summaryrefslogtreecommitdiff
path: root/misc/yjit_asm_tests.c
AgeCommit message (Collapse)Author
2022-04-27Rust YJITAlan Wu
In December 2021, we opened an [issue] to solicit feedback regarding the porting of the YJIT codebase from C99 to Rust. There were some reservations, but this project was given the go ahead by Ruby core developers and Matz. Since then, we have successfully completed the port of YJIT to Rust. The new Rust version of YJIT has reached parity with the C version, in that it passes all the CRuby tests, is able to run all of the YJIT benchmarks, and performs similarly to the C version (because it works the same way and largely generates the same machine code). We've even incorporated some design improvements, such as a more fine-grained constant invalidation mechanism which we expect will make a big difference in Ruby on Rails applications. Because we want to be careful, YJIT is guarded behind a configure option: ```shell ./configure --enable-yjit # Build YJIT in release mode ./configure --enable-yjit=dev # Build YJIT in dev/debug mode ``` By default, YJIT does not get compiled and cargo/rustc is not required. If YJIT is built in dev mode, then `cargo` is used to fetch development dependencies, but when building in release, `cargo` is not required, only `rustc`. At the moment YJIT requires Rust 1.60.0 or newer. The YJIT command-line options remain mostly unchanged, and more details about the build process are documented in `doc/yjit/yjit.md`. The CI tests have been updated and do not take any more resources than before. The development history of the Rust port is available at the following commit for interested parties: https://github.com/Shopify/ruby/commit/1fd9573d8b4b65219f1c2407f30a0a60e537f8be Our hope is that Rust YJIT will be compiled and included as a part of system packages and compiled binaries of the Ruby 3.2 release. We do not anticipate any major problems as Rust is well supported on every platform which YJIT supports, but to make sure that this process works smoothly, we would like to reach out to those who take care of building systems packages before the 3.2 release is shipped and resolve any issues that may come up. [issue]: https://bugs.ruby-lang.org/issues/18481 Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com> Co-authored-by: Noah Gibbs <the.codefolio.guy@gmail.com> Co-authored-by: Kevin Newton <kddnewton@gmail.com> Notes: Merged: https://github.com/ruby/ruby/pull/5826
2021-12-03YJIT: Bounds check every byte in the assemblerAlan Wu
Previously, YJIT assumed that basic blocks never consume more than 1 KiB of memory. This assumption does not hold for long Ruby methods such as the one in the following: ```ruby eval(<<RUBY) def set_local_a_lot #{'_=0;'*0x40000} end RUBY set_local_a_lot ``` For low `--yjit-exec-mem-size` values, one basic block could exhaust the entire buffer. Introduce a new field `codeblock_t::dropped_bytes` that the assembler sets whenever it runs out of space. Check this field in gen_single_block() to respond to out of memory situations and other error conditions. This design avoids making the control flow graph of existing code generation functions more complex. Use POSIX shell in misc/test_yjit_asm.sh since bash is expanding `0%/*/*` differently. Co-authored-by: Aaron Patterson <tenderlove@ruby-lang.org> Notes: Merged: https://github.com/ruby/ruby/pull/5209
2021-12-01Mark JIT code as writeable / executable depending on the situationAaron Patterson
Some platforms don't want memory to be marked as writeable and executable at the same time. When we write to the code block, we calculate the OS page that the buffer position maps to. Then we call `mprotect` to allow writes on that particular page. As an optimization, we cache the "last written" aligned page which allows us to amortize the cost of the `mprotect` call. In other words, sequential writes to the same page will only call `mprotect` on the page once. When we're done writing, we call `mprotect` on the entire JIT buffer. This means we don't need to keep track of which pages were marked as writeable, we let the OS take care of that. Co-authored-by: John Hawthorn <john@hawthorn.email> Notes: Merged: https://github.com/ruby/ruby/pull/5032
2021-11-05YJIT: use shorter encoding for mov(r64,imm) when unambiguous (#5081)Alan Wu
* YJIT: use shorter encoding for mov(r64,imm) when unambiguous Previously, for small constants such as `mov(RAX, imm_opnd(Qundef))`, we emit an instruction with an 8-byte immediate. This form commonly gets the `movabs` mnemonic. In 64-bit mode, 32-bit operands get zero extended to 64-bit to fill the register, so when the immediate is small enough, we can save 4 bytes by using the `mov` variant that takes a 32-bit immediate and does a zero extension. Not implement with this change, there is an imm32 variant of `mov` that does sign extension we could use. When the constant is negative, we fallback to the `movabs` form. In railsbench, this change yields roughly a 12% code size reduction for the outlined block. Co-authored-by: Jemma Issroff <jemmaissroff@gmail.com> * [ci skip] comment edit. Please squash. Co-authored-by: Jemma Issroff <jemmaissroff@gmail.com> Notes: Merged-By: maximecb <maximecb@ruby-lang.org>
2021-11-04YJIT code pages refactoring for code GC (#5073)Maxime Chevalier-Boisvert
* New code page allocation logic * Fix leaked globals * Fix leaked symbols, yjit asm tests * Make COUNTED_EXIT take a jit argument, so we can eliminate global ocb * Remove extra whitespace * Change block start_pos/end_pos to be pointers instead of uint32_t * Change branch end_pos and start_pos to end_addr, start_addr Notes: Merged-By: maximecb <maximecb@ruby-lang.org>
2021-10-27Fix yjit_asm_tests.c as C99 compliant (#5033)Nobuyoshi Nakada
* rb_bug should be variadic * Prefer ANSI-style prototypes over old K&R-style definitions * Add missing argument types Notes: Merged-By: maximecb <maximecb@ruby-lang.org>
2021-10-21Move the test fileNobuyoshi Nakada