| Age | Commit message (Collapse) | Author |
|
|
|
|
|
[Feature #21084]
# Summary
The current way of marking weak references uses `rb_gc_mark_weak(VALUE *ptr)`.
This presents challenges because Ruby's GC is incremental, meaning that if the
`ptr` changes (e.g. realloc'd or free'd), then we could have an invalid memory
access. This also overwrites `*ptr = Qundef` if `*ptr` is dead, which prevents
any cleanup to be run (e.g. freeing memory or deleting entries from hash
tables). This ticket proposes `rb_gc_declare_weak_references` which declares
that an object has weak references and calls a cleanup function after marking,
allowing the object to clean up any memory for dead objects.
# Introduction
In [[Feature #19783]](https://bugs.ruby-lang.org/issues/19783), I introduced an
API allowing objects to mark weak references, the function signature looks like
this:
```c
void rb_gc_mark_weak(VALUE *ptr);
```
`rb_gc_mark_weak` is called during the marking phase of the GC to specify that
the memory at `ptr` holds a pointer to a Ruby object that is weakly referenced.
`rb_gc_mark_weak` appends this pointer to a list that is processed after the
marking phase of the GC. If the object at `*ptr` is no longer alive, then it
overwrites the object reference with a special value (`*ptr = Qundef`).
However, this API resulted in two challenges:
1. Ruby's default GC is incremental, which means that the GC is not ran in one
phase, but rather split into chunks of work that interleaves with Ruby
execution. The `ptr` passed into `rb_gc_mark_weak` could be on the malloc
heap, and that memory could be realloc'd or even free'd. We had to use
workarounds such as `rb_gc_remove_weak` to ensure that there were no illegal
memory accesses. This made `rb_gc_mark_weak` difficult to use, impacted
runtime performance, and increased memory usage.
2. When an object dies, `rb_gc_mark_weak` only overwites the reference with
`Qundef`. This means that if we want to do any cleanup (e.g. free a piece of
memory or delete a hash table entry), we could not do that and had to defer
this process elsewhere (e.g. during marking or runtime).
In this ticket, I'm proposing a new API for weak references. Instead of an
object marking its weak references during the marking phase, the object declares
that it has weak references using the `rb_gc_declare_weak_references` function.
This declaration occurs during runtime (e.g. after the object has been created)
rather than during GC.
After an object declares that it has weak references, it will have its callback
function called after marking as long as that object is alive. This callback
function can then call a special function `rb_gc_handle_weak_references_alive_p`
to determine whether its references are alive. This will allow the callback
function to do whatever it wants on the object, allowing it to perform any
cleanup work it needs.
This significantly simplifies the code for `ObjectSpace::WeakMap` and
`ObjectSpace::WeakKeyMap` because it no longer needs to have the workarounds for
the limitations of `rb_gc_mark_weak`.
# Performance
The performance results below demonstrate that `ObjectSpace::WeakMap#[]=` is now
about 60% faster because the implementation has been simplified and the number
of allocations has been reduced. We can see that there is not a significant
impact on the performance of `ObjectSpace::WeakMap#[]`.
Base:
```
ObjectSpace::WeakMap#[]=
4.620M (± 6.4%) i/s (216.44 ns/i) - 23.342M in 5.072149s
ObjectSpace::WeakMap#[]
30.967M (± 1.9%) i/s (32.29 ns/i) - 154.998M in 5.007157s
```
Branch:
```
ObjectSpace::WeakMap#[]=
7.336M (± 2.8%) i/s (136.31 ns/i) - 36.755M in 5.013983s
ObjectSpace::WeakMap#[]
30.902M (± 5.4%) i/s (32.36 ns/i) - 155.901M in 5.064060s
```
Code:
```
require "bundler/inline"
gemfile do
source "https://rubygems.org"
gem "benchmark-ips"
end
wmap = ObjectSpace::WeakMap.new
key = Object.new
val = Object.new
wmap[key] = val
Benchmark.ips do |x|
x.report("ObjectSpace::WeakMap#[]=") do |times|
i = 0
while i < times
wmap[Object.new] = Object.new
i += 1
end
end
x.report("ObjectSpace::WeakMap#[]") do |times|
i = 0
while i < times
wmap[key]
wmap[val] # does not exist
i += 1
end
end
end
```
# Alternative designs
Currently, `rb_gc_declare_weak_references` is designed to be an internal-only
API. This allows us to assume the object types that call
`rb_gc_declare_weak_references`. In the future, if we want to open up this API
to third parties, we may want to change this function to something like:
```c
void rb_gc_add_cleaner(VALUE obj, void (*callback)(VALUE obj));
```
This will allow the third party to implement a custom `callback` that gets
called after the marking phase of GC to clean up any dead references. I chose
not to implement this design because it is less efficient as we would need to
store a mapping from `obj` to `callback`, which requires extra memory.
|
|
rb_gc_verify_shareable is not GC implementation specific so it should live
in gc.c.
|
|
|
|
|
|
Some GC modules, notably MMTk, support parallel GC, i.e. multiple GC
threads work in parallel during a GC. Currently, when two GC threads
scan two iseq objects simultaneously when YJIT is enabled, both threads
will attempt to borrow `CodeBlock::mem_block`, which will result in
panic.
This commit makes one part of the change.
We now set the YJIT code memory to writable in bulk before the
reference-updating phase, and reset it to executable in bulk after the
reference-updating phase. Previously, YJIT lazily sets memory pages
writable while updating object references embedded in JIT-compiled
machine code, and sets the memory back to executable by calling
`mark_all_executable`. This approach is inherently unfriendly to
parallel GC because (1) it borrows `CodeBlock::mem_block`, and (2) it
sets the whole `CodeBlock` as executable which races with other GC
threads that are updating other iseq objects. It also has performance
overhead due to the frequent invocation of system calls. We now set the
permission of all the code memory in bulk before and after the reference
updating phase. Multiple GC threads can now perform raw memory writes
in parallel. We should also see performance improvement during moving
GC because of the reduced number of `mprotect` system calls.
|
|
RUBY_ASSERT_MESG_WHEN supports a format string at the end for additional
information. This commit adds support for that in GC_ASSERT.
|
|
This commit adds file and line to GC VM locking functions for debugging
purposes and adds upper case macros to pass __FILE__ and __LINE__.
Notes:
Merged: https://github.com/ruby/ruby/pull/13550
|
|
Fixes [Bug #21201]
This change addresses a performance regression where defining methods
inside `refine` blocks caused severe slowdowns. The issue was due to
`rb_clear_all_refinement_method_cache()` triggering a full object
space scan via `rb_objspace_each_objects` to find and invalidate
affected callcaches, which is very inefficient.
To fix this, I introduce `vm->cc_refinement_table` to track
callcaches related to refinements. This allows us to invalidate
only the necessary callcaches without scanning the entire heap,
resulting in significant performance improvement.
Notes:
Merged: https://github.com/ruby/ruby/pull/13077
|
|
MODULAR_GC_FN allows functions in gc.c to be defined as static when not
building with modular GC.
Notes:
Merged: https://github.com/ruby/ruby/pull/13539
|
|
As well as associated functions, this should make it more obvious
what the purpose is.
Notes:
Merged: https://github.com/ruby/ruby/pull/13334
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/13159
|
|
And get rid of the `obj_to_id_tbl`
It's no longer needed, the `object_id` is now stored inline
in the object alongside instance variables.
We still need the inverse table in case `_id2ref` is invoked, but
we lazily build it by walking the heap if that happens.
The `object_id` concern is also no longer a GC implementation
concern, but a generic implementation.
Co-Authored-By: Matt Valentine-House <matt@eightbitraptor.com>
Notes:
Merged: https://github.com/ruby/ruby/pull/13159
|
|
Ivars will longer be the only thing stored inline
via shapes, so keeping the `iv_index` and `ivptr` names
would be confusing.
Instance variables won't be the only thing stored inline
via shapes, so keeping the `ivptr` name would be confusing.
`field` encompass anything that can be stored in a VALUE array.
Similarly, `gen_ivtbl` becomes `gen_fields_tbl`.
Notes:
Merged: https://github.com/ruby/ruby/pull/13159
|
|
We can use rb_gc_vm_weak_table_foreach for reference updating of weak tables
in the default GC.
Notes:
Merged: https://github.com/ruby/ruby/pull/12629
|
|
For moving garbage collectors, we may want to combine liveliness checking
with reference updating for performance. This commit allows for non-weak
references to be passed into the callback function when weak_only is false.
Notes:
Merged: https://github.com/ruby/ruby/pull/12629
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/12307
|
|
We have name fragmentation for this feature, including "shared GC",
"modular GC", and "external GC". This commit standardizes the feature
name to "modular GC" and the implementation to "GC library".
Notes:
Merged: https://github.com/ruby/ruby/pull/12261
|
|
So that it doesn't get included in the generated binaries for builds
that don't support loading shared GC modules
Co-Authored-By: Peter Zhu <peter@peterzhu.ca>
Notes:
Merged: https://github.com/ruby/ruby/pull/12149
|
|
Co-Authored-By: Peter Zhu <peter@peterzhu.ca>
Notes:
Merged: https://github.com/ruby/ruby/pull/12149
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/11904
|
|
Shared GC might not use the private functions in gc/gc.h, so they will
show up as warnings for unused functions. This commit disables
-Wunused-function for these functions when building as shared GC.
Notes:
Merged: https://github.com/ruby/ruby/pull/11808
|
|
Now that we've inlined the eden_heap into the size_pool, we should
rename the size_pool to heap. So that Ruby contains multiple heaps, with
different sized objects.
The term heap as a collection of memory pages is more in memory
management nomenclature, whereas size_pool was a name chosen out of
necessity during the development of the Variable Width Allocation
features of Ruby.
The concept of size pools was introduced in order to facilitate
different sized objects (other than the default 40 bytes). They wrapped
the eden heap and the tomb heap, and some related state, and provided a
reasonably simple way of duplicating all related concerns, to provide
multiple pools that all shared the same structure but held different
objects.
Since then various changes have happend in Ruby's memory layout:
* The concept of tomb heaps has been replaced by a global free pages list,
with each page having it's slot size reconfigured at the point when it
is resurrected
* the eden heap has been inlined into the size pool itself, so that now
the size pool directly controls the free_pages list, the sweeping
page, the compaction cursor and the other state that was previously
being managed by the eden heap.
Now that there is no need for a heap wrapper, we should refer to the
collection of pages containing Ruby objects as a heap again rather than
a size pool
Notes:
Merged: https://github.com/ruby/ruby/pull/11771
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/11764
|
|
This commit removes the need for the GC implementation to implement heap
walking and instead Ruby will implement it.
Notes:
Merged: https://github.com/ruby/ruby/pull/11511
|
|
Using gc_impl.h inside of gc/gc.h will cause gc/gc.h to use the functions
in gc/default.c when builing with shared GC support because gc/gc.h is
included into gc.c before the rb_gc_impl functions are overridden by the
preprocessor.
Notes:
Merged: https://github.com/ruby/ruby/pull/11423
|
|
When hash_foreach_replace_value returns ST_REPLACE, it's guaranteed that
the value has moved in hash_replace_ref_value.
Notes:
Merged: https://github.com/ruby/ruby/pull/11423
|
|
gc.c mistakenly defined GC_ASSERT as blank, which caused it to be a
no-op. This caused all assertions in gc.c and gc/default.c to not do
anything. This commit fixes it by moving the definition of GC_ASSERT
to gc/gc.h.
Notes:
Merged: https://github.com/ruby/ruby/pull/11377
|
|
We discovered that having gc.o and gc_impl.o in separate translation
units diminishes codegen quality with GCC 11 on x86-64. This commit
solves that problem by including default/gc.c into gc.c, letting the
optimizer have visibility into the body of functions again in builds
not using link-time optimization, which are common.
This effectively restores things to the way they were before
[Feature #20470] from the optimizer's perspective while maintaining the
ability to build gc/default.c as a DSO.
There were a few functions duplicated across gc.c and gc/default.c.
Extract them and put them into gc/gc.h.
|
|
|