1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
#
# mathn.rb -
# $Release Version: 0.5 $
# $Revision: 1.1.1.1.4.1 $
# $Date: 1998/01/16 12:36:05 $
# by Keiju ISHITSUKA(SHL Japan Inc.)
#
# --
#
#
#
require "complex.rb"
require "rational.rb"
require "matrix.rb"
class Integer
def Integer.from_prime_division(pd)
value = 1
for prime, index in pd
value *= prime**index
end
value
end
def prime_division
raise ZeroDivisionError if self == 0
ps = Prime.new
value = self
pv = []
for prime in ps
count = 0
while (value1, mod = value.divmod(prime)
mod) == 0
value = value1
count += 1
end
if count != 0
pv.push [prime, count]
end
break if prime * prime >= value
end
if value > 1
pv.push [value, 1]
end
return pv
end
end
class Prime
include Enumerable
# These are included as class variables to cache them for later uses. If memory
# usage is a problem, they can be put in Prime#initialize as instance variables.
# There must be no primes between @@primes[-1] and @@next_to_check.
@@primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101]
# @@next_to_check % 6 must be 1.
@@next_to_check = 103 # @@primes[-1] - @@primes[-1] % 6 + 7
@@ulticheck_index = 3 # @@primes.index(@@primes.reverse.find {|n|
# n < Math.sqrt(@@next_to_check) })
@@ulticheck_next_squared = 121 # @@primes[@@ulticheck_index + 1] ** 2
class << self
# Return the prime cache.
def cache
return @@primes
end
alias primes cache
alias primes_so_far cache
end
def initialize
@index = -1
end
# Return primes given by this instance so far.
def primes
return @@primes[0, @index + 1]
end
alias primes_so_far primes
def succ
@index += 1
while @index >= @@primes.length
# Only check for prime factors up to the square root of the potential primes,
# but without the performance hit of an actual square root calculation.
if @@next_to_check + 4 > @@ulticheck_next_squared
@@ulticheck_index += 1
@@ulticheck_next_squared = @@primes.at(@@ulticheck_index + 1) ** 2
end
# Only check numbers congruent to one and five, modulo six. All others
# are divisible by two or three. This also allows us to skip checking against
# two and three.
@@primes.push @@next_to_check if @@primes[2..@@ulticheck_index].find {|prime| @@next_to_check % prime == 0 }.nil?
@@next_to_check += 4
@@primes.push @@next_to_check if @@primes[2..@@ulticheck_index].find {|prime| @@next_to_check % prime == 0 }.nil?
@@next_to_check += 2
end
return @@primes[@index]
end
alias next succ
def each
loop do
yield succ
end
end
end
class Fixnum
remove_method :/
alias / quo
end
class Bignum
remove_method :/
alias / quo
end
class Rational
Unify = true
remove_method :inspect
def inspect
format "%s/%s", numerator.inspect, denominator.inspect
end
alias power! **
def ** (other)
if other.kind_of?(Rational)
other2 = other
if self < 0
return Complex.new!(self, 0) ** other
elsif other == 0
return Rational(1,1)
elsif self == 0
return Rational(0,1)
elsif self == 1
return Rational(1,1)
end
npd = numerator.prime_division
dpd = denominator.prime_division
if other < 0
other = -other
npd, dpd = dpd, npd
end
for elm in npd
elm[1] = elm[1] * other
if !elm[1].kind_of?(Integer) and elm[1].denominator != 1
return Float(self) ** other2
end
elm[1] = elm[1].to_i
end
for elm in dpd
elm[1] = elm[1] * other
if !elm[1].kind_of?(Integer) and elm[1].denominator != 1
return Float(self) ** other2
end
elm[1] = elm[1].to_i
end
num = Integer.from_prime_division(npd)
den = Integer.from_prime_division(dpd)
Rational(num,den)
elsif other.kind_of?(Integer)
if other > 0
num = numerator ** other
den = denominator ** other
elsif other < 0
num = denominator ** -other
den = numerator ** -other
elsif other == 0
num = 1
den = 1
end
Rational.new!(num, den)
elsif other.kind_of?(Float)
Float(self) ** other
else
x , y = other.coerce(self)
x ** y
end
end
def power2(other)
if other.kind_of?(Rational)
if self < 0
return Complex(self, 0) ** other
elsif other == 0
return Rational(1,1)
elsif self == 0
return Rational(0,1)
elsif self == 1
return Rational(1,1)
end
dem = nil
x = self.denominator.to_f.to_i
neard = self.denominator.to_f ** (1.0/other.denominator.to_f)
loop do
if (neard**other.denominator == self.denominator)
dem = neaed
break
end
end
nearn = self.numerator.to_f ** (1.0/other.denominator.to_f)
Rational(num,den)
elsif other.kind_of?(Integer)
if other > 0
num = numerator ** other
den = denominator ** other
elsif other < 0
num = denominator ** -other
den = numerator ** -other
elsif other == 0
num = 1
den = 1
end
Rational.new!(num, den)
elsif other.kind_of?(Float)
Float(self) ** other
else
x , y = other.coerce(self)
x ** y
end
end
end
module Math
remove_method(:sqrt)
def sqrt(a)
if a.kind_of?(Complex)
abs = sqrt(a.real*a.real + a.image*a.image)
# if not abs.kind_of?(Rational)
# return a**Rational(1,2)
# end
x = sqrt((a.real + abs)/Rational(2))
y = sqrt((-a.real + abs)/Rational(2))
# if !(x.kind_of?(Rational) and y.kind_of?(Rational))
# return a**Rational(1,2)
# end
if a.image >= 0
Complex(x, y)
else
Complex(x, -y)
end
elsif a >= 0
rsqrt(a)
else
Complex(0,rsqrt(-a))
end
end
def rsqrt(a)
if a.kind_of?(Float)
sqrt!(a)
elsif a.kind_of?(Rational)
rsqrt(a.numerator)/rsqrt(a.denominator)
else
src = a
max = 2 ** 32
byte_a = [src & 0xffffffff]
# ruby's bug
while (src >= max) and (src >>= 32)
byte_a.unshift src & 0xffffffff
end
answer = 0
main = 0
side = 0
for elm in byte_a
main = (main << 32) + elm
side <<= 16
if answer != 0
if main * 4 < side * side
applo = main.div(side)
else
applo = ((sqrt!(side * side + 4 * main) - side)/2.0).to_i + 1
end
else
applo = sqrt!(main).to_i + 1
end
while (x = (side + applo) * applo) > main
applo -= 1
end
main -= x
answer = (answer << 16) + applo
side += applo * 2
end
if main == 0
answer
else
sqrt!(a)
end
end
end
module_function :sqrt
module_function :rsqrt
end
class Complex
Unify = true
end
|