summaryrefslogtreecommitdiff
path: root/ujit_core.c
blob: d7b0d65e69fc55da5e5dad92d9152db934a04270 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
#include "vm_core.h"
#include "vm_callinfo.h"
#include "builtin.h"
#include "insns.inc"
#include "insns_info.inc"
#include "vm_sync.h"
#include "ujit_asm.h"
#include "ujit_utils.h"
#include "ujit_iface.h"
#include "ujit_core.h"
#include "ujit_codegen.h"

// Maximum number of versions per block
#define MAX_VERSIONS 4

// Maximum number of branch instructions we can track
#define MAX_BRANCHES 32768

// Default versioning context (no type information)
const ctx_t DEFAULT_CTX = { { 0 }, 0 };

// Table of block versions indexed by (iseq, index) tuples
st_table *version_tbl;

// Registered branch entries
branch_t branch_entries[MAX_BRANCHES];
uint32_t num_branches = 0;

/*
Get an operand for the adjusted stack pointer address
*/
x86opnd_t
ctx_sp_opnd(ctx_t* ctx, int32_t offset_bytes)
{
    int32_t offset = (ctx->stack_size) * sizeof(VALUE) + offset_bytes;
    return mem_opnd(64, REG_SP, offset);
}

/*
Push one new value on the temp stack
Return a pointer to the new stack top
*/
x86opnd_t
ctx_stack_push(ctx_t* ctx, int type)
{
    // Keep track of the type of the value
    RUBY_ASSERT(type <= RUBY_T_MASK);
    if (ctx->stack_size < MAX_TEMP_TYPES)
        ctx->temp_types[ctx->stack_size] = type;

    ctx->stack_size += 1;

    // SP points just above the topmost value
    int32_t offset = (ctx->stack_size - 1) * sizeof(VALUE);
    return mem_opnd(64, REG_SP, offset);
}

/*
Pop N values off the stack
Return a pointer to the stack top before the pop operation
*/
x86opnd_t
ctx_stack_pop(ctx_t* ctx, size_t n)
{
    RUBY_ASSERT(n <= ctx->stack_size);

    // SP points just above the topmost value
    int32_t offset = (ctx->stack_size - 1) * sizeof(VALUE);
    x86opnd_t top = mem_opnd(64, REG_SP, offset);

    // Clear the types of the popped values
    for (size_t i = 0; i < n; ++i)
    {
        size_t idx = ctx->stack_size - i - 1;
        if (idx < MAX_TEMP_TYPES)
            ctx->temp_types[idx] = T_NONE;
    }

    ctx->stack_size -= n;

    return top;
}

/**
Get an operand pointing to a slot on the temp stack
*/
x86opnd_t
ctx_stack_opnd(ctx_t* ctx, int32_t idx)
{
    // SP points just above the topmost value
    int32_t offset = (ctx->stack_size - 1 - idx) * sizeof(VALUE);
    x86opnd_t opnd = mem_opnd(64, REG_SP, offset);

    return opnd;
}

/**
Get the type of the topmost value on the temp stack
Returns T_NONE if unknown
*/
int
ctx_get_top_type(ctx_t* ctx)
{
    RUBY_ASSERT(ctx->stack_size > 0);

    if (ctx->stack_size > MAX_TEMP_TYPES)
        return T_NONE;

    return ctx->temp_types[ctx->stack_size - 1];
}

/**
Compute a difference score for two context objects
Returns 0 if the two contexts are the same
Returns > 0 if different but compatible
Returns INT_MAX if incompatible
*/
int ctx_diff(const ctx_t* src, const ctx_t* dst)
{
    if (dst->stack_size != src->stack_size)
        return INT_MAX;

    if (dst->self_is_object != src->self_is_object)
        return INT_MAX;

    // Difference sum
    int diff = 0;

    // For each temporary variable
    for (size_t i = 0; i < MAX_TEMP_TYPES; ++i)
    {
        int t_src = src->temp_types[i];
        int t_dst = dst->temp_types[i];

        if (t_dst != t_src)
        {
            // It's OK to lose some type information
            if (t_dst == T_NONE)
                diff += 1;
            else
                return INT_MAX;
        }
    }

    return diff;
}

// Add a block version to the map
static void add_block_version(blockid_t blockid, block_t* block)
{
    // Function entry blocks must have stack size 0
    RUBY_ASSERT(!(block->blockid.idx == 0 && block->ctx.stack_size > 0));

    // If there exists a version for this block id
    block_t* first_version = NULL;
    st_lookup(version_tbl, (st_data_t)&blockid, (st_data_t*)&first_version);

    // Link to the next version in a linked list
    if (first_version != NULL) {
        RUBY_ASSERT(block->next == NULL);
        block->next = first_version;
    }

    // Add the block version to the map
    st_insert(version_tbl, (st_data_t)&block->blockid, (st_data_t)block);
    RUBY_ASSERT(find_block_version(blockid, &block->ctx) != NULL);
}

// Add an incoming branch for a given block version
static void add_incoming(block_t* p_block, uint32_t branch_idx)
{
    // Add this branch to the list of incoming branches for the target
    uint32_t* new_list = malloc(sizeof(uint32_t) * p_block->num_incoming + 1);
    memcpy(new_list, p_block->incoming, p_block->num_incoming);
    new_list[p_block->num_incoming] = branch_idx;
    p_block->incoming = new_list;
    p_block->num_incoming += 1;
}

// Count the number of block versions matching a given blockid
static size_t count_block_versions(blockid_t blockid)
{
    // If there exists a version for this block id
    block_t* first_version;
    if (!rb_st_lookup(version_tbl, (st_data_t)&blockid, (st_data_t*)&first_version))
        return 0;

    size_t count = 0;

    // For each version matching the blockid
    for (block_t* version = first_version; version != NULL; version = version->next)
    {
        count += 1;
    }

    return count;
}

// Retrieve a basic block version for an (iseq, idx) tuple
block_t* find_block_version(blockid_t blockid, const ctx_t* ctx)
{
    // If there exists a version for this block id
    block_t* first_version;
    if (!rb_st_lookup(version_tbl, (st_data_t)&blockid, (st_data_t*)&first_version))
        return NULL;

    // Best match found
    block_t* best_version = NULL;
    int best_diff = INT_MAX;

    // For each version matching the blockid
    for (block_t* version = first_version; version != NULL; version = version->next)
    {
        int diff = ctx_diff(ctx, &version->ctx);

        if (diff < best_diff)
        {
            best_version = version;
            best_diff = diff;
        }
    }

    if (best_version == NULL)
    {
        return NULL;
    }

    return best_version;
}

// Compile a new block version immediately
block_t* gen_block_version(blockid_t blockid, const ctx_t* start_ctx)
{
    // Copy the context to avoid mutating it
    ctx_t ctx_copy = *start_ctx;
    ctx_t* ctx = &ctx_copy;

    // Allocate a new block version object
    block_t* first_block = calloc(1, sizeof(block_t));
    first_block->blockid = blockid;
    memcpy(&first_block->ctx, ctx, sizeof(ctx_t));

    // Block that is currently being compiled
    block_t* block = first_block;

    // Generate code for the first block
    ujit_gen_block(ctx, block);

    // Keep track of the new block version
    add_block_version(block->blockid, block);

    // For each successor block to compile
    for (;;) {
        // If no branches were generated, stop
        if (num_branches == 0) {
            break;
        }

        // Get the last branch entry
        uint32_t branch_idx = num_branches - 1;
        branch_t* last_branch = &branch_entries[num_branches - 1];

        // If there is no next block to compile, stop
        if (last_branch->dst_addrs[0] || last_branch->dst_addrs[1]) {
            break;
        }

        if (last_branch->targets[0].iseq == NULL) {
            rb_bug("invalid target for last branch");
        }

        // Use the context from the branch
        *ctx = last_branch->target_ctxs[0];

        // Allocate a new block version object
        block = calloc(1, sizeof(block_t));
        block->blockid = last_branch->targets[0];
        memcpy(&block->ctx, ctx, sizeof(ctx_t));

        // Generate code for the current block
        ujit_gen_block(ctx, block);

        // Keep track of the new block version
        add_block_version(block->blockid, block);

        // Patch the last branch address
        last_branch->dst_addrs[0] = cb_get_ptr(cb, block->start_pos);
        add_incoming(block, branch_idx);
        RUBY_ASSERT(block->start_pos == last_branch->end_pos);
    }

    return first_block;
}

// Generate a block version that is an entry point inserted into an iseq
uint8_t* gen_entry_point(const rb_iseq_t *iseq, uint32_t insn_idx)
{
    // The entry context makes no assumptions about types
    blockid_t blockid = { iseq, insn_idx };

    // Write the interpreter entry prologue
    uint8_t* code_ptr = ujit_entry_prologue();

    // Try to generate code for the entry block
    block_t* block = gen_block_version(blockid, &DEFAULT_CTX);

    // If we couldn't generate any code
    if (block->end_idx == insn_idx)
    {
        return NULL;
    }

    return code_ptr;
}

// Called by the generated code when a branch stub is executed
// Triggers compilation of branches and code patching
uint8_t* branch_stub_hit(uint32_t branch_idx, uint32_t target_idx)
{
    uint8_t* dst_addr;

    RB_VM_LOCK_ENTER();

    RUBY_ASSERT(branch_idx < num_branches);
    RUBY_ASSERT(target_idx < 2);
    branch_t *branch = &branch_entries[branch_idx];
    blockid_t target = branch->targets[target_idx];
    const ctx_t* target_ctx = &branch->target_ctxs[target_idx];

    //fprintf(stderr, "\nstub hit, branch idx: %d, target idx: %d\n", branch_idx, target_idx);
    //fprintf(stderr, "blockid.iseq=%p, blockid.idx=%d\n", target.iseq, target.idx);

    // If either of the target blocks will be placed next
    if (cb->write_pos == branch->end_pos)
    {
        //fprintf(stderr, "target idx %d will be placed next\n", target_idx);
        branch->shape = (uint8_t)target_idx;

        // Rewrite the branch with the new, potentially more compact shape
        cb_set_pos(cb, branch->start_pos);
        branch->gen_fn(cb, branch->dst_addrs[0], branch->dst_addrs[1], branch->shape);
        RUBY_ASSERT(cb->write_pos <= branch->end_pos);
    }

    // Limit the number of block versions
    ctx_t generic_ctx = DEFAULT_CTX;
    generic_ctx.stack_size = target_ctx->stack_size;
    if (count_block_versions(target) >= MAX_VERSIONS - 1)
    {
        fprintf(stderr, "version limit hit in branch_stub_hit\n");
        target_ctx = &generic_ctx;
    }

    // Try to find a compiled version of this block
    block_t* p_block = find_block_version(target, target_ctx);

    // If this block hasn't yet been compiled
    if (!p_block)
    {
        p_block = gen_block_version(target, target_ctx);
    }

    // Add this branch to the list of incoming branches for the target
    add_incoming(p_block, branch_idx);

    // Update the branch target address
    dst_addr = cb_get_ptr(cb, p_block->start_pos);
    branch->dst_addrs[target_idx] = dst_addr;

    // Rewrite the branch with the new jump target address
    RUBY_ASSERT(branch->dst_addrs[0] != NULL);
    uint32_t cur_pos = cb->write_pos;
    cb_set_pos(cb, branch->start_pos);
    branch->gen_fn(cb, branch->dst_addrs[0], branch->dst_addrs[1], branch->shape);
    RUBY_ASSERT(cb->write_pos <= branch->end_pos);
    branch->end_pos = cb->write_pos;
    cb_set_pos(cb, cur_pos);

    RB_VM_LOCK_LEAVE();

    // Return a pointer to the compiled block version
    return dst_addr;
}

// Get a version or stub corresponding to a branch target
// TODO: need incoming and target contexts
uint8_t* get_branch_target(
    blockid_t target,
    const ctx_t* ctx,
    uint32_t branch_idx,
    uint32_t target_idx
)
{
    //fprintf(stderr, "get_branch_target, block (%p, %d)\n", target.iseq, target.idx);

    block_t* p_block = find_block_version(target, ctx);

    if (p_block)
    {
        // Add an incoming branch for this version
        add_incoming(p_block, branch_idx);

        return cb_get_ptr(cb, p_block->start_pos);
    }

    // Generate an outlined stub that will call
    // branch_stub_hit(uint32_t branch_idx, uint32_t target_idx)
    uint8_t* stub_addr = cb_get_ptr(ocb, ocb->write_pos);

    // Save the ujit registers
    push(ocb, REG_CFP);
    push(ocb, REG_EC);
    push(ocb, REG_SP);
    push(ocb, REG_SP);

    mov(ocb, RDI, imm_opnd(branch_idx));
    mov(ocb, RSI, imm_opnd(target_idx));
    call_ptr(ocb, REG0, (void *)&branch_stub_hit);

    // Restore the ujit registers
    pop(ocb, REG_SP);
    pop(ocb, REG_SP);
    pop(ocb, REG_EC);
    pop(ocb, REG_CFP);

    // Jump to the address returned by the
    // branch_stub_hit call
    jmp_rm(ocb, RAX);

    return stub_addr;
}

void gen_branch(
    const ctx_t* src_ctx,
    blockid_t target0, 
    const ctx_t* ctx0,
    blockid_t target1, 
    const ctx_t* ctx1,
    branchgen_fn gen_fn
)
{
    RUBY_ASSERT(target0.iseq != NULL);
    RUBY_ASSERT(target1.iseq != NULL);
    RUBY_ASSERT(num_branches < MAX_BRANCHES);
    uint32_t branch_idx = num_branches++;

    // Get the branch targets or stubs
    uint8_t* dst_addr0 = get_branch_target(target0, ctx0, branch_idx, 0);
    uint8_t* dst_addr1 = get_branch_target(target1, ctx1, branch_idx, 1);

    // Call the branch generation function
    uint32_t start_pos = cb->write_pos;
    gen_fn(cb, dst_addr0, dst_addr1, SHAPE_DEFAULT);
    uint32_t end_pos = cb->write_pos;

    // Register this branch entry
    branch_t branch_entry = {
        start_pos,
        end_pos,
        *src_ctx,
        { target0, target1 },
        { *ctx0, *ctx1 },
        { dst_addr0, dst_addr1 },
        gen_fn,
        SHAPE_DEFAULT
    };

    branch_entries[branch_idx] = branch_entry;
}

void
gen_jump_branch(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape)
{
    switch (shape)
    {
        case SHAPE_NEXT0:
        break;

        case SHAPE_NEXT1:
        RUBY_ASSERT(false);
        break;

        case SHAPE_DEFAULT:
        jmp_ptr(cb, target0);
        break;
    }
}

void gen_direct_jump(
    const ctx_t* ctx,
    blockid_t target0
)
{
    RUBY_ASSERT(target0.iseq != NULL);
    RUBY_ASSERT(num_branches < MAX_BRANCHES);
    uint32_t branch_idx = num_branches++;

    // Branch targets or stub adddress
    uint8_t* dst_addr0;

    // Shape of the branch
    uint8_t branch_shape;

    // Branch start and end positions
    uint32_t start_pos;
    uint32_t end_pos;

    // Limit the number of block versions
    ctx_t generic_ctx = DEFAULT_CTX;
    generic_ctx.stack_size = ctx->stack_size;
    if (count_block_versions(target0) >= MAX_VERSIONS - 1)
    {
        fprintf(stderr, "version limit hit in branch_stub_hit\n");
        ctx = &generic_ctx;
    }

    block_t* p_block = find_block_version(target0, ctx);

    // If the version already exists
    if (p_block)
    {
        add_incoming(p_block, branch_idx);
        dst_addr0 = cb_get_ptr(cb, p_block->start_pos);
        branch_shape = SHAPE_DEFAULT;

        // Call the branch generation function
        start_pos = cb->write_pos;
        gen_jump_branch(cb, dst_addr0, NULL, branch_shape);
        end_pos = cb->write_pos;
    }
    else
    {
        // The target block will follow next
        // It will be compiled in gen_block_version()
        dst_addr0 = NULL;
        branch_shape = SHAPE_NEXT0;
        start_pos = cb->write_pos;
        end_pos = cb->write_pos;
    }

    // Register this branch entry
    branch_t branch_entry = {
        start_pos,
        end_pos,
        *ctx,
        { target0, BLOCKID_NULL },
        { *ctx, *ctx },
        { dst_addr0, NULL },
        gen_jump_branch,
        branch_shape
    };

    branch_entries[branch_idx] = branch_entry;
}

// Invalidate one specific block version
void
invalidate_block_version(block_t* block)
{
    fprintf(stderr, "invalidating block (%p, %d)\n", block->blockid.iseq, block->blockid.idx);
    fprintf(stderr, "block=%p\n", block);

    // Find the first version for this blockid
    block_t* first_block = NULL;
    rb_st_lookup(version_tbl, (st_data_t)&block->blockid, (st_data_t*)&first_block);
    RUBY_ASSERT(first_block != NULL);

    // Remove the version object from the map so we can re-generate stubs
    if (first_block == block)
    {
        st_data_t key = (st_data_t)&block->blockid;
        int success = st_delete(version_tbl, &key, NULL);
        RUBY_ASSERT(success);
    }
    else
    {
        bool deleted = false;
        for (block_t* cur = first_block; cur != NULL; cur = cur->next)
        {
            if (cur->next == block)
            {
                cur->next = cur->next->next;
                break;
            }
        }
        RUBY_ASSERT(deleted);
    }

    // Get a pointer to the generated code for this block
    uint8_t* code_ptr = cb_get_ptr(cb, block->start_pos);

    // For each incoming branch
    for (uint32_t i = 0; i < block->num_incoming; ++i)
    {
        uint32_t branch_idx = block->incoming[i];
        branch_t* branch = &branch_entries[branch_idx];
        uint32_t target_idx = (branch->dst_addrs[0] == code_ptr)? 0:1;
        //fprintf(stderr, "branch_idx=%d, target_idx=%d\n", branch_idx, target_idx);
        //fprintf(stderr, "blockid.iseq=%p, blockid.idx=%d\n", block->blockid.iseq, block->blockid.idx);

        // Create a stub for this branch target
        branch->dst_addrs[target_idx] = get_branch_target(
            block->blockid,
            &block->ctx,
            branch_idx,
            target_idx
        );

        // Check if the invalidated block immediately follows
        bool target_next = block->start_pos == branch->end_pos;

        if (target_next)
        {
            // The new block will no longer be adjacent
            branch->shape = SHAPE_DEFAULT;
        }

        // Rewrite the branch with the new jump target address
        RUBY_ASSERT(branch->dst_addrs[0] != NULL);
        uint32_t cur_pos = cb->write_pos;
        cb_set_pos(cb, branch->start_pos);
        branch->gen_fn(cb, branch->dst_addrs[0], branch->dst_addrs[1], branch->shape);
        branch->end_pos = cb->write_pos;
        cb_set_pos(cb, cur_pos);

        if (target_next && branch->end_pos > block->end_pos)
        {
            rb_bug("ujit invalidate rewrote branch past block end");
        }
    }

    // If the block is an entry point, it needs to be unmapped from its iseq
    const rb_iseq_t* iseq = block->blockid.iseq;
    uint32_t idx = block->blockid.idx;
    VALUE* entry_pc = &iseq->body->iseq_encoded[idx];
    int entry_opcode = opcode_at_pc(iseq, entry_pc);

    // TODO: unmap_addr2insn in ujit_iface.c? Maybe we can write a function to encompass this logic?
    // Should check how it's used in exit and side-exit
    const void * const *handler_table = rb_vm_get_insns_address_table();
    void* handler_addr = (void*)handler_table[entry_opcode];
    iseq->body->iseq_encoded[idx] = (VALUE)handler_addr;    

    //
    // Optional: may want to recompile a new deoptimized entry point
    //

    // TODO:
    // Call continuation addresses on the stack can also be atomically replaced by jumps going to the stub.
    // For now this isn't an issue

    // Free the old block version object
    free(block);

    fprintf(stderr, "invalidation done\n");
}

int blockid_cmp(st_data_t arg0, st_data_t arg1)
{
    const blockid_t *block0 = (const blockid_t*)arg0;
    const blockid_t *block1 = (const blockid_t*)arg1;
    return (block0->iseq != block1->iseq) || (block0->idx != block1->idx);
}

st_index_t blockid_hash(st_data_t arg)
{
    const blockid_t *blockid = (const blockid_t*)arg;
    st_index_t hash0 = st_numhash((st_data_t)blockid->iseq);
    st_index_t hash1 = st_numhash((st_data_t)(uint64_t)blockid->idx);

    // Use XOR to combine the hashes
    return hash0 ^ hash1;
}

static const struct st_hash_type hashtype_blockid = {
    blockid_cmp,
    blockid_hash,
};

void
ujit_init_core(void)
{
    // Initialize the version hash table
    version_tbl = st_init_table(&hashtype_blockid);
}