summaryrefslogtreecommitdiff
path: root/yjit/src/asm/arm64/arg/bitmask_imm.rs
blob: b3a821fe94a2e7f9ac86b9181b69e1f08540fbf3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/// Immediates used by the logical immediate instructions are not actually the
/// immediate value, but instead are encoded into a 13-bit wide mask of 3
/// elements. This allows many more values to be represented than 13 bits would
/// normally allow, at the expense of not being able to represent every possible
/// value.
///
/// In order for a number to be encodeable in this form, the binary
/// representation must consist of a single set of contiguous 1s. That pattern
/// must then be replicatable across all of the bits either 1, 2, 4, 8, 16, or
/// 32 times (rotated or not).
///
/// For example, 1 (0b1), 2 (0b10), 3 (0b11), and 4 (0b100) are all valid.
/// However, 5 (0b101) is invalid, because it contains 2 sets of 1s and cannot
/// be replicated across 64 bits.
///
/// Some more examples to illustrate the idea of replication:
/// * 0x5555555555555555 is a valid value (0b0101...) because it consists of a
///   single set of 1s which can be replicated across all of the bits 32 times.
/// * 0xf0f0f0f0f0f0f0f0 is a valid value (0b1111000011110000...) because it
///   consists of a single set of 1s which can be replicated across all of the
///   bits 8 times (rotated by 4 bits).
/// * 0x0ff00ff00ff00ff0 is a valid value (0000111111110000...) because it
///   consists of a single set of 1s which can be replicated across all of the
///   bits 4 times (rotated by 12 bits).
///
/// To encode the values, there are 3 elements:
/// * n = 1 if the pattern is 64-bits wide, 0 otherwise
/// * imms = the size of the pattern, a 0, and then one less than the number of
///   sequential 1s
/// * immr = the number of right rotations to apply to the pattern to get the
///   target value
///
pub struct BitmaskImmediate {
    n: u8,
    imms: u8,
    immr: u8
}

impl TryFrom<u64> for BitmaskImmediate {
    type Error = ();

    /// Attempt to convert a u64 into a BitmaskImm.
    fn try_from(value: u64) -> Result<Self, Self::Error> {
        // 0 is not encodable as a bitmask immediate. Immediately return here so
        // that we don't have any issues with underflow.
        if value == 0 || value == u64::MAX {
            return Err(());
        }

        /// Is this number's binary representation all 1s?
        fn is_mask(imm: u64) -> bool {
            if imm == u64::MAX { true } else { ((imm + 1) & imm) == 0 }
        }

        /// Is this number's binary representation one or more 1s followed by
        /// one or more 0s?
        fn is_shifted_mask(imm: u64) -> bool {
            is_mask((imm - 1) | imm)
        }

        let mut imm = value;
        let mut size = 64;

        // First, determine the element size.
        loop {
            size >>= 1;
            let mask = (1 << size) - 1;

            if (imm & mask) != ((imm >> size) & mask) {
              size <<= 1;
              break;
            }

            if size <= 2 {
                break;
            }
        }

        // Second, determine the rotation to make the pattern be aligned such
        // that all of the least significant bits are 1.
        let trailing_ones: u32;
        let left_rotations: u32;

        let mask = u64::MAX >> (64 - size);
        imm &= mask;

        if is_shifted_mask(imm) {
            left_rotations = imm.trailing_zeros();
            assert!(left_rotations < 64);
            trailing_ones = (imm >> left_rotations).trailing_ones();
        } else {
            imm |= !mask;
            if !is_shifted_mask(!imm) {
                return Err(());
            }

            let leading_ones = imm.leading_ones();
            left_rotations = 64 - leading_ones;
            trailing_ones = leading_ones + imm.trailing_ones() - (64 - size);
        }

        // immr is the number of right rotations it takes to get from the
        // matching unrotated pattern to the target value.
        let immr = (size - left_rotations) & (size - 1);
        assert!(size > left_rotations);

        // imms is encoded as the size of the pattern, a 0, and then one less
        // than the number of sequential 1s. The table below shows how this is
        // encoded. (Note that the way it works out, it's impossible for every x
        // in a row to be 1 at the same time).
        // +-------------+--------------+--------------+
        // | imms        | element size | number of 1s |
        // +-------------+--------------+--------------+
        // | 1 1 1 1 0 x | 2 bits       | 1            |
        // | 1 1 1 0 x x | 4 bits       | 1-3          |
        // | 1 1 0 x x x | 8 bits       | 1-7          |
        // | 1 0 x x x x | 16 bits      | 1-15         |
        // | 0 x x x x x | 32 bits      | 1-31         |
        // | x x x x x x | 64 bits      | 1-63         |
        // +-------------+--------------+--------------+
        let imms = (!(size - 1) << 1) | (trailing_ones - 1);

        // n is 1 if the element size is 64-bits, and 0 otherwise.
        let n = ((imms >> 6) & 1) ^ 1;

        Ok(BitmaskImmediate {
            n: n as u8,
            imms: (imms & 0x3f) as u8,
            immr: (immr & 0x3f) as u8
        })
    }
}

impl From<BitmaskImmediate> for u32 {
    /// Encode a bitmask immediate into a 32-bit value.
    fn from(bitmask: BitmaskImmediate) -> Self {
        0
        | (((bitmask.n as u32) & 1) << 12)
        | ((bitmask.immr as u32) << 6)
        | (bitmask.imms as u32)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_failures() {
        vec![5, 9, 10, 11, 13, 17, 18, 19].iter().for_each(|&imm| {
            assert!(BitmaskImmediate::try_from(imm).is_err());
        });
    }

    #[test]
    fn test_negative() {
        let bitmask: BitmaskImmediate = (-9_i64 as u64).try_into().unwrap();
        let encoded: u32 = bitmask.into();
        assert_eq!(7998, encoded);
    }

    #[test]
    fn test_size_2_minimum() {
        let bitmask = BitmaskImmediate::try_from(0x5555555555555555);
        assert!(matches!(bitmask, Ok(BitmaskImmediate { n: 0, immr: 0b000000, imms: 0b111100 })));
    }

    #[test]
    fn test_size_2_maximum() {
        let bitmask = BitmaskImmediate::try_from(0xaaaaaaaaaaaaaaaa);
        assert!(matches!(bitmask, Ok(BitmaskImmediate { n: 0, immr: 0b000001, imms: 0b111100 })));
    }

    #[test]
    fn test_size_4_minimum() {
        let bitmask = BitmaskImmediate::try_from(0x1111111111111111);
        assert!(matches!(bitmask, Ok(BitmaskImmediate { n: 0, immr: 0b000000, imms: 0b111000 })));
    }

    #[test]
    fn test_size_4_rotated() {
        let bitmask = BitmaskImmediate::try_from(0x6666666666666666);
        assert!(matches!(bitmask, Ok(BitmaskImmediate { n: 0, immr: 0b000011, imms: 0b111001 })));
    }

    #[test]
    fn test_size_4_maximum() {
        let bitmask = BitmaskImmediate::try_from(0xeeeeeeeeeeeeeeee);
        assert!(matches!(bitmask, Ok(BitmaskImmediate { n: 0, immr: 0b000011, imms: 0b111010 })));
    }

    #[test]
    fn test_size_8_minimum() {
        let bitmask = BitmaskImmediate::try_from(0x0101010101010101);
        assert!(matches!(bitmask, Ok(BitmaskImmediate { n: 0, immr: 0b000000, imms: 0b110000 })));
    }

    #[test]
    fn test_size_8_rotated() {
        let bitmask = BitmaskImmediate::try_from(0x1818181818181818);
        assert!(matches!(bitmask, Ok(BitmaskImmediate { n: 0, immr: 0b000101, imms: 0b110001 })));
    }

    #[test]
    fn test_size_8_maximum() {
        let bitmask = BitmaskImmediate::try_from(0xfefefefefefefefe);
        assert!(matches!(bitmask, Ok(BitmaskImmediate { n: 0, immr: 0b000111, imms: 0b110110 })));
    }

    #[test]
    fn test_size_16_minimum() {
        let bitmask = BitmaskImmediate::try_from(0x0001000100010001);
        assert!(matches!(bitmask, Ok(BitmaskImmediate { n: 0, immr: 0b000000, imms: 0b100000 })));
    }

    #[test]
    fn test_size_16_rotated() {
        let bitmask = BitmaskImmediate::try_from(0xff8fff8fff8fff8f);
        assert!(matches!(bitmask, Ok(BitmaskImmediate { n: 0, immr: 0b001001, imms: 0b101100 })));
    }

    #[test]
    fn test_size_16_maximum() {
        let bitmask = BitmaskImmediate::try_from(0xfffefffefffefffe);
        assert!(matches!(bitmask, Ok(BitmaskImmediate { n: 0, immr: 0b001111, imms: 0b101110 })));
    }

    #[test]
    fn test_size_32_minimum() {
        let bitmask = BitmaskImmediate::try_from(0x0000000100000001);
        assert!(matches!(bitmask, Ok(BitmaskImmediate { n: 0, immr: 0b000000, imms: 0b000000 })));
    }

    #[test]
    fn test_size_32_rotated() {
        let bitmask = BitmaskImmediate::try_from(0x3fffff003fffff00);
        assert!(matches!(bitmask, Ok(BitmaskImmediate { n: 0, immr: 0b011000, imms: 0b010101 })));
    }

    #[test]
    fn test_size_32_maximum() {
        let bitmask = BitmaskImmediate::try_from(0xfffffffefffffffe);
        assert!(matches!(bitmask, Ok(BitmaskImmediate { n: 0, immr: 0b011111, imms: 0b011110 })));
    }

    #[test]
    fn test_size_64_minimum() {
        let bitmask = BitmaskImmediate::try_from(0x0000000000000001);
        assert!(matches!(bitmask, Ok(BitmaskImmediate { n: 1, immr: 0b000000, imms: 0b000000 })));
    }

    #[test]
    fn test_size_64_rotated() {
        let bitmask = BitmaskImmediate::try_from(0x0000001fffff0000);
        assert!(matches!(bitmask, Ok(BitmaskImmediate { n: 1, immr: 0b110000, imms: 0b010100 })));
    }

    #[test]
    fn test_size_64_maximum() {
        let bitmask = BitmaskImmediate::try_from(0xfffffffffffffffe);
        assert!(matches!(bitmask, Ok(BitmaskImmediate { n: 1, immr: 0b111111, imms: 0b111110 })));
    }

    #[test]
    fn test_size_64_invalid() {
        let bitmask = BitmaskImmediate::try_from(u64::MAX);
        assert!(matches!(bitmask, Err(())));
    }
}