1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
|
#include "internal.h"
#include "internal/gc.h"
#include "internal/concurrent_set.h"
#include "ruby/atomic.h"
#include "vm_sync.h"
#define CONCURRENT_SET_CONTINUATION_BIT ((VALUE)1 << (sizeof(VALUE) * CHAR_BIT - 1))
#define CONCURRENT_SET_HASH_MASK (~CONCURRENT_SET_CONTINUATION_BIT)
enum concurrent_set_special_values {
CONCURRENT_SET_EMPTY,
CONCURRENT_SET_DELETED,
CONCURRENT_SET_MOVED,
CONCURRENT_SET_SPECIAL_VALUE_COUNT
};
struct concurrent_set_entry {
VALUE hash;
VALUE key;
};
struct concurrent_set {
rb_atomic_t size;
unsigned int capacity;
unsigned int deleted_entries;
const struct rb_concurrent_set_funcs *funcs;
struct concurrent_set_entry *entries;
};
static void
concurrent_set_mark_continuation(struct concurrent_set_entry *entry, VALUE curr_hash_and_flags)
{
if (curr_hash_and_flags & CONCURRENT_SET_CONTINUATION_BIT) return;
RUBY_ASSERT((curr_hash_and_flags & CONCURRENT_SET_HASH_MASK) != 0);
VALUE new_hash = curr_hash_and_flags | CONCURRENT_SET_CONTINUATION_BIT;
VALUE prev_hash = rbimpl_atomic_value_cas(&entry->hash, curr_hash_and_flags, new_hash, RBIMPL_ATOMIC_RELEASE, RBIMPL_ATOMIC_RELAXED);
// At the moment we only expect to be racing concurrently against another
// thread also setting the continuation bit.
// In the future if deletion is concurrent this will need adjusting
RUBY_ASSERT(prev_hash == curr_hash_and_flags || prev_hash == new_hash);
(void)prev_hash;
}
static VALUE
concurrent_set_hash(const struct concurrent_set *set, VALUE key)
{
VALUE hash = set->funcs->hash(key);
hash &= CONCURRENT_SET_HASH_MASK;
if (hash == 0) {
hash ^= CONCURRENT_SET_HASH_MASK;
}
RUBY_ASSERT(hash != 0);
RUBY_ASSERT(!(hash & CONCURRENT_SET_CONTINUATION_BIT));
return hash;
}
static void
concurrent_set_free(void *ptr)
{
struct concurrent_set *set = ptr;
xfree(set->entries);
}
static size_t
concurrent_set_size(const void *ptr)
{
const struct concurrent_set *set = ptr;
return sizeof(struct concurrent_set) +
(set->capacity * sizeof(struct concurrent_set_entry));
}
/* Hack: Though it would be trivial, we're intentionally avoiding WB-protecting
* this object. This prevents the object from aging and ensures it can always be
* collected in a minor GC.
* Longer term this deserves a better way to reclaim memory promptly.
*/
static void
concurrent_set_mark(void *ptr)
{
(void)ptr;
}
static const rb_data_type_t concurrent_set_type = {
.wrap_struct_name = "VM/concurrent_set",
.function = {
.dmark = concurrent_set_mark,
.dfree = concurrent_set_free,
.dsize = concurrent_set_size,
},
/* Hack: NOT WB_PROTECTED on purpose (see above) */
.flags = RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_EMBEDDABLE
};
VALUE
rb_concurrent_set_new(const struct rb_concurrent_set_funcs *funcs, int capacity)
{
struct concurrent_set *set;
VALUE obj = TypedData_Make_Struct(0, struct concurrent_set, &concurrent_set_type, set);
set->funcs = funcs;
set->entries = ZALLOC_N(struct concurrent_set_entry, capacity);
set->capacity = capacity;
return obj;
}
rb_atomic_t
rb_concurrent_set_size(VALUE set_obj)
{
struct concurrent_set *set = RTYPEDDATA_GET_DATA(set_obj);
return RUBY_ATOMIC_LOAD(set->size);
}
struct concurrent_set_probe {
int idx;
int d;
int mask;
};
static int
concurrent_set_probe_start(struct concurrent_set_probe *probe, struct concurrent_set *set, VALUE hash)
{
RUBY_ASSERT((set->capacity & (set->capacity - 1)) == 0);
probe->d = 0;
probe->mask = set->capacity - 1;
probe->idx = hash & probe->mask;
return probe->idx;
}
static int
concurrent_set_probe_next(struct concurrent_set_probe *probe)
{
probe->d++;
probe->idx = (probe->idx + probe->d) & probe->mask;
return probe->idx;
}
static void
concurrent_set_try_resize_without_locking(VALUE old_set_obj, VALUE *set_obj_ptr)
{
// Check if another thread has already resized.
if (rbimpl_atomic_value_load(set_obj_ptr, RBIMPL_ATOMIC_ACQUIRE) != old_set_obj) {
return;
}
struct concurrent_set *old_set = RTYPEDDATA_GET_DATA(old_set_obj);
// This may overcount by up to the number of threads concurrently attempting to insert
// GC may also happen between now and the set being rebuilt
int expected_size = rbimpl_atomic_load(&old_set->size, RBIMPL_ATOMIC_RELAXED) - old_set->deleted_entries;
// NOTE: new capacity must make sense with load factor, don't change one without checking the other.
struct concurrent_set_entry *old_entries = old_set->entries;
int old_capacity = old_set->capacity;
int new_capacity = old_capacity * 2;
if (new_capacity > expected_size * 8) {
new_capacity = old_capacity / 2;
}
else if (new_capacity > expected_size * 4) {
new_capacity = old_capacity;
}
// May cause GC and therefore deletes, so must happen first.
VALUE new_set_obj = rb_concurrent_set_new(old_set->funcs, new_capacity);
struct concurrent_set *new_set = RTYPEDDATA_GET_DATA(new_set_obj);
for (int i = 0; i < old_capacity; i++) {
struct concurrent_set_entry *old_entry = &old_entries[i];
VALUE key = rbimpl_atomic_value_exchange(&old_entry->key, CONCURRENT_SET_MOVED, RBIMPL_ATOMIC_ACQUIRE);
RUBY_ASSERT(key != CONCURRENT_SET_MOVED);
if (key < CONCURRENT_SET_SPECIAL_VALUE_COUNT) continue;
if (!RB_SPECIAL_CONST_P(key) && rb_objspace_garbage_object_p(key)) continue;
VALUE hash = rbimpl_atomic_value_load(&old_entry->hash, RBIMPL_ATOMIC_RELAXED) & CONCURRENT_SET_HASH_MASK;
RUBY_ASSERT(hash != 0);
RUBY_ASSERT(hash == concurrent_set_hash(old_set, key));
// Insert key into new_set.
struct concurrent_set_probe probe;
int idx = concurrent_set_probe_start(&probe, new_set, hash);
while (true) {
struct concurrent_set_entry *entry = &new_set->entries[idx];
if (entry->hash == CONCURRENT_SET_EMPTY) {
RUBY_ASSERT(entry->key == CONCURRENT_SET_EMPTY);
new_set->size++;
RUBY_ASSERT(new_set->size <= new_set->capacity / 2);
entry->key = key;
entry->hash = hash;
break;
}
RUBY_ASSERT(entry->key >= CONCURRENT_SET_SPECIAL_VALUE_COUNT);
entry->hash |= CONCURRENT_SET_CONTINUATION_BIT;
idx = concurrent_set_probe_next(&probe);
}
}
rbimpl_atomic_value_store(set_obj_ptr, new_set_obj, RBIMPL_ATOMIC_RELEASE);
RB_GC_GUARD(old_set_obj);
}
static void
concurrent_set_try_resize(VALUE old_set_obj, VALUE *set_obj_ptr)
{
RB_VM_LOCKING() {
concurrent_set_try_resize_without_locking(old_set_obj, set_obj_ptr);
}
}
VALUE
rb_concurrent_set_find(VALUE *set_obj_ptr, VALUE key)
{
RUBY_ASSERT(key >= CONCURRENT_SET_SPECIAL_VALUE_COUNT);
VALUE set_obj;
VALUE hash = 0;
struct concurrent_set *set;
struct concurrent_set_probe probe;
int idx;
retry:
set_obj = rbimpl_atomic_value_load(set_obj_ptr, RBIMPL_ATOMIC_ACQUIRE);
RUBY_ASSERT(set_obj);
set = RTYPEDDATA_GET_DATA(set_obj);
if (hash == 0) {
// We don't need to recompute the hash on every retry because it should
// never change.
hash = concurrent_set_hash(set, key);
}
RUBY_ASSERT(hash == concurrent_set_hash(set, key));
idx = concurrent_set_probe_start(&probe, set, hash);
while (true) {
struct concurrent_set_entry *entry = &set->entries[idx];
VALUE curr_hash_and_flags = rbimpl_atomic_value_load(&entry->hash, RBIMPL_ATOMIC_ACQUIRE);
VALUE curr_hash = curr_hash_and_flags & CONCURRENT_SET_HASH_MASK;
bool continuation = curr_hash_and_flags & CONCURRENT_SET_CONTINUATION_BIT;
if (curr_hash_and_flags == CONCURRENT_SET_EMPTY) {
return 0;
}
if (curr_hash != hash) {
if (!continuation) {
return 0;
}
idx = concurrent_set_probe_next(&probe);
continue;
}
VALUE curr_key = rbimpl_atomic_value_load(&entry->key, RBIMPL_ATOMIC_ACQUIRE);
switch (curr_key) {
case CONCURRENT_SET_EMPTY:
// In-progress insert: hash written but key not yet
break;
case CONCURRENT_SET_DELETED:
break;
case CONCURRENT_SET_MOVED:
// Wait
RB_VM_LOCKING();
goto retry;
default: {
if (UNLIKELY(!RB_SPECIAL_CONST_P(curr_key) && rb_objspace_garbage_object_p(curr_key))) {
// This is a weakref set, so after marking but before sweeping is complete we may find a matching garbage object.
// Skip it and let the GC pass clean it up
break;
}
if (set->funcs->cmp(key, curr_key)) {
// We've found a match.
RB_GC_GUARD(set_obj);
return curr_key;
}
if (!continuation) {
return 0;
}
break;
}
}
idx = concurrent_set_probe_next(&probe);
}
}
VALUE
rb_concurrent_set_find_or_insert(VALUE *set_obj_ptr, VALUE key, void *data)
{
RUBY_ASSERT(key >= CONCURRENT_SET_SPECIAL_VALUE_COUNT);
// First attempt to find
{
VALUE result = rb_concurrent_set_find(set_obj_ptr, key);
if (result) return result;
}
// First time we need to call create, and store the hash
VALUE set_obj = rbimpl_atomic_value_load(set_obj_ptr, RBIMPL_ATOMIC_ACQUIRE);
RUBY_ASSERT(set_obj);
struct concurrent_set *set = RTYPEDDATA_GET_DATA(set_obj);
key = set->funcs->create(key, data);
VALUE hash = concurrent_set_hash(set, key);
struct concurrent_set_probe probe;
int idx;
goto start_search;
retry:
// On retries we only need to load the hash object
set_obj = rbimpl_atomic_value_load(set_obj_ptr, RBIMPL_ATOMIC_ACQUIRE);
RUBY_ASSERT(set_obj);
set = RTYPEDDATA_GET_DATA(set_obj);
RUBY_ASSERT(hash == concurrent_set_hash(set, key));
start_search:
idx = concurrent_set_probe_start(&probe, set, hash);
while (true) {
struct concurrent_set_entry *entry = &set->entries[idx];
VALUE curr_hash_and_flags = rbimpl_atomic_value_load(&entry->hash, RBIMPL_ATOMIC_ACQUIRE);
VALUE curr_hash = curr_hash_and_flags & CONCURRENT_SET_HASH_MASK;
bool continuation = curr_hash_and_flags & CONCURRENT_SET_CONTINUATION_BIT;
if (curr_hash_and_flags == CONCURRENT_SET_EMPTY) {
// Reserve this slot for our hash value
curr_hash_and_flags = rbimpl_atomic_value_cas(&entry->hash, CONCURRENT_SET_EMPTY, hash, RBIMPL_ATOMIC_RELEASE, RBIMPL_ATOMIC_RELAXED);
if (curr_hash_and_flags != CONCURRENT_SET_EMPTY) {
// Lost race, retry same slot to check winner's hash
continue;
}
// CAS succeeded, so these are the values stored
curr_hash_and_flags = hash;
curr_hash = hash;
// Fall through to try to claim key
}
if (curr_hash != hash) {
goto probe_next;
}
VALUE curr_key = rbimpl_atomic_value_load(&entry->key, RBIMPL_ATOMIC_ACQUIRE);
switch (curr_key) {
case CONCURRENT_SET_EMPTY: {
rb_atomic_t prev_size = rbimpl_atomic_fetch_add(&set->size, 1, RBIMPL_ATOMIC_RELAXED);
// Load_factor reached at 75% full. ex: prev_size: 32, capacity: 64, load_factor: 50%.
bool load_factor_reached = (uint64_t)(prev_size * 4) >= (uint64_t)(set->capacity * 3);
if (UNLIKELY(load_factor_reached)) {
concurrent_set_try_resize(set_obj, set_obj_ptr);
goto retry;
}
VALUE prev_key = rbimpl_atomic_value_cas(&entry->key, CONCURRENT_SET_EMPTY, key, RBIMPL_ATOMIC_RELEASE, RBIMPL_ATOMIC_RELAXED);
if (prev_key == CONCURRENT_SET_EMPTY) {
RUBY_ASSERT(rb_concurrent_set_find(set_obj_ptr, key) == key);
RB_GC_GUARD(set_obj);
return key;
}
else {
// Entry was not inserted.
rbimpl_atomic_sub(&set->size, 1, RBIMPL_ATOMIC_RELAXED);
// Another thread won the race, try again at the same location.
continue;
}
}
case CONCURRENT_SET_DELETED:
break;
case CONCURRENT_SET_MOVED:
// Wait
RB_VM_LOCKING();
goto retry;
default:
// We're never GC during our search
// If the continuation bit wasn't set at the start of our search,
// any concurrent find with the same hash value would also look at
// this location and try to swap curr_key
if (UNLIKELY(!RB_SPECIAL_CONST_P(curr_key) && rb_objspace_garbage_object_p(curr_key))) {
if (continuation) {
goto probe_next;
}
rbimpl_atomic_value_cas(&entry->key, curr_key, CONCURRENT_SET_EMPTY, RBIMPL_ATOMIC_RELEASE, RBIMPL_ATOMIC_RELAXED);
continue;
}
if (set->funcs->cmp(key, curr_key)) {
// We've found a live match.
RB_GC_GUARD(set_obj);
// We created key using set->funcs->create, but we didn't end
// up inserting it into the set. Free it here to prevent memory
// leaks.
if (set->funcs->free) set->funcs->free(key);
return curr_key;
}
break;
}
probe_next:
RUBY_ASSERT(curr_hash_and_flags != CONCURRENT_SET_EMPTY);
concurrent_set_mark_continuation(entry, curr_hash_and_flags);
idx = concurrent_set_probe_next(&probe);
}
}
static void
concurrent_set_delete_entry_locked(struct concurrent_set *set, struct concurrent_set_entry *entry)
{
ASSERT_vm_locking_with_barrier();
if (entry->hash & CONCURRENT_SET_CONTINUATION_BIT) {
entry->hash = CONCURRENT_SET_CONTINUATION_BIT;
entry->key = CONCURRENT_SET_DELETED;
set->deleted_entries++;
}
else {
entry->hash = CONCURRENT_SET_EMPTY;
entry->key = CONCURRENT_SET_EMPTY;
set->size--;
}
}
VALUE
rb_concurrent_set_delete_by_identity(VALUE set_obj, VALUE key)
{
ASSERT_vm_locking_with_barrier();
struct concurrent_set *set = RTYPEDDATA_GET_DATA(set_obj);
VALUE hash = concurrent_set_hash(set, key);
struct concurrent_set_probe probe;
int idx = concurrent_set_probe_start(&probe, set, hash);
while (true) {
struct concurrent_set_entry *entry = &set->entries[idx];
VALUE curr_key = entry->key;
switch (curr_key) {
case CONCURRENT_SET_EMPTY:
// We didn't find our entry to delete.
return 0;
case CONCURRENT_SET_DELETED:
break;
case CONCURRENT_SET_MOVED:
rb_bug("rb_concurrent_set_delete_by_identity: moved entry");
break;
default:
if (key == curr_key) {
RUBY_ASSERT((entry->hash & CONCURRENT_SET_HASH_MASK) == hash);
concurrent_set_delete_entry_locked(set, entry);
return curr_key;
}
break;
}
idx = concurrent_set_probe_next(&probe);
}
}
void
rb_concurrent_set_foreach_with_replace(VALUE set_obj, int (*callback)(VALUE *key, void *data), void *data)
{
ASSERT_vm_locking_with_barrier();
struct concurrent_set *set = RTYPEDDATA_GET_DATA(set_obj);
for (unsigned int i = 0; i < set->capacity; i++) {
struct concurrent_set_entry *entry = &set->entries[i];
VALUE key = entry->key;
switch (key) {
case CONCURRENT_SET_EMPTY:
case CONCURRENT_SET_DELETED:
continue;
case CONCURRENT_SET_MOVED:
rb_bug("rb_concurrent_set_foreach_with_replace: moved entry");
break;
default: {
int ret = callback(&entry->key, data);
switch (ret) {
case ST_STOP:
return;
case ST_DELETE:
concurrent_set_delete_entry_locked(set, entry);
break;
}
break;
}
}
}
}
|