summaryrefslogtreecommitdiff
path: root/ujit_codegen.c
blob: 541f74b964bb30dc1179d608a8a5c439065d25a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
#include <assert.h>
#include "insns.inc"
#include "internal.h"
#include "vm_core.h"
#include "vm_sync.h"
#include "vm_callinfo.h"
#include "builtin.h"
#include "internal/compile.h"
#include "internal/class.h"
#include "insns_info.inc"
#include "ujit.h"
#include "ujit_iface.h"
#include "ujit_core.h"
#include "ujit_codegen.h"
#include "ujit_asm.h"
#include "ujit_utils.h"

// Map from YARV opcodes to code generation functions
static st_table *gen_fns;

// Code block into which we write machine code
static codeblock_t block;
codeblock_t* cb = NULL;

// Code block into which we write out-of-line machine code
static codeblock_t outline_block;
codeblock_t* ocb = NULL;

// Print the current source location for debugging purposes
static void __attribute__((unused))
jit_print_loc(jitstate_t* jit, const char* msg)
{
    char *ptr;
    long len;
    VALUE path = rb_iseq_path(jit->iseq);
    RSTRING_GETMEM(path, ptr, len);
    fprintf(stderr, "%s %s:%u\n", msg, ptr, rb_iseq_line_no(jit->iseq, jit->insn_idx));
}

// Get the current instruction's opcode
static int
jit_get_opcode(jitstate_t* jit)
{
    return opcode_at_pc(jit->iseq, jit->pc);
}

// Get the index of the next instruction
static uint32_t
jit_next_idx(jitstate_t* jit)
{
    return jit->insn_idx + insn_len(jit_get_opcode(jit));
}

// Get an instruction argument by index
static VALUE
jit_get_arg(jitstate_t* jit, size_t arg_idx)
{
    RUBY_ASSERT(arg_idx + 1 < (size_t)insn_len(jit_get_opcode(jit)));
    return *(jit->pc + arg_idx + 1);
}

/**
Generate an inline exit to return to the interpreter
*/
static void
ujit_gen_exit(jitstate_t* jit, ctx_t* ctx, codeblock_t* cb, VALUE* exit_pc)
{
    // Write the adjusted SP back into the CFP
    if (ctx->sp_offset != 0)
    {
        x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 0);
        lea(cb, REG_SP, stack_pointer);
        mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP);
    }

    // Update the CFP on the EC
    mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);

    // Directly return the next PC, which is a constant
    mov(cb, RAX, const_ptr_opnd(exit_pc));
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), RAX);

    // Accumulate stats about interpreter exits
#if RUBY_DEBUG
    if (rb_ujit_opts.gen_stats) {
        mov(cb, RDI, const_ptr_opnd(exit_pc));
        call_ptr(cb, RSI, (void *)&rb_ujit_count_side_exit_op);
    }
#endif

    // Write the post call bytes
    cb_write_post_call_bytes(cb);
}

/**
Generate an out-of-line exit to return to the interpreter
*/
static uint8_t *
ujit_side_exit(jitstate_t* jit, ctx_t* ctx)
{
    uint8_t* code_ptr = cb_get_ptr(ocb, ocb->write_pos);

    // Table mapping opcodes to interpreter handlers
    const void * const *handler_table = rb_vm_get_insns_address_table();

    // FIXME: rewriting the old instruction is only necessary if we're
    // exiting right at an interpreter entry point

    // Write back the old instruction at the exit PC
    // Otherwise the interpreter may jump right back to the
    // JITted code we're trying to exit
    VALUE* exit_pc = &jit->iseq->body->iseq_encoded[jit->insn_idx];
    int exit_opcode = opcode_at_pc(jit->iseq, exit_pc);
    void* handler_addr = (void*)handler_table[exit_opcode];
    mov(ocb, RAX, const_ptr_opnd(exit_pc));
    mov(ocb, RCX, const_ptr_opnd(handler_addr));
    mov(ocb, mem_opnd(64, RAX, 0), RCX);

    // Generate the code to exit to the interpreters
    ujit_gen_exit(jit, ctx, ocb, exit_pc);

    return code_ptr;
}

/*
Compile an interpreter entry block to be inserted into an iseq
Returns `NULL` if compilation fails.
*/
uint8_t*
ujit_entry_prologue(void)
{
    RUBY_ASSERT(cb != NULL);

    if (cb->write_pos + 1024 >= cb->mem_size) {
        rb_bug("out of executable memory");
    }

    // Align the current write positon to cache line boundaries
    cb_align_pos(cb, 64);

    uint8_t *code_ptr = cb_get_ptr(cb, cb->write_pos);

    // Write the interpreter entry prologue
    cb_write_pre_call_bytes(cb);

    // Load the current SP from the CFP into REG_SP
    mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));

    return code_ptr;
}

/*
Generate code to check for interrupts and take a side-exit
*/
static void
ujit_check_ints(codeblock_t* cb, uint8_t* side_exit)
{
    // Check for interrupts
    // see RUBY_VM_CHECK_INTS(ec) macro
    mov(cb, REG0_32, member_opnd(REG_EC, rb_execution_context_t, interrupt_mask));
    not(cb, REG0_32);
    test(cb, member_opnd(REG_EC, rb_execution_context_t, interrupt_flag), REG0_32);
    jnz_ptr(cb, side_exit);
}

/*
Compile a sequence of bytecode instructions for a given basic block version
*/
void
ujit_gen_block(ctx_t* ctx, block_t* block)
{
    RUBY_ASSERT(cb != NULL);
    RUBY_ASSERT(block != NULL);

    const rb_iseq_t *iseq = block->blockid.iseq;
    uint32_t insn_idx = block->blockid.idx;
    VALUE *encoded = iseq->body->iseq_encoded;

    // NOTE: if we are ever deployed in production, we
    // should probably just log an error and return NULL here,
    // so we can fail more gracefully
    if (cb->write_pos + 1024 >= cb->mem_size) {
        rb_bug("out of executable memory");
    }
    if (ocb->write_pos + 1024 >= ocb->mem_size) {
        rb_bug("out of executable memory (outlined block)");
    }

    // Initialize a JIT state object
    jitstate_t jit = {
        block,
        block->blockid.iseq,
        0,
        0
    };

    // Last operation that was successfully compiled
    opdesc_t* p_last_op = NULL;

    // Mark the start position of the block
    block->start_pos = cb->write_pos;

    // For each instruction to compile
    for (;;) {
        // Set the current instruction
        jit.insn_idx = insn_idx;
        jit.pc = &encoded[insn_idx];

        // Get the current opcode
        int opcode = jit_get_opcode(&jit);

        // Lookup the codegen function for this instruction
        st_data_t st_op_desc;
        if (!rb_st_lookup(gen_fns, opcode, &st_op_desc)) {
            break;
        }

        // Accumulate stats about instructions executed
        if (rb_ujit_opts.gen_stats) {
            // Count instructions executed by the JIT
            mov(cb, REG0, const_ptr_opnd((void *)&rb_ujit_exec_insns_count));
            add(cb, mem_opnd(64, REG0, 0), imm_opnd(1));
        }

        //fprintf(stderr, "compiling %d: %s\n", insn_idx, insn_name(opcode));
        //print_str(cb, insn_name(opcode));

        // Call the code generation function
        opdesc_t* p_desc = (opdesc_t*)st_op_desc;
        bool success = p_desc->gen_fn(&jit, ctx);

        // If we can't compile this instruction, stop
        if (!success) {
            break;
        }

    	// Move to the next instruction
        p_last_op = p_desc;
        insn_idx += insn_len(opcode);

        // If this instruction terminates this block
        if (p_desc->is_branch) {
            break;
        }
    }

    // If the last instruction compiled did not terminate the block
    // Generate code to exit to the interpreter
    if (!p_last_op || !p_last_op->is_branch) {
        ujit_gen_exit(&jit, ctx, cb, &encoded[insn_idx]);
    }

    // Mark the end position of the block
    block->end_pos = cb->write_pos;

    // Store the index of the last instruction in the block
    block->end_idx = insn_idx;

    if (UJIT_DUMP_MODE >= 2) {
        // Dump list of compiled instrutions
        fprintf(stderr, "Compiled the following for iseq=%p:\n", (void *)iseq);
        VALUE *pc = &encoded[block->blockid.idx];
        VALUE *end_pc = &encoded[insn_idx];
        while (pc < end_pc) {
            int opcode = opcode_at_pc(iseq, pc);
            fprintf(stderr, "  %04td %s\n", pc - encoded, insn_name(opcode));
            pc += insn_len(opcode);
        }
    }
}

static bool
gen_dup(jitstate_t* jit, ctx_t* ctx)
{
    // Get the top value and its type
    x86opnd_t dup_val = ctx_stack_pop(ctx, 0);
    int dup_type = ctx_get_top_type(ctx);

    // Push the same value on top
    x86opnd_t loc0 = ctx_stack_push(ctx, dup_type);
    mov(cb, REG0, dup_val);
    mov(cb, loc0, REG0);

    return true;
}

static bool
gen_nop(jitstate_t* jit, ctx_t* ctx)
{
    // Do nothing
    return true;
}

static bool
gen_pop(jitstate_t* jit, ctx_t* ctx)
{
    // Decrement SP
    ctx_stack_pop(ctx, 1);
    return true;
}

static bool
gen_putnil(jitstate_t* jit, ctx_t* ctx)
{
    // Write constant at SP
    x86opnd_t stack_top = ctx_stack_push(ctx, T_NIL);
    mov(cb, stack_top, imm_opnd(Qnil));
    return true;
}

static bool
gen_putobject(jitstate_t* jit, ctx_t* ctx)
{
    VALUE arg = jit_get_arg(jit, 0);

    if (FIXNUM_P(arg))
    {
        // Keep track of the fixnum type tag
        x86opnd_t stack_top = ctx_stack_push(ctx, T_FIXNUM);

        x86opnd_t imm = imm_opnd((int64_t)arg);

        // 64-bit immediates can't be directly written to memory
        if (imm.num_bits <= 32)
        {
            mov(cb, stack_top, imm);
        }
        else
        {
            mov(cb, REG0, imm);
            mov(cb, stack_top, REG0);
        }
    }
    else if (arg == Qtrue || arg == Qfalse)
    {
        x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
        mov(cb, stack_top, imm_opnd((int64_t)arg));
    }
    else
    {
        // Load the argument from the bytecode sequence.
        // We need to do this as the argument can change due to GC compaction.
        x86opnd_t pc_plus_one = const_ptr_opnd((void*)(jit->pc + 1));
        mov(cb, RAX, pc_plus_one);
        mov(cb, RAX, mem_opnd(64, RAX, 0));

        // Write argument at SP
        x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
        mov(cb, stack_top, RAX);
    }

    return true;
}

static bool
gen_putobject_int2fix(jitstate_t* jit, ctx_t* ctx)
{
    int opcode = jit_get_opcode(jit);
    int cst_val = (opcode == BIN(putobject_INT2FIX_0_))? 0:1;

    // Write constant at SP
    x86opnd_t stack_top = ctx_stack_push(ctx, T_FIXNUM);
    mov(cb, stack_top, imm_opnd(INT2FIX(cst_val)));

    return true;
}

static bool
gen_putself(jitstate_t* jit, ctx_t* ctx)
{
    // Load self from CFP
    mov(cb, RAX, member_opnd(REG_CFP, rb_control_frame_t, self));

    // Write it on the stack
    x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
    mov(cb, stack_top, RAX);

    return true;
}

static bool
gen_getlocal_wc0(jitstate_t* jit, ctx_t* ctx)
{
    // Load environment pointer EP from CFP
    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));

    // Compute the offset from BP to the local
    int32_t local_idx = (int32_t)jit_get_arg(jit, 0);
    const int32_t offs = -(SIZEOF_VALUE * local_idx);

    // Load the local from the block
    mov(cb, REG0, mem_opnd(64, REG0, offs));

    // Write the local at SP
    x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
    mov(cb, stack_top, REG0);

    return true;
}

static bool
gen_getlocal_wc1(jitstate_t* jit, ctx_t* ctx)
{
    //fprintf(stderr, "gen_getlocal_wc1\n");

    // Load environment pointer EP from CFP
    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));

    // Get the previous EP from the current EP
    // See GET_PREV_EP(ep) macro
    // VALUE* prev_ep = ((VALUE *)((ep)[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03))
    mov(cb, REG0, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL));
    and(cb, REG0, imm_opnd(~0x03));

    // Load the local from the block
    // val = *(vm_get_ep(GET_EP(), level) - idx);
    int32_t local_idx = (int32_t)jit_get_arg(jit, 0);
    const int32_t offs = -(SIZEOF_VALUE * local_idx);
    mov(cb, REG0, mem_opnd(64, REG0, offs));

    // Write the local at SP
    x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
    mov(cb, stack_top, REG0);

    return true;
}

static bool
gen_setlocal_wc0(jitstate_t* jit, ctx_t* ctx)
{
    /*
    vm_env_write(const VALUE *ep, int index, VALUE v)
    {
        VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS];
        if (LIKELY((flags & VM_ENV_FLAG_WB_REQUIRED) == 0)) {
    	VM_STACK_ENV_WRITE(ep, index, v);
        }
        else {
    	vm_env_write_slowpath(ep, index, v);
        }
    }
    */

    // Load environment pointer EP from CFP
    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));

    // flags & VM_ENV_FLAG_WB_REQUIRED
    x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS);
    test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED));

    // Create a size-exit to fall back to the interpreter
    uint8_t* side_exit = ujit_side_exit(jit, ctx);

    // if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
    jnz_ptr(cb, side_exit);

    // Pop the value to write from the stack
    x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
    mov(cb, REG1, stack_top);

    // Write the value at the environment pointer
    int32_t local_idx = (int32_t)jit_get_arg(jit, 0);
    const int32_t offs = -8 * local_idx;
    mov(cb, mem_opnd(64, REG0, offs), REG1);

    return true;
}

// Check that `self` is a pointer to an object on the GC heap
static void
guard_self_is_object(codeblock_t *cb, x86opnd_t self_opnd, uint8_t *side_exit, ctx_t *ctx)
{
    // `self` is constant throughout the entire region, so we only need to do this check once.
    if (!ctx->self_is_object) {
        test(cb, self_opnd, imm_opnd(RUBY_IMMEDIATE_MASK));
        jnz_ptr(cb, side_exit);
        cmp(cb, self_opnd, imm_opnd(Qfalse));
        je_ptr(cb, side_exit);
        cmp(cb, self_opnd, imm_opnd(Qnil));
        je_ptr(cb, side_exit);
        ctx->self_is_object = true;
    }
}

static bool
gen_getinstancevariable(jitstate_t* jit, ctx_t* ctx)
{
    IVC ic = (IVC)jit_get_arg(jit, 1);

    // Check that the inline cache has been set, slot index is known
    if (!ic->entry)
    {
        return false;
    }

    // If the class uses the default allocator, instances should all be T_OBJECT
    // NOTE: This assumes nobody changes the allocator of the class after allocation.
    //       Eventually, we can encode whether an object is T_OBJECT or not
    //       inside object shapes.
    if (rb_get_alloc_func(ic->entry->class_value) != rb_class_allocate_instance)
    {
        return false;
    }

    uint32_t ivar_index = ic->entry->index;

    // Create a size-exit to fall back to the interpreter
    uint8_t* side_exit = ujit_side_exit(jit, ctx);

    // Load self from CFP
    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));

    guard_self_is_object(cb, REG0, side_exit, ctx);

    // Bail if receiver class is different from compiled time call cache class
    x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
    mov(cb, REG1, klass_opnd);
    x86opnd_t serial_opnd = mem_opnd(64, REG1, offsetof(struct RClass, class_serial));
    cmp(cb, serial_opnd, imm_opnd(ic->entry->class_serial));
    jne_ptr(cb, side_exit);

    // Bail if the ivars are not on the extended table
    // See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
    x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
    test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
    jnz_ptr(cb, side_exit);

    // Get a pointer to the extended table
    x86opnd_t tbl_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.heap.ivptr));
    mov(cb, REG0, tbl_opnd);

    // Read the ivar from the extended table
    x86opnd_t ivar_opnd = mem_opnd(64, REG0, sizeof(VALUE) * ivar_index);
    mov(cb, REG0, ivar_opnd);

    // Check that the ivar is not Qundef
    cmp(cb, REG0, imm_opnd(Qundef));
    je_ptr(cb, side_exit);

    // Push the ivar on the stack
    x86opnd_t out_opnd = ctx_stack_push(ctx, T_NONE);
    mov(cb, out_opnd, REG0);

    return true;
}

static bool
gen_setinstancevariable(jitstate_t* jit, ctx_t* ctx)
{
    IVC ic = (IVC)jit_get_arg(jit, 1);

    // Check that the inline cache has been set, slot index is known
    if (!ic->entry)
    {
        return false;
    }

    // If the class uses the default allocator, instances should all be T_OBJECT
    // NOTE: This assumes nobody changes the allocator of the class after allocation.
    //       Eventually, we can encode whether an object is T_OBJECT or not
    //       inside object shapes.
    if (rb_get_alloc_func(ic->entry->class_value) != rb_class_allocate_instance)
    {
        return false;
    }

    uint32_t ivar_index = ic->entry->index;

    // Create a size-exit to fall back to the interpreter
    uint8_t* side_exit = ujit_side_exit(jit, ctx);

    // Load self from CFP
    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));

    guard_self_is_object(cb, REG0, side_exit, ctx);

    // Bail if receiver class is different from compiled time call cache class
    x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
    mov(cb, REG1, klass_opnd);
    x86opnd_t serial_opnd = mem_opnd(64, REG1, offsetof(struct RClass, class_serial));
    cmp(cb, serial_opnd, imm_opnd(ic->entry->class_serial));
    jne_ptr(cb, side_exit);

    // Bail if the ivars are not on the extended table
    // See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
    x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
    test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
    jnz_ptr(cb, side_exit);

    // If we can't guarantee that the extended table is big enoughg
    if (ivar_index >= ROBJECT_EMBED_LEN_MAX + 1)
    {
        // Check that the slot is inside the extended table (num_slots > index)
        x86opnd_t num_slots = mem_opnd(32, REG0, offsetof(struct RObject, as.heap.numiv));
        cmp(cb, num_slots, imm_opnd(ivar_index));
        jle_ptr(cb, side_exit);
    }

    // Get a pointer to the extended table
    x86opnd_t tbl_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.heap.ivptr));
    mov(cb, REG0, tbl_opnd);

    // Pop the value to write from the stack
    x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
    mov(cb, REG1, stack_top);

    // Bail if this is a heap object, because this needs a write barrier
    test(cb, REG1, imm_opnd(RUBY_IMMEDIATE_MASK));
    jz_ptr(cb, side_exit);

    // Write the ivar to the extended table
    x86opnd_t ivar_opnd = mem_opnd(64, REG0, sizeof(VALUE) * ivar_index);
    mov(cb, ivar_opnd, REG1);

    return true;
}

// Conditional move operation used by comparison operators
typedef void (*cmov_fn)(codeblock_t* cb, x86opnd_t opnd0, x86opnd_t opnd1);

static bool
gen_fixnum_cmp(jitstate_t* jit, ctx_t* ctx, cmov_fn cmov_op)
{
    // Create a size-exit to fall back to the interpreter
    // Note: we generate the side-exit before popping operands from the stack
    uint8_t* side_exit = ujit_side_exit(jit, ctx);

    // TODO: make a helper function for guarding on op-not-redefined
    // Make sure that minus isn't redefined for integers
    mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
    test(
        cb,
        member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_LT),
        imm_opnd(INTEGER_REDEFINED_OP_FLAG)
    );
    jnz_ptr(cb, side_exit);

    // Get the operands and destination from the stack
    int arg1_type = ctx_get_top_type(ctx);
    x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
    int arg0_type = ctx_get_top_type(ctx);
    x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

    // If not fixnums, fall back
    if (arg0_type != T_FIXNUM) {
        test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
        jz_ptr(cb, side_exit);
    }
    if (arg1_type != T_FIXNUM) {
        test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
        jz_ptr(cb, side_exit);
    }

    // Compare the arguments
    xor(cb, REG0_32, REG0_32); // REG0 = Qfalse
    mov(cb, REG1, arg0);
    cmp(cb, REG1, arg1);
    mov(cb, REG1, imm_opnd(Qtrue));
    cmov_op(cb, REG0, REG1);

    // Push the output on the stack
    x86opnd_t dst = ctx_stack_push(ctx, T_NONE);
    mov(cb, dst, REG0);

    return true;
}

static bool
gen_opt_lt(jitstate_t* jit, ctx_t* ctx)
{
    return gen_fixnum_cmp(jit, ctx, cmovl);
}

static bool
gen_opt_le(jitstate_t* jit, ctx_t* ctx)
{
    return gen_fixnum_cmp(jit, ctx, cmovle);
}

static bool
gen_opt_ge(jitstate_t* jit, ctx_t* ctx)
{
    return gen_fixnum_cmp(jit, ctx, cmovge);
}

static bool
gen_opt_aref(jitstate_t* jit, ctx_t* ctx)
{
    struct rb_call_data * cd = (struct rb_call_data *)jit_get_arg(jit, 0);
    int32_t argc = (int32_t)vm_ci_argc(cd->ci);

    // Only JIT one arg calls like `ary[6]`
    if (argc != 1) {
        return false;
    }

    const rb_callable_method_entry_t *cme = vm_cc_cme(cd->cc);

    // Bail if the inline cache has been filled.  Currently, certain types
    // (including arrays) don't use the inline cache, so if the inline cache
    // has an entry, then this must be used by some other type.
    if (cme) {
        return false;
    }

    // Create a size-exit to fall back to the interpreter
    uint8_t* side_exit = ujit_side_exit(jit, ctx);

    // TODO: make a helper function for guarding on op-not-redefined
    // Make sure that minus isn't redefined for integers
    mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
    test(
        cb,
        member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_AREF),
        imm_opnd(ARRAY_REDEFINED_OP_FLAG)
    );
    jnz_ptr(cb, side_exit);

    x86opnd_t recv = ctx_stack_pop(ctx, 1);
    mov(cb, REG0, recv);

    // if (SPECIAL_CONST_P(recv)) {
    // Bail if it's not a heap object
    test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
    jnz_ptr(cb, side_exit);
    cmp(cb, REG0, imm_opnd(Qfalse));
    je_ptr(cb, side_exit);
    cmp(cb, REG0, imm_opnd(Qnil));
    je_ptr(cb, side_exit);

    // Bail if recv is *not* an array
    x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
    mov(cb, REG0, klass_opnd);
    mov(cb, REG1, const_ptr_opnd((void *)rb_cArray));
    cmp(cb, REG0, REG1);
    jne_ptr(cb, side_exit);

    // Bail if arg0 is *not* an FIXNUM
    x86opnd_t operand = ctx_stack_pop(ctx, 1);
    mov(cb, REG1, operand);
    test(cb, REG1, imm_opnd(RUBY_FIXNUM_FLAG));
    jz_ptr(cb, side_exit);

    // Save MicroJIT registers
    push(cb, REG_CFP);
    push(cb, REG_EC);
    push(cb, REG_SP);
    // Maintain 16-byte RSP alignment
    sub(cb, RSP, imm_opnd(8));

    mov(cb, RDI, recv);
    sar(cb, REG1, imm_opnd(1)); // Convert fixnum to int
    mov(cb, RSI, REG1);
    call_ptr(cb, REG0, (void *)rb_ary_entry_internal);

    // Restore registers
    add(cb, RSP, imm_opnd(8));
    pop(cb, REG_SP);
    pop(cb, REG_EC);
    pop(cb, REG_CFP);

    x86opnd_t stack_ret = ctx_stack_push(ctx, T_NONE);
    mov(cb, stack_ret, RAX);

    return true;
}

static bool
gen_opt_and(jitstate_t* jit, ctx_t* ctx)
{
    // Create a size-exit to fall back to the interpreter
    // Note: we generate the side-exit before popping operands from the stack
    uint8_t* side_exit = ujit_side_exit(jit, ctx);

    // TODO: make a helper function for guarding on op-not-redefined
    // Make sure that plus isn't redefined for integers
    mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
    test(
        cb,
        member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_AND),
        imm_opnd(INTEGER_REDEFINED_OP_FLAG)
    );
    jnz_ptr(cb, side_exit);

    // Get the operands and destination from the stack
    int arg1_type = ctx_get_top_type(ctx);
    x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
    int arg0_type = ctx_get_top_type(ctx);
    x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

    // If not fixnums, fall back
    if (arg0_type != T_FIXNUM) {
        test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
        jz_ptr(cb, side_exit);
    }
    if (arg1_type != T_FIXNUM) {
        test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
        jz_ptr(cb, side_exit);
    }

    // Do the bitwise and arg0 & arg1
    mov(cb, REG0, arg0);
    and(cb, REG0, arg1);

    // Push the output on the stack
    x86opnd_t dst = ctx_stack_push(ctx, T_FIXNUM);
    mov(cb, dst, REG0);

    return true;
}

static bool
gen_opt_minus(jitstate_t* jit, ctx_t* ctx)
{
    // Create a size-exit to fall back to the interpreter
    // Note: we generate the side-exit before popping operands from the stack
    uint8_t* side_exit = ujit_side_exit(jit, ctx);

    // TODO: make a helper function for guarding on op-not-redefined
    // Make sure that minus isn't redefined for integers
    mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
    test(
        cb,
        member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_MINUS),
        imm_opnd(INTEGER_REDEFINED_OP_FLAG)
    );
    jnz_ptr(cb, side_exit);

    // Get the operands and destination from the stack
    x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
    x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

    // If not fixnums, fall back
    test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
    jz_ptr(cb, side_exit);
    test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
    jz_ptr(cb, side_exit);

    // Subtract arg0 - arg1 and test for overflow
    mov(cb, REG0, arg0);
    sub(cb, REG0, arg1);
    jo_ptr(cb, side_exit);
    add(cb, REG0, imm_opnd(1));

    // Push the output on the stack
    x86opnd_t dst = ctx_stack_push(ctx, T_FIXNUM);
    mov(cb, dst, REG0);

    return true;
}

static bool
gen_opt_plus(jitstate_t* jit, ctx_t* ctx)
{
    // Create a size-exit to fall back to the interpreter
    // Note: we generate the side-exit before popping operands from the stack
    uint8_t* side_exit = ujit_side_exit(jit, ctx);

    // TODO: make a helper function for guarding on op-not-redefined
    // Make sure that plus isn't redefined for integers
    mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
    test(
        cb,
        member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_PLUS),
        imm_opnd(INTEGER_REDEFINED_OP_FLAG)
    );
    jnz_ptr(cb, side_exit);

    // Get the operands and destination from the stack
    int arg1_type = ctx_get_top_type(ctx);
    x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
    int arg0_type = ctx_get_top_type(ctx);
    x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

    // If not fixnums, fall back
    if (arg0_type != T_FIXNUM) {
        test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
        jz_ptr(cb, side_exit);
    }
    if (arg1_type != T_FIXNUM) {
        test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
        jz_ptr(cb, side_exit);
    }

    // Add arg0 + arg1 and test for overflow
    mov(cb, REG0, arg0);
    sub(cb, REG0, imm_opnd(1));
    add(cb, REG0, arg1);
    jo_ptr(cb, side_exit);

    // Push the output on the stack
    x86opnd_t dst = ctx_stack_push(ctx, T_FIXNUM);
    mov(cb, dst, REG0);

    return true;
}

void
gen_branchif_branch(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape)
{
    switch (shape)
    {
        case SHAPE_NEXT0:
        jz_ptr(cb, target1);
        break;

        case SHAPE_NEXT1:
        jnz_ptr(cb, target0);
        break;

        case SHAPE_DEFAULT:
        jnz_ptr(cb, target0);
        jmp_ptr(cb, target1);
        break;
    }
}

static bool
gen_branchif(jitstate_t* jit, ctx_t* ctx)
{
    // FIXME: eventually, put VM_CHECK_INTS() only on backward branch targets
    // Check for interrupts
    uint8_t* side_exit = ujit_side_exit(jit, ctx);
    ujit_check_ints(cb, side_exit);

    // Test if any bit (outside of the Qnil bit) is on
    // RUBY_Qfalse  /* ...0000 0000 */
    // RUBY_Qnil    /* ...0000 1000 */
    x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
    test(cb, val_opnd, imm_opnd(~Qnil));

    // Get the branch target instruction offsets
    uint32_t next_idx = jit_next_idx(jit);
    uint32_t jump_idx = next_idx + (uint32_t)jit_get_arg(jit, 0);
    blockid_t next_block = { jit->iseq, next_idx };
    blockid_t jump_block = { jit->iseq, jump_idx };

    // Generate the branch instructions
    gen_branch(
        ctx,
        jump_block,
        ctx,
        next_block,
        ctx,
        gen_branchif_branch
    );

    return true;
}

void 
gen_branchunless_branch(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape)
{
    switch (shape)
    {
        case SHAPE_NEXT0:
        jnz_ptr(cb, target1);
        break;

        case SHAPE_NEXT1:
        jz_ptr(cb, target0);
        break;

        case SHAPE_DEFAULT:
        jz_ptr(cb, target0);
        jmp_ptr(cb, target1);
        break;
    }
}

static bool
gen_branchunless(jitstate_t* jit, ctx_t* ctx)
{
    // FIXME: eventually, put VM_CHECK_INTS() only on backward branch targets
    // Check for interrupts
    uint8_t* side_exit = ujit_side_exit(jit, ctx);
    ujit_check_ints(cb, side_exit);

    // Test if any bit (outside of the Qnil bit) is on
    // RUBY_Qfalse  /* ...0000 0000 */
    // RUBY_Qnil    /* ...0000 1000 */
    x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
    test(cb, val_opnd, imm_opnd(~Qnil));

    // Get the branch target instruction offsets
    uint32_t next_idx = jit_next_idx(jit);
    uint32_t jump_idx = next_idx + (uint32_t)jit_get_arg(jit, 0);
    blockid_t next_block = { jit->iseq, next_idx };
    blockid_t jump_block = { jit->iseq, jump_idx };

    // Generate the branch instructions
    gen_branch(
        ctx,
        jump_block,
        ctx,
        next_block,
        ctx,
        gen_branchunless_branch
    );

    return true;
}

static bool
gen_jump(jitstate_t* jit, ctx_t* ctx)
{
    // FIXME: eventually, put VM_CHECK_INTS() only on backward branch targets
    // Check for interrupts
    uint8_t* side_exit = ujit_side_exit(jit, ctx);
    ujit_check_ints(cb, side_exit);

    // Get the branch target instruction offsets
    uint32_t jump_idx = jit_next_idx(jit) + (int32_t)jit_get_arg(jit, 0);
    blockid_t jump_block = { jit->iseq, jump_idx };

    // Generate the jump instruction
    gen_direct_jump(
        ctx,
        jump_block
    );

    return true;
}

static bool
gen_opt_swb_cfunc(jitstate_t* jit, ctx_t* ctx, struct rb_call_data * cd, const rb_callable_method_entry_t *cme, int32_t argc)
{
    const rb_method_cfunc_t *cfunc = UNALIGNED_MEMBER_PTR(cme->def, body.cfunc);

    // Don't JIT if the argument count doesn't match
    if (cfunc->argc < 0 || cfunc->argc != argc)
    {
        return false;
    }

    // Don't JIT functions that need C stack arguments for now
    if (argc + 1 > NUM_C_ARG_REGS)
    {
        return false;
    }

    // Create a size-exit to fall back to the interpreter
    uint8_t* side_exit = ujit_side_exit(jit, ctx);

    // Check for interrupts
    ujit_check_ints(cb, side_exit);

    // Points to the receiver operand on the stack
    x86opnd_t recv = ctx_stack_opnd(ctx, argc);
    mov(cb, REG0, recv);

    // Callee method ID
    //ID mid = vm_ci_mid(cd->ci);
    //printf("JITting call to C function \"%s\", argc: %lu\n", rb_id2name(mid), argc);
    //print_str(cb, "");
    //print_str(cb, "calling CFUNC:");
    //print_str(cb, rb_id2name(mid));
    //print_str(cb, "recv");
    //print_ptr(cb, recv);

    // Check that the receiver is a heap object
    test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
    jnz_ptr(cb, side_exit);
    cmp(cb, REG0, imm_opnd(Qfalse));
    je_ptr(cb, side_exit);
    cmp(cb, REG0, imm_opnd(Qnil));
    je_ptr(cb, side_exit);

    // Pointer to the klass field of the receiver &(recv->klass)
    x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));

    assume_method_lookup_stable(cd->cc, cme, jit->block);

    // Bail if receiver class is different from compile-time call cache class
    mov(cb, REG1, imm_opnd(cd->cc->klass));
    cmp(cb, klass_opnd, REG1);
    jne_ptr(cb, side_exit);

    // Store incremented PC into current control frame in case callee raises.
    mov(cb, REG0, const_ptr_opnd(jit->pc + insn_len(BIN(opt_send_without_block))));
    mov(cb, mem_opnd(64, REG_CFP, offsetof(rb_control_frame_t, pc)), REG0);

    // If this function needs a Ruby stack frame
    if (cfunc_needs_frame(cfunc))
    {
        // Stack overflow check
        // #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
        // REG_CFP <= REG_SP + 4 * sizeof(VALUE) + sizeof(rb_control_frame_t)
        lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 4 + sizeof(rb_control_frame_t)));
        cmp(cb, REG_CFP, REG0);
        jle_ptr(cb, side_exit);

        // Increment the stack pointer by 3 (in the callee)
        // sp += 3
        lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 3));

        // Put compile time cme into REG1. It's assumed to be valid because we are notified when
        // any cme we depend on become outdated. See rb_ujit_method_lookup_change().
        mov(cb, REG1, const_ptr_opnd(cme));
        // Write method entry at sp[-3]
        // sp[-3] = me;
        mov(cb, mem_opnd(64, REG0, 8 * -3), REG1);

        // Write block handler at sp[-2]
        // sp[-2] = block_handler;
        mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE));

        // Write env flags at sp[-1]
        // sp[-1] = frame_type;
        uint64_t frame_type = VM_FRAME_MAGIC_CFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL;
        mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type));

        // Allocate a new CFP (ec->cfp--)
        sub(
            cb,
            member_opnd(REG_EC, rb_execution_context_t, cfp),
            imm_opnd(sizeof(rb_control_frame_t))
        );

        // Setup the new frame
        // *cfp = (const struct rb_control_frame_struct) {
        //    .pc         = 0,
        //    .sp         = sp,
        //    .iseq       = 0,
        //    .self       = recv,
        //    .ep         = sp - 1,
        //    .block_code = 0,
        //    .__bp__     = sp,
        // };
        mov(cb, REG1, member_opnd(REG_EC, rb_execution_context_t, cfp));
        mov(cb, member_opnd(REG1, rb_control_frame_t, pc), imm_opnd(0));
        mov(cb, member_opnd(REG1, rb_control_frame_t, sp), REG0);
        mov(cb, member_opnd(REG1, rb_control_frame_t, iseq), imm_opnd(0));
        mov(cb, member_opnd(REG1, rb_control_frame_t, block_code), imm_opnd(0));
        mov(cb, member_opnd(REG1, rb_control_frame_t, __bp__), REG0);
        sub(cb, REG0, imm_opnd(sizeof(VALUE)));
        mov(cb, member_opnd(REG1, rb_control_frame_t, ep), REG0);
        mov(cb, REG0, recv);
        mov(cb, member_opnd(REG1, rb_control_frame_t, self), REG0);
    }

    if (UJIT_CHECK_MODE > 0) {
        // Verify that we are calling the right function
        // Save MicroJIT registers
        push(cb, REG_CFP);
        push(cb, REG_EC);
        push(cb, REG_SP);
        // Maintain 16-byte RSP alignment
        sub(cb, RSP, imm_opnd(8));

        // Call check_cfunc_dispatch
        mov(cb, RDI, recv);
        mov(cb, RSI, const_ptr_opnd(cd));
        mov(cb, RDX, const_ptr_opnd((void *)cfunc->func));
        mov(cb, RCX, const_ptr_opnd(cme));
        call_ptr(cb, REG0, (void *)&check_cfunc_dispatch);

        // Restore registers
        add(cb, RSP, imm_opnd(8));
        pop(cb, REG_SP);
        pop(cb, REG_EC);
        pop(cb, REG_CFP);
    }

    // Save the MicroJIT registers
    push(cb, REG_CFP);
    push(cb, REG_EC);
    push(cb, REG_SP);

    // Maintain 16-byte RSP alignment
    sub(cb, RSP, imm_opnd(8));

    // Copy SP into RAX because REG_SP will get overwritten
    lea(cb, RAX, ctx_sp_opnd(ctx, 0));

    // Copy the arguments from the stack to the C argument registers
    // self is the 0th argument and is at index argc from the stack top
    for (int32_t i = 0; i < argc + 1; ++i)
    {
        x86opnd_t stack_opnd = mem_opnd(64, RAX, -(argc + 1 - i) * 8);
        x86opnd_t c_arg_reg = C_ARG_REGS[i];
        mov(cb, c_arg_reg, stack_opnd);
    }

    // Pop the C function arguments from the stack (in the caller)
    ctx_stack_pop(ctx, argc + 1);

    //print_str(cb, "before C call");

    // Call the C function
    // VALUE ret = (cfunc->func)(recv, argv[0], argv[1]);
    // cfunc comes from compile-time cme->def, which we assume to be stable.
    // Invalidation logic is in rb_ujit_method_lookup_change()
    call_ptr(cb, REG0, (void*)cfunc->func);

    //print_str(cb, "after C call");

    // Maintain 16-byte RSP alignment
    add(cb, RSP, imm_opnd(8));

    // Restore MicroJIT registers
    pop(cb, REG_SP);
    pop(cb, REG_EC);
    pop(cb, REG_CFP);

    // Push the return value on the Ruby stack
    x86opnd_t stack_ret = ctx_stack_push(ctx, T_NONE);
    mov(cb, stack_ret, RAX);

    // If this function needs a Ruby stack frame
    if (cfunc_needs_frame(cfunc))
    {
        // Pop the stack frame (ec->cfp++)
        add(
            cb,
            member_opnd(REG_EC, rb_execution_context_t, cfp),
            imm_opnd(sizeof(rb_control_frame_t))
        );
    }

    // Jump (fall through) to the call continuation block
    // We do this to end the current block after the call
    blockid_t cont_block = { jit->iseq, jit_next_idx(jit) };
    gen_direct_jump(
        ctx,
        cont_block
    );

    return true;
}

bool rb_simple_iseq_p(const rb_iseq_t *iseq);

void
gen_return_branch(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape)
{
    switch (shape)
    {
        case SHAPE_NEXT0:
        case SHAPE_NEXT1:
        RUBY_ASSERT(false);
        break;

        case SHAPE_DEFAULT:
        mov(cb, REG0, const_ptr_opnd(target0));
        mov(cb, member_opnd(REG_CFP, rb_control_frame_t, jit_return), REG0);
        break;
    }
}

static bool
gen_opt_swb_iseq(jitstate_t* jit, ctx_t* ctx, struct rb_call_data * cd, const rb_callable_method_entry_t *cme, int32_t argc)
{
    const rb_iseq_t *iseq = def_iseq_ptr(cme->def);
    const VALUE* start_pc = iseq->body->iseq_encoded;
    int num_params = iseq->body->param.size;
    int num_locals = iseq->body->local_table_size - num_params;

    if (num_params != argc) {
        //fprintf(stderr, "param argc mismatch\n");
        return false;
    }

    if (!rb_simple_iseq_p(iseq)) {
        // Only handle iseqs that have simple parameters.
        // See vm_callee_setup_arg().
        return false;
    }

    rb_gc_register_mark_object((VALUE)iseq); // FIXME: intentional LEAK!

    // Create a size-exit to fall back to the interpreter
    uint8_t* side_exit = ujit_side_exit(jit, ctx);

    // Check for interrupts
    ujit_check_ints(cb, side_exit);

    // Points to the receiver operand on the stack
    x86opnd_t recv = ctx_stack_opnd(ctx, argc);
    mov(cb, REG0, recv);

    // Callee method ID
    //ID mid = vm_ci_mid(cd->ci);
    //printf("JITting call to Ruby function \"%s\", argc: %d\n", rb_id2name(mid), argc);
    //print_str(cb, "");
    //print_str(cb, "recv");
    //print_ptr(cb, recv);

    // Check that the receiver is a heap object
    test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
    jnz_ptr(cb, side_exit);
    cmp(cb, REG0, imm_opnd(Qfalse));
    je_ptr(cb, side_exit);
    cmp(cb, REG0, imm_opnd(Qnil));
    je_ptr(cb, side_exit);

    // Pointer to the klass field of the receiver &(recv->klass)
    x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));

    assume_method_lookup_stable(cd->cc, cme, jit->block);

    // Bail if receiver class is different from compile-time call cache class
    mov(cb, REG1, imm_opnd(cd->cc->klass));
    cmp(cb, klass_opnd, REG1);
    jne_ptr(cb, side_exit);

    // Store the updated SP on the current frame (pop arguments and receiver)
    lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * -(argc + 1)));
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0);

    // Store the next PC i the current frame
    mov(cb, REG0, const_ptr_opnd(jit->pc + insn_len(BIN(opt_send_without_block))));
    mov(cb, mem_opnd(64, REG_CFP, offsetof(rb_control_frame_t, pc)), REG0);

    // Stack overflow check
    // #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
    lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (num_locals + iseq->body->stack_max) + sizeof(rb_control_frame_t)));
    cmp(cb, REG_CFP, REG0);
    jle_ptr(cb, side_exit);

    // Adjust the callee's stack pointer
    lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (3 + num_locals)));

    // Initialize local variables to Qnil
    for (int i = 0; i < num_locals; i++) {
        mov(cb, mem_opnd(64, REG0, sizeof(VALUE) * (i - num_locals - 3)), imm_opnd(Qnil));
    }

    // Put compile time cme into REG1. It's assumed to be valid because we are notified when
    // any cme we depend on become outdated. See rb_ujit_method_lookup_change().
    mov(cb, REG1, const_ptr_opnd(cme));
    // Write method entry at sp[-3]
    // sp[-3] = me;
    mov(cb, mem_opnd(64, REG0, 8 * -3), REG1);

    // Write block handler at sp[-2]
    // sp[-2] = block_handler;
    mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE));

    // Write env flags at sp[-1]
    // sp[-1] = frame_type;
    uint64_t frame_type = VM_FRAME_MAGIC_METHOD | VM_ENV_FLAG_LOCAL;
    mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type));

    // Allocate a new CFP (ec->cfp--)
    sub(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t)));
    mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);

    // Setup the new frame
    // *cfp = (const struct rb_control_frame_struct) {
    //    .pc         = pc,
    //    .sp         = sp,
    //    .iseq       = iseq,
    //    .self       = recv,
    //    .ep         = sp - 1,
    //    .block_code = 0,
    //    .__bp__     = sp,
    // };
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), imm_opnd(0));
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0);
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, __bp__), REG0);
    sub(cb, REG0, imm_opnd(sizeof(VALUE)));
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, ep), REG0);
    mov(cb, REG0, recv);
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, self), REG0);
    mov(cb, REG0, const_ptr_opnd(iseq));
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, iseq), REG0);
    mov(cb, REG0, const_ptr_opnd(start_pc));
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), REG0);

    // Stub so we can return to JITted code
    blockid_t return_block = { jit->iseq, jit_next_insn_idx(jit) };

    // Pop arguments and receiver in return context, push the return value
    // After the return, the JIT and interpreter SP will match up
    ctx_t return_ctx = *ctx;
    ctx_stack_pop(&return_ctx, argc + 1);
    ctx_stack_push(&return_ctx, T_NONE);
    return_ctx.sp_offset = 0;

    // Write the JIT return address on the callee frame
    gen_branch(
        ctx,
        return_block,
        &return_ctx,
        return_block,
        &return_ctx,
        gen_return_branch
    );

    //print_str(cb, "calling Ruby func:");
    //print_str(cb, rb_id2name(vm_ci_mid(cd->ci)));

    // Load the updated SP
    mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
   
    // Directly jump to the entry point of the callee
    gen_direct_jump(
        &DEFAULT_CTX,
        (blockid_t){ iseq, 0 }
    );


    // TODO: create stub for call continuation

    // TODO: need to pop args in the caller ctx

    // TODO: stub so we can return to JITted code
    //blockid_t cont_block = { jit->iseq, jit_next_insn_idx(jit) };







    return true;
}

static bool
gen_opt_send_without_block(jitstate_t* jit, ctx_t* ctx)
{
    // Relevant definitions:
    // rb_execution_context_t       : vm_core.h
    // invoker, cfunc logic         : method.h, vm_method.c
    // rb_callable_method_entry_t   : method.h
    // vm_call_cfunc_with_frame     : vm_insnhelper.c
    // rb_callcache                 : vm_callinfo.h

    struct rb_call_data * cd = (struct rb_call_data *)jit_get_arg(jit, 0);
    int32_t argc = (int32_t)vm_ci_argc(cd->ci);

    // Don't JIT calls with keyword splat
    if (vm_ci_flag(cd->ci) & VM_CALL_KW_SPLAT)
    {
        return false;
    }

    // Don't JIT calls that aren't simple
    if (!(vm_ci_flag(cd->ci) & VM_CALL_ARGS_SIMPLE))
    {
        return false;
    }

    // Don't JIT if the inline cache is not set
    if (!cd->cc || !cd->cc->klass) {
        return false;
    }

    const rb_callable_method_entry_t *cme = vm_cc_cme(cd->cc);

    // Don't JIT if the method entry is out of date
    if (METHOD_ENTRY_INVALIDATED(cme)) {
        return false;
    }

    // If this is a C call
    if (cme->def->type == VM_METHOD_TYPE_CFUNC)
    {
        return gen_opt_swb_cfunc(jit, ctx, cd, cme, argc);
    }

    // If this is a Ruby call
    if (cme->def->type == VM_METHOD_TYPE_ISEQ)
    {
        return gen_opt_swb_iseq(jit, ctx, cd, cme, argc);
    }

    return false;
}

static bool
gen_leave(jitstate_t* jit, ctx_t* ctx)
{
    // Only the return value should be on the stack
    RUBY_ASSERT(ctx->stack_size == 1);

    // Create a size-exit to fall back to the interpreter
    uint8_t* side_exit = ujit_side_exit(jit, ctx);

    // Load environment pointer EP from CFP
    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));

    // if (flags & VM_FRAME_FLAG_FINISH) != 0
    x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS);
    test(cb, flags_opnd, imm_opnd(VM_FRAME_FLAG_FINISH));
    jnz_ptr(cb, side_exit);

    // Check for interrupts
    ujit_check_ints(cb, side_exit);

    // Load the return value
    mov(cb, REG0, ctx_stack_pop(ctx, 1));

    // Load the JIT return address
    mov(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, jit_return));

    // Pop the current frame (ec->cfp++)
    // Note: the return PC is already in the previous CFP
    add(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t)));
    mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);

    // Push the return value on the caller frame
    // The SP points one above the topmost value
    add(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), imm_opnd(SIZEOF_VALUE));
    mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
    mov(cb, mem_opnd(64, REG_SP, -SIZEOF_VALUE), REG0);  

    // If the return address is NULL, fall back to the interpreter
    int FALLBACK_LABEL = cb_new_label(cb, "FALLBACK");
    cmp(cb, REG1, imm_opnd(0));
    jz(cb, FALLBACK_LABEL);

    // Jump to the JIT return address
    jmp_rm(cb, REG1);

    // Fall back to the interpreter
    cb_write_label(cb, FALLBACK_LABEL);
    cb_link_labels(cb);
    cb_write_post_call_bytes(cb);

    return true;
}

void ujit_reg_op(int opcode, codegen_fn gen_fn, bool is_branch)
{
    // Check that the op wasn't previously registered
    st_data_t st_desc;
    if (rb_st_lookup(gen_fns, opcode, &st_desc)) {
        rb_bug("op already registered");
    }

    opdesc_t* p_desc = (opdesc_t*)malloc(sizeof(opdesc_t));
    p_desc->gen_fn = gen_fn;
    p_desc->is_branch = is_branch;

    st_insert(gen_fns, (st_data_t)opcode, (st_data_t)p_desc);
}

void
ujit_init_codegen(void)
{
    // Initialize the code blocks
    uint32_t mem_size = 128 * 1024 * 1024;
    uint8_t* mem_block = alloc_exec_mem(mem_size);
    cb = &block;
    cb_init(cb, mem_block, mem_size/2);
    ocb = &outline_block;
    cb_init(ocb, mem_block + mem_size/2, mem_size/2);

    // Initialize the codegen function table
    gen_fns = rb_st_init_numtable();

    // Map YARV opcodes to the corresponding codegen functions
    ujit_reg_op(BIN(dup), gen_dup, false);
    ujit_reg_op(BIN(nop), gen_nop, false);
    ujit_reg_op(BIN(pop), gen_pop, false);
    ujit_reg_op(BIN(putnil), gen_putnil, false);
    ujit_reg_op(BIN(putobject), gen_putobject, false);
    ujit_reg_op(BIN(putobject_INT2FIX_0_), gen_putobject_int2fix, false);
    ujit_reg_op(BIN(putobject_INT2FIX_1_), gen_putobject_int2fix, false);
    ujit_reg_op(BIN(putself), gen_putself, false);
    ujit_reg_op(BIN(getlocal_WC_0), gen_getlocal_wc0, false);
    ujit_reg_op(BIN(getlocal_WC_1), gen_getlocal_wc1, false);
    ujit_reg_op(BIN(setlocal_WC_0), gen_setlocal_wc0, false);
    ujit_reg_op(BIN(getinstancevariable), gen_getinstancevariable, false);
    ujit_reg_op(BIN(setinstancevariable), gen_setinstancevariable, false);
    ujit_reg_op(BIN(opt_lt), gen_opt_lt, false);
    ujit_reg_op(BIN(opt_le), gen_opt_le, false);
    ujit_reg_op(BIN(opt_ge), gen_opt_ge, false);
    ujit_reg_op(BIN(opt_aref), gen_opt_aref, false);
    ujit_reg_op(BIN(opt_and), gen_opt_and, false);
    ujit_reg_op(BIN(opt_minus), gen_opt_minus, false);
    ujit_reg_op(BIN(opt_plus), gen_opt_plus, false);
    ujit_reg_op(BIN(branchif), gen_branchif, true);
    ujit_reg_op(BIN(branchunless), gen_branchunless, true);
    ujit_reg_op(BIN(jump), gen_jump, true);
    ujit_reg_op(BIN(opt_send_without_block), gen_opt_send_without_block, true);
    ujit_reg_op(BIN(leave), gen_leave, true);
}