| Age | Commit message (Collapse) | Author |
|
|
|
[Feature #21084]
# Summary
The current way of marking weak references uses `rb_gc_mark_weak(VALUE *ptr)`.
This presents challenges because Ruby's GC is incremental, meaning that if the
`ptr` changes (e.g. realloc'd or free'd), then we could have an invalid memory
access. This also overwrites `*ptr = Qundef` if `*ptr` is dead, which prevents
any cleanup to be run (e.g. freeing memory or deleting entries from hash
tables). This ticket proposes `rb_gc_declare_weak_references` which declares
that an object has weak references and calls a cleanup function after marking,
allowing the object to clean up any memory for dead objects.
# Introduction
In [[Feature #19783]](https://bugs.ruby-lang.org/issues/19783), I introduced an
API allowing objects to mark weak references, the function signature looks like
this:
```c
void rb_gc_mark_weak(VALUE *ptr);
```
`rb_gc_mark_weak` is called during the marking phase of the GC to specify that
the memory at `ptr` holds a pointer to a Ruby object that is weakly referenced.
`rb_gc_mark_weak` appends this pointer to a list that is processed after the
marking phase of the GC. If the object at `*ptr` is no longer alive, then it
overwrites the object reference with a special value (`*ptr = Qundef`).
However, this API resulted in two challenges:
1. Ruby's default GC is incremental, which means that the GC is not ran in one
phase, but rather split into chunks of work that interleaves with Ruby
execution. The `ptr` passed into `rb_gc_mark_weak` could be on the malloc
heap, and that memory could be realloc'd or even free'd. We had to use
workarounds such as `rb_gc_remove_weak` to ensure that there were no illegal
memory accesses. This made `rb_gc_mark_weak` difficult to use, impacted
runtime performance, and increased memory usage.
2. When an object dies, `rb_gc_mark_weak` only overwites the reference with
`Qundef`. This means that if we want to do any cleanup (e.g. free a piece of
memory or delete a hash table entry), we could not do that and had to defer
this process elsewhere (e.g. during marking or runtime).
In this ticket, I'm proposing a new API for weak references. Instead of an
object marking its weak references during the marking phase, the object declares
that it has weak references using the `rb_gc_declare_weak_references` function.
This declaration occurs during runtime (e.g. after the object has been created)
rather than during GC.
After an object declares that it has weak references, it will have its callback
function called after marking as long as that object is alive. This callback
function can then call a special function `rb_gc_handle_weak_references_alive_p`
to determine whether its references are alive. This will allow the callback
function to do whatever it wants on the object, allowing it to perform any
cleanup work it needs.
This significantly simplifies the code for `ObjectSpace::WeakMap` and
`ObjectSpace::WeakKeyMap` because it no longer needs to have the workarounds for
the limitations of `rb_gc_mark_weak`.
# Performance
The performance results below demonstrate that `ObjectSpace::WeakMap#[]=` is now
about 60% faster because the implementation has been simplified and the number
of allocations has been reduced. We can see that there is not a significant
impact on the performance of `ObjectSpace::WeakMap#[]`.
Base:
```
ObjectSpace::WeakMap#[]=
4.620M (± 6.4%) i/s (216.44 ns/i) - 23.342M in 5.072149s
ObjectSpace::WeakMap#[]
30.967M (± 1.9%) i/s (32.29 ns/i) - 154.998M in 5.007157s
```
Branch:
```
ObjectSpace::WeakMap#[]=
7.336M (± 2.8%) i/s (136.31 ns/i) - 36.755M in 5.013983s
ObjectSpace::WeakMap#[]
30.902M (± 5.4%) i/s (32.36 ns/i) - 155.901M in 5.064060s
```
Code:
```
require "bundler/inline"
gemfile do
source "https://rubygems.org"
gem "benchmark-ips"
end
wmap = ObjectSpace::WeakMap.new
key = Object.new
val = Object.new
wmap[key] = val
Benchmark.ips do |x|
x.report("ObjectSpace::WeakMap#[]=") do |times|
i = 0
while i < times
wmap[Object.new] = Object.new
i += 1
end
end
x.report("ObjectSpace::WeakMap#[]") do |times|
i = 0
while i < times
wmap[key]
wmap[val] # does not exist
i += 1
end
end
end
```
# Alternative designs
Currently, `rb_gc_declare_weak_references` is designed to be an internal-only
API. This allows us to assume the object types that call
`rb_gc_declare_weak_references`. In the future, if we want to open up this API
to third parties, we may want to change this function to something like:
```c
void rb_gc_add_cleaner(VALUE obj, void (*callback)(VALUE obj));
```
This will allow the third party to implement a custom `callback` that gets
called after the marking phase of GC to clean up any dead references. I chose
not to implement this design because it is less efficient as we would need to
store a mapping from `obj` to `callback`, which requires extra memory.
|
|
This reverts commit 228d13f6ed914d1e7f6bd2416e3f5be8283be865.
This commit makes default.c and mmtk.c depend on shape.h, which prevents
them from building independently.
|
|
Attempt to fix the following SEGV:
```
ruby(gc_mark) ../src/gc/default/default.c:4429
ruby(gc_mark_children+0x45) [0x560b380bf8b5] ../src/gc/default/default.c:4625
ruby(gc_mark_stacked_objects) ../src/gc/default/default.c:4647
ruby(gc_mark_stacked_objects_all) ../src/gc/default/default.c:4685
ruby(gc_marks_rest) ../src/gc/default/default.c:5707
ruby(gc_marks+0x4e7) [0x560b380c41c1] ../src/gc/default/default.c:5821
ruby(gc_start) ../src/gc/default/default.c:6502
ruby(heap_prepare+0xa4) [0x560b380c4efc] ../src/gc/default/default.c:2074
ruby(heap_next_free_page) ../src/gc/default/default.c:2289
ruby(newobj_cache_miss) ../src/gc/default/default.c:2396
ruby(RB_SPECIAL_CONST_P+0x0) [0x560b380c5df4] ../src/gc/default/default.c:2420
ruby(RB_BUILTIN_TYPE) ../src/include/ruby/internal/value_type.h:184
ruby(newobj_init) ../src/gc/default/default.c:2136
ruby(rb_gc_impl_new_obj) ../src/gc/default/default.c:2500
ruby(newobj_of) ../src/gc.c:996
ruby(rb_imemo_new+0x37) [0x560b380d8bed] ../src/imemo.c:46
ruby(imemo_fields_new) ../src/imemo.c:105
ruby(rb_imemo_fields_new) ../src/imemo.c:120
```
I have no reproduction, but my understanding based on the backtrace
and error is that GC is triggered inside `newobj_init` causing the
new object to be marked while in a incomplete state.
I believe the fix is to pass the `shape_id` down to `newobj_init`
so it can be set before the GC has a chance to trigger.
|
|
rb_gc_verify_shareable is not GC implementation specific so it should live
in gc.c.
|
|
This implements it the same as the other modular GC functions
|
|
Setting v1, v2, v3 when we allocate an object assumes that we always
allocate 40 byte objects. By removing v1, v2, v3, we can make the base
slot size another size.
|
|
If we malloc when the current Ractor is locked, we can deadlock because
GC requires VM lock and Ractor barrier. If another Ractor is waiting on
this Ractor lock, then it will deadlock because the other Ractor will
never join the barrier.
For example, this script deadlocks:
r = Ractor.new do
loop do
Ractor::Port.new
end
end
100000.times do |i|
r.send(nil)
puts i
end
On debug builds, it fails with this assertion error:
vm_sync.c:75: Assertion Failed: vm_lock_enter:cr->sync.locked_by != rb_ractor_self(cr)
On non-debug builds, we can see that it deadlocks in the debugger:
Main Ractor:
frame #3: 0x000000010021fdc4 miniruby`rb_native_mutex_lock(lock=<unavailable>) at thread_pthread.c:115:14
frame #4: 0x0000000100193eb8 miniruby`ractor_send0 [inlined] ractor_lock(r=<unavailable>, file=<unavailable>, line=1180) at ractor.c:73:5
frame #5: 0x0000000100193eb0 miniruby`ractor_send0 [inlined] ractor_send_basket(ec=<unavailable>, rp=0x0000000131092840, b=0x000000011c63de80, raise_on_error=true) at ractor_sync.c:1180:5
frame #6: 0x0000000100193eac miniruby`ractor_send0(ec=<unavailable>, rp=0x0000000131092840, obj=4, move=<unavailable>, raise_on_error=true) at ractor_sync.c:1211:5
Second Ractor:
frame #2: 0x00000001002208d0 miniruby`rb_ractor_sched_barrier_start [inlined] rb_native_cond_wait(cond=<unavailable>, mutex=<unavailable>) at thread_pthread.c:221:13
frame #3: 0x00000001002208cc miniruby`rb_ractor_sched_barrier_start(vm=0x000000013180d600, cr=0x0000000131093460) at thread_pthread.c:1438:13
frame #4: 0x000000010028a328 miniruby`rb_vm_barrier at vm_sync.c:262:13 [artificial]
frame #5: 0x00000001000dfa6c miniruby`gc_start [inlined] rb_gc_vm_barrier at gc.c:179:5
frame #6: 0x00000001000dfa68 miniruby`gc_start [inlined] gc_enter(objspace=0x000000013180fc00, event=gc_enter_event_start, lock_lev=<unavailable>) at default.c:6636:9
frame #7: 0x00000001000dfa48 miniruby`gc_start(objspace=0x000000013180fc00, reason=<unavailable>) at default.c:6361:5
frame #8: 0x00000001000e3fd8 miniruby`objspace_malloc_increase_body [inlined] garbage_collect(objspace=0x000000013180fc00, reason=512) at default.c:6341:15
frame #9: 0x00000001000e3fa4 miniruby`objspace_malloc_increase_body [inlined] garbage_collect_with_gvl(objspace=0x000000013180fc00, reason=512) at default.c:6741:16
frame #10: 0x00000001000e3f88 miniruby`objspace_malloc_increase_body(objspace=0x000000013180fc00, mem=<unavailable>, new_size=<unavailable>, old_size=<unavailable>, type=<unavailable>) at default.c:8007:13
frame #11: 0x00000001000e3c44 miniruby`rb_gc_impl_malloc [inlined] objspace_malloc_fixup(objspace=0x000000013180fc00, mem=0x000000011c700000, size=12582912) at default.c:8085:5
frame #12: 0x00000001000e3c30 miniruby`rb_gc_impl_malloc(objspace_ptr=0x000000013180fc00, size=12582912) at default.c:8182:12
frame #13: 0x00000001000d4584 miniruby`ruby_xmalloc [inlined] ruby_xmalloc_body(size=<unavailable>) at gc.c:5128:12
frame #14: 0x00000001000d4568 miniruby`ruby_xmalloc(size=<unavailable>) at gc.c:5118:34
frame #15: 0x00000001001eb184 miniruby`rb_st_init_existing_table_with_size(tab=0x000000011c2b4b40, type=<unavailable>, size=<unavailable>) at st.c:559:39
frame #16: 0x00000001001ebc74 miniruby`rebuild_table_if_necessary [inlined] rb_st_init_table_with_size(type=0x00000001004f4a78, size=524287) at st.c:585:5
frame #17: 0x00000001001ebc5c miniruby`rebuild_table_if_necessary [inlined] rebuild_table(tab=0x000000013108e2f0) at st.c:753:19
frame #18: 0x00000001001ebbfc miniruby`rebuild_table_if_necessary(tab=0x000000013108e2f0) at st.c:1125:9
frame #19: 0x00000001001eba08 miniruby`rb_st_insert(tab=0x000000013108e2f0, key=262144, value=4767566624) at st.c:1143:5
frame #20: 0x0000000100194b84 miniruby`ractor_port_initialzie [inlined] ractor_add_port(r=0x0000000131093460, id=262144) at ractor_sync.c:399:9
frame #21: 0x0000000100194b58 miniruby`ractor_port_initialzie [inlined] ractor_port_init(rpv=4750065560, r=0x0000000131093460) at ractor_sync.c:87:5
frame #22: 0x0000000100194b34 miniruby`ractor_port_initialzie(self=4750065560) at ractor_sync.c:103:12
|
|
And get rid of the `obj_to_id_tbl`
It's no longer needed, the `object_id` is now stored inline
in the object alongside instance variables.
We still need the inverse table in case `_id2ref` is invoked, but
we lazily build it by walking the heap if that happens.
The `object_id` concern is also no longer a GC implementation
concern, but a generic implementation.
Co-Authored-By: Matt Valentine-House <matt@eightbitraptor.com>
Notes:
Merged: https://github.com/ruby/ruby/pull/13159
|
|
That seemed like the logical thing to do to me, but ko1 disagree.
Notes:
Merged: https://github.com/ruby/ruby/pull/13008
|
|
[Bug #20271]
[Bug #20267]
[Bug #20255]
`rb_obj_alloc(RBASIC_CLASS(obj))` will always allocate from the basic
40B pool, so if `obj` is larger than `40B`, we'll create a corrupted
object when we later copy the shape_id.
Instead we can use the same logic than ractor copy, which is
to use `rb_obj_clone`, and later ask the GC to free the original
object.
We then must turn it into a `T_OBJECT`, because otherwise
just changing its class to `RactorMoved` leaves a lot of
ways to keep using the object, e.g.:
```
a = [1, 2, 3]
Ractor.new{}.send(a, move: true)
[].concat(a) # Should raise, but wasn't.
```
If it turns out that `rb_obj_clone` isn't performant enough
for some uses, we can always have carefully crafted specialized
paths for the types that would benefit from it.
Notes:
Merged: https://github.com/ruby/ruby/pull/13008
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/12965
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/12965
|
|
This function replaces the internal rb_obj_gc_flags API. rb_gc_object_metadata
returns an array of name and value pairs, with the last element having
0 for the name.
Notes:
Merged: https://github.com/ruby/ruby/pull/12777
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/12271
|
|
We have name fragmentation for this feature, including "shared GC",
"modular GC", and "external GC". This commit standardizes the feature
name to "modular GC" and the implementation to "GC library".
Notes:
Merged: https://github.com/ruby/ruby/pull/12261
|
|
We can use the BUILDING_SHARED_GC flag to check if we're building gc_impl.h
as a shared GC or building the default GC.
Notes:
Merged: https://github.com/ruby/ruby/pull/12243
|
|
Let there be rooms for each GC implementations how to handle multi
threaded situations. They can be totally reentrant, or can have
their own mutex, or can rely on rb_thread_call_with_gvl.
In any ways the allocator (has been, but now officially is)
expected to run properly without a GVL. This means there need be
a way for them to inform the interpreter about their allocation
failures, without relying on raising exceptions.
Let them do so by returning NULL.
Notes:
Merged: https://github.com/ruby/ruby/pull/12188
|
|
So that it doesn't get included in the generated binaries for builds
that don't support loading shared GC modules
Co-Authored-By: Peter Zhu <peter@peterzhu.ca>
Notes:
Merged: https://github.com/ruby/ruby/pull/12149
|
|
Co-Authored-By: Peter Zhu <peter@peterzhu.ca>
Notes:
Merged: https://github.com/ruby/ruby/pull/12149
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/11932
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/11932
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/11870
|
|
Now that we've inlined the eden_heap into the size_pool, we should
rename the size_pool to heap. So that Ruby contains multiple heaps, with
different sized objects.
The term heap as a collection of memory pages is more in memory
management nomenclature, whereas size_pool was a name chosen out of
necessity during the development of the Variable Width Allocation
features of Ruby.
The concept of size pools was introduced in order to facilitate
different sized objects (other than the default 40 bytes). They wrapped
the eden heap and the tomb heap, and some related state, and provided a
reasonably simple way of duplicating all related concerns, to provide
multiple pools that all shared the same structure but held different
objects.
Since then various changes have happend in Ruby's memory layout:
* The concept of tomb heaps has been replaced by a global free pages list,
with each page having it's slot size reconfigured at the point when it
is resurrected
* the eden heap has been inlined into the size pool itself, so that now
the size pool directly controls the free_pages list, the sweeping
page, the compaction cursor and the other state that was previously
being managed by the eden heap.
Now that there is no need for a heap wrapper, we should refer to the
collection of pages containing Ruby objects as a heap again rather than
a size pool
Notes:
Merged: https://github.com/ruby/ruby/pull/11771
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/11646
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/11638
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/11637
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/11639
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/11639
|
|
It's not necessary for the GC implementation to call rb_gc_mark_roots
which calls back into the GC implementation's rb_gc_impl_objspace_mark.
Notes:
Merged: https://github.com/ruby/ruby/pull/11325
|
|
We discovered that having gc.o and gc_impl.o in separate translation
units diminishes codegen quality with GCC 11 on x86-64. This commit
solves that problem by including default/gc.c into gc.c, letting the
optimizer have visibility into the body of functions again in builds
not using link-time optimization, which are common.
This effectively restores things to the way they were before
[Feature #20470] from the optimizer's perspective while maintaining the
ability to build gc/default.c as a DSO.
There were a few functions duplicated across gc.c and gc/default.c.
Extract them and put them into gc/gc.h.
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/11199
|
|
|
|
This feature provides a new method `GC.config` that configures internal
GC configuration variables provided by an individual GC implementation.
Implemented in this PR is the option `full_mark`: a boolean value that
will determine whether the Ruby GC is allowed to run a major collection
while the process is running.
It has the following semantics
This feature configures Ruby's GC to only run minor GC's. It's designed
to give users relying on Out of Band GC complete control over when a
major GC is run. Configuring `full_mark: false` does two main things:
* Never runs a Major GC. When the heap runs out of space during a minor
and when a major would traditionally be run, instead we allocate more
heap pages, and mark objspace as needing a major GC.
* Don't increment object ages. We don't promote objects during GC, this
will cause every object to be scanned on every minor. This is an
intentional trade-off between minor GC's doing more work every time,
and potentially promoting objects that will then never be GC'd.
The intention behind not aging objects is that users of this feature
should use a preforking web server, or some other method of pre-warming
the oldgen (like Nakayoshi fork)before disabling Majors. That way most
objects that are going to be old will have already been promoted.
This will interleave major and minor GC collections in exactly the same
what that the Ruby GC runs in versions previously to this. This is the
default behaviour.
* This new method has the following extra semantics:
- `GC.config` with no arguments returns a hash of the keys of the
currently configured GC
- `GC.config` with a key pair (eg. `GC.config(full_mark: true)` sets
the matching config key to the corresponding value and returns the
entire known config hash, including the new values. If the key does
not exist, `nil` is returned
* When a minor GC is run, Ruby sets an internal status flag to determine
whether the next GC will be a major or a minor. When `full_mark:
false` this flag is ignored and every GC will be a minor.
This status flag can be accessed at
`GC.latest_gc_info(:needs_major_by)`. Any value other than `nil` means
that the next collection would have been a major.
Thus it's possible to use this feature to check at a predetermined
time, whether a major GC is necessary and run one if it is. eg. After
a request has finished processing.
```ruby
if GC.latest_gc_info(:needs_major_by)
GC.start(full_mark: true)
end
```
[Feature #20443]
|
|
|