1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
use std::mem;
#[cfg(feature = "asm_comments")]
use std::collections::BTreeMap;
use crate::virtualmem::{VirtualMem, CodePtr};
// Lots of manual vertical alignment in there that rustfmt doesn't handle well.
#[rustfmt::skip]
pub mod x86_64;
pub mod arm64;
//
// TODO: need a field_size_of macro, to compute the size of a struct field in bytes
//
/// Reference to an ASM label
struct LabelRef {
// Position in the code block where the label reference exists
pos: usize,
// Label which this refers to
label_idx: usize,
}
/// Block of memory into which instructions can be assembled
pub struct CodeBlock {
// Memory for storing the encoded instructions
mem_block: VirtualMem,
// Memory block size
mem_size: usize,
// Current writing position
write_pos: usize,
// Table of registered label addresses
label_addrs: Vec<usize>,
// Table of registered label names
label_names: Vec<String>,
// References to labels
label_refs: Vec<LabelRef>,
// Comments for assembly instructions, if that feature is enabled
#[cfg(feature = "asm_comments")]
asm_comments: BTreeMap<usize, Vec<String>>,
// Set if the CodeBlock is unable to output some instructions,
// for example, when there is not enough space or when a jump
// target is too far away.
dropped_bytes: bool,
}
impl CodeBlock {
/// Make a new CodeBlock
pub fn new(mem_block: VirtualMem) -> Self {
Self {
mem_size: mem_block.virtual_region_size(),
mem_block,
write_pos: 0,
label_addrs: Vec::new(),
label_names: Vec::new(),
label_refs: Vec::new(),
#[cfg(feature = "asm_comments")]
asm_comments: BTreeMap::new(),
dropped_bytes: false,
}
}
/// Check if this code block has sufficient remaining capacity
pub fn has_capacity(&self, num_bytes: usize) -> bool {
self.write_pos + num_bytes < self.mem_size
}
/// Add an assembly comment if the feature is on.
/// If not, this becomes an inline no-op.
#[cfg(feature = "asm_comments")]
pub fn add_comment(&mut self, comment: &str) {
let cur_ptr = self.get_write_ptr().into_usize();
// If there's no current list of comments for this line number, add one.
let this_line_comments = self.asm_comments.entry(cur_ptr).or_default();
// Unless this comment is the same as the last one at this same line, add it.
if this_line_comments.last().map(String::as_str) != Some(comment) {
this_line_comments.push(comment.to_string());
}
}
#[cfg(not(feature = "asm_comments"))]
#[inline]
pub fn add_comment(&mut self, _: &str) {}
#[cfg(feature = "asm_comments")]
pub fn comments_at(&self, pos: usize) -> Option<&Vec<String>> {
self.asm_comments.get(&pos)
}
pub fn get_mem_size(&self) -> usize {
self.mem_size
}
pub fn get_write_pos(&self) -> usize {
self.write_pos
}
pub fn get_mem(&mut self) -> &mut VirtualMem {
&mut self.mem_block
}
// Set the current write position
pub fn set_pos(&mut self, pos: usize) {
// Assert here since while CodeBlock functions do bounds checking, there is
// nothing stopping users from taking out an out-of-bounds pointer and
// doing bad accesses with it.
assert!(pos < self.mem_size);
self.write_pos = pos;
}
// Align the current write pointer to a multiple of bytes
pub fn align_pos(&mut self, multiple: u32) {
// Compute the alignment boundary that is lower or equal
// Do everything with usize
let multiple: usize = multiple.try_into().unwrap();
let pos = self.get_write_ptr().raw_ptr() as usize;
let remainder = pos % multiple;
let prev_aligned = pos - remainder;
if prev_aligned == pos {
// Already aligned so do nothing
} else {
// Align by advancing
let pad = multiple - remainder;
self.set_pos(self.get_write_pos() + pad);
}
}
// Set the current write position from a pointer
pub fn set_write_ptr(&mut self, code_ptr: CodePtr) {
let pos = code_ptr.into_usize() - self.mem_block.start_ptr().into_usize();
self.set_pos(pos);
}
// Get a direct pointer into the executable memory block
pub fn get_ptr(&self, offset: usize) -> CodePtr {
self.mem_block.start_ptr().add_bytes(offset)
}
// Get a direct pointer to the current write position
pub fn get_write_ptr(&mut self) -> CodePtr {
self.get_ptr(self.write_pos)
}
// Write a single byte at the current position
pub fn write_byte(&mut self, byte: u8) {
let write_ptr = self.get_write_ptr();
if self.mem_block.write_byte(write_ptr, byte).is_ok() {
self.write_pos += 1;
} else {
self.dropped_bytes = true;
}
}
// Write multiple bytes starting from the current position
pub fn write_bytes(&mut self, bytes: &[u8]) {
for byte in bytes {
self.write_byte(*byte);
}
}
// Write a signed integer over a given number of bits at the current position
pub fn write_int(&mut self, val: u64, num_bits: u32) {
assert!(num_bits > 0);
assert!(num_bits % 8 == 0);
// Switch on the number of bits
match num_bits {
8 => self.write_byte(val as u8),
16 => self.write_bytes(&[(val & 0xff) as u8, ((val >> 8) & 0xff) as u8]),
32 => self.write_bytes(&[
(val & 0xff) as u8,
((val >> 8) & 0xff) as u8,
((val >> 16) & 0xff) as u8,
((val >> 24) & 0xff) as u8,
]),
_ => {
let mut cur = val;
// Write out the bytes
for _byte in 0..(num_bits / 8) {
self.write_byte((cur & 0xff) as u8);
cur >>= 8;
}
}
}
}
/// Check if bytes have been dropped (unwritten because of insufficient space)
pub fn has_dropped_bytes(&self) -> bool {
self.dropped_bytes
}
/// Allocate a new label with a given name
pub fn new_label(&mut self, name: String) -> usize {
// This label doesn't have an address yet
self.label_addrs.push(0);
self.label_names.push(name);
return self.label_addrs.len() - 1;
}
/// Write a label at the current address
pub fn write_label(&mut self, label_idx: usize) {
self.label_addrs[label_idx] = self.write_pos;
}
// Add a label reference at the current write position
pub fn label_ref(&mut self, label_idx: usize) {
assert!(label_idx < self.label_addrs.len());
// Keep track of the reference
self.label_refs.push(LabelRef {
pos: self.write_pos,
label_idx,
});
}
// Link internal label references
pub fn link_labels(&mut self) {
let orig_pos = self.write_pos;
// For each label reference
for label_ref in mem::take(&mut self.label_refs) {
let ref_pos = label_ref.pos;
let label_idx = label_ref.label_idx;
assert!(ref_pos < self.mem_size);
let label_addr = self.label_addrs[label_idx];
assert!(label_addr < self.mem_size);
// Compute the offset from the reference's end to the label
let offset = (label_addr as i64) - ((ref_pos + 4) as i64);
self.set_pos(ref_pos);
self.write_int(offset as u64, 32);
}
self.write_pos = orig_pos;
// Clear the label positions and references
self.label_addrs.clear();
self.label_names.clear();
assert!(self.label_refs.is_empty());
}
pub fn mark_all_executable(&mut self) {
self.mem_block.mark_all_executable();
}
}
#[cfg(test)]
impl CodeBlock {
/// Stubbed CodeBlock for testing. Can't execute generated code.
pub fn new_dummy(mem_size: usize) -> Self {
use crate::virtualmem::*;
use crate::virtualmem::tests::TestingAllocator;
let alloc = TestingAllocator::new(mem_size);
let mem_start: *const u8 = alloc.mem_start();
let virt_mem = VirtualMem::new(alloc, 1, mem_start as *mut u8, mem_size);
Self::new(virt_mem)
}
}
/// Wrapper struct so we can use the type system to distinguish
/// Between the inlined and outlined code blocks
pub struct OutlinedCb {
// This must remain private
cb: CodeBlock,
}
impl OutlinedCb {
pub fn wrap(cb: CodeBlock) -> Self {
OutlinedCb { cb: cb }
}
pub fn unwrap(&mut self) -> &mut CodeBlock {
&mut self.cb
}
}
/// Compute the number of bits needed to encode a signed value
pub fn imm_num_bits(imm: i64) -> u8
{
// Compute the smallest size this immediate fits in
if imm >= i8::MIN.into() && imm <= i8::MAX.into() {
return 8;
}
if imm >= i16::MIN.into() && imm <= i16::MAX.into() {
return 16;
}
if imm >= i32::MIN.into() && imm <= i32::MAX.into() {
return 32;
}
return 64;
}
/// Compute the number of bits needed to encode an unsigned value
pub fn uimm_num_bits(uimm: u64) -> u8
{
// Compute the smallest size this immediate fits in
if uimm <= u8::MAX.into() {
return 8;
}
else if uimm <= u16::MAX.into() {
return 16;
}
else if uimm <= u32::MAX.into() {
return 32;
}
return 64;
}
#[cfg(test)]
mod tests
{
use super::*;
#[test]
fn test_imm_num_bits()
{
assert_eq!(imm_num_bits(i8::MIN.into()), 8);
assert_eq!(imm_num_bits(i8::MAX.into()), 8);
assert_eq!(imm_num_bits(i16::MIN.into()), 16);
assert_eq!(imm_num_bits(i16::MAX.into()), 16);
assert_eq!(imm_num_bits(i32::MIN.into()), 32);
assert_eq!(imm_num_bits(i32::MAX.into()), 32);
assert_eq!(imm_num_bits(i64::MIN.into()), 64);
assert_eq!(imm_num_bits(i64::MAX.into()), 64);
}
#[test]
fn test_uimm_num_bits() {
assert_eq!(uimm_num_bits(u8::MIN.into()), 8);
assert_eq!(uimm_num_bits(u8::MAX.into()), 8);
assert_eq!(uimm_num_bits(((u8::MAX as u16) + 1).into()), 16);
assert_eq!(uimm_num_bits(u16::MAX.into()), 16);
assert_eq!(uimm_num_bits(((u16::MAX as u32) + 1).into()), 32);
assert_eq!(uimm_num_bits(u32::MAX.into()), 32);
assert_eq!(uimm_num_bits(((u32::MAX as u64) + 1).into()), 64);
assert_eq!(uimm_num_bits(u64::MAX.into()), 64);
}
}
|