1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
#include <assert.h>
#include "insns.inc"
#include "internal.h"
#include "vm_core.h"
#include "vm_callinfo.h"
#include "builtin.h"
#include "insns_info.inc"
#include "ujit_compile.h"
#include "ujit_asm.h"
#include "ujit_utils.h"
// TODO: give ujit_examples.h some more meaningful file name
// eg ujit_hook.h
#include "ujit_examples.h"
// Code generation context
typedef struct ctx_struct
{
// Current PC
VALUE* pc;
// Difference between the current stack pointer and actual stack top
int32_t stack_diff;
} ctx_t;
// Code generation function
typedef void (*codegen_fn)(codeblock_t* cb, ctx_t* ctx);
// Map from YARV opcodes to code generation functions
static st_table *gen_fns;
// Code block into which we write machine code
static codeblock_t block;
static codeblock_t* cb = NULL;
// Hash table of encoded instructions
extern st_table *rb_encoded_insn_data;
static void ujit_init();
// Ruby instruction entry
static void
ujit_instr_entry(codeblock_t* cb)
{
for (size_t i = 0; i < sizeof(ujit_pre_call_bytes); ++i)
cb_write_byte(cb, ujit_pre_call_bytes[i]);
}
// Ruby instruction exit
static void
ujit_instr_exit(codeblock_t* cb)
{
for (size_t i = 0; i < sizeof(ujit_post_call_bytes); ++i)
cb_write_byte(cb, ujit_post_call_bytes[i]);
}
// Keep track of mapping from instructions to generated code
// See comment for rb_encoded_insn_data in iseq.c
static void
addr2insn_bookkeeping(void *code_ptr, int insn)
{
const void * const *table = rb_vm_get_insns_address_table();
const void * const translated_address = table[insn];
st_data_t encoded_insn_data;
if (st_lookup(rb_encoded_insn_data, (st_data_t)translated_address, &encoded_insn_data)) {
st_insert(rb_encoded_insn_data, (st_data_t)code_ptr, encoded_insn_data);
}
else {
rb_bug("ujit: failed to find info for original instruction while dealing with addr2insn");
}
}
// Get the current instruction opcode from the context object
int ctx_get_opcode(ctx_t* ctx)
{
return (int)(*ctx->pc);
}
// Get an instruction argument from the context object
VALUE ctx_get_arg(ctx_t* ctx, size_t arg_idx)
{
assert (arg_idx + 1 < insn_len(ctx_get_opcode(ctx)));
return *(ctx->pc + arg_idx + 1);
}
/*
Make space on the stack for N values
Return a pointer to the new stack top
*/
x86opnd_t ctx_stack_push(ctx_t* ctx, size_t n)
{
ctx->stack_diff += n;
// SP points just above the topmost value
int32_t offset = (ctx->stack_diff - 1) * 8;
return mem_opnd(64, RSI, offset);
}
/*
Pop N values off the stack
Return a pointer to the stack top before the pop operation
*/
x86opnd_t ctx_stack_pop(ctx_t* ctx, size_t n)
{
// SP points just above the topmost value
int32_t offset = (ctx->stack_diff - 1) * 8;
x86opnd_t top = mem_opnd(64, RSI, offset);
ctx->stack_diff -= n;
return top;
}
/*
Generate a chunk of machine code for one individual bytecode instruction
Eventually, this will handle multiple instructions in a sequence
MicroJIT code gets a pointer to the cfp as the first argument in RDI
See rb_ujit_empty_func(rb_control_frame_t *cfp) in iseq.c
Throughout the generated code, we store the current stack pointer in RSI
System V ABI reference:
https://wiki.osdev.org/System_V_ABI#x86-64
*/
uint8_t *
ujit_compile_insn(rb_iseq_t *iseq, unsigned int insn_idx, unsigned int* next_ujit_idx)
{
// If not previously done, initialize ujit
if (!cb)
{
ujit_init();
}
// NOTE: if we are ever deployed in production, we
// should probably just log an error and return NULL here,
// so we can fail more gracefully
if (cb->write_pos + 1024 >= cb->mem_size)
{
rb_bug("out of executable memory");
}
// Align the current write positon to cache line boundaries
cb_align_pos(cb, 64);
// Get a pointer to the current write position in the code block
uint8_t *code_ptr = &cb->mem_block[cb->write_pos];
//printf("write pos: %ld\n", cb->write_pos);
// Get the first opcode in the sequence
int first_opcode = (int)iseq->body->iseq_encoded[insn_idx];
// Create codegen context
ctx_t ctx;
ctx.pc = NULL;
ctx.stack_diff = 0;
// For each instruction to compile
size_t num_instrs;
for (num_instrs = 0;; ++num_instrs)
{
// Set the current PC
ctx.pc = &iseq->body->iseq_encoded[insn_idx];
// Get the current opcode
int opcode = ctx_get_opcode(&ctx);
// Lookup the codegen function for this instruction
st_data_t st_gen_fn;
if (!rb_st_lookup(gen_fns, opcode, &st_gen_fn))
{
//print_int(cb, imm_opnd(num_instrs));
//print_str(cb, insn_name(opcode));
break;
}
// Write the pre call bytes before the first instruction
if (num_instrs == 0)
{
ujit_instr_entry(cb);
// Load the current SP from the CFP into RSI
mov(cb, RSI, mem_opnd(64, RDI, 8));
}
// Call the code generation function
codegen_fn gen_fn = (codegen_fn)st_gen_fn;
gen_fn(cb, &ctx);
// Move to the next instruction
insn_idx += insn_len(opcode);
}
// Let the caller know how many instructions ujit compiled
*next_ujit_idx = insn_idx;
// If no instructions were compiled
if (num_instrs == 0)
{
return NULL;
}
// Write the adjusted SP back into the CFP
if (ctx.stack_diff != 0)
{
// The stack pointer points one above the actual stack top
x86opnd_t stack_pointer = ctx_stack_push(&ctx, 1);
lea(cb, RSI, stack_pointer);
mov(cb, mem_opnd(64, RDI, 8), RSI);
}
// Directly return the next PC, which is a constant
mov(cb, RAX, const_ptr_opnd(ctx.pc));
// Write the post call bytes
ujit_instr_exit(cb);
/*
// Hack to patch a relative 32-bit jump to the instruction handler
int next_opcode = (int)*ctx.pc;
const void * const *table = rb_vm_get_insns_address_table();
VALUE encoded = (VALUE)table[next_opcode];
uint8_t* p_handler = (uint8_t*)encoded;
uint8_t* p_code = &cb->mem_block[cb->write_pos];
int64_t rel64 = ((int64_t)p_handler) - ((int64_t)p_code - 2 + 5);
//printf("p_handler: %lld\n", (int64_t)p_handler);
//printf("rel64: %lld\n", rel64);
uint8_t byte0 = cb->mem_block[cb->write_pos - 2];
uint8_t byte1 = cb->mem_block[cb->write_pos - 1];
//printf("cb_init: %lld\n", (int64_t)&cb_init);
//printf("%lld\n", rel64);
if (byte0 == 0xFF && byte1 == 0x20 && rel64 >= -2147483648 && rel64 <= 2147483647)
{
//printf("%02X %02X\n", (int)byte0, (int)byte1);
cb->write_pos -= 2;
jmp32(cb, (int32_t)rel64);
}
*/
addr2insn_bookkeeping(code_ptr, first_opcode);
return code_ptr;
}
void gen_dup(codeblock_t* cb, ctx_t* ctx)
{
x86opnd_t dup_val = ctx_stack_pop(ctx, 1);
x86opnd_t loc0 = ctx_stack_push(ctx, 1);
x86opnd_t loc1 = ctx_stack_push(ctx, 1);
mov(cb, RAX, dup_val);
mov(cb, loc0, RAX);
mov(cb, loc1, RAX);
}
void gen_nop(codeblock_t* cb, ctx_t* ctx)
{
// Do nothing
}
void gen_pop(codeblock_t* cb, ctx_t* ctx)
{
// Decrement SP
ctx_stack_pop(ctx, 1);
}
void gen_putnil(codeblock_t* cb, ctx_t* ctx)
{
// Write constant at SP
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, imm_opnd(Qnil));
}
void gen_putobject(codeblock_t* cb, ctx_t* ctx)
{
// Get the argument
VALUE object = ctx_get_arg(ctx, 0);
x86opnd_t ptr_imm = const_ptr_opnd((void*)object);
// Write constant at SP
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, RAX, ptr_imm);
mov(cb, stack_top, RAX);
}
void gen_putobject_int2fix(codeblock_t* cb, ctx_t* ctx)
{
int opcode = ctx_get_opcode(ctx);
int cst_val = (opcode == BIN(putobject_INT2FIX_0_))? 0:1;
// Write constant at SP
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, imm_opnd(INT2FIX(cst_val)));
}
void gen_putself(codeblock_t* cb, ctx_t* ctx)
{
// Load self from CFP
mov(cb, RAX, mem_opnd(64, RDI, 24));
// Write it on the stack
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, RAX);
}
void gen_getlocal_wc0(codeblock_t* cb, ctx_t* ctx)
{
// Load block pointer from CFP
mov(cb, RDX, mem_opnd(64, RDI, 32));
// Compute the offset from BP to the local
int32_t local_idx = (int32_t)ctx_get_arg(ctx, 0);
const int32_t offs = -8 * local_idx;
// Load the local from the block
mov(cb, RCX, mem_opnd(64, RDX, offs));
// Write the local at SP
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, RCX);
}
static void ujit_init()
{
// 64MB ought to be enough for anybody
cb = █
cb_init(cb, 64 * 1024 * 1024);
// Initialize the codegen function table
gen_fns = rb_st_init_numtable();
// Map YARV opcodes to the corresponding codegen functions
st_insert(gen_fns, (st_data_t)BIN(dup), (st_data_t)&gen_dup);
st_insert(gen_fns, (st_data_t)BIN(nop), (st_data_t)&gen_nop);
st_insert(gen_fns, (st_data_t)BIN(pop), (st_data_t)&gen_pop);
st_insert(gen_fns, (st_data_t)BIN(putnil), (st_data_t)&gen_putnil);
st_insert(gen_fns, (st_data_t)BIN(putobject), (st_data_t)&gen_putobject);
st_insert(gen_fns, (st_data_t)BIN(putobject_INT2FIX_0_), (st_data_t)&gen_putobject_int2fix);
st_insert(gen_fns, (st_data_t)BIN(putobject_INT2FIX_1_), (st_data_t)&gen_putobject_int2fix);
st_insert(gen_fns, (st_data_t)BIN(putself), (st_data_t)&gen_putself);
st_insert(gen_fns, (st_data_t)BIN(getlocal_WC_0), (st_data_t)&gen_getlocal_wc0);
}
|