summaryrefslogtreecommitdiff
path: root/ujit_codegen.c
diff options
context:
space:
mode:
Diffstat (limited to 'ujit_codegen.c')
-rw-r--r--ujit_codegen.c1609
1 files changed, 0 insertions, 1609 deletions
diff --git a/ujit_codegen.c b/ujit_codegen.c
deleted file mode 100644
index 24767e1b50..0000000000
--- a/ujit_codegen.c
+++ /dev/null
@@ -1,1609 +0,0 @@
-#include <assert.h>
-#include "insns.inc"
-#include "internal.h"
-#include "vm_core.h"
-#include "vm_sync.h"
-#include "vm_callinfo.h"
-#include "builtin.h"
-#include "internal/compile.h"
-#include "internal/class.h"
-#include "insns_info.inc"
-#include "ujit.h"
-#include "ujit_iface.h"
-#include "ujit_core.h"
-#include "ujit_codegen.h"
-#include "ujit_asm.h"
-#include "ujit_utils.h"
-
-// Map from YARV opcodes to code generation functions
-static st_table *gen_fns;
-
-// Code block into which we write machine code
-static codeblock_t block;
-codeblock_t* cb = NULL;
-
-// Code block into which we write out-of-line machine code
-static codeblock_t outline_block;
-codeblock_t* ocb = NULL;
-
-// Print the current source location for debugging purposes
-RBIMPL_ATTR_MAYBE_UNUSED()
-static void
-jit_print_loc(jitstate_t* jit, const char* msg)
-{
- char *ptr;
- long len;
- VALUE path = rb_iseq_path(jit->iseq);
- RSTRING_GETMEM(path, ptr, len);
- fprintf(stderr, "%s %s:%u\n", msg, ptr, rb_iseq_line_no(jit->iseq, jit->insn_idx));
-}
-
-// Get the current instruction's opcode
-static int
-jit_get_opcode(jitstate_t* jit)
-{
- return opcode_at_pc(jit->iseq, jit->pc);
-}
-
-// Get the index of the next instruction
-static uint32_t
-jit_next_idx(jitstate_t* jit)
-{
- return jit->insn_idx + insn_len(jit_get_opcode(jit));
-}
-
-// Get an instruction argument by index
-static VALUE
-jit_get_arg(jitstate_t* jit, size_t arg_idx)
-{
- RUBY_ASSERT(arg_idx + 1 < (size_t)insn_len(jit_get_opcode(jit)));
- return *(jit->pc + arg_idx + 1);
-}
-
-// Load a pointer to a GC'd object into a register and keep track of the reference
-static void
-jit_mov_gc_ptr(jitstate_t* jit, codeblock_t* cb, x86opnd_t reg, VALUE ptr)
-{
- RUBY_ASSERT(reg.type == OPND_REG && reg.num_bits == 64);
- RUBY_ASSERT(!SPECIAL_CONST_P(ptr));
-
- mov(cb, reg, const_ptr_opnd((void*)ptr));
- // The pointer immediate is encoded as the last part of the mov written out.
- uint32_t ptr_offset = cb->write_pos - sizeof(VALUE);
-
- if (!rb_darray_append(&jit->block->gc_object_offsets, ptr_offset)) {
- rb_bug("allocation failed");
- }
-}
-
-// Save uJIT registers prior to a C call
-static void
-ujit_save_regs(codeblock_t* cb)
-{
- push(cb, REG_CFP);
- push(cb, REG_EC);
- push(cb, REG_SP);
- push(cb, REG_SP); // Maintain 16-byte RSP alignment
-}
-
-// Restore uJIT registers after a C call
-static void
-ujit_load_regs(codeblock_t* cb)
-{
- pop(cb, REG_SP); // Maintain 16-byte RSP alignment
- pop(cb, REG_SP);
- pop(cb, REG_EC);
- pop(cb, REG_CFP);
-}
-
-/**
-Generate an inline exit to return to the interpreter
-*/
-static void
-ujit_gen_exit(jitstate_t* jit, ctx_t* ctx, codeblock_t* cb, VALUE* exit_pc)
-{
- // Write the adjusted SP back into the CFP
- if (ctx->sp_offset != 0)
- {
- x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 0);
- lea(cb, REG_SP, stack_pointer);
- mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP);
- }
-
- // Update the CFP on the EC
- mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);
-
- // Directly return the next PC, which is a constant
- mov(cb, RAX, const_ptr_opnd(exit_pc));
- mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), RAX);
-
- // Accumulate stats about interpreter exits
-#if RUBY_DEBUG
- if (rb_ujit_opts.gen_stats) {
- mov(cb, RDI, const_ptr_opnd(exit_pc));
- call_ptr(cb, RSI, (void *)&rb_ujit_count_side_exit_op);
- }
-#endif
-
- // Write the post call bytes
- cb_write_post_call_bytes(cb);
-}
-
-/**
-Generate an out-of-line exit to return to the interpreter
-*/
-static uint8_t *
-ujit_side_exit(jitstate_t* jit, ctx_t* ctx)
-{
- uint8_t* code_ptr = cb_get_ptr(ocb, ocb->write_pos);
-
- // Table mapping opcodes to interpreter handlers
- const void * const *handler_table = rb_vm_get_insns_address_table();
-
- // FIXME: rewriting the old instruction is only necessary if we're
- // exiting right at an interpreter entry point
-
- // Write back the old instruction at the exit PC
- // Otherwise the interpreter may jump right back to the
- // JITted code we're trying to exit
- VALUE* exit_pc = &jit->iseq->body->iseq_encoded[jit->insn_idx];
- int exit_opcode = opcode_at_pc(jit->iseq, exit_pc);
- void* handler_addr = (void*)handler_table[exit_opcode];
- mov(ocb, RAX, const_ptr_opnd(exit_pc));
- mov(ocb, RCX, const_ptr_opnd(handler_addr));
- mov(ocb, mem_opnd(64, RAX, 0), RCX);
-
- // Generate the code to exit to the interpreters
- ujit_gen_exit(jit, ctx, ocb, exit_pc);
-
- return code_ptr;
-}
-
-/*
-Compile an interpreter entry block to be inserted into an iseq
-Returns `NULL` if compilation fails.
-*/
-uint8_t*
-ujit_entry_prologue(void)
-{
- RUBY_ASSERT(cb != NULL);
-
- if (cb->write_pos + 1024 >= cb->mem_size) {
- rb_bug("out of executable memory");
- }
-
- // Align the current write positon to cache line boundaries
- cb_align_pos(cb, 64);
-
- uint8_t *code_ptr = cb_get_ptr(cb, cb->write_pos);
-
- // Write the interpreter entry prologue
- cb_write_pre_call_bytes(cb);
-
- // Load the current SP from the CFP into REG_SP
- mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
-
- return code_ptr;
-}
-
-/*
-Generate code to check for interrupts and take a side-exit
-*/
-static void
-ujit_check_ints(codeblock_t* cb, uint8_t* side_exit)
-{
- // Check for interrupts
- // see RUBY_VM_CHECK_INTS(ec) macro
- mov(cb, REG0_32, member_opnd(REG_EC, rb_execution_context_t, interrupt_mask));
- not(cb, REG0_32);
- test(cb, member_opnd(REG_EC, rb_execution_context_t, interrupt_flag), REG0_32);
- jnz_ptr(cb, side_exit);
-}
-
-/*
-Compile a sequence of bytecode instructions for a given basic block version
-*/
-void
-ujit_gen_block(ctx_t* ctx, block_t* block)
-{
- RUBY_ASSERT(cb != NULL);
- RUBY_ASSERT(block != NULL);
-
- const rb_iseq_t *iseq = block->blockid.iseq;
- uint32_t insn_idx = block->blockid.idx;
- VALUE *encoded = iseq->body->iseq_encoded;
-
- // NOTE: if we are ever deployed in production, we
- // should probably just log an error and return NULL here,
- // so we can fail more gracefully
- if (cb->write_pos + 1024 >= cb->mem_size) {
- rb_bug("out of executable memory");
- }
- if (ocb->write_pos + 1024 >= ocb->mem_size) {
- rb_bug("out of executable memory (outlined block)");
- }
-
- // Initialize a JIT state object
- jitstate_t jit = {
- block,
- block->blockid.iseq,
- 0,
- 0
- };
-
- // Last operation that was successfully compiled
- opdesc_t* p_last_op = NULL;
-
- // Mark the start position of the block
- block->start_pos = cb->write_pos;
-
- // For each instruction to compile
- for (;;) {
- // Set the current instruction
- jit.insn_idx = insn_idx;
- jit.pc = &encoded[insn_idx];
-
- // Get the current opcode
- int opcode = jit_get_opcode(&jit);
-
- // Lookup the codegen function for this instruction
- st_data_t st_op_desc;
- if (!rb_st_lookup(gen_fns, opcode, &st_op_desc)) {
- break;
- }
-
- // Accumulate stats about instructions executed
- if (rb_ujit_opts.gen_stats) {
- // Count instructions executed by the JIT
- mov(cb, REG0, const_ptr_opnd((void *)&rb_ujit_exec_insns_count));
- add(cb, mem_opnd(64, REG0, 0), imm_opnd(1));
- }
-
- //fprintf(stderr, "compiling %d: %s\n", insn_idx, insn_name(opcode));
- //print_str(cb, insn_name(opcode));
-
- // Call the code generation function
- opdesc_t* p_desc = (opdesc_t*)st_op_desc;
- bool success = p_desc->gen_fn(&jit, ctx);
-
- // If we can't compile this instruction, stop
- if (!success) {
- break;
- }
-
- // Move to the next instruction
- p_last_op = p_desc;
- insn_idx += insn_len(opcode);
-
- // If this instruction terminates this block
- if (p_desc->is_branch) {
- break;
- }
- }
-
- // If the last instruction compiled did not terminate the block
- // Generate code to exit to the interpreter
- if (!p_last_op || !p_last_op->is_branch) {
- ujit_gen_exit(&jit, ctx, cb, &encoded[insn_idx]);
- }
-
- // Mark the end position of the block
- block->end_pos = cb->write_pos;
-
- // Store the index of the last instruction in the block
- block->end_idx = insn_idx;
-
- if (UJIT_DUMP_MODE >= 2) {
- // Dump list of compiled instrutions
- fprintf(stderr, "Compiled the following for iseq=%p:\n", (void *)iseq);
- VALUE *pc = &encoded[block->blockid.idx];
- VALUE *end_pc = &encoded[insn_idx];
- while (pc < end_pc) {
- int opcode = opcode_at_pc(iseq, pc);
- fprintf(stderr, " %04td %s\n", pc - encoded, insn_name(opcode));
- pc += insn_len(opcode);
- }
- }
-}
-
-static bool
-gen_dup(jitstate_t* jit, ctx_t* ctx)
-{
- // Get the top value and its type
- x86opnd_t dup_val = ctx_stack_pop(ctx, 0);
- int dup_type = ctx_get_top_type(ctx);
-
- // Push the same value on top
- x86opnd_t loc0 = ctx_stack_push(ctx, dup_type);
- mov(cb, REG0, dup_val);
- mov(cb, loc0, REG0);
-
- return true;
-}
-
-static bool
-gen_nop(jitstate_t* jit, ctx_t* ctx)
-{
- // Do nothing
- return true;
-}
-
-static bool
-gen_pop(jitstate_t* jit, ctx_t* ctx)
-{
- // Decrement SP
- ctx_stack_pop(ctx, 1);
- return true;
-}
-
-static bool
-gen_putnil(jitstate_t* jit, ctx_t* ctx)
-{
- // Write constant at SP
- x86opnd_t stack_top = ctx_stack_push(ctx, T_NIL);
- mov(cb, stack_top, imm_opnd(Qnil));
- return true;
-}
-
-static bool
-gen_putobject(jitstate_t* jit, ctx_t* ctx)
-{
- VALUE arg = jit_get_arg(jit, 0);
-
- if (FIXNUM_P(arg))
- {
- // Keep track of the fixnum type tag
- x86opnd_t stack_top = ctx_stack_push(ctx, T_FIXNUM);
-
- x86opnd_t imm = imm_opnd((int64_t)arg);
-
- // 64-bit immediates can't be directly written to memory
- if (imm.num_bits <= 32)
- {
- mov(cb, stack_top, imm);
- }
- else
- {
- mov(cb, REG0, imm);
- mov(cb, stack_top, REG0);
- }
- }
- else if (arg == Qtrue || arg == Qfalse)
- {
- x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
- mov(cb, stack_top, imm_opnd((int64_t)arg));
- }
- else
- {
- // Load the argument from the bytecode sequence.
- // We need to do this as the argument can change due to GC compaction.
- x86opnd_t pc_plus_one = const_ptr_opnd((void*)(jit->pc + 1));
- mov(cb, RAX, pc_plus_one);
- mov(cb, RAX, mem_opnd(64, RAX, 0));
-
- // Write argument at SP
- x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
- mov(cb, stack_top, RAX);
- }
-
- return true;
-}
-
-static bool
-gen_putobject_int2fix(jitstate_t* jit, ctx_t* ctx)
-{
- int opcode = jit_get_opcode(jit);
- int cst_val = (opcode == BIN(putobject_INT2FIX_0_))? 0:1;
-
- // Write constant at SP
- x86opnd_t stack_top = ctx_stack_push(ctx, T_FIXNUM);
- mov(cb, stack_top, imm_opnd(INT2FIX(cst_val)));
-
- return true;
-}
-
-static bool
-gen_putself(jitstate_t* jit, ctx_t* ctx)
-{
- // Load self from CFP
- mov(cb, RAX, member_opnd(REG_CFP, rb_control_frame_t, self));
-
- // Write it on the stack
- x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
- mov(cb, stack_top, RAX);
-
- return true;
-}
-
-static bool
-gen_getlocal_wc0(jitstate_t* jit, ctx_t* ctx)
-{
- // Load environment pointer EP from CFP
- mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
-
- // Compute the offset from BP to the local
- int32_t local_idx = (int32_t)jit_get_arg(jit, 0);
- const int32_t offs = -(SIZEOF_VALUE * local_idx);
-
- // Load the local from the block
- mov(cb, REG0, mem_opnd(64, REG0, offs));
-
- // Write the local at SP
- x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
- mov(cb, stack_top, REG0);
-
- return true;
-}
-
-static bool
-gen_getlocal_wc1(jitstate_t* jit, ctx_t* ctx)
-{
- //fprintf(stderr, "gen_getlocal_wc1\n");
-
- // Load environment pointer EP from CFP
- mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
-
- // Get the previous EP from the current EP
- // See GET_PREV_EP(ep) macro
- // VALUE* prev_ep = ((VALUE *)((ep)[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03))
- mov(cb, REG0, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL));
- and(cb, REG0, imm_opnd(~0x03));
-
- // Load the local from the block
- // val = *(vm_get_ep(GET_EP(), level) - idx);
- int32_t local_idx = (int32_t)jit_get_arg(jit, 0);
- const int32_t offs = -(SIZEOF_VALUE * local_idx);
- mov(cb, REG0, mem_opnd(64, REG0, offs));
-
- // Write the local at SP
- x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
- mov(cb, stack_top, REG0);
-
- return true;
-}
-
-static bool
-gen_setlocal_wc0(jitstate_t* jit, ctx_t* ctx)
-{
- /*
- vm_env_write(const VALUE *ep, int index, VALUE v)
- {
- VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS];
- if (LIKELY((flags & VM_ENV_FLAG_WB_REQUIRED) == 0)) {
- VM_STACK_ENV_WRITE(ep, index, v);
- }
- else {
- vm_env_write_slowpath(ep, index, v);
- }
- }
- */
-
- // Load environment pointer EP from CFP
- mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
-
- // flags & VM_ENV_FLAG_WB_REQUIRED
- x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS);
- test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED));
-
- // Create a size-exit to fall back to the interpreter
- uint8_t* side_exit = ujit_side_exit(jit, ctx);
-
- // if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
- jnz_ptr(cb, side_exit);
-
- // Pop the value to write from the stack
- x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
- mov(cb, REG1, stack_top);
-
- // Write the value at the environment pointer
- int32_t local_idx = (int32_t)jit_get_arg(jit, 0);
- const int32_t offs = -8 * local_idx;
- mov(cb, mem_opnd(64, REG0, offs), REG1);
-
- return true;
-}
-
-// Check that `self` is a pointer to an object on the GC heap
-static void
-guard_self_is_object(codeblock_t *cb, x86opnd_t self_opnd, uint8_t *side_exit, ctx_t *ctx)
-{
- // `self` is constant throughout the entire region, so we only need to do this check once.
- if (!ctx->self_is_object) {
- test(cb, self_opnd, imm_opnd(RUBY_IMMEDIATE_MASK));
- jnz_ptr(cb, side_exit);
- cmp(cb, self_opnd, imm_opnd(Qfalse));
- je_ptr(cb, side_exit);
- cmp(cb, self_opnd, imm_opnd(Qnil));
- je_ptr(cb, side_exit);
- ctx->self_is_object = true;
- }
-}
-
-static bool
-gen_getinstancevariable(jitstate_t* jit, ctx_t* ctx)
-{
- IVC ic = (IVC)jit_get_arg(jit, 1);
-
- // Check that the inline cache has been set, slot index is known
- if (!ic->entry)
- {
- return false;
- }
-
- // If the class uses the default allocator, instances should all be T_OBJECT
- // NOTE: This assumes nobody changes the allocator of the class after allocation.
- // Eventually, we can encode whether an object is T_OBJECT or not
- // inside object shapes.
- if (rb_get_alloc_func(ic->entry->class_value) != rb_class_allocate_instance)
- {
- return false;
- }
-
- uint32_t ivar_index = ic->entry->index;
-
- // Create a size-exit to fall back to the interpreter
- uint8_t* side_exit = ujit_side_exit(jit, ctx);
-
- // Load self from CFP
- mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));
-
- guard_self_is_object(cb, REG0, side_exit, ctx);
-
- // Bail if receiver class is different from compiled time call cache class
- x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
- mov(cb, REG1, klass_opnd);
- x86opnd_t serial_opnd = mem_opnd(64, REG1, offsetof(struct RClass, class_serial));
- cmp(cb, serial_opnd, imm_opnd(ic->entry->class_serial));
- jne_ptr(cb, side_exit);
-
- // Bail if the ivars are not on the extended table
- // See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
- x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
- test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
- jnz_ptr(cb, side_exit);
-
- // check that the extended table is big enough
- if (ivar_index >= ROBJECT_EMBED_LEN_MAX + 1)
- {
- // Check that the slot is inside the extended table (num_slots > index)
- x86opnd_t num_slots = mem_opnd(32, REG0, offsetof(struct RObject, as.heap.numiv));
- cmp(cb, num_slots, imm_opnd(ivar_index));
- jle_ptr(cb, side_exit);
- }
-
- // Get a pointer to the extended table
- x86opnd_t tbl_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.heap.ivptr));
- mov(cb, REG0, tbl_opnd);
-
- // Read the ivar from the extended table
- x86opnd_t ivar_opnd = mem_opnd(64, REG0, sizeof(VALUE) * ivar_index);
- mov(cb, REG0, ivar_opnd);
-
- // Check that the ivar is not Qundef
- cmp(cb, REG0, imm_opnd(Qundef));
- je_ptr(cb, side_exit);
-
- // Push the ivar on the stack
- x86opnd_t out_opnd = ctx_stack_push(ctx, T_NONE);
- mov(cb, out_opnd, REG0);
-
- return true;
-}
-
-static bool
-gen_setinstancevariable(jitstate_t* jit, ctx_t* ctx)
-{
- IVC ic = (IVC)jit_get_arg(jit, 1);
-
- // Check that the inline cache has been set, slot index is known
- if (!ic->entry)
- {
- return false;
- }
-
- // If the class uses the default allocator, instances should all be T_OBJECT
- // NOTE: This assumes nobody changes the allocator of the class after allocation.
- // Eventually, we can encode whether an object is T_OBJECT or not
- // inside object shapes.
- if (rb_get_alloc_func(ic->entry->class_value) != rb_class_allocate_instance)
- {
- return false;
- }
-
- uint32_t ivar_index = ic->entry->index;
-
- // Create a size-exit to fall back to the interpreter
- uint8_t* side_exit = ujit_side_exit(jit, ctx);
-
- // Load self from CFP
- mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));
-
- guard_self_is_object(cb, REG0, side_exit, ctx);
-
- // Bail if receiver class is different from compiled time call cache class
- x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
- mov(cb, REG1, klass_opnd);
- x86opnd_t serial_opnd = mem_opnd(64, REG1, offsetof(struct RClass, class_serial));
- cmp(cb, serial_opnd, imm_opnd(ic->entry->class_serial));
- jne_ptr(cb, side_exit);
-
- // Bail if the ivars are not on the extended table
- // See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
- x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
- test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
- jnz_ptr(cb, side_exit);
-
- // If we can't guarantee that the extended table is big enoughg
- if (ivar_index >= ROBJECT_EMBED_LEN_MAX + 1)
- {
- // Check that the slot is inside the extended table (num_slots > index)
- x86opnd_t num_slots = mem_opnd(32, REG0, offsetof(struct RObject, as.heap.numiv));
- cmp(cb, num_slots, imm_opnd(ivar_index));
- jle_ptr(cb, side_exit);
- }
-
- // Get a pointer to the extended table
- x86opnd_t tbl_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.heap.ivptr));
- mov(cb, REG0, tbl_opnd);
-
- // Pop the value to write from the stack
- x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
- mov(cb, REG1, stack_top);
-
- // Bail if this is a heap object, because this needs a write barrier
- test(cb, REG1, imm_opnd(RUBY_IMMEDIATE_MASK));
- jz_ptr(cb, side_exit);
-
- // Write the ivar to the extended table
- x86opnd_t ivar_opnd = mem_opnd(64, REG0, sizeof(VALUE) * ivar_index);
- mov(cb, ivar_opnd, REG1);
-
- return true;
-}
-
-// Conditional move operation used by comparison operators
-typedef void (*cmov_fn)(codeblock_t* cb, x86opnd_t opnd0, x86opnd_t opnd1);
-
-static bool
-gen_fixnum_cmp(jitstate_t* jit, ctx_t* ctx, cmov_fn cmov_op)
-{
- // Create a size-exit to fall back to the interpreter
- // Note: we generate the side-exit before popping operands from the stack
- uint8_t* side_exit = ujit_side_exit(jit, ctx);
-
- // TODO: make a helper function for guarding on op-not-redefined
- // Make sure that minus isn't redefined for integers
- mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
- test(
- cb,
- member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_LT),
- imm_opnd(INTEGER_REDEFINED_OP_FLAG)
- );
- jnz_ptr(cb, side_exit);
-
- // Get the operands and destination from the stack
- int arg1_type = ctx_get_top_type(ctx);
- x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
- int arg0_type = ctx_get_top_type(ctx);
- x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
-
- // If not fixnums, fall back
- if (arg0_type != T_FIXNUM) {
- test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
- jz_ptr(cb, side_exit);
- }
- if (arg1_type != T_FIXNUM) {
- test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
- jz_ptr(cb, side_exit);
- }
-
- // Compare the arguments
- xor(cb, REG0_32, REG0_32); // REG0 = Qfalse
- mov(cb, REG1, arg0);
- cmp(cb, REG1, arg1);
- mov(cb, REG1, imm_opnd(Qtrue));
- cmov_op(cb, REG0, REG1);
-
- // Push the output on the stack
- x86opnd_t dst = ctx_stack_push(ctx, T_NONE);
- mov(cb, dst, REG0);
-
- return true;
-}
-
-static bool
-gen_opt_lt(jitstate_t* jit, ctx_t* ctx)
-{
- return gen_fixnum_cmp(jit, ctx, cmovl);
-}
-
-static bool
-gen_opt_le(jitstate_t* jit, ctx_t* ctx)
-{
- return gen_fixnum_cmp(jit, ctx, cmovle);
-}
-
-static bool
-gen_opt_ge(jitstate_t* jit, ctx_t* ctx)
-{
- return gen_fixnum_cmp(jit, ctx, cmovge);
-}
-
-static bool
-gen_opt_aref(jitstate_t* jit, ctx_t* ctx)
-{
- struct rb_call_data * cd = (struct rb_call_data *)jit_get_arg(jit, 0);
- int32_t argc = (int32_t)vm_ci_argc(cd->ci);
-
- // Only JIT one arg calls like `ary[6]`
- if (argc != 1) {
- return false;
- }
-
- const rb_callable_method_entry_t *cme = vm_cc_cme(cd->cc);
-
- // Bail if the inline cache has been filled. Currently, certain types
- // (including arrays) don't use the inline cache, so if the inline cache
- // has an entry, then this must be used by some other type.
- if (cme) {
- return false;
- }
-
- // Create a size-exit to fall back to the interpreter
- uint8_t* side_exit = ujit_side_exit(jit, ctx);
-
- // TODO: make a helper function for guarding on op-not-redefined
- // Make sure that aref isn't redefined for arrays.
- mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
- test(
- cb,
- member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_AREF),
- imm_opnd(ARRAY_REDEFINED_OP_FLAG)
- );
- jnz_ptr(cb, side_exit);
-
- // Pop the stack operands
- x86opnd_t idx_opnd = ctx_stack_pop(ctx, 1);
- x86opnd_t recv_opnd = ctx_stack_pop(ctx, 1);
- mov(cb, REG0, recv_opnd);
-
- // if (SPECIAL_CONST_P(recv)) {
- // Bail if it's not a heap object
- test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
- jnz_ptr(cb, side_exit);
- cmp(cb, REG0, imm_opnd(Qfalse));
- je_ptr(cb, side_exit);
- cmp(cb, REG0, imm_opnd(Qnil));
- je_ptr(cb, side_exit);
-
- // Bail if recv has a class other than ::Array.
- // BOP_AREF check above is only good for ::Array.
- mov(cb, REG1, mem_opnd(64, REG0, offsetof(struct RBasic, klass)));
- mov(cb, REG0, const_ptr_opnd((void *)rb_cArray));
- cmp(cb, REG0, REG1);
- jne_ptr(cb, side_exit);
-
- // Bail if idx is not a FIXNUM
- mov(cb, REG1, idx_opnd);
- test(cb, REG1, imm_opnd(RUBY_FIXNUM_FLAG));
- jz_ptr(cb, side_exit);
-
- // Save uJIT registers
- ujit_save_regs(cb);
-
- mov(cb, RDI, recv_opnd);
- sar(cb, REG1, imm_opnd(1)); // Convert fixnum to int
- mov(cb, RSI, REG1);
- call_ptr(cb, REG0, (void *)rb_ary_entry_internal);
-
- // Restore uJIT registers
- ujit_load_regs(cb);
-
- x86opnd_t stack_ret = ctx_stack_push(ctx, T_NONE);
- mov(cb, stack_ret, RAX);
-
- return true;
-}
-
-static bool
-gen_opt_and(jitstate_t* jit, ctx_t* ctx)
-{
- // Create a size-exit to fall back to the interpreter
- // Note: we generate the side-exit before popping operands from the stack
- uint8_t* side_exit = ujit_side_exit(jit, ctx);
-
- // TODO: make a helper function for guarding on op-not-redefined
- // Make sure that plus isn't redefined for integers
- mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
- test(
- cb,
- member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_AND),
- imm_opnd(INTEGER_REDEFINED_OP_FLAG)
- );
- jnz_ptr(cb, side_exit);
-
- // Get the operands and destination from the stack
- int arg1_type = ctx_get_top_type(ctx);
- x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
- int arg0_type = ctx_get_top_type(ctx);
- x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
-
- // If not fixnums, fall back
- if (arg0_type != T_FIXNUM) {
- test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
- jz_ptr(cb, side_exit);
- }
- if (arg1_type != T_FIXNUM) {
- test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
- jz_ptr(cb, side_exit);
- }
-
- // Do the bitwise and arg0 & arg1
- mov(cb, REG0, arg0);
- and(cb, REG0, arg1);
-
- // Push the output on the stack
- x86opnd_t dst = ctx_stack_push(ctx, T_FIXNUM);
- mov(cb, dst, REG0);
-
- return true;
-}
-
-static bool
-gen_opt_minus(jitstate_t* jit, ctx_t* ctx)
-{
- // Create a size-exit to fall back to the interpreter
- // Note: we generate the side-exit before popping operands from the stack
- uint8_t* side_exit = ujit_side_exit(jit, ctx);
-
- // TODO: make a helper function for guarding on op-not-redefined
- // Make sure that minus isn't redefined for integers
- mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
- test(
- cb,
- member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_MINUS),
- imm_opnd(INTEGER_REDEFINED_OP_FLAG)
- );
- jnz_ptr(cb, side_exit);
-
- // Get the operands and destination from the stack
- x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
- x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
-
- // If not fixnums, fall back
- test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
- jz_ptr(cb, side_exit);
- test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
- jz_ptr(cb, side_exit);
-
- // Subtract arg0 - arg1 and test for overflow
- mov(cb, REG0, arg0);
- sub(cb, REG0, arg1);
- jo_ptr(cb, side_exit);
- add(cb, REG0, imm_opnd(1));
-
- // Push the output on the stack
- x86opnd_t dst = ctx_stack_push(ctx, T_FIXNUM);
- mov(cb, dst, REG0);
-
- return true;
-}
-
-static bool
-gen_opt_plus(jitstate_t* jit, ctx_t* ctx)
-{
- // Create a size-exit to fall back to the interpreter
- // Note: we generate the side-exit before popping operands from the stack
- uint8_t* side_exit = ujit_side_exit(jit, ctx);
-
- // TODO: make a helper function for guarding on op-not-redefined
- // Make sure that plus isn't redefined for integers
- mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
- test(
- cb,
- member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_PLUS),
- imm_opnd(INTEGER_REDEFINED_OP_FLAG)
- );
- jnz_ptr(cb, side_exit);
-
- // Get the operands and destination from the stack
- int arg1_type = ctx_get_top_type(ctx);
- x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
- int arg0_type = ctx_get_top_type(ctx);
- x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
-
- // If not fixnums, fall back
- if (arg0_type != T_FIXNUM) {
- test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
- jz_ptr(cb, side_exit);
- }
- if (arg1_type != T_FIXNUM) {
- test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
- jz_ptr(cb, side_exit);
- }
-
- // Add arg0 + arg1 and test for overflow
- mov(cb, REG0, arg0);
- sub(cb, REG0, imm_opnd(1));
- add(cb, REG0, arg1);
- jo_ptr(cb, side_exit);
-
- // Push the output on the stack
- x86opnd_t dst = ctx_stack_push(ctx, T_FIXNUM);
- mov(cb, dst, REG0);
-
- return true;
-}
-
-void
-gen_branchif_branch(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape)
-{
- switch (shape)
- {
- case SHAPE_NEXT0:
- jz_ptr(cb, target1);
- break;
-
- case SHAPE_NEXT1:
- jnz_ptr(cb, target0);
- break;
-
- case SHAPE_DEFAULT:
- jnz_ptr(cb, target0);
- jmp_ptr(cb, target1);
- break;
- }
-}
-
-static bool
-gen_branchif(jitstate_t* jit, ctx_t* ctx)
-{
- // FIXME: eventually, put VM_CHECK_INTS() only on backward branch targets
- // Check for interrupts
- uint8_t* side_exit = ujit_side_exit(jit, ctx);
- ujit_check_ints(cb, side_exit);
-
- // Test if any bit (outside of the Qnil bit) is on
- // RUBY_Qfalse /* ...0000 0000 */
- // RUBY_Qnil /* ...0000 1000 */
- x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
- test(cb, val_opnd, imm_opnd(~Qnil));
-
- // Get the branch target instruction offsets
- uint32_t next_idx = jit_next_idx(jit);
- uint32_t jump_idx = next_idx + (uint32_t)jit_get_arg(jit, 0);
- blockid_t next_block = { jit->iseq, next_idx };
- blockid_t jump_block = { jit->iseq, jump_idx };
-
- // Generate the branch instructions
- gen_branch(
- ctx,
- jump_block,
- ctx,
- next_block,
- ctx,
- gen_branchif_branch
- );
-
- return true;
-}
-
-void
-gen_branchunless_branch(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape)
-{
- switch (shape)
- {
- case SHAPE_NEXT0:
- jnz_ptr(cb, target1);
- break;
-
- case SHAPE_NEXT1:
- jz_ptr(cb, target0);
- break;
-
- case SHAPE_DEFAULT:
- jz_ptr(cb, target0);
- jmp_ptr(cb, target1);
- break;
- }
-}
-
-static bool
-gen_branchunless(jitstate_t* jit, ctx_t* ctx)
-{
- // FIXME: eventually, put VM_CHECK_INTS() only on backward branch targets
- // Check for interrupts
- uint8_t* side_exit = ujit_side_exit(jit, ctx);
- ujit_check_ints(cb, side_exit);
-
- // Test if any bit (outside of the Qnil bit) is on
- // RUBY_Qfalse /* ...0000 0000 */
- // RUBY_Qnil /* ...0000 1000 */
- x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
- test(cb, val_opnd, imm_opnd(~Qnil));
-
- // Get the branch target instruction offsets
- uint32_t next_idx = jit_next_idx(jit);
- uint32_t jump_idx = next_idx + (uint32_t)jit_get_arg(jit, 0);
- blockid_t next_block = { jit->iseq, next_idx };
- blockid_t jump_block = { jit->iseq, jump_idx };
-
- // Generate the branch instructions
- gen_branch(
- ctx,
- jump_block,
- ctx,
- next_block,
- ctx,
- gen_branchunless_branch
- );
-
- return true;
-}
-
-static bool
-gen_jump(jitstate_t* jit, ctx_t* ctx)
-{
- // FIXME: eventually, put VM_CHECK_INTS() only on backward branch targets
- // Check for interrupts
- uint8_t* side_exit = ujit_side_exit(jit, ctx);
- ujit_check_ints(cb, side_exit);
-
- // Get the branch target instruction offsets
- uint32_t jump_idx = jit_next_idx(jit) + (int32_t)jit_get_arg(jit, 0);
- blockid_t jump_block = { jit->iseq, jump_idx };
-
- // Generate the jump instruction
- gen_direct_jump(
- ctx,
- jump_block
- );
-
- return true;
-}
-
-static bool
-gen_oswb_cfunc(jitstate_t* jit, ctx_t* ctx, struct rb_call_data * cd, const rb_callable_method_entry_t *cme, int32_t argc)
-{
- const rb_method_cfunc_t *cfunc = UNALIGNED_MEMBER_PTR(cme->def, body.cfunc);
-
- // Don't JIT if the argument count doesn't match
- if (cfunc->argc < 0 || cfunc->argc != argc)
- {
- return false;
- }
-
- // Don't JIT functions that need C stack arguments for now
- if (argc + 1 > NUM_C_ARG_REGS)
- {
- return false;
- }
-
- // Create a size-exit to fall back to the interpreter
- uint8_t* side_exit = ujit_side_exit(jit, ctx);
-
- // Check for interrupts
- ujit_check_ints(cb, side_exit);
-
- // Points to the receiver operand on the stack
- x86opnd_t recv = ctx_stack_opnd(ctx, argc);
- mov(cb, REG0, recv);
-
- // Callee method ID
- //ID mid = vm_ci_mid(cd->ci);
- //printf("JITting call to C function \"%s\", argc: %lu\n", rb_id2name(mid), argc);
- //print_str(cb, "");
- //print_str(cb, "calling CFUNC:");
- //print_str(cb, rb_id2name(mid));
- //print_str(cb, "recv");
- //print_ptr(cb, recv);
-
- // Check that the receiver is a heap object
- test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
- jnz_ptr(cb, side_exit);
- cmp(cb, REG0, imm_opnd(Qfalse));
- je_ptr(cb, side_exit);
- cmp(cb, REG0, imm_opnd(Qnil));
- je_ptr(cb, side_exit);
-
- // Pointer to the klass field of the receiver &(recv->klass)
- x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
-
- assume_method_lookup_stable(cd->cc, cme, jit->block);
-
- // Bail if receiver class is different from compile-time call cache class
- jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cd->cc->klass);
- cmp(cb, klass_opnd, REG1);
- jne_ptr(cb, side_exit);
-
- // Store incremented PC into current control frame in case callee raises.
- mov(cb, REG0, const_ptr_opnd(jit->pc + insn_len(BIN(opt_send_without_block))));
- mov(cb, mem_opnd(64, REG_CFP, offsetof(rb_control_frame_t, pc)), REG0);
-
- // If this function needs a Ruby stack frame
- if (cfunc_needs_frame(cfunc))
- {
- // Stack overflow check
- // #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
- // REG_CFP <= REG_SP + 4 * sizeof(VALUE) + sizeof(rb_control_frame_t)
- lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 4 + sizeof(rb_control_frame_t)));
- cmp(cb, REG_CFP, REG0);
- jle_ptr(cb, side_exit);
-
- // Increment the stack pointer by 3 (in the callee)
- // sp += 3
- lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 3));
-
- // Put compile time cme into REG1. It's assumed to be valid because we are notified when
- // any cme we depend on become outdated. See rb_ujit_method_lookup_change().
- jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme);
- // Write method entry at sp[-3]
- // sp[-3] = me;
- mov(cb, mem_opnd(64, REG0, 8 * -3), REG1);
-
- // Write block handler at sp[-2]
- // sp[-2] = block_handler;
- mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE));
-
- // Write env flags at sp[-1]
- // sp[-1] = frame_type;
- uint64_t frame_type = VM_FRAME_MAGIC_CFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL;
- mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type));
-
- // Allocate a new CFP (ec->cfp--)
- sub(
- cb,
- member_opnd(REG_EC, rb_execution_context_t, cfp),
- imm_opnd(sizeof(rb_control_frame_t))
- );
-
- // Setup the new frame
- // *cfp = (const struct rb_control_frame_struct) {
- // .pc = 0,
- // .sp = sp,
- // .iseq = 0,
- // .self = recv,
- // .ep = sp - 1,
- // .block_code = 0,
- // .__bp__ = sp,
- // };
- mov(cb, REG1, member_opnd(REG_EC, rb_execution_context_t, cfp));
- mov(cb, member_opnd(REG1, rb_control_frame_t, pc), imm_opnd(0));
- mov(cb, member_opnd(REG1, rb_control_frame_t, sp), REG0);
- mov(cb, member_opnd(REG1, rb_control_frame_t, iseq), imm_opnd(0));
- mov(cb, member_opnd(REG1, rb_control_frame_t, block_code), imm_opnd(0));
- mov(cb, member_opnd(REG1, rb_control_frame_t, __bp__), REG0);
- sub(cb, REG0, imm_opnd(sizeof(VALUE)));
- mov(cb, member_opnd(REG1, rb_control_frame_t, ep), REG0);
- mov(cb, REG0, recv);
- mov(cb, member_opnd(REG1, rb_control_frame_t, self), REG0);
- }
-
- // Verify that we are calling the right function
- if (UJIT_CHECK_MODE > 0) {
- // Save uJIT registers
- ujit_save_regs(cb);
-
- // Call check_cfunc_dispatch
- mov(cb, RDI, recv);
- jit_mov_gc_ptr(jit, cb, RSI, (VALUE)cd);
- mov(cb, RDX, const_ptr_opnd((void *)cfunc->func));
- jit_mov_gc_ptr(jit, cb, RCX, (VALUE)cme);
- call_ptr(cb, REG0, (void *)&check_cfunc_dispatch);
-
- // Load uJIT registers
- ujit_load_regs(cb);
- }
-
- // Save uJIT registers
- ujit_save_regs(cb);
-
- // Copy SP into RAX because REG_SP will get overwritten
- lea(cb, RAX, ctx_sp_opnd(ctx, 0));
-
- // Copy the arguments from the stack to the C argument registers
- // self is the 0th argument and is at index argc from the stack top
- for (int32_t i = 0; i < argc + 1; ++i)
- {
- x86opnd_t stack_opnd = mem_opnd(64, RAX, -(argc + 1 - i) * 8);
- x86opnd_t c_arg_reg = C_ARG_REGS[i];
- mov(cb, c_arg_reg, stack_opnd);
- }
-
- // Pop the C function arguments from the stack (in the caller)
- ctx_stack_pop(ctx, argc + 1);
-
- // Call the C function
- // VALUE ret = (cfunc->func)(recv, argv[0], argv[1]);
- // cfunc comes from compile-time cme->def, which we assume to be stable.
- // Invalidation logic is in rb_ujit_method_lookup_change()
- call_ptr(cb, REG0, (void*)cfunc->func);
-
- // Load uJIT registers
- ujit_load_regs(cb);
-
- // Push the return value on the Ruby stack
- x86opnd_t stack_ret = ctx_stack_push(ctx, T_NONE);
- mov(cb, stack_ret, RAX);
-
- // If this function needs a Ruby stack frame
- if (cfunc_needs_frame(cfunc))
- {
- // Pop the stack frame (ec->cfp++)
- add(
- cb,
- member_opnd(REG_EC, rb_execution_context_t, cfp),
- imm_opnd(sizeof(rb_control_frame_t))
- );
- }
-
- // Jump (fall through) to the call continuation block
- // We do this to end the current block after the call
- blockid_t cont_block = { jit->iseq, jit_next_idx(jit) };
- gen_direct_jump(
- ctx,
- cont_block
- );
-
- return true;
-}
-
-bool rb_simple_iseq_p(const rb_iseq_t *iseq);
-
-static void
-gen_return_branch(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape)
-{
- switch (shape)
- {
- case SHAPE_NEXT0:
- case SHAPE_NEXT1:
- RUBY_ASSERT(false);
- break;
-
- case SHAPE_DEFAULT:
- mov(cb, REG0, const_ptr_opnd(target0));
- mov(cb, member_opnd(REG_CFP, rb_control_frame_t, jit_return), REG0);
- break;
- }
-}
-
-static bool
-gen_oswb_iseq(jitstate_t* jit, ctx_t* ctx, struct rb_call_data * cd, const rb_callable_method_entry_t *cme, int32_t argc)
-{
- const rb_iseq_t *iseq = def_iseq_ptr(cme->def);
- const VALUE* start_pc = iseq->body->iseq_encoded;
- int num_params = iseq->body->param.size;
- int num_locals = iseq->body->local_table_size - num_params;
-
- if (num_params != argc) {
- //fprintf(stderr, "param argc mismatch\n");
- return false;
- }
-
- if (!rb_simple_iseq_p(iseq)) {
- // Only handle iseqs that have simple parameters.
- // See vm_callee_setup_arg().
- return false;
- }
-
- if (vm_ci_flag(cd->ci) & VM_CALL_TAILCALL) {
- // We can't handle tailcalls
- return false;
- }
-
- rb_gc_register_mark_object((VALUE)iseq); // FIXME: intentional LEAK!
-
- // Create a size-exit to fall back to the interpreter
- uint8_t* side_exit = ujit_side_exit(jit, ctx);
-
- // Check for interrupts
- ujit_check_ints(cb, side_exit);
-
- // Points to the receiver operand on the stack
- x86opnd_t recv = ctx_stack_opnd(ctx, argc);
- mov(cb, REG0, recv);
-
- // Callee method ID
- //ID mid = vm_ci_mid(cd->ci);
- //printf("JITting call to Ruby function \"%s\", argc: %d\n", rb_id2name(mid), argc);
- //print_str(cb, "");
- //print_str(cb, "recv");
- //print_ptr(cb, recv);
-
- // Check that the receiver is a heap object
- test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
- jnz_ptr(cb, side_exit);
- cmp(cb, REG0, imm_opnd(Qfalse));
- je_ptr(cb, side_exit);
- cmp(cb, REG0, imm_opnd(Qnil));
- je_ptr(cb, side_exit);
-
- // Pointer to the klass field of the receiver &(recv->klass)
- x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
-
- assume_method_lookup_stable(cd->cc, cme, jit->block);
-
- // Bail if receiver class is different from compile-time call cache class
- jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cd->cc->klass);
- cmp(cb, klass_opnd, REG1);
- jne_ptr(cb, side_exit);
-
- // Store the updated SP on the current frame (pop arguments and receiver)
- lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * -(argc + 1)));
- mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0);
-
- // Store the next PC i the current frame
- mov(cb, REG0, const_ptr_opnd(jit->pc + insn_len(BIN(opt_send_without_block))));
- mov(cb, mem_opnd(64, REG_CFP, offsetof(rb_control_frame_t, pc)), REG0);
-
- // Stack overflow check
- // #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
- lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (num_locals + iseq->body->stack_max) + sizeof(rb_control_frame_t)));
- cmp(cb, REG_CFP, REG0);
- jle_ptr(cb, side_exit);
-
- // Adjust the callee's stack pointer
- lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (3 + num_locals)));
-
- // Initialize local variables to Qnil
- for (int i = 0; i < num_locals; i++) {
- mov(cb, mem_opnd(64, REG0, sizeof(VALUE) * (i - num_locals - 3)), imm_opnd(Qnil));
- }
-
- // Put compile time cme into REG1. It's assumed to be valid because we are notified when
- // any cme we depend on become outdated. See rb_ujit_method_lookup_change().
- jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme);
- // Write method entry at sp[-3]
- // sp[-3] = me;
- mov(cb, mem_opnd(64, REG0, 8 * -3), REG1);
-
- // Write block handler at sp[-2]
- // sp[-2] = block_handler;
- mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE));
-
- // Write env flags at sp[-1]
- // sp[-1] = frame_type;
- uint64_t frame_type = VM_FRAME_MAGIC_METHOD | VM_ENV_FLAG_LOCAL;
- mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type));
-
- // Allocate a new CFP (ec->cfp--)
- sub(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t)));
- mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);
-
- // Setup the new frame
- // *cfp = (const struct rb_control_frame_struct) {
- // .pc = pc,
- // .sp = sp,
- // .iseq = iseq,
- // .self = recv,
- // .ep = sp - 1,
- // .block_code = 0,
- // .__bp__ = sp,
- // };
- mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), imm_opnd(0));
- mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0);
- mov(cb, member_opnd(REG_CFP, rb_control_frame_t, __bp__), REG0);
- sub(cb, REG0, imm_opnd(sizeof(VALUE)));
- mov(cb, member_opnd(REG_CFP, rb_control_frame_t, ep), REG0);
- mov(cb, REG0, recv);
- mov(cb, member_opnd(REG_CFP, rb_control_frame_t, self), REG0);
- jit_mov_gc_ptr(jit, cb, REG0, (VALUE)iseq);
- mov(cb, member_opnd(REG_CFP, rb_control_frame_t, iseq), REG0);
- mov(cb, REG0, const_ptr_opnd(start_pc));
- mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), REG0);
-
- // Stub so we can return to JITted code
- blockid_t return_block = { jit->iseq, jit_next_insn_idx(jit) };
-
- // Pop arguments and receiver in return context, push the return value
- // After the return, the JIT and interpreter SP will match up
- ctx_t return_ctx = *ctx;
- ctx_stack_pop(&return_ctx, argc + 1);
- ctx_stack_push(&return_ctx, T_NONE);
- return_ctx.sp_offset = 0;
-
- // Write the JIT return address on the callee frame
- gen_branch(
- ctx,
- return_block,
- &return_ctx,
- return_block,
- &return_ctx,
- gen_return_branch
- );
-
- //print_str(cb, "calling Ruby func:");
- //print_str(cb, rb_id2name(vm_ci_mid(cd->ci)));
-
- // Load the updated SP
- mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
-
- // Directly jump to the entry point of the callee
- gen_direct_jump(
- &DEFAULT_CTX,
- (blockid_t){ iseq, 0 }
- );
-
-
- // TODO: create stub for call continuation
-
- // TODO: need to pop args in the caller ctx
-
- // TODO: stub so we can return to JITted code
- //blockid_t cont_block = { jit->iseq, jit_next_insn_idx(jit) };
-
-
-
-
-
-
-
- return true;
-}
-
-static bool
-gen_opt_send_without_block(jitstate_t* jit, ctx_t* ctx)
-{
- // Relevant definitions:
- // rb_execution_context_t : vm_core.h
- // invoker, cfunc logic : method.h, vm_method.c
- // rb_callable_method_entry_t : method.h
- // vm_call_cfunc_with_frame : vm_insnhelper.c
- // rb_callcache : vm_callinfo.h
-
- struct rb_call_data * cd = (struct rb_call_data *)jit_get_arg(jit, 0);
- int32_t argc = (int32_t)vm_ci_argc(cd->ci);
-
- // Don't JIT calls with keyword splat
- if (vm_ci_flag(cd->ci) & VM_CALL_KW_SPLAT)
- {
- return false;
- }
-
- // Don't JIT calls that aren't simple
- if (!(vm_ci_flag(cd->ci) & VM_CALL_ARGS_SIMPLE))
- {
- return false;
- }
-
- // Don't JIT if the inline cache is not set
- if (!cd->cc || !cd->cc->klass) {
- return false;
- }
-
- const rb_callable_method_entry_t *cme = vm_cc_cme(cd->cc);
-
- // Don't JIT if the method entry is out of date
- if (METHOD_ENTRY_INVALIDATED(cme)) {
- return false;
- }
-
- // We don't generate code to check protected method calls
- if (METHOD_ENTRY_VISI(cme) == METHOD_VISI_PROTECTED) {
- return false;
- }
-
- // If this is a C call
- if (cme->def->type == VM_METHOD_TYPE_CFUNC)
- {
- return gen_oswb_cfunc(jit, ctx, cd, cme, argc);
- }
-
- // If this is a Ruby call
- if (cme->def->type == VM_METHOD_TYPE_ISEQ)
- {
- return gen_oswb_iseq(jit, ctx, cd, cme, argc);
- }
-
- return false;
-}
-
-static bool
-gen_leave(jitstate_t* jit, ctx_t* ctx)
-{
- // Only the return value should be on the stack
- RUBY_ASSERT(ctx->stack_size == 1);
-
- // Create a size-exit to fall back to the interpreter
- uint8_t* side_exit = ujit_side_exit(jit, ctx);
-
- // Load environment pointer EP from CFP
- mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
-
- // if (flags & VM_FRAME_FLAG_FINISH) != 0
- x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS);
- test(cb, flags_opnd, imm_opnd(VM_FRAME_FLAG_FINISH));
- jnz_ptr(cb, side_exit);
-
- // Check for interrupts
- ujit_check_ints(cb, side_exit);
-
- // Load the return value
- mov(cb, REG0, ctx_stack_pop(ctx, 1));
-
- // Load the JIT return address
- mov(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, jit_return));
-
- // Pop the current frame (ec->cfp++)
- // Note: the return PC is already in the previous CFP
- add(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t)));
- mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);
-
- // Push the return value on the caller frame
- // The SP points one above the topmost value
- add(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), imm_opnd(SIZEOF_VALUE));
- mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
- mov(cb, mem_opnd(64, REG_SP, -SIZEOF_VALUE), REG0);
-
- // If the return address is NULL, fall back to the interpreter
- int FALLBACK_LABEL = cb_new_label(cb, "FALLBACK");
- cmp(cb, REG1, imm_opnd(0));
- jz(cb, FALLBACK_LABEL);
-
- // Jump to the JIT return address
- jmp_rm(cb, REG1);
-
- // Fall back to the interpreter
- cb_write_label(cb, FALLBACK_LABEL);
- cb_link_labels(cb);
- cb_write_post_call_bytes(cb);
-
- return true;
-}
-
-void ujit_reg_op(int opcode, codegen_fn gen_fn, bool is_branch)
-{
- // Check that the op wasn't previously registered
- st_data_t st_desc;
- if (rb_st_lookup(gen_fns, opcode, &st_desc)) {
- rb_bug("op already registered");
- }
-
- opdesc_t* p_desc = (opdesc_t*)malloc(sizeof(opdesc_t));
- p_desc->gen_fn = gen_fn;
- p_desc->is_branch = is_branch;
-
- st_insert(gen_fns, (st_data_t)opcode, (st_data_t)p_desc);
-}
-
-void
-ujit_init_codegen(void)
-{
- // Initialize the code blocks
- uint32_t mem_size = 128 * 1024 * 1024;
- uint8_t* mem_block = alloc_exec_mem(mem_size);
- cb = &block;
- cb_init(cb, mem_block, mem_size/2);
- ocb = &outline_block;
- cb_init(ocb, mem_block + mem_size/2, mem_size/2);
-
- // Initialize the codegen function table
- gen_fns = rb_st_init_numtable();
-
- // Map YARV opcodes to the corresponding codegen functions
- ujit_reg_op(BIN(dup), gen_dup, false);
- ujit_reg_op(BIN(nop), gen_nop, false);
- ujit_reg_op(BIN(pop), gen_pop, false);
- ujit_reg_op(BIN(putnil), gen_putnil, false);
- ujit_reg_op(BIN(putobject), gen_putobject, false);
- ujit_reg_op(BIN(putobject_INT2FIX_0_), gen_putobject_int2fix, false);
- ujit_reg_op(BIN(putobject_INT2FIX_1_), gen_putobject_int2fix, false);
- ujit_reg_op(BIN(putself), gen_putself, false);
- ujit_reg_op(BIN(getlocal_WC_0), gen_getlocal_wc0, false);
- ujit_reg_op(BIN(getlocal_WC_1), gen_getlocal_wc1, false);
- ujit_reg_op(BIN(setlocal_WC_0), gen_setlocal_wc0, false);
- ujit_reg_op(BIN(getinstancevariable), gen_getinstancevariable, false);
- ujit_reg_op(BIN(setinstancevariable), gen_setinstancevariable, false);
- ujit_reg_op(BIN(opt_lt), gen_opt_lt, false);
- ujit_reg_op(BIN(opt_le), gen_opt_le, false);
- ujit_reg_op(BIN(opt_ge), gen_opt_ge, false);
- ujit_reg_op(BIN(opt_aref), gen_opt_aref, false);
- ujit_reg_op(BIN(opt_and), gen_opt_and, false);
- ujit_reg_op(BIN(opt_minus), gen_opt_minus, false);
- ujit_reg_op(BIN(opt_plus), gen_opt_plus, false);
- ujit_reg_op(BIN(branchif), gen_branchif, true);
- ujit_reg_op(BIN(branchunless), gen_branchunless, true);
- ujit_reg_op(BIN(jump), gen_jump, true);
- ujit_reg_op(BIN(opt_send_without_block), gen_opt_send_without_block, true);
- ujit_reg_op(BIN(leave), gen_leave, true);
-}