_unknown].
    pub fn is_specific(&self) -> bool {
        !self.is_unknown()
    }

    /// Check if the type is a heap object
    pub fn is_heap(&self) -> bool {
        match self {
            Type::UnknownHeap => true,
            Type::TArray => true,
            Type::CArray => true,
            Type::THash => true,
            Type::CHash => true,
            Type::TString => true,
            Type::CString => true,
            Type::BlockParamProxy => true,
            _ => false,
        }
    }

    /// Check if it's a T_ARRAY object (both TArray and CArray are T_ARRAY)
    pub fn is_array(&self) -> bool {
        matches!(self, Type::TArray | Type::CArray)
    }

    /// Check if it's a T_HASH object (both THash and CHash are T_HASH)
    pub fn is_hash(&self) -> bool {
        matches!(self, Type::THash | Type::CHash)
    }

    /// Check if it's a T_STRING object (both TString and CString are T_STRING)
    pub fn is_string(&self) -> bool {
        matches!(self, Type::TString | Type::CString)
    }

    /// Returns an Option with the T_ value type if it is known, otherwise None
    pub fn known_value_type(&self) -> Option<ruby_value_type> {
        match self {
            Type::Nil => Some(RUBY_T_NIL),
            Type::True => Some(RUBY_T_TRUE),
            Type::False => Some(RUBY_T_FALSE),
            Type::Fixnum => Some(RUBY_T_FIXNUM),
            Type::Flonum => Some(RUBY_T_FLOAT),
            Type::TArray | Type::CArray => Some(RUBY_T_ARRAY),
            Type::THash | Type::CHash => Some(RUBY_T_HASH),
            Type::ImmSymbol => Some(RUBY_T_SYMBOL),
            Type::TString | Type::CString => Some(RUBY_T_STRING),
            Type::Unknown | Type::UnknownImm | Type::UnknownHeap => None,
            Type::BlockParamProxy => None,
        }
    }

    /// Returns an Option with the class if it is known, otherwise None
    pub fn known_class(&self) -> Option<VALUE> {
        unsafe {
            match self {
                Type::Nil => Some(rb_cNilClass),
                Type::True => Some(rb_cTrueClass),
                Type::False => Some(rb_cFalseClass),
                Type::Fixnum => Some(rb_cInteger),
                Type::Flonum => Some(rb_cFloat),
                Type::ImmSymbol => Some(rb_cSymbol),
                Type::CArray => Some(rb_cArray),
                Type::CHash => Some(rb_cHash),
                Type::CString => Some(rb_cString),
                _ => None,
            }
        }
    }

    /// Returns an Option with the exact value if it is known, otherwise None
    #[allow(unused)] // not yet used
    pub fn known_exact_value(&self) -> Option<VALUE> {
        match self {
            Type::Nil => Some(Qnil),
            Type::True => Some(Qtrue),
            Type::False => Some(Qfalse),
            _ => None,
        }
    }

    /// Returns an Option boolean representing whether the value is truthy if known, otherwise None
    pub fn known_truthy(&self) -> Option<bool> {
        match self {
            Type::Nil => Some(false),
            Type::False => Some(false),
            Type::UnknownHeap => Some(true),
            Type::Unknown | Type::UnknownImm => None,
            _ => Some(true)
        }
    }

    /// Returns an Option boolean representing whether the value is equal to nil if known, otherwise None
    pub fn known_nil(&self) -> Option<bool> {
        match (self, self.known_truthy()) {
            (Type::Nil, _) => Some(true),
            (Type::False, _) => Some(false), // Qfalse is not nil
            (_, Some(true))  => Some(false), // if truthy, can't be nil
            (_, _) => None // otherwise unknown
        }
    }

    /// Compute a difference between two value types
    pub fn diff(self, dst: Self) -> TypeDiff {
        // Perfect match, difference is zero
        if self == dst {
            return TypeDiff::Compatible(0);
        }

        // Any type can flow into an unknown type
        if dst == Type::Unknown {
            return TypeDiff::Compatible(1);
        }

        // A CArray is also a TArray.
        if self == Type::CArray && dst == Type::TArray {
            return TypeDiff::Compatible(1);
        }

        // A CHash is also a THash.
        if self == Type::CHash && dst == Type::THash {
            return TypeDiff::Compatible(1);
        }

        // A CString is also a TString.
        if self == Type::CString && dst == Type::TString {
            return TypeDiff::Compatible(1);
        }

        // Specific heap type into unknown heap type is imperfect but valid
        if self.is_heap() && dst == Type::UnknownHeap {
            return TypeDiff::Compatible(1);
        }

        // Specific immediate type into unknown immediate type is imperfect but valid
        if self.is_imm() && dst == Type::UnknownImm {
            return TypeDiff::Compatible(1);
        }

        // Incompatible types
        return TypeDiff::Incompatible;
    }

    /// Upgrade this type into a more specific compatible type
    /// The new type must be compatible and at least as specific as the previously known type.
    fn upgrade(&mut self, new_type: Self) {
        // We can only upgrade to a type that is more specific
        assert!(new_type.diff(*self) != TypeDiff::Incompatible);
        *self = new_type;
    }
}

#[derive(Debug, Eq, PartialEq)]
pub enum TypeDiff {
    // usize == 0: Same type
    // usize >= 1: Different but compatible. The smaller, the more compatible.
    Compatible(usize),
    Incompatible,
}

#[derive(Copy, Clone, Eq, Hash, PartialEq, Debug)]
#[repr(u8)]
pub enum TempMappingKind
{
    MapToStack = 0,
    MapToSelf = 1,
    MapToLocal = 2,
}

// Potential mapping of a value on the temporary stack to
// self, a local variable or constant so that we can track its type
//
// The highest two bits represent TempMappingKind, and the rest of
// the bits are used differently across different kinds.
// * MapToStack: The lowest 5 bits are used for mapping Type.
// * MapToSelf: The remaining bits are not used; the type is stored in self_type.
// * MapToLocal: The lowest 3 bits store the index of a local variable.
#[derive(Copy, Clone, Eq, Hash, PartialEq, Debug)]
pub struct TempMapping(u8);

impl TempMapping {
    pub fn map_to_stack(t: Type) -> TempMapping
    {
        let kind_bits = TempMappingKind::MapToStack as u8;
        let type_bits = t as u8;
        assert!(type_bits <= 0b11111);
        let bits = (kind_bits << 6) | (type_bits & 0b11111);
        TempMapping(bits)
    }

    pub fn map_to_self() -> TempMapping
    {
        let kind_bits = TempMappingKind::MapToSelf as u8;
        let bits = kind_bits << 6;
        TempMapping(bits)
    }

    pub fn map_to_local(local_idx: u8) -> TempMapping
    {
        let kind_bits = TempMappingKind::MapToLocal as u8;
        assert!(local_idx <= 0b111);
        let bits = (kind_bits << 6) | (local_idx & 0b111);
        TempMapping(bits)
    }

    pub fn without_type(&self) -> TempMapping
    {
        if self.get_kind() != TempMappingKind::MapToStack {
            return *self;
        }

        TempMapping::map_to_stack(Type::Unknown)
    }

    pub fn get_kind(&self) -> TempMappingKind
    {
        // Take the two highest bits
        let TempMapping(bits) = self;
        let kind_bits = bits >> 6;
        assert!(kind_bits <= 2);
        unsafe { transmute::<u8, TempMappingKind>(kind_bits) }
    }

    pub fn get_type(&self) -> Type
    {
        assert!(self.get_kind() == TempMappingKind::MapToStack);

        // Take the 5 lowest bits
        let TempMapping(bits) = self;
        let type_bits = bits & 0b11111;
        unsafe { transmute::<u8, Type>(type_bits) }
    }

    pub fn get_local_idx(&self) -> u8
    {
        assert!(self.get_kind() == TempMappingKind::MapToLocal);

        // Take the 3 lowest bits
        let TempMapping(bits) = self;
        bits & 0b111
    }
}

impl Default for TempMapping {
    fn default() -> Self {
        TempMapping::map_to_stack(Type::Unknown)
    }
}

// Operand to a YARV bytecode instruction
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum YARVOpnd {
    // The value is self
    SelfOpnd,

    // Temporary stack operand with stack index
    StackOpnd(u8),
}

impl From<Opnd> for YARVOpnd {
    fn from(value: Opnd) -> Self {
        match value {
            Opnd::Stack { idx, .. } => StackOpnd(idx.try_into().unwrap()),
            _ => unreachable!("{:?} cannot be converted to YARVOpnd", value)
        }
    }
}

/// Maximum index of stack temps that could be in a register
pub const MAX_REG_TEMPS: u8 = 8;

/// Bitmap of which stack temps are in a register
#[derive(Copy, Clone, Default, Eq, Hash, PartialEq, Debug)]
pub struct RegTemps(u8);

impl RegTemps {
    pub fn get(&self, index: u8) -> bool {
        assert!(index < MAX_REG_TEMPS);
        (self.0 >> index) & 1 == 1
    }

    pub fn set(&mut self, index: u8, value: bool) {
        assert!(index < MAX_REG_TEMPS);
        if value {
            self.0 = self.0 | (1 << index);
        } else {
            self.0 = self.0 & !(1 << index);
        }
    }

    pub fn as_u8(&self) -> u8 {
        self.0
    }

    /// Return true if there's a register that conflicts with a given stack_idx.
    pub fn conflicts_with(&self, stack_idx: u8) -> bool {
        let mut other_idx = stack_idx as usize % get_option!(num_temp_regs);
        while other_idx < MAX_REG_TEMPS as usize {
            if stack_idx as usize != other_idx && self.get(other_idx as u8) {
                return true;
            }
            other_idx += get_option!(num_temp_regs);
        }
        false
    }
}

/// Bits for chain_depth_return_landing_defer
const RETURN_LANDING_BIT: u8 = 0b10000000;
const DEFER_BIT: u8          = 0b01000000;
const CHAIN_DEPTH_MASK: u8   = 0b00111111; // 63

/// Code generation context
/// Contains information we can use to specialize/optimize code
/// There are a lot of context objects so we try to keep the size small.
#[derive(Copy, Clone, Default, Eq, Hash, PartialEq, Debug)]
#[repr(packed)]
pub struct Context {
    // Number of values currently on the temporary stack
    stack_size: u8,

    // Offset of the JIT SP relative to the interpreter SP
    // This represents how far the JIT's SP is from the "real" SP
    sp_offset: i8,

    /// Bitmap of which stack temps are in a register
    reg_temps: RegTemps,

    /// Fields packed into u8
    /// - 1st bit from the left: Whether this code is the target of a JIT-to-JIT Ruby return ([Self::is_return_landing])
    /// - 2nd bit from the left: Whether the compilation of this code has been deferred ([Self::is_deferred])
    /// - Last 6 bits (max: 63): Depth of this block in the sidechain (eg: inline-cache chain)
    chain_depth_and_flags: u8,

    // Type we track for self
    self_type: Type,

    // Local variable types we keep track of
    // We store 8 local types, requiring 4 bits each, for a total of 32 bits
    local_types: u32,

    // Temp mapping kinds we track
    // 8 temp mappings * 2 bits, total 16 bits
    temp_mapping_kind: u16,

    // Stack slot type/local_idx we track
    // 8 temp types * 4 bits, total 32 bits
    temp_payload: u32,

    /// A pointer to a block ISEQ supplied by the caller. 0 if not inlined.
    /// Not using IseqPtr to satisfy Default trait, and not using Option for #[repr(packed)]
    /// TODO: This could be u16 if we have a global or per-ISEQ HashMap to convert IseqPtr
    /// to serial indexes. We're thinking of overhauling Context structure in Ruby 3.4 which
    /// could allow this to consume no bytes, so we're leaving this as is.
    inline_block: u64,
}

/// Tuple of (iseq, idx) used to identify basic blocks
/// There are a lot of blockid objects so we try to keep the size small.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[repr(packed)]
pub struct BlockId {
    /// Instruction sequence
    pub iseq: IseqPtr,

    /// Index in the iseq where the block starts
    pub idx: u16,
}

/// Branch code shape enumeration
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum BranchShape {
    Next0,   // Target 0 is next
    Next1,   // Target 1 is next
    Default, // Neither target is next
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum BranchGenFn {
    BranchIf(Cell<BranchShape>),
    BranchNil(Cell<BranchShape>),
    BranchUnless(Cell<BranchShape>),
    JumpToTarget0(Cell<BranchShape>),
    JNZToTarget0,
    JZToTarget0,
    JBEToTarget0,
    JBToTarget0,
    JOMulToTarget0,
    JITReturn,
}

impl BranchGenFn {
    pub fn call(&self, asm: &mut Assembler, target0: Target, target1: Option<Target>) {
        match self {
            BranchGenFn::BranchIf(shape) => {
                match shape.get() {
                    BranchShape::Next0 => asm.jz(target1.unwrap()),
                    BranchShape::Next1 => asm.jnz(target0),
                    BranchShape::Default => {
                        asm.jnz(target0);
                        asm.jmp(target1.unwrap());
                    }
                }
            }
            BranchGenFn::BranchNil(shape) => {
                match shape.get() {
                    BranchShape::Next0 => asm.jne(target1.unwrap()),
                    BranchShape::Next1 => asm.je(target0),
                    BranchShape::Default => {
                        asm.je(target0);
                        asm.jmp(target1.unwrap());
                    }
                }
            }
            BranchGenFn::BranchUnless(shape) => {
                match shape.get() {
                    BranchShape::Next0 => asm.jnz(target1.unwrap()),
                    BranchShape::Next1 => asm.jz(target0),
                    BranchShape::Default => {
                        asm.jz(target0);
                        asm.jmp(target1.unwrap());
                    }
                }
            }
            BranchGenFn::JumpToTarget0(shape) => {
                if shape.get() == BranchShape::Next1 {
                    panic!("Branch shape Next1 not allowed in JumpToTarget0!");
                }
                if shape.get() == BranchShape::Default {
                    asm.jmp(target0);
                }
            }
            BranchGenFn::JNZToTarget0 => {
                asm.jnz(target0)
            }
            BranchGenFn::JZToTarget0 => {
                asm.jz(target0)
            }
            BranchGenFn::JBEToTarget0 => {
                asm.jbe(target0)
            }
            BranchGenFn::JBToTarget0 => {
                asm.jb(target0)
            }
            BranchGenFn::JOMulToTarget0 => {
                asm.jo_mul(target0)
            }
            BranchGenFn::JITReturn => {
                asm_comment!(asm, "update cfp->jit_return");
                let jit_return = RUBY_OFFSET_CFP_JIT_RETURN - RUBY_SIZEOF_CONTROL_FRAME as i32;
                let raw_ptr = asm.lea_jump_target(target0);
                asm.mov(Opnd::mem(64, CFP, jit_return), raw_ptr);
            }
        }
    }

    pub fn get_shape(&self) -> BranchShape {
        match self {
            BranchGenFn::BranchIf(shape) |
            BranchGenFn::BranchNil(shape) |
            BranchGenFn::BranchUnless(shape) |
            BranchGenFn::JumpToTarget0(shape) => shape.get(),
            BranchGenFn::JNZToTarget0 |
            BranchGenFn::JZToTarget0 |
            BranchGenFn::JBEToTarget0 |
            BranchGenFn::JBToTarget0 |
            BranchGenFn::JOMulToTarget0 |
            BranchGenFn::JITReturn => BranchShape::Default,
        }
    }

    pub fn set_shape(&self, new_shape: BranchShape) {
        match self {
            BranchGenFn::BranchIf(shape) |
            BranchGenFn::BranchNil(shape) |
            BranchGenFn::BranchUnless(shape) => {
                shape.set(new_shape);
            }
            BranchGenFn::JumpToTarget0(shape) => {
                if new_shape == BranchShape::Next1 {
                    panic!("Branch shape Next1 not allowed in JumpToTarget0!");
                }
                shape.set(new_shape);
            }
            BranchGenFn::JNZToTarget0 |
            BranchGenFn::JZToTarget0 |
            BranchGenFn::JBEToTarget0 |
            BranchGenFn::JBToTarget0 |
            BranchGenFn::JOMulToTarget0 |
            BranchGenFn::JITReturn => {
                assert_eq!(new_shape, BranchShape::Default);
            }
        }
    }
}

/// A place that a branch could jump to
#[derive(Debug, Clone)]
enum BranchTarget {
    Stub(Box<BranchStub>), // Not compiled yet
    Block(BlockRef),       // Already compiled
}

impl BranchTarget {
    fn get_address(&self) -> Option<CodePtr> {
        match self {
            BranchTarget::Stub(stub) => stub.address,
            BranchTarget::Block(blockref) => Some(unsafe { blockref.as_ref() }.start_addr),
        }
    }

    fn get_blockid(&self) -> BlockId {
        match self {
            BranchTarget::Stub(stub) => BlockId { iseq: stub.iseq.get(), idx: stub.iseq_idx },
            BranchTarget::Block(blockref) => unsafe { blockref.as_ref() }.get_blockid(),
        }
    }

    fn get_ctx(&self) -> Context {
        match self {
            BranchTarget::Stub(stub) => stub.ctx,
            BranchTarget::Block(blockref) => unsafe { blockref.as_ref() }.ctx,
        }
    }

    fn get_block(&self) -> Option<BlockRef> {
        match self {
            BranchTarget::Stub(_) => None,
            BranchTarget::Block(blockref) => Some(*blockref),
        }
    }

    fn set_iseq(&self, iseq: IseqPtr) {
        match self {
            BranchTarget::Stub(stub) => stub.iseq.set(iseq),
            BranchTarget::Block(blockref) => unsafe { blockref.as_ref() }.iseq.set(iseq),
        }
    }
}

#[derive(Debug, Clone)]
struct BranchStub {
    address: Option<CodePtr>,
    iseq: Cell<IseqPtr>,
    iseq_idx: IseqIdx,
    ctx: Context,
}

/// Store info about an outgoing branch in a code segment
/// Note: care must be taken to minimize the size of branch objects
pub struct Branch {
    // Block this is attached to
    block: BlockRef,

    // Positions where the generated code starts and ends
    start_addr: CodePtr,
    end_addr: Cell<CodePtr>, // exclusive

    // Branch target blocks and their contexts
    targets: [Cell<Option<Box<BranchTarget>>>; 2],

    // Branch code generation function
    gen_fn: BranchGenFn,
}

/// A [Branch] for a [Block] that is under construction.
/// Fields correspond, but may be `None` during construction.
pub struct PendingBranch {
    /// Allocation holder for the address of the constructed branch
    /// in error paths Box deallocates it.
    uninit_branch: Box<MaybeUninit<Branch>>,

    /// Branch code generation function
    gen_fn: BranchGenFn,

    /// Positions where the generated code starts and ends
    start_addr: Cell<Option<CodePtr>>,
    end_addr: Cell<Option<CodePtr>>, // exclusive

    /// Branch target blocks and their contexts
    targets: [Cell<Option<Box<BranchTarget>>>; 2],
}

impl Branch {
    // Compute the size of the branch code
    fn code_size(&self) -> usize {
        (self.end_addr.get().as_offset() - self.start_addr.as_offset()) as usize
    }

    /// Get the address of one of the branch destination
    fn get_target_address(&self, target_idx: usize) -> Option<CodePtr> {
        unsafe {
            self.targets[target_idx]
                .ref_unchecked()
                .as_ref()
                .and_then(|target| target.get_address())
        }
    }

    fn get_stub_count(&self) -> usize {
        let mut count = 0;
        for target in self.targets.iter() {
            if unsafe {
                // SAFETY: no mutation
                matches!(
                    target.ref_unchecked().as_ref().map(Box::as_ref),
                    Some(BranchTarget::Stub(_))
                )
            } {
                count += 1;
            }
        }
        count
    }

    fn assert_layout(&self) {
        let shape = self.gen_fn.get_shape();
        assert!(
            !(shape == BranchShape::Default && 0 == self.code_size()),
            "zero-size branches are incorrect when code for neither targets are adjacent"
            // One needs to issue some instruction to steer to the branch target
            // when falling through isn't an option.
        );
    }
}

impl std::fmt::Debug for Branch {
    // Can't derive this because `targets: !Copy` due to Cell.
    fn fmt(&self, formatter: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let targets = unsafe {
            // SAFETY:
            // While the references are live for the result of this function,
            // no mutation happens because we are only calling derived fmt::Debug functions.
            [self.targets[0].as_ptr().as_ref().unwrap(), self.targets[1].as_ptr().as_ref().unwrap()]
        };

        formatter
            .debug_struct("Branch")
            .field("block", &self.block)
            .field("start", &self.start_addr)
            .field("end", &self.end_addr)
            .field("targets", &targets)
            .field("gen_fn", &self.gen_fn)
            .finish()
    }
}

impl PendingBranch {
    /// Set up a branch target at `target_idx`. Find an existing block to branch to
    /// or generate a stub for one.
    fn set_target(
        &self,
        target_idx: u32,
        target: BlockId,
        ctx: &Context,
        ocb: &mut OutlinedCb,
    ) -> Option<CodePtr> {
        // If the block already exists
        if let Some(blockref) = find_block_version(target, ctx) {
            let block = unsafe { blockref.as_ref() };

            // Fill out the target with this block
            self.targets[target_idx.as_usize()]
                .set(Some(Box::new(BranchTarget::Block(blockref))));
            return Some(block.start_addr);
        }

        // The branch struct is uninitialized right now but as a stable address.
        // We make sure the stub runs after the branch is initialized.
        let branch_struct_addr = self.uninit_branch.as_ptr() as usize;
        let stub_addr = gen_branch_stub(ctx, ocb, branch_struct_addr, target_idx);

        if let Some(stub_addr) = stub_addr {
            // Fill the branch target with a stub
            self.targets[target_idx.as_usize()].set(Some(Box::new(BranchTarget::Stub(Box::new(BranchStub {
                address: Some(stub_addr),
                iseq: Cell::new(target.iseq),
                iseq_idx: target.idx,
                ctx: *ctx,
            })))));
        }

        stub_addr
    }

    // Construct the branch and wire it up in the grpah
    fn into_branch(mut self, uninit_block: BlockRef) -> BranchRef {
        // Make the branch
        let branch = Branch {
            block: uninit_block,
            start_addr: self.start_addr.get().unwrap(),
            end_addr: Cell::new(self.end_addr.get().unwrap()),
            targets: self.targets,
            gen_fn: self.gen_fn,
        };
        // Move it to the designated place on
        // the heap and unwrap MaybeUninit.
        self.uninit_branch.write(branch);
        let raw_branch: *mut MaybeUninit<Branch> = Box::into_raw(self.uninit_branch);
        let branchref = NonNull::new(raw_branch as *mut Branch).expect("no null from Box");

        // SAFETY: just allocated it
        let branch = unsafe { branchref.as_ref() };
        // For block branch targets, put the new branch in the
        // appropriate incoming list.
        for target in branch.targets.iter() {
            // SAFETY: no mutation
            let out_block: Option<BlockRef> = unsafe {
                target.ref_unchecked().as_ref().and_then(|target| target.get_block())
            };

            if let Some(out_block) = out_block {
                // SAFETY: These blockrefs come from set_target() which only puts blocks from
                // ISeqs, which are all initialized. Note that uninit_block isn't in any ISeq
                // payload yet.
                unsafe { out_block.as_ref() }.incoming.push(branchref);
            }
        }

        branch.assert_layout();

        branchref
    }
}

// Store info about code used on YJIT entry
pub struct Entry {
    // Positions where the generated code starts and ends
    start_addr: CodePtr,
    end_addr: CodePtr, // exclusive
}

/// A [Branch] for a [Block] that is under construction.
pub struct PendingEntry {
    pub uninit_entry: Box<MaybeUninit<Entry>>,
    start_addr: Cell<Option<CodePtr>>,
    end_addr: Cell<Option<CodePtr>>, // exclusive
}

impl PendingEntry {
    // Construct the entry in the heap
    pub fn into_entry(mut self) -> EntryRef {
        // Make the entry
        let entry = Entry {
            start_addr: self.start_addr.get().unwrap(),
            end_addr: self.end_addr.get().unwrap(),
        };
        // Move it to the designated place on the heap and unwrap MaybeUninit.
        self.uninit_entry.write(entry);
        let raw_entry: *mut MaybeUninit<Entry> = Box::into_raw(self.uninit_entry);
        NonNull::new(raw_entry as *mut Entry).expect("no null from Box")
    }
}

// In case a block is invalidated, this helps to remove all pointers to the block.
pub type CmePtr = *const rb_callable_method_entry_t;

/// Basic block version
/// Represents a portion of an iseq compiled with a given context
/// Note: care must be taken to minimize the size of block_t objects
#[derive(Debug)]
pub struct Block {
    // The byte code instruction sequence this is a version of.
    // Can change due to moving GC.
    iseq: Cell<IseqPtr>,

    // Index range covered by this version in `ISEQ_BODY(iseq)->iseq_encoded`.
    iseq_range: Range<IseqIdx>,

    // Context at the start of the block
    // This should never be mutated
    ctx: Context,

    // Positions where the generated code starts and ends
    start_addr: CodePtr,
    end_addr: Cell<CodePtr>,

    // List of incoming branches (from predecessors)
    // These are reference counted (ownership shared between predecessor and successors)
    incoming: MutableBranchList,

    // NOTE: we might actually be able to store the branches here without refcounting
    // however, using a RefCell makes it easy to get a pointer to Branch objects
    //
    // List of outgoing branches (to successors)
    outgoing: Box<[BranchRef]>,

    // FIXME: should these be code pointers instead?
    // Offsets for GC managed objects in the mainline code block
    gc_obj_offsets: Box<[u32]>,

    // CME dependencies of this block, to help to remove all pointers to this
    // block in the system.
    cme_dependencies: Box<[Cell<CmePtr>]>,

    // Code address of an exit for `ctx` and `blockid`.
    // Used for block invalidation.
    entry_exit: Option<CodePtr>,
}

/// Pointer to a [Block].
///
/// # Safety
///
/// _Never_ derive a `&mut Block` from this and always use
/// [std::ptr::NonNull::as_ref] to get a `&Block`. `&'a mut`
/// in Rust asserts that there are no other references live
/// over the lifetime `'a`. This uniqueness assertion does
/// not hold in many situations for us, even when you ignore
/// the fact that our control flow graph can have cycles.
/// Here are just two examples where we have overlapping references:
///  - Yielding to a different OS thread within the same
///    ractor during compilation
///  - The GC calling [rb_yjit_iseq_mark] during compilation
///
/// Technically, for soundness, we also need to ensure that
/// the we have the VM lock while the result of `as_ref()`
/// is live, so that no deallocation happens while the
/// shared reference is live. The vast majority of our code run while
/// holding the VM lock, though.
pub type BlockRef = NonNull<Block>;

/// Pointer to a [Branch]. See [BlockRef] for notes about
/// proper usage.
pub type BranchRef = NonNull<Branch>;

/// Pointer to an entry that is already added to an ISEQ
pub type EntryRef = NonNull<Entry>;

/// List of block versions for a given blockid
type VersionList = Vec<BlockRef>;

/// Map from iseq indices to lists of versions for that given blockid
/// An instance of this is stored on each iseq
type VersionMap = Vec<VersionList>;

/// [Interior mutability][1] wrapper for a list of branches.
/// O(n) insertion, but space efficient. We generally expect
/// blocks to have only a few branches.
///
/// [1]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
#[repr(transparent)]
struct MutableBranchList(Cell<Box<[BranchRef]>>);

impl MutableBranchList {
    fn push(&self, branch: BranchRef) {
        // Temporary move the boxed slice out of self.
        // oom=abort is load bearing here...
        let mut current_list = self.0.take().into_vec();
        current_list.push(branch);
        self.0.set(current_list.into_boxed_slice());
    }
}

impl fmt::Debug for MutableBranchList {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        // SAFETY: the derived Clone for boxed slices does not mutate this Cell
        let branches = unsafe { self.0.ref_unchecked().clone() };

        formatter.debug_list().entries(branches.into_iter()).finish()
    }
}

/// This is all the data YJIT stores on an iseq
/// This will be dynamically allocated by C code
/// C code should pass an &mut IseqPayload to us
/// when calling into YJIT
#[derive(Default)]
pub struct IseqPayload {
    // Basic block versions
    pub version_map: VersionMap,

    // Indexes of code pages used by this this ISEQ
    pub pages: HashSet<usize>,

    // List of ISEQ entry codes
    pub entries: Vec<EntryRef>,

    // Blocks that are invalidated but are not yet deallocated.
    // The code GC will free them later.
    pub dead_blocks: Vec<BlockRef>,
}

impl IseqPayload {
    /// Remove all block versions from the payload and then return them as an iterator
    pub fn take_all_blocks(&mut self) -> impl Iterator<Item = BlockRef> {
        // Empty the blocks
        let version_map = mem::take(&mut self.version_map);

        // Turn it into an iterator that owns the blocks and return
        version_map.into_iter().flatten()
    }
}

/// Get the payload for an iseq. For safety it's up to the caller to ensure the returned `&mut`
/// upholds aliasing rules and that the argument is a valid iseq.
pub fn get_iseq_payload(iseq: IseqPtr) -> Option<&'static mut IseqPayload> {
    let payload = unsafe { rb_iseq_get_yjit_payload(iseq) };
    let payload: *mut IseqPayload = payload.cast();
    unsafe { payload.as_mut() }
}

/// Get the payload object associated with an iseq. Create one if none exists.
pub fn get_or_create_iseq_payload(iseq: IseqPtr) -> &'static mut IseqPayload {
    type VoidPtr = *mut c_void;

    let payload_non_null = unsafe {
        let payload = rb_iseq_get_yjit_payload(iseq);
        if payload.is_null() {
            // Increment the compiled iseq count
            incr_counter!(compiled_iseq_count);

            // Allocate a new payload with Box and transfer ownership to the GC.
            // We drop the payload with Box::from_raw when the GC frees the iseq and calls us.
            // NOTE(alan): Sometimes we read from an iseq without ever writing to it.
            // We allocate in those cases anyways.
            let new_payload = IseqPayload::default();
            let new_payload = Box::into_raw(Box::new(new_payload));
            rb_iseq_set_yjit_payload(iseq, new_payload as VoidPtr);

            new_payload
        } else {
            payload as *mut IseqPayload
        }
    };

    // SAFETY: we should have the VM lock and all other Ruby threads should be asleep. So we have
    // exclusive mutable access.
    // Hmm, nothing seems to stop calling this on the same
    // iseq twice, though, which violates aliasing rules.
    unsafe { payload_non_null.as_mut() }.unwrap()
}

/// Iterate over all existing ISEQs
pub fn for_each_iseq<F: FnMut(IseqPtr)>(mut callback: F) {
    unsafe extern "C" fn callback_wrapper(iseq: IseqPtr, data: *mut c_void) {
        // SAFETY: points to the local below
        let callback: &mut &mut dyn FnMut(IseqPtr) -> bool = unsafe { std::mem::transmute(&mut *data) };
        callback(iseq);
    }
    let mut data: &mut dyn FnMut(IseqPtr) = &mut callback;
    unsafe { rb_yjit_for_each_iseq(Some(callback_wrapper), (&mut data) as *mut _ as *mut c_void) };
}

/// Iterate over all ISEQ payloads
pub fn for_each_iseq_payload<F: FnMut(&IseqPayload)>(mut callback: F) {
    for_each_iseq(|iseq| {
        if let Some(iseq_payload) = get_iseq_payload(iseq) {
            callback(iseq_payload);
        }
    });
}

/// Iterate over all on-stack ISEQs
pub fn for_each_on_stack_iseq<F: FnMut(IseqPtr)>(mut callback: F) {
    unsafe extern "C" fn callback_wrapper(iseq: IseqPtr, data: *mut c_void) {
        // SAFETY: points to the local below
        let callback: &mut &mut dyn FnMut(IseqPtr) -> bool = unsafe { std::mem::transmute(&mut *data) };
        callback(iseq);
    }
    let mut data: &mut dyn FnMut(IseqPtr) = &mut callback;
    unsafe { rb_jit_cont_each_iseq(Some(callback_wrapper), (&mut data) as *mut _ as *mut c_void) };
}

/// Iterate over all on-stack ISEQ payloads
pub fn for_each_on_stack_iseq_payload<F: FnMut(&IseqPayload)>(mut callback: F) {
    for_each_on_stack_iseq(|iseq| {
        if let Some(iseq_payload) = get_iseq_payload(iseq) {
            callback(iseq_payload);
        }
    });
}

/// Iterate over all NOT on-stack ISEQ payloads
pub fn for_each_off_stack_iseq_payload<F: FnMut(&mut IseqPayload)>(mut callback: F) {
    // Get all ISEQs on the heap. Note that rb_objspace_each_objects() runs GC first,
    // which could move ISEQ pointers when GC.auto_compact = true.
    // So for_each_on_stack_iseq() must be called after this, which doesn't run GC.
    let mut iseqs: Vec<IseqPtr> = vec![];
    for_each_iseq(|iseq| iseqs.push(iseq));

    // Get all ISEQs that are on a CFP of existing ECs.
    let mut on_stack_iseqs: HashSet<IseqPtr> = HashSet::new();
    for_each_on_stack_iseq(|iseq| { on_stack_iseqs.insert(iseq); });

    // Invoke the callback for iseqs - on_stack_iseqs
    for iseq in iseqs {
        if !on_stack_iseqs.contains(&iseq) {
            if let Some(iseq_payload) = get_iseq_payload(iseq) {
                callback(iseq_payload);
            }
        }
    }
}

/// Free the per-iseq payload
#[no_mangle]
pub extern "C" fn rb_yjit_iseq_free(iseq: IseqPtr) {
    // Free invariants for the ISEQ
    iseq_free_invariants(iseq);

    let payload = {
        let payload = unsafe { rb_iseq_get_yjit_payload(iseq) };
        if payload.is_null() {
            // Nothing to free.
            return;
        } else {
            payload as *mut IseqPayload
        }
    };

    // Take ownership of the payload with Box::from_raw().
    // It drops right before this function returns.
    // SAFETY: We got the pointer from Box::into_raw().
    let payload = unsafe { Box::from_raw(payload) };

    // Free all blocks in version_map. The GC doesn't free running iseqs.
    for versions in &payload.version_map {
        for block in versions {
            // SAFETY: blocks in the version_map are always well connected
            unsafe { free_block(*block, true) };
        }
    }

    // Free dead blocks
    for block in payload.dead_blocks {
        unsafe { free_block(block, false) };
    }

    // Free all entries
    for entryref in payload.entries.iter() {
        let entry = unsafe { Box::from_raw(entryref.as_ptr()) };
        mem::drop(entry);
    }

    // Increment the freed iseq count
    incr_counter!(freed_iseq_count);
}

/// GC callback for marking GC objects in the per-iseq payload.
#[no_mangle]
pub extern "C" fn rb_yjit_iseq_mark(payload: *mut c_void) {
    let payload = if payload.is_null() {
        // Nothing to mark.
        return;
    } else {
        // SAFETY: The GC takes the VM lock while marking, which
        // we assert, so we should be synchronized and data race free.
        //
        // For aliasing, having the VM lock hopefully also implies that no one
        // else has an overlapping &mut IseqPayload.
        unsafe {
            rb_yjit_assert_holding_vm_lock();
            &*(payload as *const IseqPayload)
        }
    };

    // For marking VALUEs written into the inline code block.
    // We don't write VALUEs in the outlined block.
    let cb: &CodeBlock = CodegenGlobals::get_inline_cb();

    for versions in &payload.version_map {
        for block in versions {
            // SAFETY: all blocks inside version_map are initialized.
            let block = unsafe { block.as_ref() };
            mark_block(block, cb, false);
        }
    }
    // Mark dead blocks, since there could be stubs pointing at them
    for blockref in &payload.dead_blocks {
        // SAFETY: dead blocks come from version_map, which only have initialized blocks
        let block = unsafe { blockref.as_ref() };
        mark_block(block, cb, true);
    }

    return;

    fn mark_block(block: &Block, cb: &CodeBlock, dead: bool) {
        unsafe { rb_gc_mark_movable(block.iseq.get().into()) };

        // Mark method entry dependencies
        for cme_dep in block.cme_dependencies.iter() {
            unsafe { rb_gc_mark_movable(cme_dep.get().into()) };
        }

        // Mark outgoing branch entries
        for branch in block.outgoing.iter() {
            let branch = unsafe { branch.as_ref() };
            for target in branch.targets.iter() {
                // SAFETY: no mutation inside unsafe
                let target_iseq = unsafe {
                    target.ref_unchecked().as_ref().and_then(|target| {
                        // Avoid get_blockid() on blockref. Can be dangling on dead blocks,
                        // and the iseq housing the block already naturally handles it.
                        if target.get_block().is_some() {
                            None
                        } else {
                            Some(target.get_blockid().iseq)
                        }
                    })
                };

                if let Some(target_iseq) = target_iseq {
                    unsafe { rb_gc_mark_movable(target_iseq.into()) };
                }
            }
        }

        // Mark references to objects in generated code.
        // Skip for dead blocks since they shouldn't run.
        if !dead {
            for offset in block.gc_obj_offsets.iter() {
                let value_address: *const u8 = cb.get_ptr(offset.as_usize()).raw_ptr(cb);
                // Creating an unaligned pointer is well defined unlike in C.
                let value_address = value_address as *const VALUE;

                // SAFETY: these point to YJIT's code buffer
                unsafe {
                    let object = value_address.read_unaligned();
                    rb_gc_mark_movable(object);
                };
            }
        }
    }
}

/// GC callback for updating GC objects in the per-iseq payload.
/// This is a mirror of [rb_yjit_iseq_mark].
#[no_mangle]
pub extern "C" fn rb_yjit_iseq_update_references(iseq: IseqPtr) {
    let payload = unsafe { rb_iseq_get_yjit_payload(iseq) };
    let payload = if payload.is_null() {
        // Nothing to update.
        return;
    } else {
        // SAFETY: The GC takes the VM lock while marking, which
        // we assert, so we should be synchronized and data race free.
        //
        // For aliasing, having the VM lock hopefully also implies that no one
        // else has an overlapping &mut IseqPayload.
        unsafe {
            rb_yjit_assert_holding_vm_lock();
            &*(payload as *const IseqPayload)
        }
    };

    // Evict other threads from generated code since we are about to patch them.
    // Also acts as an assert that we hold the VM lock.
    unsafe { rb_vm_barrier() };

    // For updating VALUEs written into the inline code block.
    let cb = CodegenGlobals::get_inline_cb();

    for versions in &payload.version_map {
        for version in versions {
            // SAFETY: all blocks inside version_map are initialized
            let block = unsafe { version.as_ref() };
            block_update_references(block, cb, false);
        }
    }
    // Update dead blocks, since there could be stubs pointing at them
    for blockref in &payload.dead_blocks {
        // SAFETY: dead blocks come from version_map, which only have initialized blocks
        let block = unsafe { blockref.as_ref() };
        block_update_references(block, cb, true);
    }

    // Note that we would have returned already if YJIT is off.
    cb.mark_all_executable();

    CodegenGlobals::get_outlined_cb()
        .unwrap()
        .mark_all_executable();

    return;

    fn block_update_references(block: &Block, cb: &mut CodeBlock, dead: bool) {
        block.iseq.set(unsafe { rb_gc_location(block.iseq.get().into()) }.as_iseq());

        // Update method entry dependencies
        for cme_dep in block.cme_dependencies.iter() {
            let cur_cme: VALUE = cme_dep.get().into();
            let new_cme = unsafe { rb_gc_location(cur_cme) }.as_cme();
            cme_dep.set(new_cme);
        }

        // Update outgoing branch entries
        for branch in block.outgoing.iter() {
            let branch = unsafe { branch.as_ref() };
            for target in branch.targets.iter() {
                // SAFETY: no mutation inside unsafe
                let current_iseq = unsafe {
                    target.ref_unchecked().as_ref().and_then(|target| {
                        // Avoid get_blockid() on blockref. Can be dangling on dead blocks,
                        // and the iseq housing the block already naturally handles it.
                        if target.get_block().is_some() {
                            None
                        } else {
                            Some(target.get_blockid().iseq)
                        }
                    })
                };

                if let Some(current_iseq) = current_iseq {
                    let updated_iseq = unsafe { rb_gc_location(current_iseq.into()) }
                        .as_iseq();
                    // SAFETY: the Cell::set is not on the reference given out
                    // by ref_unchecked.
                    unsafe { target.ref_unchecked().as_ref().unwrap().set_iseq(updated_iseq) };
                }
            }
        }

        // Update references to objects in generated code.
        // Skip for dead blocks since they shouldn't run and
        // so there is no potential of writing over invalidation jumps
        if !dead {
            for offset in block.gc_obj_offsets.iter() {
                let offset_to_value = offset.as_usize();
                let value_code_ptr = cb.get_ptr(offset_to_value);
                let value_ptr: *const u8 = value_code_ptr.raw_ptr(cb);
                // Creating an unaligned pointer is well defined unlike in C.
                let value_ptr = value_ptr as *mut VALUE;

                // SAFETY: these point to YJIT's code buffer
                let object = unsafe { value_ptr.read_unaligned() };
                let new_addr = unsafe { rb_gc_location(object) };

                // Only write when the VALUE moves, to be copy-on-write friendly.
                if new_addr != object {
                    for (byte_idx, &byte) in new_addr.as_u64().to_le_bytes().iter().enumerate() {
                        let byte_code_ptr = value_code_ptr.add_bytes(byte_idx);
                        cb.write_mem(byte_code_ptr, byte)
                            .expect("patching existing code should be within bounds");
                    }
                }
            }
        }

    }
}

/// Get all blocks for a particular place in an iseq.
fn get_version_list(blockid: BlockId) -> Option<&'static mut VersionList> {
    let insn_idx = blockid.idx.as_usize();
    match get_iseq_payload(blockid.iseq) {
        Some(payload) if insn_idx < payload.version_map.len() => {
            Some(payload.version_map.get_mut(insn_idx).unwrap())
        },
        _ => None
    }
}

/// Get or create all blocks for a particular place in an iseq.
fn get_or_create_version_list(blockid: BlockId) -> &'static mut VersionList {
    let payload = get_or_create_iseq_payload(blockid.iseq);
    let insn_idx = blockid.idx.as_usize();

    // Expand the version map as necessary
    if insn_idx >= payload.version_map.len() {
        payload
            .version_map
            .resize(insn_idx + 1, VersionList::default());
    }

    return payload.version_map.get_mut(insn_idx).unwrap();
}

/// Take all of the blocks for a particular place in an iseq
pub fn take_version_list(blockid: BlockId) -> VersionList {
    let insn_idx = blockid.idx.as_usize();
    match get_iseq_payload(blockid.iseq) {
        Some(payload) if insn_idx < payload.version_map.len() => {
            mem::take(&mut payload.version_map[insn_idx])
        },
        _ => VersionList::default(),
    }
}

/// Count the number of block versions matching a given blockid
/// `inlined: true` counts inlined versions, and `inlined: false` counts other versions.
fn get_num_versions(blockid: BlockId, inlined: bool) -> usize {
    let insn_idx = blockid.idx.as_usize();
    match get_iseq_payload(blockid.iseq) {
        Some(payload) => {
            payload
                .version_map
                .get(insn_idx)
                .map(|versions| {
                    versions.iter().filter(|&&version|
                        unsafe { version.as_ref() }.ctx.inline() == inlined
                    ).count()
                })
                .unwrap_or(0)
        }
        None => 0,
    }
}

/// Get or create a list of block versions generated for an iseq
/// This is used for disassembly (see disasm.rs)
pub fn get_or_create_iseq_block_list(iseq: IseqPtr) -> Vec<BlockRef> {
    let payload = get_or_create_iseq_payload(iseq);

    let mut blocks = Vec::<BlockRef>::new();

    // For each instruction index
    for insn_idx in 0..payload.version_map.len() {
        let version_list = &payload.version_map[insn_idx];

        // For each version at this instruction index
        for version in version_list {
            // Clone the block ref and add it to the list
            blocks.push(*version);
        }
    }

    return blocks;
}

/// Retrieve a basic block version for an (iseq, idx) tuple
/// This will return None if no version is found
fn find_block_version(blockid: BlockId, ctx: &Context) -> Option<BlockRef> {
    let versions = match get_version_list(blockid) {
        Some(versions) => versions,
        None => return None,
    };

    // Best match found
    let mut best_version: Option<BlockRef> = None;
    let mut best_diff = usize::MAX;

    // For each version matching the blockid
    for blockref in versions.iter() {
        let block = unsafe { blockref.as_ref() };

        // Note that we always prefer the first matching
        // version found because of inline-cache chains
        match ctx.diff(&block.ctx) {
            TypeDiff::Compatible(diff) if diff < best_diff => {
                best_version = Some(*blockref);
                best_diff = diff;
            }
            _ => {}
        }
    }

    return best_version;
}

/// Allow inlining a Block up to MAX_INLINE_VERSIONS times.
const MAX_INLINE_VERSIONS: usize = 1000;

/// Produce a generic context when the block version limit is hit for a blockid
pub fn limit_block_versions(blockid: BlockId, ctx: &Context) -> Context {
    // Guard chains implement limits separately, do nothing
    if ctx.get_chain_depth() > 0 {
        return *ctx;
    }

    let next_versions = get_num_versions(blockid, ctx.inline()) + 1;
    let max_versions = if ctx.inline() {
        MAX_INLINE_VERSIONS
    } else {
        get_option!(max_versions)
    };

    // If this block version we're about to add will hit the version limit
    if next_versions >= max_versions {
        // Produce a generic context that stores no type information,
        // but still respects the stack_size and sp_offset constraints.
        // This new context will then match all future requests.
        let generic_ctx = ctx.get_generic_ctx();

        if cfg!(debug_assertions) {
            let mut ctx = ctx.clone();
            if ctx.inline() {
                // Suppress TypeDiff::Incompatible from ctx.diff(). We return TypeDiff::Incompatible
                // to keep inlining blocks until we hit the limit, but it's safe to give up inlining.
                ctx.inline_block = 0;
                assert!(generic_ctx.inline_block == 0);
            }

            assert_ne!(
                TypeDiff::Incompatible,
                ctx.diff(&generic_ctx),
                "should substitute a compatible context",
            );
        }

        return generic_ctx;
    }
    incr_counter_to!(max_inline_versions, next_versions);

    return *ctx;
}

/// Install a block version into its [IseqPayload], letting the GC track its
/// lifetime, and allowing it to be considered for use for other
/// blocks we might generate. Uses `cb` for running write barriers.
///
/// # Safety
///
/// The block must be fully initialized. Its incoming and outgoing edges,
/// if there are any, must point to initialized blocks, too.
///
/// Note that the block might gain edges after this function returns,
/// as can happen during [gen_block_series]. Initialized here doesn't mean
/// ready to be consumed or that the machine code tracked by the block is
/// ready to be run.
///
/// Due to this transient state where a block is tracked by the GC by
/// being inside an [IseqPayload] but not ready to be executed, it's
/// generally unsound to call any Ruby methods during codegen. That has
/// the potential to run blocks which are not ready.
unsafe fn add_block_version(blockref: BlockRef, cb: &CodeBlock) {
    // SAFETY: caller ensures initialization
    let block = unsafe { blockref.as_ref() };

    // Function entry blocks must have stack size 0
    assert!(!(block.iseq_range.start == 0 && block.ctx.stack_size > 0));

    let version_list = get_or_create_version_list(block.get_blockid());

    // If this the first block being compiled with this block id
    if version_list.len() == 0 {
        incr_counter!(compiled_blockid_count);
    }

    version_list.push(blockref);
    version_list.shrink_to_fit();

    // By writing the new block to the iseq, the iseq now
    // contains new references to Ruby objects. Run write barriers.
    let iseq: VALUE = block.iseq.get().into();
    for dep in block.iter_cme_deps() {
        obj_written!(iseq, dep.into());
    }

    // Run write barriers for all objects in generated code.
    for offset in block.gc_obj_offsets.iter() {
        let value_address: *const u8 = cb.get_ptr(offset.as_usize()).raw_ptr(cb);
        // Creating an unaligned pointer is well defined unlike in C.
        let value_address: *const VALUE = value_address.cast();

        let object = unsafe { value_address.read_unaligned() };
        obj_written!(iseq, object);
    }

    incr_counter!(compiled_block_count);

    // Mark code pages for code GC
    let iseq_payload = get_iseq_payload(block.iseq.get()).unwrap();
    for page in cb.addrs_to_pages(block.start_addr, block.end_addr.get()) {
        iseq_payload.pages.insert(page);
    }
}

/// Remove a block version from the version map of its parent ISEQ
fn remove_block_version(blockref: &BlockRef) {
    let block = unsafe { blockref.as_ref() };
    let version_list = match get_version_list(block.get_blockid()) {
        Some(version_list) => version_list,
        None => return,
    };

    // Retain the versions that are not this one
    version_list.retain(|other| blockref != other);
}

impl JITState {
    // Finish compiling and turn a jit state into a block
    // note that the block is still not in shape.
    pub fn into_block(self, end_insn_idx: IseqIdx, start_addr: CodePtr, end_addr: CodePtr, gc_obj_offsets: Vec<u32>) -> BlockRef {
        // Allocate the block and get its pointer
        let blockref: *mut MaybeUninit<Block> = Box::into_raw(Box::new(MaybeUninit::uninit()));

        incr_counter_by!(num_gc_obj_refs, gc_obj_offsets.len());

        // Make the new block
        let block = MaybeUninit::new(Block {
            start_addr,
            iseq: Cell::new(self.get_iseq()),
            iseq_range: self.get_starting_insn_idx()..end_insn_idx,
            ctx: self.get_starting_ctx(),
            end_addr: Cell::new(end_addr),
            incoming: MutableBranchList(Cell::default()),
            gc_obj_offsets: gc_obj_offsets.into_boxed_slice(),
            entry_exit: self.get_block_entry_exit(),
            cme_dependencies: self.method_lookup_assumptions.into_iter().map(Cell::new).collect(),
            // Pending branches => actual branches
            outgoing: self.pending_outgoing.into_iter().map(|pending_out| {
                let pending_out = Rc::try_unwrap(pending_out)
                    .ok().expect("all PendingBranchRefs should be unique when ready to construct a Block");
                pending_out.into_branch(NonNull::new(blockref as *mut Block).expect("no null from Box"))
            }).collect()
        });
        // Initialize it on the heap
        // SAFETY: allocated with Box above
        unsafe { ptr::write(blockref, block) };

        // Block is initialized now. Note that MaybeUnint<T> has the same layout as T.
        let blockref = NonNull::new(blockref as *mut Block).expect("no null from Box");

        // Track all the assumptions the block makes as invariants
        if self.block_assumes_single_ractor {
            track_single_ractor_assumption(blockref);
        }
        for bop in self.bop_assumptions {
            track_bop_assumption(blockref, bop);
        }
        // SAFETY: just allocated it above
        for cme in unsafe { blockref.as_ref() }.cme_dependencies.iter() {
            track_method_lookup_stability_assumption(blockref, cme.get());
        }
        if let Some(idlist) = self.stable_constant_names_assumption {
            track_stable_constant_names_assumption(blockref, idlist);
        }
        for klass in self.no_singleton_class_assumptions {
            track_no_singleton_class_assumption(blockref, klass);
        }
        if self.no_ep_escape {
            track_no_ep_escape_assumption(blockref, self.iseq);
        }

        blockref
    }
}

impl Block {
    pub fn get_blockid(&self) -> BlockId {
        BlockId { iseq: self.iseq.get(), idx: self.iseq_range.start }
    }

    pub fn get_end_idx(&self) -> IseqIdx {
        self.iseq_range.end
    }

    pub fn get_ctx_count(&self) -> usize {
        let mut count = 1; // block.ctx
        for branch in self.outgoing.iter() {
            // SAFETY: &self implies it's initialized
            count += unsafe { branch.as_ref() }.get_stub_count();
        }
        count
    }

    #[allow(unused)]
    pub fn get_start_addr(&self) -> CodePtr {
        self.start_addr
    }

    #[allow(unused)]
    pub fn get_end_addr(&self) -> CodePtr {
        self.end_addr.get()
    }

    /// Get an immutable iterator over cme dependencies
    pub fn iter_cme_deps(&self) -> impl Iterator<Item = CmePtr> + '_ {
        self.cme_dependencies.iter().map(Cell::get)
    }

    // Push an incoming branch ref and shrink the vector
    fn push_incoming(&self, branch: BranchRef) {
        self.incoming.push(branch);
    }

    // Compute the size of the block code
    pub fn code_size(&self) -> usize {
        (self.end_addr.get().as_offset() - self.start_addr.as_offset()).try_into().unwrap()
    }
}

impl Context {
    pub fn get_stack_size(&self) -> u8 {
        self.stack_size
    }

    pub fn set_stack_size(&mut self, stack_size: u8) {
        self.stack_size = stack_size;
    }

    /// Create a new Context that is compatible with self but doesn't have type information.
    pub fn get_generic_ctx(&self) -> Context {
        let mut generic_ctx = Context::default();
        generic_ctx.stack_size = self.stack_size;
        generic_ctx.sp_offset = self.sp_offset;
        generic_ctx.reg_temps = self.reg_temps;
        if self.is_return_landing() {
            generic_ctx.set_as_return_landing();
        }
        if self.is_deferred() {
            generic_ctx.mark_as_deferred();
        }
        generic_ctx
    }

    /// Create a new Context instance with a given stack_size and sp_offset adjusted
    /// accordingly. This is useful when you want to virtually rewind a stack_size for
    /// generating a side exit while considering past sp_offset changes on gen_save_sp.
    pub fn with_stack_size(&self, stack_size: u8) -> Context {
        let mut ctx = *self;
        ctx.sp_offset -= (ctx.get_stack_size() as isize - stack_size as isize) as i8;
        ctx.stack_size = stack_size;
        ctx
    }

    pub fn get_sp_offset(&self) -> i8 {
        self.sp_offset
    }

    pub fn set_sp_offset(&mut self, offset: i8) {
        self.sp_offset = offset;
    }

    pub fn get_reg_temps(&self) -> RegTemps {
        self.reg_temps
    }

    pub fn set_reg_temps(&mut self, reg_temps: RegTemps) {
        self.reg_temps = reg_temps;
    }

    pub fn get_chain_depth(&self) -> u8 {
        self.chain_depth_and_flags & CHAIN_DEPTH_MASK
    }

    pub fn reset_chain_depth_and_defer(&mut self) {
        self.chain_depth_and_flags &= !CHAIN_DEPTH_MASK;
        self.chain_depth_and_flags &= !DEFER_BIT;
    }

    pub fn increment_chain_depth(&mut self) {
        if self.get_chain_depth() == CHAIN_DEPTH_MASK {
            panic!("max block version chain depth reached!");
        }
        self.chain_depth_and_flags += 1;
    }

    pub fn set_as_return_landing(&mut self) {
        self.chain_depth_and_flags |= RETURN_LANDING_BIT;
    }

    pub fn clear_return_landing(&mut self) {
        self.chain_depth_and_flags &= !RETURN_LANDING_BIT;
    }

    pub fn is_return_landing(&self) -> bool {
        self.chain_depth_and_flags & RETURN_LANDING_BIT != 0
    }

    pub fn mark_as_deferred(&mut self) {
        self.chain_depth_and_flags |= DEFER_BIT;
    }

    pub fn is_deferred(&self) -> bool {
        self.chain_depth_and_flags & DEFER_BIT != 0
    }

    /// Get an operand for the adjusted stack pointer address
    pub fn sp_opnd(&self, offset: i32) -> Opnd {
        let offset = (self.sp_offset as i32 + offset) * SIZEOF_VALUE_I32;
        return Opnd::mem(64, SP, offset);
    }

    /// Get an operand for the adjusted environment pointer address using SP register.
    /// This is valid only when a Binding object hasn't been created for the frame.
    pub fn ep_opnd(&self, offset: i32) -> Opnd {
        let ep_offset = self.get_stack_size() as i32 + 1;
        self.sp_opnd(-ep_offset + offset)
    }

    /// Stop using a register for a given stack temp.
    /// This allows us to reuse the register for a value that we know is dead
    /// and will no longer be used (e.g. popped stack temp).
    pub fn dealloc_temp_reg(&mut self, stack_idx: u8) {
        if stack_idx < MAX_REG_TEMPS {
            let mut reg_temps = self.get_reg_temps();
            reg_temps.set(stack_idx, false);
            self.set_reg_temps(reg_temps);
        }
    }

    /// Get the type of an instruction operand
    pub fn get_opnd_type(&self, opnd: YARVOpnd) -> Type {
        match opnd {
            SelfOpnd => self.self_type,
            StackOpnd(idx) => {
                assert!(idx < self.stack_size);
                let stack_idx: usize = (self.stack_size - 1 - idx).into();

                // If outside of tracked range, do nothing
                if stack_idx >= MAX_TEMP_TYPES {
                    return Type::Unknown;
                }

                let mapping = self.get_temp_mapping(stack_idx);

                match mapping.get_kind() {
                    MapToSelf => self.self_type,
                    MapToStack => mapping.get_type(),
                    MapToLocal => {
                        let idx = mapping.get_local_idx();
                        assert!((idx as usize) < MAX_LOCAL_TYPES);
                        return self.get_local_type(idx.into());
                    }
                }
            }
        }
    }

    /// Get the currently tracked type for a local variable
    pub fn get_local_type(&self, local_idx: usize) -> Type {
        if local_idx >= MAX_LOCAL_TYPES {
            return Type::Unknown
        } else {
            // Each type is stored in 4 bits
            let type_bits = (self.local_types >> (4 * local_idx)) & 0b1111;
            unsafe { transmute::<u8, Type>(type_bits as u8) }
        }
    }

    /// Get the current temp mapping for a given stack slot
    fn get_temp_mapping(&self, temp_idx: usize) -> TempMapping {
        assert!(temp_idx < MAX_TEMP_TYPES);

        // Extract the temp mapping kind
        let kind_bits = (self.temp_mapping_kind >> (2 * temp_idx)) & 0b11;
        let temp_kind = unsafe { transmute::<u8, TempMappingKind>(kind_bits as u8) };

        // Extract the payload bits (temp type or local idx)
        let payload_bits = (self.temp_payload >> (4 * temp_idx)) & 0b1111;

        match temp_kind {
            MapToSelf => TempMapping::map_to_self(),

            MapToStack => {
                TempMapping::map_to_stack(
                    unsafe { transmute::<u8, Type>(payload_bits as u8) }
                )
            }

            MapToLocal => {
                TempMapping::map_to_local(
                    payload_bits as u8
                )
            }
        }
    }

    /// Get the current temp mapping for a given stack slot
    fn set_temp_mapping(&mut self, temp_idx: usize, mapping: TempMapping) {
        assert!(temp_idx < MAX_TEMP_TYPES);

        // Extract the kind bits
        let mapping_kind = mapping.get_kind();
        let kind_bits = unsafe { transmute::<TempMappingKind, u8>(mapping_kind) };
        assert!(kind_bits <= 0b11);

        // Extract the payload bits
        let payload_bits = match mapping_kind {
            MapToSelf => 0,

            MapToStack => {
                let t = mapping.get_type();
                unsafe { transmute::<Type, u8>(t) }
            }

            MapToLocal => {
                mapping.get_local_idx()
            }
        };
        assert!(payload_bits <= 0b1111);

        // Update the kind bits
        {
            let mask_bits = 0b11_u16 << (2 * temp_idx);
            let shifted_bits = (kind_bits as u16) << (2 * temp_idx);
            let all_kind_bits = self.temp_mapping_kind as u16;
            self.temp_mapping_kind = (all_kind_bits & !mask_bits) | shifted_bits;
        }

        // Update the payload bits
        {
            let mask_bits = 0b1111_u32 << (4 * temp_idx);
            let shifted_bits = (payload_bits as u32) << (4 * temp_idx);
            let all_payload_bits = self.temp_payload as u32;
            self.temp_payload = (all_payload_bits & !mask_bits) | shifted_bits;
        }
    }

    /// Upgrade (or "learn") the type of an instruction operand
    /// This value must be compatible and at least as specific as the previously known type.
    /// If this value originated from self, or an lvar, the learned type will be
    /// propagated back to its source.
    pub fn upgrade_opnd_type(&mut self, opnd: YARVOpnd, opnd_type: Type) {
        // If type propagation is disabled, store no types
        if get_option!(no_type_prop) {
            return;
        }

        match opnd {
            SelfOpnd => self.self_type.upgrade(opnd_type),
            StackOpnd(idx) => {
                assert!(idx < self.stack_size);
                let stack_idx = (self.stack_size - 1 - idx) as usize;

                // If outside of tracked range, do nothing
                if stack_idx >= MAX_TEMP_TYPES {
                    return;
                }

                let mapping = self.get_temp_mapping(stack_idx);

                match mapping.get_kind() {
                    MapToSelf => self.self_type.upgrade(opnd_type),
                    MapToStack => {
                        let mut temp_type = mapping.get_type();
                        temp_type.upgrade(opnd_type);
                        self.set_temp_mapping(stack_idx, TempMapping::map_to_stack(temp_type));
                    }
                    MapToLocal => {
                        let idx = mapping.get_local_idx() as usize;
                        assert!(idx < MAX_LOCAL_TYPES);
                        let mut new_type = self.get_local_type(idx);
                        new_type.upgrade(opnd_type);
                        self.set_local_type(idx, new_type);
                        // Re-attach MapToLocal for this StackOpnd(idx). set_local_type() detaches
                        // all MapToLocal mappings, including the one we're upgrading here.
                        self.set_opnd_mapping(opnd, mapping);
                    }
                }
            }
        }
    }

    /*
    Get both the type and mapping (where the value originates) of an operand.
    This is can be used with stack_push_mapping or set_opnd_mapping to copy
    a stack value's type while maintaining the mapping.
    */
    pub fn get_opnd_mapping(&self, opnd: YARVOpnd) -> TempMapping {
        let opnd_type = self.get_opnd_type(opnd);

        match opnd {
            SelfOpnd => TempMapping::map_to_self(),
            StackOpnd(idx) => {
                assert!(idx < self.stack_size);
                let stack_idx = (self.stack_size - 1 - idx) as usize;

                if stack_idx < MAX_TEMP_TYPES {
                    self.get_temp_mapping(stack_idx)
                } else {
                    // We can't know the source of this stack operand, so we assume it is
                    // a stack-only temporary. type will be UNKNOWN
                    assert!(opnd_type == Type::Unknown);
                    TempMapping::map_to_stack(opnd_type)
                }
            }
        }
    }

    /// Overwrite both the type and mapping of a stack operand.
    pub fn set_opnd_mapping(&mut self, opnd: YARVOpnd, mapping: TempMapping) {
        match opnd {
            SelfOpnd => unreachable!("self always maps to self"),
            StackOpnd(idx) => {
                assert!(idx < self.stack_size);
                let stack_idx = (self.stack_size - 1 - idx) as usize;

                // If type propagation is disabled, store no types
                if get_option!(no_type_prop) {
                    return;
                }

                // If outside of tracked range, do nothing
                if stack_idx >= MAX_TEMP_TYPES {
                    return;
                }

                self.set_temp_mapping(stack_idx, mapping);
            }
        }
    }

    /// Set the type of a local variable
    pub fn set_local_type(&mut self, local_idx: usize, local_type: Type) {
        // If type propagation is disabled, store no types
        if get_option!(no_type_prop) {
            return;
        }

        if local_idx >= MAX_LOCAL_TYPES {
            return
        }

        // If any values on the stack map to this local we must detach them
        for mapping_idx in 0..MAX_TEMP_TYPES {
            let mapping = self.get_temp_mapping(mapping_idx);
            let tm = match mapping.get_kind() {
                MapToStack => mapping,
                MapToSelf => mapping,
                MapToLocal => {
                    let idx = mapping.get_local_idx();
                    if idx as usize == local_idx {
                        let local_type = self.get_local_type(local_idx);
                        TempMapping::map_to_stack(local_type)
                    } else {
                        TempMapping::map_to_local(idx)
                    }
                }
            };
            self.set_temp_mapping(mapping_idx, tm);
        }

        // Update the type bits
        let type_bits = local_type as u32;
        assert!(type_bits <= 0b1111);
        let mask_bits = 0b1111_u32 << (4 * local_idx);
        let shifted_bits = type_bits << (4 * local_idx);
        self.local_types = (self.local_types & !mask_bits) | shifted_bits;
    }

    /// Erase local variable type information
    /// eg: because of a call we can't track
    pub fn clear_local_types(&mut self) {
        // When clearing local types we must detach any stack mappings to those
        // locals. Even if local values may have changed, stack values will not.

        for mapping_idx in 0..MAX_TEMP_TYPES {
            let mapping = self.get_temp_mapping(mapping_idx);
            if mapping.get_kind() == MapToLocal {
                let local_idx = mapping.get_local_idx() as usize;
                self.set_temp_mapping(mapping_idx, TempMapping::map_to_stack(self.get_local_type(local_idx)));
            }
        }

        // Clear the local types
        self.local_types = 0;
    }

    /// Return true if the code is inlined by the caller
    pub fn inline(&self) -> bool {
        self.inline_block != 0
    }

    /// Set a block ISEQ given to the Block of this Context
    pub fn set_inline_block(&mut self, iseq: IseqPtr) {
        self.inline_block = iseq as u64
    }

    /// Compute a difference score for two context objects
    pub fn diff(&self, dst: &Context) -> TypeDiff {
        // Self is the source context (at the end of the predecessor)
        let src = self;

        // Can only lookup the first version in the chain
        if dst.get_chain_depth() != 0 {
            return TypeDiff::Incompatible;
        }

        // Blocks with depth > 0 always produce new versions
        // Sidechains cannot overlap
        if src.get_chain_depth() != 0 {
            return TypeDiff::Incompatible;
        }

        if src.is_return_landing() != dst.is_return_landing() {
            return TypeDiff::Incompatible;
        }

        if src.is_deferred() != dst.is_deferred() {
            return TypeDiff::Incompatible;
        }

        if dst.stack_size != src.stack_size {
            return TypeDiff::Incompatible;
        }

        if dst.sp_offset != src.sp_offset {
            return TypeDiff::Incompatible;
        }

        if dst.reg_temps != src.reg_temps {
            return TypeDiff::Incompatible;
        }

        // Difference sum
        let mut diff = 0;

        // Check the type of self
        diff += match src.self_type.diff(dst.self_type) {
            TypeDiff::Compatible(diff) => diff,
            TypeDiff::Incompatible => return TypeDiff::Incompatible,
        };

        // Check the block to inline
        if src.inline_block != dst.inline_block {
            // find_block_version should not find existing blocks with different
            // inline_block so that their yield will not be megamorphic.
            return TypeDiff::Incompatible;
        }

        // For each local type we track
        for i in 0.. MAX_LOCAL_TYPES {
            let t_src = src.get_local_type(i);
            let t_dst = dst.get_local_type(i);
            diff += match t_src.diff(t_dst) {
                TypeDiff::Compatible(diff) => diff,
                TypeDiff::Incompatible => return TypeDiff::Incompatible,
            };
        }

        // For each value on the temp stack
        for i in 0..src.stack_size {
            let src_mapping = src.get_opnd_mapping(StackOpnd(i));
            let dst_mapping = dst.get_opnd_mapping(StackOpnd(i));

            // If the two mappings aren't the same
            if src_mapping != dst_mapping {
                if dst_mapping.get_kind() == MapToStack {
                    // We can safely drop information about the source of the temp
                    // stack operand.
                    diff += 1;
                } else {
                    return TypeDiff::Incompatible;
                }
            }

            let src_type = src.get_opnd_type(StackOpnd(i));
            let dst_type = dst.get_opnd_type(StackOpnd(i));

            diff += match src_type.diff(dst_type) {
                TypeDiff::Compatible(diff) => diff,
                TypeDiff::Incompatible => return TypeDiff::Incompatible,
            };
        }

        return TypeDiff::Compatible(diff);
    }

    pub fn two_fixnums_on_stack(&self, jit: &mut JITState) -> Option<bool> {
        if jit.at_current_insn() {
            let comptime_recv = jit.peek_at_stack(self, 1);
            let comptime_arg = jit.peek_at_stack(self, 0);
            return Some(comptime_recv.fixnum_p() && comptime_arg.fixnum_p());
        }

        let recv_type = self.get_opnd_type(StackOpnd(1));
        let arg_type = self.get_opnd_type(StackOpnd(0));
        match (recv_type, arg_type) {
            (Type::Fixnum, Type::Fixnum) => Some(true),
            (Type::Unknown | Type::UnknownImm, Type::Unknown | Type::UnknownImm) => None,
            _ => Some(false),
        }
    }
}

impl Assembler {
    /// Push one new value on the temp stack with an explicit mapping
    /// Return a pointer to the new stack top
    pub fn stack_push_mapping(&mut self, mapping: TempMapping) -> Opnd {
        // If type propagation is disabled, store no types
        if get_option!(no_type_prop) {
            return self.stack_push_mapping(mapping.without_type());
        }

        let stack_size: usize = self.ctx.stack_size.into();

        // Keep track of the type and mapping of the value
        if stack_size < MAX_TEMP_TYPES {
            self.ctx.set_temp_mapping(stack_size, mapping);

            if mapping.get_kind() == MapToLocal {
                let idx = mapping.get_local_idx();
                assert!((idx as usize) < MAX_LOCAL_TYPES);
            }
        }

        // Allocate a register to the stack operand
        if self.ctx.stack_size < MAX_REG_TEMPS {
            self.alloc_temp_reg(self.ctx.stack_size);
        }

        self.ctx.stack_size += 1;
        self.ctx.sp_offset += 1;

        return self.stack_opnd(0);
    }

    /// Push one new value on the temp stack
    /// Return a pointer to the new stack top
    pub fn stack_push(&mut self, val_type: Type) -> Opnd {
        return self.stack_push_mapping(TempMapping::map_to_stack(val_type));
    }

    /// Push the self value on the stack
    pub fn stack_push_self(&mut self) -> Opnd {
        return self.stack_push_mapping(TempMapping::map_to_self());
    }

    /// Push a local variable on the stack
    pub fn stack_push_local(&mut self, local_idx: usize) -> Opnd {
        if local_idx >= MAX_LOCAL_TYPES {
            return self.stack_push(Type::Unknown);
        }

        return self.stack_push_mapping(TempMapping::map_to_local(local_idx as u8));
    }

    // Pop N values off the stack
    // Return a pointer to the stack top before the pop operation
    pub fn stack_pop(&mut self, n: usize) -> Opnd {
        assert!(n <= self.ctx.stack_size.into());

        let top = self.stack_opnd(0);

        // Clear the types of the popped values
        for i in 0..n {
            let idx: usize = (self.ctx.stack_size as usize) - i - 1;

            if idx < MAX_TEMP_TYPES {
                self.ctx.set_temp_mapping(idx, TempMapping::map_to_stack(Type::Unknown));
            }
        }

        self.ctx.stack_size -= n as u8;
        self.ctx.sp_offset -= n as i8;

        return top;
    }

    /// Shift stack temps to remove a Symbol for #send.
    pub fn shift_stack(&mut self, argc: usize) {
        assert!(argc < self.ctx.stack_size.into());

        let method_name_index = (self.ctx.stack_size as usize) - argc - 1;

        for i in method_name_index..(self.ctx.stack_size - 1) as usize {
            if i < MAX_TEMP_TYPES {
                let next_arg_mapping = if i + 1 < MAX_TEMP_TYPES {
                    self.ctx.get_temp_mapping(i + 1)
                } else {
                    TempMapping::map_to_stack(Type::Unknown)
                };
                self.ctx.set_temp_mapping(i, next_arg_mapping);
            }
        }
        self.stack_pop(1);
    }

    /// Get an operand pointing to a slot on the temp stack
    pub fn stack_opnd(&self, idx: i32) -> Opnd {
        Opnd::Stack {
            idx,
            num_bits: 64,
            stack_size: self.ctx.stack_size,
            sp_offset: self.ctx.sp_offset,
            reg_temps: None, // push_insn will set this
        }
    }
}

impl BlockId {
    /// Print Ruby source location for debugging
    #[cfg(debug_assertions)]
    #[allow(dead_code)]
    pub fn dump_src_loc(&self) {
        unsafe { rb_yjit_dump_iseq_loc(self.iseq, self.idx as u32) }
    }
}

/// See [gen_block_series_body]. This simply counts compilation failures.
fn gen_block_series(
    blockid: BlockId,
    start_ctx: &Context,
    ec: EcPtr,
    cb: &mut CodeBlock,
    ocb: &mut OutlinedCb,
) -> Option<BlockRef> {
    let result = gen_block_series_body(blockid, start_ctx, ec, cb, ocb);
    if result.is_none() {
        incr_counter!(compilation_failure);
    }

    result
}

/// Immediately compile a series of block versions at a starting point and
/// return the starting block.
fn gen_block_series_body(
    blockid: BlockId,
    start_ctx: &Context,
    ec: EcPtr,
    cb: &mut CodeBlock,
    ocb: &mut OutlinedCb,
) -> Option<BlockRef> {
    // Keep track of all blocks compiled in this batch
    const EXPECTED_BATCH_SIZE: usize = 4;
    let mut batch = Vec::with_capacity(EXPECTED_BATCH_SIZE);

    // Generate code for the first block
    let first_block = gen_single_block(blockid, start_ctx, ec, cb, ocb).ok()?;
    batch.push(first_block); // Keep track of this block version

    // Add the block version to the VersionMap for this ISEQ
    unsafe { add_block_version(first_block, cb) };

    // Loop variable
    let mut last_blockref = first_block;
    loop {
        // Get the last outgoing branch from the previous block.
        let last_branchref = {
            let last_block = unsafe { last_blockref.as_ref() };
            match last_block.outgoing.last() {
                Some(branch) => *branch,
                None => {
                    break;
                } // If last block has no branches, stop.
            }
        };
        let last_branch = unsafe { last_branchref.as_ref() };

        incr_counter!(block_next_count);

        // gen_direct_jump() can request a block to be placed immediately after by
        // leaving a single target that has a `None` address.
        // SAFETY: no mutation inside the unsafe block
        let (requested_blockid, requested_ctx) = unsafe {
            match (last_branch.targets[0].ref_unchecked(), last_branch.targets[1].ref_unchecked()) {
                (Some(last_target), None) if last_target.get_address().is_none() => {
                    (last_target.get_blockid(), last_target.get_ctx())
                }
                _ => {
                    // We're done when no fallthrough block is requested
                    break;
                }
            }
        };

        // Generate new block using context from the last branch.
        let result = gen_single_block(requested_blockid, &requested_ctx, ec, cb, ocb);

        // If the block failed to compile
        if result.is_err() {
            // Remove previously compiled block
            // versions from the version map
            for blockref in batch {
                remove_block_version(&blockref);
                // SAFETY: block was well connected because it was in a version_map
                unsafe { free_block(blockref, false) };
            }

            // Stop compiling
            return None;
        }

        let new_blockref = result.unwrap();

        // Add the block version to the VersionMap for this ISEQ
        unsafe { add_block_version(new_blockref, cb) };

        // Connect the last branch and the new block
        last_branch.targets[0].set(Some(Box::new(BranchTarget::Block(new_blockref))));
        unsafe { new_blockref.as_ref().incoming.push(last_branchref) };

        // Track the block
        batch.push(new_blockref);

        // Repeat with newest block
        last_blockref = new_blockref;
    }

    #[cfg(feature = "disasm")]
    {
        // If dump_iseq_disasm is active, see if this iseq's location matches the given substring.
        // If so, we print the new blocks to the console.
        if let Some(substr) = get_option_ref!(dump_iseq_disasm).as_ref() {
            let iseq_location = iseq_get_location(blockid.iseq, blockid.idx);
            if iseq_location.contains(substr) {
                let last_block = unsafe { last_blockref.as_ref() };
                let iseq_range = &last_block.iseq_range;
                println!("Compiling {} block(s) for {}, ISEQ offsets [{}, {})", batch.len(), iseq_location, iseq_range.start, iseq_range.end);
                print!("{}", disasm_iseq_insn_range(blockid.iseq, iseq_range.start, iseq_range.end));
            }
        }
    }

    Some(first_block)
}

/// Generate a block version that is an entry point inserted into an iseq
/// NOTE: this function assumes that the VM lock has been taken
/// If jit_exception is true, compile JIT code for handling exceptions.
/// See [jit_compile_exception] for details.
pub fn gen_entry_point(iseq: IseqPtr, ec: EcPtr, jit_exception: bool) -> Option<*const u8> {
    // Compute the current instruction index based on the current PC
    let cfp = unsafe { get_ec_cfp(ec) };
    let insn_idx: u16 = unsafe {
        let ec_pc = get_cfp_pc(cfp);
        iseq_pc_to_insn_idx(iseq, ec_pc)?
    };
    let stack_size: u8 = unsafe {
        u8::try_from(get_cfp_sp(cfp).offset_from(get_cfp_bp(cfp))).ok()?
    };

    // The entry context makes no assumptions about types
    let blockid = BlockId {
        iseq,
        idx: insn_idx,
    };

    // Get the inline and outlined code blocks
    let cb = CodegenGlobals::get_inline_cb();
    let ocb = CodegenGlobals::get_outlined_cb();

    // Write the interpreter entry prologue. Might be NULL when out of memory.
    let code_ptr = gen_entry_prologue(cb, ocb, iseq, insn_idx, jit_exception);

    // Try to generate code for the entry block
    let mut ctx = Context::default();
    ctx.stack_size = stack_size;
    let block = gen_block_series(blockid, &ctx, ec, cb, ocb);

    cb.mark_all_executable();
    ocb.unwrap().mark_all_executable();

    match block {
        // Compilation failed
        None => {
            // Trigger code GC. This entry point will be recompiled later.
            if get_option!(code_gc) {
                cb.code_gc(ocb);
            }
            return None;
        }

        // If the block contains no Ruby instructions
        Some(block) => {
            let block = unsafe { block.as_ref() };
            if block.iseq_range.is_empty() {
                return None;
            }
        }
    }

    // Count the number of entry points we compile
    incr_counter!(compiled_iseq_entry);

    // Compilation successful and block not empty
    code_ptr.map(|ptr| ptr.raw_ptr(cb))
}

// Change the entry's jump target from an entry stub to a next entry
pub fn regenerate_entry(cb: &mut CodeBlock, entryref: &EntryRef, next_entry: CodePtr) {
    let mut asm = Assembler::new();
    asm_comment!(asm, "regenerate_entry");

    // gen_entry_guard generates cmp + jne. We're rewriting only jne.
    asm.jne(next_entry.into());

    // Move write_pos to rewrite the entry
    let old_write_pos = cb.get_write_pos();
    let old_dropped_bytes = cb.has_dropped_bytes();
    cb.set_write_ptr(unsafe { entryref.as_ref() }.start_addr);
    cb.set_dropped_bytes(false);
    asm.compile(cb, None).expect("can rewrite existing code");

    // Rewind write_pos to the original one
    assert_eq!(cb.get_write_ptr(), unsafe { entryref.as_ref() }.end_addr);
    cb.set_pos(old_write_pos);
    cb.set_dropped_bytes(old_dropped_bytes);
}

pub type PendingEntryRef = Rc<PendingEntry>;

/// Create a new entry reference for an ISEQ
pub fn new_pending_entry() -> PendingEntryRef {
    let entry = PendingEntry {
        uninit_entry: Box::new(MaybeUninit::uninit()),
        start_addr: Cell::new(None),
        end_addr: Cell::new(None),
    };
    return Rc::new(entry);
}

c_callable! {
    /// Generated code calls this function with the SysV calling convention.
    /// See [gen_call_entry_stub_hit].
    fn entry_stub_hit(entry_ptr: *const c_void, ec: EcPtr) -> *const u8 {
        with_compile_time(|| {
            with_vm_lock(src_loc!(), || {
                let cb = CodegenGlobals::get_inline_cb();
                let ocb = CodegenGlobals::get_outlined_cb();

                let addr = entry_stub_hit_body(entry_ptr, ec, cb, ocb)
                    .unwrap_or_else(|| {
                        // Trigger code GC (e.g. no space).
                        // This entry point will be recompiled later.
                        if get_option!(code_gc) {
                            cb.code_gc(ocb);
                        }
                        CodegenGlobals::get_stub_exit_code().raw_ptr(cb)
                    });

                cb.mark_all_executable();
                ocb.unwrap().mark_all_executable();

                addr
            })
        })
    }
}

/// Called by the generated code when an entry stub is executed
fn entry_stub_hit_body(
    entry_ptr: *const c_void,
    ec: EcPtr,
    cb: &mut CodeBlock,
    ocb: &mut OutlinedCb
) -> Option<*const u8> {
    // Get ISEQ and insn_idx from the current ec->cfp
    let cfp = unsafe { get_ec_cfp(ec) };
    let iseq = unsafe { get_cfp_iseq(cfp) };
    let insn_idx = iseq_pc_to_insn_idx(iseq, unsafe { get_cfp_pc(cfp) })?;
    let stack_size: u8 = unsafe {
        u8::try_from(get_cfp_sp(cfp).offset_from(get_cfp_bp(cfp))).ok()?
    };

    // Compile a new entry guard as a next entry
    let next_entry = cb.get_write_ptr();
    let mut asm = Assembler::new();
    let pending_entry = gen_entry_chain_guard(&mut asm, ocb, iseq, insn_idx)?;
    asm.compile(cb, Some(ocb))?;

    // Find or compile a block version
    let blockid = BlockId { iseq, idx: insn_idx };
    let mut ctx = Context::default();
    ctx.stack_size = stack_size;
    let blockref = match find_block_version(blockid, &ctx) {
        // If an existing block is found, generate a jump to the block.
        Some(blockref) => {
            let mut asm = Assembler::new();
            asm.jmp(unsafe { blockref.as_ref() }.start_addr.into());
            asm.compile(cb, Some(ocb))?;
            Some(blockref)
        }
        // If this block hasn't yet been compiled, generate blocks after the entry guard.
        None => gen_block_series(blockid, &ctx, ec, cb, ocb),
    };

    // Commit or retry the entry
    if blockref.is_some() {
        // Regenerate the previous entry
        let entryref = NonNull::<Entry>::new(entry_ptr as *mut Entry).expect("Entry should not be null");
        regenerate_entry(cb, &entryref, next_entry);

        // Write an entry to the heap and push it to the ISEQ
        let pending_entry = Rc::try_unwrap(pending_entry).ok().expect("PendingEntry should be unique");
        get_or_create_iseq_payload(iseq).entries.push(pending_entry.into_entry());
    }

    // Let the stub jump to the block
    blockref.map(|block| unsafe { block.as_ref() }.start_addr.raw_ptr(cb))
}

/// Generate a stub that calls entry_stub_hit
pub fn gen_entry_stub(entry_address: usize, ocb: &mut OutlinedCb) -> Option<CodePtr> {
    let ocb = ocb.unwrap();

    let mut asm = Assembler::new();
    asm_comment!(asm, "entry stub hit");

    asm.mov(C_ARG_OPNDS[0], entry_address.into());

    // Jump to trampoline to call entry_stub_hit()
    // Not really a side exit, just don't need a padded jump here.
    asm.jmp(CodegenGlobals::get_entry_stub_hit_trampoline().as_side_exit());

    asm.compile(ocb, None).map(|(code_ptr, _)| code_ptr)
}

/// A trampoline used by gen_entry_stub. entry_stub_hit may issue Code GC, so
/// it's useful for Code GC to call entry_stub_hit from a globally shared code.
pub fn gen_entry_stub_hit_trampoline(ocb: &mut OutlinedCb) -> Option<CodePtr> {
    let ocb = ocb.unwrap();
    let mut asm = Assembler::new();

    // See gen_entry_guard for how it's used.
    asm_comment!(asm, "entry_stub_hit() trampoline");
    let jump_addr = asm.ccall(entry_stub_hit as *mut u8, vec![C_ARG_OPNDS[0], EC]);

    // Jump to the address returned by the entry_stub_hit() call
    asm.jmp_opnd(jump_addr);

    asm.compile(ocb, None).map(|(code_ptr, _)| code_ptr)
}

/// Generate code for a branch, possibly rewriting and changing the size of it
fn regenerate_branch(cb: &mut CodeBlock, branch: &Branch) {
    // Remove old comments
    cb.remove_comments(branch.start_addr, branch.end_addr.get());

    // SAFETY: having a &Branch implies branch.block is initialized.
    let block = unsafe { branch.block.as_ref() };

    let branch_terminates_block = branch.end_addr.get() == block.get_end_addr();

    // Generate the branch
    let mut asm = Assembler::new();
    asm_comment!(asm, "regenerate_branch");
    branch.gen_fn.call(
        &mut asm,
        Target::CodePtr(branch.get_target_address(0).unwrap()),
        branch.get_target_address(1).map(|addr| Target::CodePtr(addr)),
    );

    // If the entire block is the branch and the block could be invalidated,
    // we need to pad to ensure there is room for invalidation patching.
    if branch.start_addr == block.start_addr && branch_terminates_block && block.entry_exit.is_some() {
        asm.pad_inval_patch();
    }

    // Rewrite the branch
    let old_write_pos = cb.get_write_pos();
    let old_dropped_bytes = cb.has_dropped_bytes();
    cb.set_write_ptr(branch.start_addr);
    cb.set_dropped_bytes(false);
    asm.compile(cb, None).expect("can rewrite existing code");
    let new_end_addr = cb.get_write_ptr();

    branch.end_addr.set(new_end_addr);

    // The block may have shrunk after the branch is rewritten
    if branch_terminates_block {
        // Adjust block size
        block.end_addr.set(new_end_addr);
    }

    // cb.write_pos is both a write cursor and a marker for the end of
    // everything written out so far. Leave cb->write_pos at the end of the
    // block before returning. This function only ever bump or retain the end
    // of block marker since that's what the majority of callers want. When the
    // branch sits at the very end of the codeblock and it shrinks after
    // regeneration, it's up to the caller to drop bytes off the end to
    // not leave a gap and implement branch->shape.
    if old_write_pos > cb.get_write_pos() {
        // We rewound cb->write_pos to generate the branch, now restore it.
        cb.set_pos(old_write_pos);
        cb.set_dropped_bytes(old_dropped_bytes);
    } else {
        // The branch sits at the end of cb and consumed some memory.
        // Keep cb.write_pos.
    }

    branch.assert_layout();
}

pub type PendingBranchRef = Rc<PendingBranch>;

/// Create a new outgoing branch entry for a block
fn new_pending_branch(jit: &mut JITState, gen_fn: BranchGenFn) -> PendingBranchRef {
    let branch = Rc::new(PendingBranch {
        uninit_branch: Box::new(MaybeUninit::uninit()),
        gen_fn,
        start_addr: Cell::new(None),
        end_addr: Cell::new(None),
        targets: [Cell::new(None), Cell::new(None)],
    });

    incr_counter!(compiled_branch_count); // TODO not true. count at finalize time

    // Add to the list of outgoing branches for the block
    jit.queue_outgoing_branch(branch.clone());

    branch
}

c_callable! {
    /// Generated code calls this function with the SysV calling convention.
    /// See [gen_branch_stub].
    fn branch_stub_hit(
        branch_ptr: *const c_void,
        target_idx: u32,
        ec: EcPtr,
    ) -> *const u8 {
        with_vm_lock(src_loc!(), || {
            with_compile_time(|| { branch_stub_hit_body(branch_ptr, target_idx, ec) })
        })
    }
}

/// Called by the generated code when a branch stub is executed
/// Triggers compilation of branches and code patching
fn branch_stub_hit_body(branch_ptr: *const c_void, target_idx: u32, ec: EcPtr) -> *const u8 {
    if get_option!(dump_insns) {
        println!("branch_stub_hit");
    }

    let branch_ref = NonNull::<Branch>::new(branch_ptr as *mut Branch)
        .expect("Branches should not be null");

    // SAFETY: We have the VM lock, and the branch is initialized by the time generated
    // code calls this function.
    let branch = unsafe { branch_ref.as_ref() };
    let branch_size_on_entry = branch.code_size();
    let housing_block = unsafe { branch.block.as_ref() };

    let target_idx: usize = target_idx.as_usize();
    let target_branch_shape = match target_idx {
        0 => BranchShape::Next0,
        1 => BranchShape::Next1,
        _ => unreachable!("target_idx < 2 must always hold"),
    };

    let cb = CodegenGlobals::get_inline_cb();
    let ocb = CodegenGlobals::get_outlined_cb();

    let (target_blockid, target_ctx): (BlockId, Context) = unsafe {
        // SAFETY: no mutation of the target's Cell. Just reading out data.
        let target = branch.targets[target_idx].ref_unchecked().as_ref().unwrap();

        // If this branch has already been patched, return the dst address
        // Note: recursion can cause the same stub to be hit multiple times
        if let BranchTarget::Block(_) = target.as_ref() {
            return target.get_address().unwrap().raw_ptr(cb);
        }

        (target.get_blockid(), target.get_ctx())
    };

    let (cfp, original_interp_sp) = unsafe {
        let cfp = get_ec_cfp(ec);
        let original_interp_sp = get_cfp_sp(cfp);

        let running_iseq = get_cfp_iseq(cfp);
        assert_eq!(running_iseq, target_blockid.iseq as _, "each stub expects a particular iseq");

        let reconned_pc = rb_iseq_pc_at_idx(running_iseq, target_blockid.idx.into());
        let reconned_sp = original_interp_sp.offset(target_ctx.sp_offset.into());
        // Unlike in the interpreter, our `leave` doesn't write to the caller's
        // SP -- we do it in the returned-to code. Account for this difference.
        let reconned_sp = reconned_sp.add(target_ctx.is_return_landing().into());

        // Update the PC in the current CFP, because it may be out of sync in JITted code
        rb_set_cfp_pc(cfp, reconned_pc);

        // :stub-sp-flush:
        // Generated code do stack operations without modifying cfp->sp, while the
        // cfp->sp tells the GC what values on the stack to root. Generated code
        // generally takes care of updating cfp->sp when it calls runtime routines that
        // could trigger GC, but it's inconvenient to do it before calling this function.
        // So we do it here instead.
        rb_set_cfp_sp(cfp, reconned_sp);

        // Bail if code GC is disabled and we've already run out of spaces.
        if !get_option!(code_gc) && (cb.has_dropped_bytes() || ocb.unwrap().has_dropped_bytes()) {
            return CodegenGlobals::get_stub_exit_code().raw_ptr(cb);
        }

        // Bail if we're about to run out of native stack space.
        // We've just reconstructed interpreter state.
        if rb_ec_stack_check(ec as _) != 0 {
            return CodegenGlobals::get_stub_exit_code().raw_ptr(cb);
        }

        (cfp, original_interp_sp)
    };

    // Try to find an existing compiled version of this block
    let mut block = find_block_version(target_blockid, &target_ctx);
    let mut branch_modified = false;
    // If this block hasn't yet been compiled
    if block.is_none() {
        let branch_old_shape = branch.gen_fn.get_shape();

        // If the new block can be generated right after the branch (at cb->write_pos)
        if cb.get_write_ptr() == branch.end_addr.get() {
            // This branch should be terminating its block
            assert!(branch.end_addr == housing_block.end_addr);

            // Change the branch shape to indicate the target block will be placed next
            branch.gen_fn.set_shape(target_branch_shape);

            // Rewrite the branch with the new, potentially more compact shape
            regenerate_branch(cb, branch);
            branch_modified = true;

            // Ensure that the branch terminates the codeblock just like
            // before entering this if block. This drops bytes off the end
            // in case we shrank the branch when regenerating.
            cb.set_write_ptr(branch.end_addr.get());
        }

        // Compile the new block version
        block = gen_block_series(target_blockid, &target_ctx, ec, cb, ocb);

        if block.is_none() && branch_modified {
            // We couldn't generate a new block for the branch, but we modified the branch.
            // Restore the branch by regenerating it.
            branch.gen_fn.set_shape(branch_old_shape);
            regenerate_branch(cb, branch);
        }
    }

    // Finish building the new block
    let dst_addr = match block {
        Some(new_block) => {
            let new_block = unsafe { new_block.as_ref() };

            // Branch shape should reflect layout
            assert!(!(branch.gen_fn.get_shape() == target_branch_shape && new_block.start_addr != branch.end_addr.get()));

            // Add this branch to the list of incoming branches for the target
            new_block.push_incoming(branch_ref);

            // Update the branch target address
            branch.targets[target_idx].set(Some(Box::new(BranchTarget::Block(new_block.into()))));

            // Rewrite the branch with the new jump target address
            regenerate_branch(cb, branch);

            // Restore interpreter sp, since the code hitting the stub expects the original.
            unsafe { rb_set_cfp_sp(cfp, original_interp_sp) };

            new_block.start_addr
        }
        None => {
            // Trigger code GC. The whole ISEQ will be recompiled later.
            // We shouldn't trigger it in the middle of compilation in branch_stub_hit
            // because incomplete code could be used when cb.dropped_bytes is flipped
            // by code GC. So this place, after all compilation, is the safest place
            // to hook code GC on branch_stub_hit.
            if get_option!(code_gc) {
                cb.code_gc(ocb);
            }

            // Failed to service the stub by generating a new block so now we
            // need to exit to the interpreter at the stubbed location. We are
            // intentionally *not* restoring original_interp_sp. At the time of
            // writing, reconstructing interpreter state only involves setting
            // cfp->sp and cfp->pc. We set both before trying to generate the
            // block. All there is left to do to exit is to pop the native
            // frame. We do that in code_for_exit_from_stub.
            CodegenGlobals::get_stub_exit_code()
        }
    };

    ocb.unwrap().mark_all_executable();
    cb.mark_all_executable();

    let new_branch_size = branch.code_size();
    assert!(
        new_branch_size <= branch_size_on_entry,
        "branch stubs should never enlarge branches (start_addr: {:?}, old_size: {}, new_size: {})",
        branch.start_addr.raw_ptr(cb), branch_size_on_entry, new_branch_size,
    );

    // Return a pointer to the compiled block version
    dst_addr.raw_ptr(cb)
}

/// Generate a "stub", a piece of code that calls the compiler back when run.
/// A piece of code that redeems for more code; a thunk for code.
fn gen_branch_stub(
    ctx: &Context,
    ocb: &mut OutlinedCb,
    branch_struct_address: usize,
    target_idx: u32,
) -> Option<CodePtr> {
    let ocb = ocb.unwrap();

    let mut asm = Assembler::new();
    asm.ctx = *ctx;
    asm.set_reg_temps(ctx.reg_temps);
    asm_comment!(asm, "branch stub hit");

    if asm.ctx.is_return_landing() {
        asm.mov(SP, Opnd::mem(64, CFP, RUBY_OFFSET_CFP_SP));
        let top = asm.stack_push(Type::Unknown);
        asm.mov(top, C_RET_OPND);
    }

    // Save caller-saved registers before C_ARG_OPNDS get clobbered.
    // Spill all registers for consistency with the trampoline.
    for &reg in caller_saved_temp_regs() {
        asm.cpush(Opnd::Reg(reg));
    }

    // Spill temps to the VM stack as well for jit.peek_at_stack()
    asm.spill_temps();

    // Set up the arguments unique to this stub for:
    //
    //    branch_stub_hit(branch_ptr, target_idx, ec)
    //
    // Bake pointer to Branch into output code.
    // We make sure the block housing the branch is still alive when branch_stub_hit() is running.
    asm.mov(C_ARG_OPNDS[0], branch_struct_address.into());
    asm.mov(C_ARG_OPNDS[1], target_idx.into());

    // Jump to trampoline to call branch_stub_hit()
    // Not really a side exit, just don't need a padded jump here.
    asm.jmp(CodegenGlobals::get_branch_stub_hit_trampoline().as_side_exit());

    asm.compile(ocb, None).map(|(code_ptr, _)| code_ptr)
}

pub fn gen_branch_stub_hit_trampoline(ocb: &mut OutlinedCb) -> Option<CodePtr> {
    let ocb = ocb.unwrap();
    let mut asm = Assembler::new();

    // For `branch_stub_hit(branch_ptr, target_idx, ec)`,
    // `branch_ptr` and `target_idx` is different for each stub,
    // but the call and what's after is the same. This trampoline
    // is the unchanging part.
    // Since this trampoline is static, it allows code GC inside
    // branch_stub_hit() to free stubs without problems.
    asm_comment!(asm, "branch_stub_hit() trampoline");
    let stub_hit_ret = asm.ccall(
        branch_stub_hit as *mut u8,
        vec![
            C_ARG_OPNDS[0],
            C_ARG_OPNDS[1],
            EC,
        ]
    );
    let jump_addr = asm.load(stub_hit_ret);

    // Restore caller-saved registers for stack temps
    for &reg in caller_saved_temp_regs().rev() {
        asm.cpop_into(Opnd::Reg(reg));
    }

    // Jump to the address returned by the branch_stub_hit() call
    asm.jmp_opnd(jump_addr);

    // HACK: popping into C_RET_REG clobbers the return value of branch_stub_hit() we need to jump
    // to, so we need a scratch register to preserve it. This extends the live range of the C
    // return register so we get something else for the return value.
    let _ = asm.live_reg_opnd(stub_hit_ret);

    asm.compile(ocb, None).map(|(code_ptr, _)| code_ptr)
}

/// Return registers to be pushed and popped on branch_stub_hit.
pub fn caller_saved_temp_regs() -> impl Iterator<Item = &'static Reg> + DoubleEndedIterator {
    let temp_regs = Assembler::get_temp_regs().iter();
    let len = temp_regs.len();
    // The return value gen_leave() leaves in C_RET_REG
    // needs to survive the branch_stub_hit() call.
    let regs = temp_regs.chain(std::iter::once(&C_RET_REG));

    // On x86_64, maintain 16-byte stack alignment
    if cfg!(target_arch = "x86_64") && len % 2 == 0 {
        static ONE_MORE: [Reg; 1] = [C_RET_REG];
        regs.chain(ONE_MORE.iter())
    } else {
        regs.chain(&[])
    }
}

impl Assembler
{
    /// Mark the start position of a patchable entry point in the machine code
    pub fn mark_entry_start(&mut self, entryref: &PendingEntryRef) {
        // We need to create our own entry rc object
        // so that we can move the closure below
        let entryref = entryref.clone();

        self.pos_marker(move |code_ptr, _| {
            entryref.start_addr.set(Some(code_ptr));
        });
    }

    /// Mark the end position of a patchable entry point in the machine code
    pub fn mark_entry_end(&mut self, entryref: &PendingEntryRef) {
        // We need to create our own entry rc object
        // so that we can move the closure below
        let entryref = entryref.clone();

        self.pos_marker(move |code_ptr, _| {
            entryref.end_addr.set(Some(code_ptr));
        });
    }

    // Mark the start position of a patchable branch in the machine code
    fn mark_branch_start(&mut self, branchref: &PendingBranchRef)
    {
        // We need to create our own branch rc object
        // so that we can move the closure below
        let branchref = branchref.clone();

        self.pos_marker(move |code_ptr, _| {
            branchref.start_addr.set(Some(code_ptr));
        });
    }

    // Mark the end position of a patchable branch in the machine code
    fn mark_branch_end(&mut self, branchref: &PendingBranchRef)
    {
        // We need to create our own branch rc object
        // so that we can move the closure below
        let branchref = branchref.clone();

        self.pos_marker(move |code_ptr, _| {
            branchref.end_addr.set(Some(code_ptr));
        });
    }
}

pub fn gen_branch(
    jit: &mut JITState,
    asm: &mut Assembler,
    ocb: &mut OutlinedCb,
    target0: BlockId,
    ctx0: &Context,
    target1: Option<BlockId>,
    ctx1: Option<&Context>,
    gen_fn: BranchGenFn,
) {
    let branch = new_pending_branch(jit, gen_fn);

    // Get the branch targets or stubs
    let target0_addr = branch.set_target(0, target0, ctx0, ocb);
    let target1_addr = if let Some(ctx) = ctx1 {
        let addr = branch.set_target(1, target1.unwrap(), ctx, ocb);
        if addr.is_none() {
            // target1 requested but we're out of memory.
            // Avoid unwrap() in gen_fn()
            return;
        }

        addr
    } else { None };

    // Call the branch generation function
    asm.mark_branch_start(&branch);
    if let Some(dst_addr) = target0_addr {
        branch.gen_fn.call(asm, Target::CodePtr(dst_addr), target1_addr.map(|addr| Target::CodePtr(addr)));
    }
    asm.mark_branch_end(&branch);
}

pub fn gen_direct_jump(jit: &mut JITState, ctx: &Context, target0: BlockId, asm: &mut Assembler) {
    let branch = new_pending_branch(jit, BranchGenFn::JumpToTarget0(Cell::new(BranchShape::Default)));
    let maybe_block = find_block_version(target0, ctx);

    // If the block already exists
    let new_target = if let Some(blockref) = maybe_block {
        let block = unsafe { blockref.as_ref() };
        let block_addr = block.start_addr;

        // Call the branch generation function
        asm_comment!(asm, "gen_direct_jmp: existing block");
        asm.mark_branch_start(&branch);
        branch.gen_fn.call(asm, Target::CodePtr(block_addr), None);
        asm.mark_branch_end(&branch);

        BranchTarget::Block(blockref)
    } else {
        // The branch is effectively empty (a noop)
        asm_comment!(asm, "gen_direct_jmp: fallthrough");
        asm.mark_branch_start(&branch);
        asm.mark_branch_end(&branch);
        branch.gen_fn.set_shape(BranchShape::Next0);

        // `None` in new_target.address signals gen_block_series() to
        // compile the target block right after this one (fallthrough).
        BranchTarget::Stub(Box::new(BranchStub {
            address: None,
            ctx: *ctx,
            iseq: Cell::new(target0.iseq),
            iseq_idx: target0.idx,
        }))
    };

    branch.targets[0].set(Some(Box::new(new_target)));
}

/// Create a stub to force the code up to this point to be executed
pub fn defer_compilation(
    jit: &mut JITState,
    asm: &mut Assembler,
    ocb: &mut OutlinedCb,
) {
    if asm.ctx.is_deferred() {
        panic!("Double defer!");
    }

    let mut next_ctx = asm.ctx;

    next_ctx.mark_as_deferred();

    let branch = new_pending_branch(jit, BranchGenFn::JumpToTarget0(Cell::new(BranchShape::Default)));

    let blockid = BlockId {
        iseq: jit.get_iseq(),
        idx: jit.get_insn_idx(),
    };

    // Likely a stub due to the increased chain depth
    let target0_address = branch.set_target(0, blockid, &next_ctx, ocb);

    // Pad the block if it has the potential to be invalidated. This must be
    // done before gen_fn() in case the jump is overwritten by a fallthrough.
    if jit.block_entry_exit.is_some() {
        asm.pad_inval_patch();
    }

    // Call the branch generation function
    asm_comment!(asm, "defer_compilation");
    asm.mark_branch_start(&branch);
    if let Some(dst_addr) = target0_address {
        branch.gen_fn.call(asm, Target::CodePtr(dst_addr), None);
    }
    asm.mark_branch_end(&branch);

    // If the block we're deferring from is empty
    if jit.get_starting_insn_idx() == jit.get_insn_idx() {
        incr_counter!(defer_empty_count);
    }

    incr_counter!(defer_count);
}

/// Remove a block from the live control flow graph.
/// Block must be initialized and incoming/outgoing edges
/// must also point to initialized blocks.
unsafe fn remove_from_graph(blockref: BlockRef) {
    let block = unsafe { blockref.as_ref() };

    // Remove this block from the predecessor's targets
    for pred_branchref in block.incoming.0.take().iter() {
        // Branch from the predecessor to us
        let pred_branch = unsafe { pred_branchref.as_ref() };

        // If this is us, nullify the target block
        for target_idx in 0..pred_branch.targets.len() {
            // SAFETY: no mutation inside unsafe
            let target_is_us = unsafe {
                pred_branch.targets[target_idx]
                    .ref_unchecked()
                    .as_ref()
                    .and_then(|target| target.get_block())
                    .and_then(|target_block| (target_block == blockref).then(|| ()))
                    .is_some()
            };

            if target_is_us {
                pred_branch.targets[target_idx].set(None);
            }
        }
    }

    // For each outgoing branch
    for out_branchref in block.outgoing.iter() {
        let out_branch = unsafe { out_branchref.as_ref() };
        // For each successor block
        for out_target in out_branch.targets.iter() {
            // SAFETY: copying out an Option<BlockRef>. No mutation.
            let succ_block: Option<BlockRef> = unsafe {
                out_target.ref_unchecked().as_ref().and_then(|target| target.get_block())
            };

            if let Some(succ_block) = succ_block {
                // Remove outgoing branch from the successor's incoming list
                // SAFETY: caller promises the block has valid outgoing edges.
                let succ_block = unsafe { succ_block.as_ref() };
                // Temporarily move out of succ_block.incoming.
                let succ_incoming = succ_block.incoming.0.take();
                let mut succ_incoming = succ_incoming.into_vec();
                succ_incoming.retain(|branch| branch != out_branchref);
                succ_block.incoming.0.set(succ_incoming.into_boxed_slice()); // allocs. Rely on oom=abort
            }
        }
    }
}

/// Tear down a block and deallocate it.
/// Caller has to ensure that the code tracked by the block is not
/// running, as running code may hit [branch_stub_hit] who exepcts
/// [Branch] to be live.
///
/// We currently ensure this through the `jit_cont` system in cont.c
/// and sometimes through the GC calling [rb_yjit_iseq_free]. The GC
/// has proven that an ISeq is not running if it calls us to free it.
///
/// For delayed deallocation, since dead blocks don't keep
/// blocks they refer alive, by the time we get here their outgoing
/// edges may be dangling. Pass `graph_intact=false` such these cases.
pub unsafe fn free_block(blockref: BlockRef, graph_intact: bool) {
    // Careful with order here.
    // First, remove all pointers to the referent block
    unsafe {
        block_assumptions_free(blockref);

        if graph_intact {
            remove_from_graph(blockref);
        }
    }

    // SAFETY: we should now have a unique pointer to the block
    unsafe { dealloc_block(blockref) }
}

/// Deallocate a block and its outgoing branches. Blocks own their outgoing branches.
/// Caller must ensure that we have unique ownership for the referent block
unsafe fn dealloc_block(blockref: BlockRef) {
    unsafe {
        for outgoing in blockref.as_ref().outgoing.iter() {
            // this Box::from_raw matches the Box::into_raw from PendingBranch::into_branch
            mem::drop(Box::from_raw(outgoing.as_ptr()));
        }
    }

    // Deallocate the referent Block
    unsafe {
        // this Box::from_raw matches the Box::into_raw from JITState::into_block
        mem::drop(Box::from_raw(blockref.as_ptr()));
    }
}

// Some runtime checks for integrity of a program location
pub fn verify_blockid(blockid: BlockId) {
    unsafe {
        assert!(rb_IMEMO_TYPE_P(blockid.iseq.into(), imemo_iseq) != 0);
        assert!(u32::from(blockid.idx) < get_iseq_encoded_size(blockid.iseq));
    }
}

// Invalidate one specific block version
pub fn invalidate_block_version(blockref: &BlockRef) {
    //ASSERT_vm_locking();

    // TODO: want to assert that all other ractors are stopped here. Can't patch
    // machine code that some other thread is running.

    let block = unsafe { (*blockref).as_ref() };
    let id_being_invalidated = block.get_blockid();
    let mut cb = CodegenGlobals::get_inline_cb();
    let ocb = CodegenGlobals::get_outlined_cb();

    verify_blockid(id_being_invalidated);

    #[cfg(feature = "disasm")]
    {
        // If dump_iseq_disasm is specified, print to console that blocks for matching ISEQ names were invalidated.
        if let Some(substr) = get_option_ref!(dump_iseq_disasm).as_ref() {
            let iseq_range = &block.iseq_range;
            let iseq_location = iseq_get_location(block.iseq.get(), iseq_range.start);
            if iseq_location.contains(substr) {
                println!("Invalidating block from {}, ISEQ offsets [{}, {})", iseq_location, iseq_range.start, iseq_range.end);
            }
        }
    }

    // Remove this block from the version array
    remove_block_version(blockref);

    // Get a pointer to the generated code for this block
    let block_start = block.start_addr;

    // Make the start of the block do an exit. This handles OOM situations
    // and some cases where we can't efficiently patch incoming branches.
    // Do this first, since in case there is a fallthrough branch into this
    // block, the patching loop below can overwrite the start of the block.
    // In those situations, there is hopefully no jumps to the start of the block
    // after patching as the start of the block would be in the middle of something
    // generated by branch_t::gen_fn.
    let block_entry_exit = block
        .entry_exit
        .expect("invalidation needs the entry_exit field");
    {
        let block_end = block.get_end_addr();

        if block_start == block_entry_exit {
            // Some blocks exit on entry. Patching a jump to the entry at the
            // entry makes an infinite loop.
        } else {
            // Patch in a jump to block.entry_exit.

            let cur_pos = cb.get_write_ptr();
            let cur_dropped_bytes = cb.has_dropped_bytes();
            cb.set_write_ptr(block_start);

            let mut asm = Assembler::new();
            asm.jmp(block_entry_exit.as_side_exit());
            cb.set_dropped_bytes(false);
            asm.compile(&mut cb, Some(ocb)).expect("can rewrite existing code");

            assert!(
                cb.get_write_ptr() <= block_end,
                "invalidation wrote past end of block (code_size: {:?}, new_size: {}, start_addr: {:?})",
                block.code_size(),
                cb.get_write_ptr().as_offset() - block_start.as_offset(),
                block.start_addr.raw_ptr(cb),
            );
            cb.set_write_ptr(cur_pos);
            cb.set_dropped_bytes(cur_dropped_bytes);
        }
    }

    // For each incoming branch
    for branchref in block.incoming.0.take().iter() {
        let branch = unsafe { branchref.as_ref() };
        let target_idx = if branch.get_target_address(0) == Some(block_start) {
            0
        } else {
            1
        };

        // Assert that the incoming branch indeed points to the block being invalidated
        // SAFETY: no mutation.
        unsafe {
            let incoming_target = branch.targets[target_idx].ref_unchecked().as_ref().unwrap();
            assert_eq!(Some(block_start), incoming_target.get_address());
            if let Some(incoming_block) = &incoming_target.get_block() {
                assert_eq!(blockref, incoming_block);
            }
        }

        // Create a stub for this branch target
        let stub_addr = gen_branch_stub(&block.ctx, ocb, branchref.as_ptr() as usize, target_idx as u32);

        // In case we were unable to generate a stub (e.g. OOM). Use the block's
        // exit instead of a stub for the block. It's important that we
        // still patch the branch in this situation so stubs are unique
        // to branches. Think about what could go wrong if we run out of
        // memory in the middle of this loop.
        let stub_addr = stub_addr.unwrap_or(block_entry_exit);

        // Fill the branch target with a stub
        branch.targets[target_idx].set(Some(Box::new(BranchTarget::Stub(Box::new(BranchStub {
            address: Some(stub_addr),
            iseq: block.iseq.clone(),
            iseq_idx: block.iseq_range.start,
            ctx: block.ctx,
        })))));

        // Check if the invalidated block immediately follows
        let target_next = block.start_addr == branch.end_addr.get();

        if target_next {
            // The new block will no longer be adjacent.
            // Note that we could be enlarging the branch and writing into the
            // start of the block being invalidated.
            branch.gen_fn.set_shape(BranchShape::Default);
        }

        // Rewrite the branch with the new jump target address
        let old_branch_size = branch.code_size();
        regenerate_branch(cb, branch);

        if target_next && branch.end_addr > block.end_addr {
            panic!("yjit invalidate rewrote branch past end of invalidated block: {:?} (code_size: {})", branch, block.code_size());
        }
        if !target_next && branch.code_size() > old_branch_size {
            panic!(
                "invalidated branch grew in size (start_addr: {:?}, old_size: {}, new_size: {})",
                branch.start_addr.raw_ptr(cb), old_branch_size, branch.code_size()
            );
        }
    }

    // Clear out the JIT func so that we can recompile later and so the
    // interpreter will run the iseq.
    //
    // Only clear the jit_func when we're invalidating the JIT entry block.
    // We only support compiling iseqs from index 0 right now.  So entry
    // points will always have an instruction index of 0.  We'll need to
    // change this in the future when we support optional parameters because
    // they enter the function with a non-zero PC
    if block.iseq_range.start == 0 {
        // TODO:
        // We could reset the exec counter to zero in rb_iseq_reset_jit_func()
        // so that we eventually compile a new entry point when useful
        unsafe { rb_iseq_reset_jit_func(block.iseq.get()) };
    }

    // FIXME:
    // Call continuation addresses on the stack can also be atomically replaced by jumps going to the stub.

    // SAFETY: This block was in a version_map earlier
    // in this function before we removed it, so it's well connected.
    unsafe { remove_from_graph(*blockref) };

    delayed_deallocation(*blockref);

    ocb.unwrap().mark_all_executable();
    cb.mark_all_executable();

    incr_counter!(invalidation_count);
}

// We cannot deallocate blocks immediately after invalidation since there
// could be stubs waiting to access branch pointers. Return stubs can do
// this since patching the code for setting up return addresses does not
// affect old return addresses that are already set up to use potentially
// invalidated branch pointers. Example:
//   def foo(n)
//     if n == 2
//       # 1.times.each to create a cfunc frame to preserve the JIT frame
//       # which will return to a stub housed in an invalidated block
//       return 1.times.each { Object.define_method(:foo) {} }
//     end
//
//     foo(n + 1)
//   end
//   p foo(1)
pub fn delayed_deallocation(blockref: BlockRef) {
    block_assumptions_free(blockref);

    let payload = get_iseq_payload(unsafe { blockref.as_ref() }.iseq.get()).unwrap();
    payload.dead_blocks.push(blockref);
}

trait RefUnchecked {
    type Contained;
    unsafe fn ref_unchecked(&self) -> &Self::Contained;
}

impl<T> RefUnchecked for Cell<T> {
    type Contained = T;

    /// Gives a reference to the contents of a [Cell].
    /// Dangerous; please include a SAFETY note.
    ///
    /// An easy way to use this without triggering Undefined Behavior is to
    ///   1. ensure there is transitively no Cell/UnsafeCell mutation in the `unsafe` block
    ///   2. ensure the `unsafe` block does not return any references, so our
    ///      analysis is lexically confined. This is trivially true if the block
    ///      returns a `bool`, for example. Aggregates that store references have
    ///      explicit lifetime parameters that look like `<'a>`.
    ///
    /// There are other subtler situations that don't follow these rules yet
    /// are still sound.
    /// See `test_miri_ref_unchecked()` for examples. You can play with it
    /// with `cargo +nightly miri test miri`.
    unsafe fn ref_unchecked(&self) -> &Self::Contained {
        // SAFETY: pointer is dereferenceable because it's from a &Cell.
        // It's up to the caller to follow aliasing rules with the output
        // reference.
        unsafe { self.as_ptr().as_ref().unwrap() }
    }
}

#[cfg(test)]
mod tests {
    use crate::core::*;

    #[test]
    fn type_size() {
        // Check that we can store types in 4 bits,
        // and all local types in 32 bits
        assert_eq!(mem::size_of::<Type>(), 1);
        assert!(Type::BlockParamProxy as usize <= 0b1111);
        assert!(MAX_LOCAL_TYPES * 4 <= 32);
    }

    #[test]
    fn tempmapping_size() {
        assert_eq!(mem::size_of::<TempMapping>(), 1);
    }

    #[test]
    fn local_types() {
        let mut ctx = Context::default();

        for i in 0..MAX_LOCAL_TYPES {
            ctx.set_local_type(i, Type::Fixnum);
            assert_eq!(ctx.get_local_type(i), Type::Fixnum);
            ctx.set_local_type(i, Type::BlockParamProxy);
            assert_eq!(ctx.get_local_type(i), Type::BlockParamProxy);
        }

        ctx.set_local_type(0, Type::Fixnum);
        ctx.clear_local_types();
        assert!(ctx.get_local_type(0) == Type::Unknown);

        // Make sure we don't accidentally set bits incorrectly
        let mut ctx = Context::default();
        ctx.set_local_type(0, Type::Fixnum);
        assert_eq!(ctx.get_local_type(0), Type::Fixnum);
        ctx.set_local_type(2, Type::Fixnum);
        ctx.set_local_type(1, Type::BlockParamProxy);
        assert_eq!(ctx.get_local_type(0), Type::Fixnum);
        assert_eq!(ctx.get_local_type(2), Type::Fixnum);
    }

    #[test]
    fn tempmapping() {
        let t = TempMapping::map_to_stack(Type::Unknown);
        assert_eq!(t.get_kind(), MapToStack);
        assert_eq!(t.get_type(), Type::Unknown);

        let t = TempMapping::map_to_stack(Type::TString);
        assert_eq!(t.get_kind(), MapToStack);
        assert_eq!(t.get_type(), Type::TString);

        let t = TempMapping::map_to_local(7);
        assert_eq!(t.get_kind(), MapToLocal);
        assert_eq!(t.get_local_idx(), 7);
    }

    #[test]
    fn context_size() {
        assert_eq!(mem::size_of::<Context>(), 23);
    }

    #[test]
    fn types() {
        // Valid src => dst
        assert_eq!(Type::Unknown.diff(Type::Unknown), TypeDiff::Compatible(0));
        assert_eq!(Type::UnknownImm.diff(Type::UnknownImm), TypeDiff::Compatible(0));
        assert_ne!(Type::UnknownImm.diff(Type::Unknown), TypeDiff::Incompatible);
        assert_ne!(Type::Fixnum.diff(Type::Unknown), TypeDiff::Incompatible);
        assert_ne!(Type::Fixnum.diff(Type::UnknownImm), TypeDiff::Incompatible);

        // Invalid src => dst
        assert_eq!(Type::Unknown.diff(Type::UnknownImm), TypeDiff::Incompatible);
        assert_eq!(Type::Unknown.diff(Type::Fixnum), TypeDiff::Incompatible);
        assert_eq!(Type::Fixnum.diff(Type::UnknownHeap), TypeDiff::Incompatible);
    }

    #[test]
    fn reg_temps() {
        let mut reg_temps = RegTemps(0);

        // 0 means every slot is not spilled
        for stack_idx in 0..MAX_REG_TEMPS {
            assert_eq!(reg_temps.get(stack_idx), false);
        }

        // Set 0, 2, 7 (RegTemps: 10100001)
        reg_temps.set(0, true);
        reg_temps.set(2, true);
        reg_temps.set(3, true);
        reg_temps.set(3, false);
        reg_temps.set(7, true);

        // Get 0..8
        assert_eq!(reg_temps.get(0), true);
        assert_eq!(reg_temps.get(1), false);
        assert_eq!(reg_temps.get(2), true);
        assert_eq!(reg_temps.get(3), false);
        assert_eq!(reg_temps.get(4), false);
        assert_eq!(reg_temps.get(5), false);
        assert_eq!(reg_temps.get(6), false);
        assert_eq!(reg_temps.get(7), true);

        // Test conflicts
        assert_eq!(5, get_option!(num_temp_regs));
        assert_eq!(reg_temps.conflicts_with(0), false); // already set, but no conflict
        assert_eq!(reg_temps.conflicts_with(1), false);
        assert_eq!(reg_temps.conflicts_with(2), true); // already set, and conflicts with 7
        assert_eq!(reg_temps.conflicts_with(3), false);
        assert_eq!(reg_temps.conflicts_with(4), false);
        assert_eq!(reg_temps.conflicts_with(5), true); // not set, and will conflict with 0
        assert_eq!(reg_temps.conflicts_with(6), false);
        assert_eq!(reg_temps.conflicts_with(7), true); // already set, and conflicts with 2
    }

    #[test]
    fn context() {
        // Valid src => dst
        assert_eq!(Context::default().diff(&Context::default()), TypeDiff::Compatible(0));

        // Try pushing an operand and getting its type
        let mut asm = Assembler::new();
        asm.stack_push(Type::Fixnum);
        let top_type = asm.ctx.get_opnd_type(StackOpnd(0));
        assert!(top_type == Type::Fixnum);

        // TODO: write more tests for Context type diff
    }

    #[test]
    fn context_upgrade_local() {
        let mut asm = Assembler::new();
        asm.stack_push_local(0);
        asm.ctx.upgrade_opnd_type(StackOpnd(0), Type::Nil);
        assert_eq!(Type::Nil, asm.ctx.get_opnd_type(StackOpnd(0)));
    }

    #[test]
    fn context_chain_depth() {
        let mut ctx = Context::default();
        assert_eq!(ctx.get_chain_depth(), 0);
        assert_eq!(ctx.is_return_landing(), false);
        assert_eq!(ctx.is_deferred(), false);

        for _ in 0..5 {
            ctx.increment_chain_depth();
        }
        assert_eq!(ctx.get_chain_depth(), 5);

        ctx.set_as_return_landing();
        assert_eq!(ctx.is_return_landing(), true);

        ctx.clear_return_landing();
        assert_eq!(ctx.is_return_landing(), false);

        ctx.mark_as_deferred();
        assert_eq!(ctx.is_deferred(), true);

        ctx.reset_chain_depth_and_defer();
        assert_eq!(ctx.get_chain_depth(), 0);
        assert_eq!(ctx.is_deferred(), false);
    }

    #[test]
    fn shift_stack_for_send() {
        let mut asm = Assembler::new();

        // Push values to simulate send(:name, arg) with 6 items already on-stack
        for _ in 0..6 {
            asm.stack_push(Type::Fixnum);
        }
        asm.stack_push(Type::Unknown);
        asm.stack_push(Type::ImmSymbol);
        asm.stack_push(Type::Unknown);

        // This method takes argc of the sendee, not argc of send
        asm.shift_stack(1);

        // The symbol should be gone
        assert_eq!(Type::Unknown, asm.ctx.get_opnd_type(StackOpnd(0)));
        assert_eq!(Type::Unknown, asm.ctx.get_opnd_type(StackOpnd(1)));
    }

    #[test]
    fn test_miri_ref_unchecked() {
        let blockid = BlockId {
            iseq: ptr::null(),
            idx: 0,
        };
        let cb = CodeBlock::new_dummy(1024);
        let dumm_addr = cb.get_write_ptr();
        let block = JITState::new(blockid, Context::default(), dumm_addr, ptr::null())
            .into_block(0, dumm_addr, dumm_addr, vec![]);
        let _dropper = BlockDropper(block);

        // Outside of brief moments during construction,
        // we're always working with &Branch (a shared reference to a Branch).
        let branch: &Branch = &Branch {
            gen_fn: BranchGenFn::JZToTarget0,
            block,
            start_addr: dumm_addr,
            end_addr: Cell::new(dumm_addr),
            targets: [Cell::new(None), Cell::new(Some(Box::new(BranchTarget::Stub(Box::new(BranchStub {
                iseq: Cell::new(ptr::null()),
                iseq_idx: 0,
                address: None,
                ctx: Context::default(),
            })))))]
        };
        // For easier soundness reasoning, make sure the reference returned does not out live the
        // `unsafe` block! It's tempting to do, but it leads to non-local issues.
        // Here is an example where it goes wrong:
        if false {
            for target in branch.targets.iter().as_ref() {
                if let Some(btarget) = unsafe { target.ref_unchecked() } {
                    // btarget is derived from the usnafe block!
                    target.set(None); // This drops the contents of the cell...
                    assert!(btarget.get_address().is_none()); // but `btarget` is still live! UB.
                }
            }
        }

        // Do something like this instead. It's not pretty, but it's easier to vet for UB this way.
        for target in branch.targets.iter().as_ref() {
            // SAFETY: no mutation within unsafe
            if unsafe { target.ref_unchecked().is_none() } {
                continue;
            }
            // SAFETY: no mutation within unsafe
            assert!(unsafe { target.ref_unchecked().as_ref().unwrap().get_address().is_none() });
            target.set(None);
        }

        // A more subtle situation where we do Cell/UnsafeCell mutation over the
        // lifetime of the reference released by ref_unchecked().
        branch.targets[0].set(Some(Box::new(BranchTarget::Stub(Box::new(BranchStub {
            iseq: Cell::new(ptr::null()),
            iseq_idx: 0,
            address: None,
            ctx: Context::default(),
        })))));
        // Invalid ISeq; we never dereference it.
        let secret_iseq = NonNull::<rb_iseq_t>::dangling().as_ptr();
        unsafe {
            if let Some(branch_target) = branch.targets[0].ref_unchecked().as_ref() {
                if let BranchTarget::Stub(stub) = branch_target.as_ref() {
                    // SAFETY:
                    // This is a Cell mutation, but it mutates the contents
                    // of a a Cell<IseqPtr>, which is a different type
                    // from the type of Cell found in `Branch::targets`, so
                    // there is no chance of mutating the Cell that we called
                    // ref_unchecked() on above.
                    Cell::set(&stub.iseq, secret_iseq);
                }
            }
        };
        // Check that we indeed changed the iseq of the stub
        // Cell::take moves out of the cell.
        assert_eq!(
            secret_iseq as usize,
            branch.targets[0].take().unwrap().get_blockid().iseq as usize
        );

        struct BlockDropper(BlockRef);
        impl Drop for BlockDropper {
            fn drop(&mut self) {
                // SAFETY: we have ownership because the test doesn't stash
                // the block away in any global structure.
                // Note that the test being self-contained is also why we
                // use dealloc_block() over free_block(), as free_block() touches
                // the global invariants tables unavailable in tests.
                unsafe { dealloc_block(self.0) };
            }
        }
    }
}