diff options
Diffstat (limited to 'thread.c')
| -rw-r--r-- | thread.c | 6301 |
1 files changed, 6301 insertions, 0 deletions
diff --git a/thread.c b/thread.c new file mode 100644 index 0000000000..e66352c03f --- /dev/null +++ b/thread.c @@ -0,0 +1,6301 @@ +/********************************************************************** + + thread.c - + + $Author$ + + Copyright (C) 2004-2007 Koichi Sasada + +**********************************************************************/ + +/* + YARV Thread Design + + model 1: Userlevel Thread + Same as traditional ruby thread. + + model 2: Native Thread with Global VM lock + Using pthread (or Windows thread) and Ruby threads run concurrent. + + model 3: Native Thread with fine grain lock + Using pthread and Ruby threads run concurrent or parallel. + + model 4: M:N User:Native threads with Global VM lock + Combination of model 1 and 2 + + model 5: M:N User:Native thread with fine grain lock + Combination of model 1 and 3 + +------------------------------------------------------------------------ + + model 2: + A thread has mutex (GVL: Global VM Lock or Giant VM Lock) can run. + When thread scheduling, running thread release GVL. If running thread + try blocking operation, this thread must release GVL and another + thread can continue this flow. After blocking operation, thread + must check interrupt (RUBY_VM_CHECK_INTS). + + Every VM can run parallel. + + Ruby threads are scheduled by OS thread scheduler. + +------------------------------------------------------------------------ + + model 3: + Every threads run concurrent or parallel and to access shared object + exclusive access control is needed. For example, to access String + object or Array object, fine grain lock must be locked every time. + */ + + +/* + * FD_SET, FD_CLR and FD_ISSET have a small sanity check when using glibc + * 2.15 or later and set _FORTIFY_SOURCE > 0. + * However, the implementation is wrong. Even though Linux's select(2) + * supports large fd size (>FD_SETSIZE), it wrongly assumes fd is always + * less than FD_SETSIZE (i.e. 1024). And then when enabling HAVE_RB_FD_INIT, + * it doesn't work correctly and makes program abort. Therefore we need to + * disable FORTIFY_SOURCE until glibc fixes it. + */ +#undef _FORTIFY_SOURCE +#undef __USE_FORTIFY_LEVEL +#define __USE_FORTIFY_LEVEL 0 + +/* for model 2 */ + +#include "ruby/internal/config.h" + +#ifdef __linux__ +// Normally, gcc(1) translates calls to alloca() with inlined code. This is not done when either the -ansi, -std=c89, -std=c99, or the -std=c11 option is given and the header <alloca.h> is not included. +# include <alloca.h> +#endif + +#define TH_SCHED(th) (&(th)->ractor->threads.sched) + +#include "eval_intern.h" +#include "hrtime.h" +#include "internal.h" +#include "internal/class.h" +#include "internal/cont.h" +#include "internal/error.h" +#include "internal/eval.h" +#include "internal/gc.h" +#include "internal/hash.h" +#include "internal/io.h" +#include "internal/object.h" +#include "internal/proc.h" +#include "ruby/fiber/scheduler.h" +#include "internal/signal.h" +#include "internal/thread.h" +#include "internal/time.h" +#include "internal/warnings.h" +#include "iseq.h" +#include "ruby/debug.h" +#include "ruby/io.h" +#include "ruby/thread.h" +#include "ruby/thread_native.h" +#include "timev.h" +#include "vm_core.h" +#include "ractor_core.h" +#include "vm_debug.h" +#include "vm_sync.h" + +#include "ccan/list/list.h" + +#ifndef USE_NATIVE_THREAD_PRIORITY +#define USE_NATIVE_THREAD_PRIORITY 0 +#define RUBY_THREAD_PRIORITY_MAX 3 +#define RUBY_THREAD_PRIORITY_MIN -3 +#endif + +static VALUE rb_cThreadShield; +static VALUE cThGroup; + +static VALUE sym_immediate; +static VALUE sym_on_blocking; +static VALUE sym_never; + +static uint32_t thread_default_quantum_ms = 100; + +#define THREAD_LOCAL_STORAGE_INITIALISED FL_USER13 +#define THREAD_LOCAL_STORAGE_INITIALISED_P(th) RB_FL_TEST_RAW((th), THREAD_LOCAL_STORAGE_INITIALISED) + +static inline VALUE +rb_thread_local_storage(VALUE thread) +{ + if (LIKELY(!THREAD_LOCAL_STORAGE_INITIALISED_P(thread))) { + rb_ivar_set(thread, idLocals, rb_hash_new()); + RB_FL_SET_RAW(thread, THREAD_LOCAL_STORAGE_INITIALISED); + } + return rb_ivar_get(thread, idLocals); +} + +enum SLEEP_FLAGS { + SLEEP_DEADLOCKABLE = 0x01, + SLEEP_SPURIOUS_CHECK = 0x02, + SLEEP_ALLOW_SPURIOUS = 0x04, + SLEEP_NO_CHECKINTS = 0x08, +}; + +static void sleep_forever(rb_thread_t *th, unsigned int fl); +static int sleep_hrtime(rb_thread_t *, rb_hrtime_t, unsigned int fl); + +static void rb_thread_sleep_deadly_allow_spurious_wakeup(VALUE blocker, VALUE timeout, rb_hrtime_t end); +static int rb_threadptr_dead(rb_thread_t *th); +static void rb_check_deadlock(rb_ractor_t *r); +static int rb_threadptr_pending_interrupt_empty_p(const rb_thread_t *th); +static const char *thread_status_name(rb_thread_t *th, int detail); +static int hrtime_update_expire(rb_hrtime_t *, const rb_hrtime_t); +NORETURN(static void async_bug_fd(const char *mesg, int errno_arg, int fd)); +MAYBE_UNUSED(static int consume_communication_pipe(int fd)); + +static rb_atomic_t system_working = 1; +static rb_internal_thread_specific_key_t specific_key_count; + +/********************************************************************************/ + +#define THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION + +struct rb_blocking_region_buffer { + enum rb_thread_status prev_status; +}; + +static int unblock_function_set(rb_thread_t *th, rb_unblock_function_t *func, void *arg, int fail_if_interrupted); +static void unblock_function_clear(rb_thread_t *th); + +static inline int blocking_region_begin(rb_thread_t *th, struct rb_blocking_region_buffer *region, + rb_unblock_function_t *ubf, void *arg, int fail_if_interrupted); +static inline void blocking_region_end(rb_thread_t *th, struct rb_blocking_region_buffer *region); + +#define THREAD_BLOCKING_BEGIN(th) do { \ + struct rb_thread_sched * const sched = TH_SCHED(th); \ + RB_VM_SAVE_MACHINE_CONTEXT(th); \ + thread_sched_to_waiting((sched), (th)); + +#define THREAD_BLOCKING_END(th) \ + thread_sched_to_running((sched), (th)); \ + rb_ractor_thread_switch(th->ractor, th, false); \ +} while(0) + +#ifdef __GNUC__ +#ifdef HAVE_BUILTIN___BUILTIN_CHOOSE_EXPR_CONSTANT_P +#define only_if_constant(expr, notconst) __builtin_choose_expr(__builtin_constant_p(expr), (expr), (notconst)) +#else +#define only_if_constant(expr, notconst) (__builtin_constant_p(expr) ? (expr) : (notconst)) +#endif +#else +#define only_if_constant(expr, notconst) notconst +#endif +#define BLOCKING_REGION(th, exec, ubf, ubfarg, fail_if_interrupted) do { \ + struct rb_blocking_region_buffer __region; \ + if (blocking_region_begin(th, &__region, (ubf), (ubfarg), fail_if_interrupted) || \ + /* always return true unless fail_if_interrupted */ \ + !only_if_constant(fail_if_interrupted, TRUE)) { \ + /* Important that this is inlined into the macro, and not part of \ + * blocking_region_begin - see bug #20493 */ \ + RB_VM_SAVE_MACHINE_CONTEXT(th); \ + thread_sched_to_waiting(TH_SCHED(th), th); \ + exec; \ + blocking_region_end(th, &__region); \ + }; \ +} while(0) + +/* + * returns true if this thread was spuriously interrupted, false otherwise + * (e.g. hit by Thread#run or ran a Ruby-level Signal.trap handler) + */ +#define RUBY_VM_CHECK_INTS_BLOCKING(ec) vm_check_ints_blocking(ec) +static inline int +vm_check_ints_blocking(rb_execution_context_t *ec) +{ +#ifdef RUBY_ASSERT_CRITICAL_SECTION + VM_ASSERT(ruby_assert_critical_section_entered == 0); +#endif + + rb_thread_t *th = rb_ec_thread_ptr(ec); + + if (LIKELY(rb_threadptr_pending_interrupt_empty_p(th))) { + if (LIKELY(!RUBY_VM_INTERRUPTED_ANY(ec))) return FALSE; + } + else { + th->pending_interrupt_queue_checked = 0; + RUBY_VM_SET_INTERRUPT(ec); + } + + int result = rb_threadptr_execute_interrupts(th, 1); + + // When a signal is received, we yield to the scheduler as soon as possible: + if (result || RUBY_VM_INTERRUPTED(ec)) { + VALUE scheduler = rb_fiber_scheduler_current_for_threadptr(th); + if (scheduler != Qnil) { + rb_fiber_scheduler_yield(scheduler); + } + } + + return result; +} + +int +rb_vm_check_ints_blocking(rb_execution_context_t *ec) +{ + return vm_check_ints_blocking(ec); +} + +/* + * poll() is supported by many OSes, but so far Linux is the only + * one we know of that supports using poll() in all places select() + * would work. + */ +#if defined(HAVE_POLL) +# if defined(__linux__) +# define USE_POLL +# endif +# if defined(__FreeBSD_version) && __FreeBSD_version >= 1100000 +# define USE_POLL + /* FreeBSD does not set POLLOUT when POLLHUP happens */ +# define POLLERR_SET (POLLHUP | POLLERR) +# endif +#endif + +static void +timeout_prepare(rb_hrtime_t **to, rb_hrtime_t *rel, rb_hrtime_t *end, + const struct timeval *timeout) +{ + if (timeout) { + *rel = rb_timeval2hrtime(timeout); + *end = rb_hrtime_add(rb_hrtime_now(), *rel); + *to = rel; + } + else { + *to = 0; + } +} + +MAYBE_UNUSED(NOINLINE(static int thread_start_func_2(rb_thread_t *th, VALUE *stack_start))); +MAYBE_UNUSED(static bool th_has_dedicated_nt(const rb_thread_t *th)); +MAYBE_UNUSED(static int waitfd_to_waiting_flag(int wfd_event)); + +#include THREAD_IMPL_SRC + +/* + * TODO: somebody with win32 knowledge should be able to get rid of + * timer-thread by busy-waiting on signals. And it should be possible + * to make the GVL in thread_pthread.c be platform-independent. + */ +#ifndef BUSY_WAIT_SIGNALS +# define BUSY_WAIT_SIGNALS (0) +#endif + +#ifndef USE_EVENTFD +# define USE_EVENTFD (0) +#endif + +#include "thread_sync.c" + +void +rb_nativethread_lock_initialize(rb_nativethread_lock_t *lock) +{ + rb_native_mutex_initialize(lock); +} + +void +rb_nativethread_lock_destroy(rb_nativethread_lock_t *lock) +{ + rb_native_mutex_destroy(lock); +} + +void +rb_nativethread_lock_lock(rb_nativethread_lock_t *lock) +{ + rb_native_mutex_lock(lock); +} + +void +rb_nativethread_lock_unlock(rb_nativethread_lock_t *lock) +{ + rb_native_mutex_unlock(lock); +} + +static int +unblock_function_set(rb_thread_t *th, rb_unblock_function_t *func, void *arg, int fail_if_interrupted) +{ + do { + if (fail_if_interrupted) { + if (RUBY_VM_INTERRUPTED_ANY(th->ec)) { + return FALSE; + } + } + else { + RUBY_VM_CHECK_INTS(th->ec); + } + + rb_native_mutex_lock(&th->interrupt_lock); + } while (!th->ec->raised_flag && RUBY_VM_INTERRUPTED_ANY(th->ec) && + (rb_native_mutex_unlock(&th->interrupt_lock), TRUE)); + + VM_ASSERT(th->unblock.func == NULL); + + th->unblock.func = func; + th->unblock.arg = arg; + rb_native_mutex_unlock(&th->interrupt_lock); + + return TRUE; +} + +static void +unblock_function_clear(rb_thread_t *th) +{ + rb_native_mutex_lock(&th->interrupt_lock); + th->unblock.func = 0; + rb_native_mutex_unlock(&th->interrupt_lock); +} + +static void +threadptr_set_interrupt_locked(rb_thread_t *th, bool trap) +{ + // th->interrupt_lock should be acquired here + + RUBY_DEBUG_LOG("th:%u trap:%d", rb_th_serial(th), trap); + + if (trap) { + RUBY_VM_SET_TRAP_INTERRUPT(th->ec); + } + else { + RUBY_VM_SET_INTERRUPT(th->ec); + } + + if (th->unblock.func != NULL) { + (th->unblock.func)(th->unblock.arg); + } + else { + /* none */ + } +} + +static void +threadptr_set_interrupt(rb_thread_t *th, int trap) +{ + rb_native_mutex_lock(&th->interrupt_lock); + { + threadptr_set_interrupt_locked(th, trap); + } + rb_native_mutex_unlock(&th->interrupt_lock); +} + +/* Set interrupt flag on another thread or current thread, and call its UBF if it has one set */ +void +rb_threadptr_interrupt(rb_thread_t *th) +{ + RUBY_DEBUG_LOG("th:%u", rb_th_serial(th)); + threadptr_set_interrupt(th, false); +} + +static void +threadptr_trap_interrupt(rb_thread_t *th) +{ + threadptr_set_interrupt(th, true); +} + +static void +terminate_all(rb_ractor_t *r, const rb_thread_t *main_thread) +{ + rb_thread_t *th = 0; + + ccan_list_for_each(&r->threads.set, th, lt_node) { + if (th != main_thread) { + RUBY_DEBUG_LOG("terminate start th:%u status:%s", rb_th_serial(th), thread_status_name(th, TRUE)); + + rb_threadptr_pending_interrupt_enque(th, RUBY_FATAL_THREAD_TERMINATED); + rb_threadptr_interrupt(th); + + RUBY_DEBUG_LOG("terminate done th:%u status:%s", rb_th_serial(th), thread_status_name(th, TRUE)); + } + else { + RUBY_DEBUG_LOG("main thread th:%u", rb_th_serial(th)); + } + } +} + +static void +rb_threadptr_join_list_wakeup(rb_thread_t *thread) +{ + while (thread->join_list) { + struct rb_waiting_list *join_list = thread->join_list; + + // Consume the entry from the join list: + thread->join_list = join_list->next; + + rb_thread_t *target_thread = join_list->thread; + + if (target_thread->scheduler != Qnil && join_list->fiber) { + rb_fiber_scheduler_unblock(target_thread->scheduler, target_thread->self, rb_fiberptr_self(join_list->fiber)); + } + else { + rb_threadptr_interrupt(target_thread); + + switch (target_thread->status) { + case THREAD_STOPPED: + case THREAD_STOPPED_FOREVER: + target_thread->status = THREAD_RUNNABLE; + break; + default: + break; + } + } + } +} + +void +rb_threadptr_unlock_all_locking_mutexes(rb_thread_t *th) +{ + while (th->keeping_mutexes) { + rb_mutex_t *mutex = th->keeping_mutexes; + th->keeping_mutexes = mutex->next_mutex; + + // rb_warn("mutex #<%p> was not unlocked by thread #<%p>", (void *)mutex, (void*)th); + VM_ASSERT(mutex->ec_serial); + const char *error_message = rb_mutex_unlock_th(mutex, th, 0); + if (error_message) rb_bug("invalid keeping_mutexes: %s", error_message); + } +} + +void +rb_thread_terminate_all(rb_thread_t *th) +{ + rb_ractor_t *cr = th->ractor; + rb_execution_context_t * volatile ec = th->ec; + volatile int sleeping = 0; + + if (cr->threads.main != th) { + rb_bug("rb_thread_terminate_all: called by child thread (%p, %p)", + (void *)cr->threads.main, (void *)th); + } + + /* unlock all locking mutexes */ + rb_threadptr_unlock_all_locking_mutexes(th); + + EC_PUSH_TAG(ec); + if (EC_EXEC_TAG() == TAG_NONE) { + retry: + RUBY_DEBUG_LOG("th:%u", rb_th_serial(th)); + + terminate_all(cr, th); + + while (rb_ractor_living_thread_num(cr) > 1) { + rb_hrtime_t rel = RB_HRTIME_PER_SEC; + /*q + * Thread exiting routine in thread_start_func_2 notify + * me when the last sub-thread exit. + */ + sleeping = 1; + native_sleep(th, &rel); + RUBY_VM_CHECK_INTS_BLOCKING(ec); + sleeping = 0; + } + } + else { + /* + * When caught an exception (e.g. Ctrl+C), let's broadcast + * kill request again to ensure killing all threads even + * if they are blocked on sleep, mutex, etc. + */ + if (sleeping) { + sleeping = 0; + goto retry; + } + } + EC_POP_TAG(); +} + +void rb_threadptr_root_fiber_terminate(rb_thread_t *th); +static void threadptr_interrupt_exec_cleanup(rb_thread_t *th); + +static void +thread_cleanup_func_before_exec(void *th_ptr) +{ + rb_thread_t *th = th_ptr; + th->status = THREAD_KILLED; + + // The thread stack doesn't exist in the forked process: + th->ec->machine.stack_start = th->ec->machine.stack_end = NULL; + + threadptr_interrupt_exec_cleanup(th); + rb_threadptr_root_fiber_terminate(th); +} + +static void +thread_cleanup_func(void *th_ptr, int atfork) +{ + rb_thread_t *th = th_ptr; + + th->locking_mutex = Qfalse; + thread_cleanup_func_before_exec(th_ptr); + + if (atfork) { + native_thread_destroy_atfork(th->nt); + th->nt = NULL; + return; + } + + rb_native_mutex_destroy(&th->interrupt_lock); +} + +void +rb_thread_free_native_thread(void *th_ptr) +{ + rb_thread_t *th = th_ptr; + + native_thread_destroy_atfork(th->nt); + th->nt = NULL; +} + +static VALUE rb_threadptr_raise(rb_thread_t *, int, VALUE *); +static VALUE rb_thread_to_s(VALUE thread); + +void +ruby_thread_init_stack(rb_thread_t *th, void *local_in_parent_frame) +{ + native_thread_init_stack(th, local_in_parent_frame); +} + +const VALUE * +rb_vm_proc_local_ep(VALUE proc) +{ + const VALUE *ep = vm_proc_ep(proc); + + if (ep) { + return rb_vm_ep_local_ep(ep); + } + else { + return NULL; + } +} + +// for ractor, defined in vm.c +VALUE rb_vm_invoke_proc_with_self(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self, + int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler); + +static VALUE +thread_do_start_proc(rb_thread_t *th) +{ + VALUE args = th->invoke_arg.proc.args; + const VALUE *args_ptr; + int args_len; + VALUE procval = th->invoke_arg.proc.proc; + rb_proc_t *proc; + GetProcPtr(procval, proc); + + th->ec->errinfo = Qnil; + th->ec->root_lep = rb_vm_proc_local_ep(procval); + th->ec->root_svar = Qfalse; + + vm_check_ints_blocking(th->ec); + + if (th->invoke_type == thread_invoke_type_ractor_proc) { + VALUE self = rb_ractor_self(th->ractor); + th->thgroup = th->ractor->thgroup_default = rb_obj_alloc(cThGroup); + + VM_ASSERT(FIXNUM_P(args)); + args_len = FIX2INT(args); + args_ptr = ALLOCA_N(VALUE, args_len); + rb_ractor_receive_parameters(th->ec, th->ractor, args_len, (VALUE *)args_ptr); + vm_check_ints_blocking(th->ec); + + return rb_vm_invoke_proc_with_self( + th->ec, proc, self, + args_len, args_ptr, + th->invoke_arg.proc.kw_splat, + VM_BLOCK_HANDLER_NONE + ); + } + else { + args_len = RARRAY_LENINT(args); + if (args_len < 8) { + /* free proc.args if the length is enough small */ + args_ptr = ALLOCA_N(VALUE, args_len); + MEMCPY((VALUE *)args_ptr, RARRAY_CONST_PTR(args), VALUE, args_len); + th->invoke_arg.proc.args = Qnil; + } + else { + args_ptr = RARRAY_CONST_PTR(args); + } + + vm_check_ints_blocking(th->ec); + + return rb_vm_invoke_proc( + th->ec, proc, + args_len, args_ptr, + th->invoke_arg.proc.kw_splat, + VM_BLOCK_HANDLER_NONE + ); + } +} + +static VALUE +thread_do_start(rb_thread_t *th) +{ + native_set_thread_name(th); + VALUE result = Qundef; + + switch (th->invoke_type) { + case thread_invoke_type_proc: + result = thread_do_start_proc(th); + break; + + case thread_invoke_type_ractor_proc: + result = thread_do_start_proc(th); + rb_ractor_atexit(th->ec, result); + break; + + case thread_invoke_type_func: + result = (*th->invoke_arg.func.func)(th->invoke_arg.func.arg); + break; + + case thread_invoke_type_none: + rb_bug("unreachable"); + } + + return result; +} + +void rb_ec_clear_current_thread_trace_func(const rb_execution_context_t *ec); + +static int +thread_start_func_2(rb_thread_t *th, VALUE *stack_start) +{ + RUBY_DEBUG_LOG("th:%u", rb_th_serial(th)); + VM_ASSERT(th != th->vm->ractor.main_thread); + + enum ruby_tag_type state; + VALUE errinfo = Qnil; + rb_thread_t *ractor_main_th = th->ractor->threads.main; + + // setup ractor + if (rb_ractor_status_p(th->ractor, ractor_blocking)) { + RB_VM_LOCK(); + { + rb_vm_ractor_blocking_cnt_dec(th->vm, th->ractor, __FILE__, __LINE__); + rb_ractor_t *r = th->ractor; + r->r_stdin = rb_io_prep_stdin(); + r->r_stdout = rb_io_prep_stdout(); + r->r_stderr = rb_io_prep_stderr(); + } + RB_VM_UNLOCK(); + } + + // Ensure that we are not joinable. + VM_ASSERT(UNDEF_P(th->value)); + + int fiber_scheduler_closed = 0, event_thread_end_hooked = 0; + VALUE result = Qundef; + + EC_PUSH_TAG(th->ec); + + if ((state = EC_EXEC_TAG()) == TAG_NONE) { + EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_THREAD_BEGIN, th->self, 0, 0, 0, Qundef); + + result = thread_do_start(th); + } + + if (!fiber_scheduler_closed) { + fiber_scheduler_closed = 1; + rb_fiber_scheduler_set(Qnil); + } + + if (!event_thread_end_hooked) { + event_thread_end_hooked = 1; + EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_THREAD_END, th->self, 0, 0, 0, Qundef); + } + + if (state == TAG_NONE) { + // This must be set AFTER doing all user-level code. At this point, the thread is effectively finished and calls to `Thread#join` will succeed. + th->value = result; + } + else { + errinfo = th->ec->errinfo; + + VALUE exc = rb_vm_make_jump_tag_but_local_jump(state, Qundef); + if (!NIL_P(exc)) errinfo = exc; + + if (state == TAG_FATAL) { + if (th->invoke_type == thread_invoke_type_ractor_proc) { + rb_ractor_atexit(th->ec, Qnil); + } + /* fatal error within this thread, need to stop whole script */ + } + else if (rb_obj_is_kind_of(errinfo, rb_eSystemExit)) { + if (th->invoke_type == thread_invoke_type_ractor_proc) { + rb_ractor_atexit_exception(th->ec); + } + + /* exit on main_thread. */ + } + else { + if (th->report_on_exception) { + VALUE mesg = rb_thread_to_s(th->self); + rb_str_cat_cstr(mesg, " terminated with exception (report_on_exception is true):\n"); + rb_write_error_str(mesg); + rb_ec_error_print(th->ec, errinfo); + } + + if (th->invoke_type == thread_invoke_type_ractor_proc) { + rb_ractor_atexit_exception(th->ec); + } + + if (th->vm->thread_abort_on_exception || + th->abort_on_exception || RTEST(ruby_debug)) { + /* exit on main_thread */ + } + else { + errinfo = Qnil; + } + } + th->value = Qnil; + } + + // The thread is effectively finished and can be joined. + VM_ASSERT(!UNDEF_P(th->value)); + + rb_threadptr_join_list_wakeup(th); + rb_threadptr_unlock_all_locking_mutexes(th); + + if (th->invoke_type == thread_invoke_type_ractor_proc) { + rb_thread_terminate_all(th); + rb_ractor_teardown(th->ec); + } + + th->status = THREAD_KILLED; + RUBY_DEBUG_LOG("killed th:%u", rb_th_serial(th)); + + if (th->vm->ractor.main_thread == th) { + ruby_stop(0); + } + + if (RB_TYPE_P(errinfo, T_OBJECT)) { + /* treat with normal error object */ + rb_threadptr_raise(ractor_main_th, 1, &errinfo); + } + + EC_POP_TAG(); + + rb_ec_clear_current_thread_trace_func(th->ec); + + /* locking_mutex must be Qfalse */ + if (th->locking_mutex != Qfalse) { + rb_bug("thread_start_func_2: locking_mutex must not be set (%p:%"PRIxVALUE")", + (void *)th, th->locking_mutex); + } + + if (ractor_main_th->status == THREAD_KILLED && + th->ractor->threads.cnt <= 2 /* main thread and this thread */) { + /* I'm last thread. wake up main thread from rb_thread_terminate_all */ + rb_threadptr_interrupt(ractor_main_th); + } + + rb_check_deadlock(th->ractor); + + rb_fiber_close(th->ec->fiber_ptr); + + thread_cleanup_func(th, FALSE); + VM_ASSERT(th->ec->vm_stack == NULL); + + if (th->invoke_type == thread_invoke_type_ractor_proc) { + // after rb_ractor_living_threads_remove() + // GC will happen anytime and this ractor can be collected (and destroy GVL). + // So gvl_release() should be before it. + thread_sched_to_dead(TH_SCHED(th), th); + rb_ractor_living_threads_remove(th->ractor, th); + } + else { + rb_ractor_living_threads_remove(th->ractor, th); + thread_sched_to_dead(TH_SCHED(th), th); + } + + return 0; +} + +struct thread_create_params { + enum thread_invoke_type type; + + // for normal proc thread + VALUE args; + VALUE proc; + + // for ractor + rb_ractor_t *g; + + // for func + VALUE (*fn)(void *); +}; + +static void thread_specific_storage_alloc(rb_thread_t *th); + +static VALUE +thread_create_core(VALUE thval, struct thread_create_params *params) +{ + rb_execution_context_t *ec = GET_EC(); + rb_thread_t *th = rb_thread_ptr(thval), *current_th = rb_ec_thread_ptr(ec); + int err; + + thread_specific_storage_alloc(th); + + if (OBJ_FROZEN(current_th->thgroup)) { + rb_raise(rb_eThreadError, + "can't start a new thread (frozen ThreadGroup)"); + } + + rb_fiber_inherit_storage(ec, th->ec->fiber_ptr); + + switch (params->type) { + case thread_invoke_type_proc: + th->invoke_type = thread_invoke_type_proc; + th->invoke_arg.proc.args = params->args; + th->invoke_arg.proc.proc = params->proc; + th->invoke_arg.proc.kw_splat = rb_keyword_given_p(); + break; + + case thread_invoke_type_ractor_proc: +#if RACTOR_CHECK_MODE > 0 + rb_ractor_setup_belonging_to(thval, rb_ractor_id(params->g)); +#endif + th->invoke_type = thread_invoke_type_ractor_proc; + th->ractor = params->g; + th->ec->ractor_id = rb_ractor_id(th->ractor); + th->ractor->threads.main = th; + th->invoke_arg.proc.proc = rb_proc_isolate_bang(params->proc, Qnil); + th->invoke_arg.proc.args = INT2FIX(RARRAY_LENINT(params->args)); + th->invoke_arg.proc.kw_splat = rb_keyword_given_p(); + rb_ractor_send_parameters(ec, params->g, params->args); + break; + + case thread_invoke_type_func: + th->invoke_type = thread_invoke_type_func; + th->invoke_arg.func.func = params->fn; + th->invoke_arg.func.arg = (void *)params->args; + break; + + default: + rb_bug("unreachable"); + } + + th->priority = current_th->priority; + th->thgroup = current_th->thgroup; + + th->pending_interrupt_queue = rb_ary_hidden_new(0); + th->pending_interrupt_queue_checked = 0; + th->pending_interrupt_mask_stack = rb_ary_dup(current_th->pending_interrupt_mask_stack); + RBASIC_CLEAR_CLASS(th->pending_interrupt_mask_stack); + + rb_native_mutex_initialize(&th->interrupt_lock); + + RUBY_DEBUG_LOG("r:%u th:%u", rb_ractor_id(th->ractor), rb_th_serial(th)); + + rb_ractor_living_threads_insert(th->ractor, th); + + /* kick thread */ + err = native_thread_create(th); + if (err) { + th->status = THREAD_KILLED; + rb_ractor_living_threads_remove(th->ractor, th); + rb_raise(rb_eThreadError, "can't create Thread: %s", strerror(err)); + } + return thval; +} + +#define threadptr_initialized(th) ((th)->invoke_type != thread_invoke_type_none) + +/* + * call-seq: + * Thread.new { ... } -> thread + * Thread.new(*args, &proc) -> thread + * Thread.new(*args) { |args| ... } -> thread + * + * Creates a new thread executing the given block. + * + * Any +args+ given to ::new will be passed to the block: + * + * arr = [] + * a, b, c = 1, 2, 3 + * Thread.new(a,b,c) { |d,e,f| arr << d << e << f }.join + * arr #=> [1, 2, 3] + * + * A ThreadError exception is raised if ::new is called without a block. + * + * If you're going to subclass Thread, be sure to call super in your + * +initialize+ method, otherwise a ThreadError will be raised. + */ +static VALUE +thread_s_new(int argc, VALUE *argv, VALUE klass) +{ + rb_thread_t *th; + VALUE thread = rb_thread_alloc(klass); + + if (GET_RACTOR()->threads.main->status == THREAD_KILLED) { + rb_raise(rb_eThreadError, "can't alloc thread"); + } + + rb_obj_call_init_kw(thread, argc, argv, RB_PASS_CALLED_KEYWORDS); + th = rb_thread_ptr(thread); + if (!threadptr_initialized(th)) { + rb_raise(rb_eThreadError, "uninitialized thread - check '%"PRIsVALUE"#initialize'", + klass); + } + return thread; +} + +/* + * call-seq: + * Thread.start([args]*) {|args| block } -> thread + * Thread.fork([args]*) {|args| block } -> thread + * + * Basically the same as ::new. However, if class Thread is subclassed, then + * calling +start+ in that subclass will not invoke the subclass's + * +initialize+ method. + */ + +static VALUE +thread_start(VALUE klass, VALUE args) +{ + struct thread_create_params params = { + .type = thread_invoke_type_proc, + .args = args, + .proc = rb_block_proc(), + }; + return thread_create_core(rb_thread_alloc(klass), ¶ms); +} + +static VALUE +threadptr_invoke_proc_location(rb_thread_t *th) +{ + if (th->invoke_type == thread_invoke_type_proc) { + return rb_proc_location(th->invoke_arg.proc.proc); + } + else { + return Qnil; + } +} + +/* :nodoc: */ +static VALUE +thread_initialize(VALUE thread, VALUE args) +{ + rb_thread_t *th = rb_thread_ptr(thread); + + if (!rb_block_given_p()) { + rb_raise(rb_eThreadError, "must be called with a block"); + } + else if (th->invoke_type != thread_invoke_type_none) { + VALUE loc = threadptr_invoke_proc_location(th); + if (!NIL_P(loc)) { + rb_raise(rb_eThreadError, + "already initialized thread - %"PRIsVALUE":%"PRIsVALUE, + RARRAY_AREF(loc, 0), RARRAY_AREF(loc, 1)); + } + else { + rb_raise(rb_eThreadError, "already initialized thread"); + } + } + else { + struct thread_create_params params = { + .type = thread_invoke_type_proc, + .args = args, + .proc = rb_block_proc(), + }; + return thread_create_core(thread, ¶ms); + } +} + +VALUE +rb_thread_create(VALUE (*fn)(void *), void *arg) +{ + struct thread_create_params params = { + .type = thread_invoke_type_func, + .fn = fn, + .args = (VALUE)arg, + }; + return thread_create_core(rb_thread_alloc(rb_cThread), ¶ms); +} + +VALUE +rb_thread_create_ractor(rb_ractor_t *r, VALUE args, VALUE proc) +{ + struct thread_create_params params = { + .type = thread_invoke_type_ractor_proc, + .g = r, + .args = args, + .proc = proc, + }; + return thread_create_core(rb_thread_alloc(rb_cThread), ¶ms); +} + + +struct join_arg { + struct rb_waiting_list *waiter; + rb_thread_t *target; + VALUE timeout; + rb_hrtime_t *limit; +}; + +static VALUE +remove_from_join_list(VALUE arg) +{ + struct join_arg *p = (struct join_arg *)arg; + rb_thread_t *target_thread = p->target; + + if (target_thread->status != THREAD_KILLED) { + struct rb_waiting_list **join_list = &target_thread->join_list; + + while (*join_list) { + if (*join_list == p->waiter) { + *join_list = (*join_list)->next; + break; + } + + join_list = &(*join_list)->next; + } + } + + return Qnil; +} + +static int +thread_finished(rb_thread_t *th) +{ + return th->status == THREAD_KILLED || !UNDEF_P(th->value); +} + +static VALUE +thread_join_sleep(VALUE arg) +{ + struct join_arg *p = (struct join_arg *)arg; + rb_thread_t *target_th = p->target, *th = p->waiter->thread; + rb_hrtime_t end = 0, *limit = p->limit; + + if (limit) { + end = rb_hrtime_add(*limit, rb_hrtime_now()); + } + + while (!thread_finished(target_th)) { + VALUE scheduler = rb_fiber_scheduler_current_for_threadptr(th); + + if (!limit) { + if (scheduler != Qnil) { + rb_fiber_scheduler_block(scheduler, target_th->self, Qnil); + } + else { + sleep_forever(th, SLEEP_DEADLOCKABLE | SLEEP_ALLOW_SPURIOUS | SLEEP_NO_CHECKINTS); + } + } + else { + if (hrtime_update_expire(limit, end)) { + RUBY_DEBUG_LOG("timeout target_th:%u", rb_th_serial(target_th)); + return Qfalse; + } + + if (scheduler != Qnil) { + VALUE timeout = rb_float_new(hrtime2double(*limit)); + rb_fiber_scheduler_block(scheduler, target_th->self, timeout); + } + else { + th->status = THREAD_STOPPED; + native_sleep(th, limit); + } + } + RUBY_VM_CHECK_INTS_BLOCKING(th->ec); + th->status = THREAD_RUNNABLE; + + RUBY_DEBUG_LOG("interrupted target_th:%u status:%s", rb_th_serial(target_th), thread_status_name(target_th, TRUE)); + } + + return Qtrue; +} + +static VALUE +thread_join(rb_thread_t *target_th, VALUE timeout, rb_hrtime_t *limit) +{ + rb_execution_context_t *ec = GET_EC(); + rb_thread_t *th = ec->thread_ptr; + rb_fiber_t *fiber = ec->fiber_ptr; + + if (th == target_th) { + rb_raise(rb_eThreadError, "Target thread must not be current thread"); + } + + if (th->ractor->threads.main == target_th) { + rb_raise(rb_eThreadError, "Target thread must not be main thread"); + } + + RUBY_DEBUG_LOG("target_th:%u status:%s", rb_th_serial(target_th), thread_status_name(target_th, TRUE)); + + if (target_th->status != THREAD_KILLED) { + struct rb_waiting_list waiter; + waiter.next = target_th->join_list; + waiter.thread = th; + waiter.fiber = rb_fiberptr_blocking(fiber) ? NULL : fiber; + target_th->join_list = &waiter; + + struct join_arg arg; + arg.waiter = &waiter; + arg.target = target_th; + arg.timeout = timeout; + arg.limit = limit; + + if (!rb_ensure(thread_join_sleep, (VALUE)&arg, remove_from_join_list, (VALUE)&arg)) { + return Qnil; + } + } + + RUBY_DEBUG_LOG("success target_th:%u status:%s", rb_th_serial(target_th), thread_status_name(target_th, TRUE)); + + if (target_th->ec->errinfo != Qnil) { + VALUE err = target_th->ec->errinfo; + + if (FIXNUM_P(err)) { + switch (err) { + case INT2FIX(TAG_FATAL): + RUBY_DEBUG_LOG("terminated target_th:%u status:%s", rb_th_serial(target_th), thread_status_name(target_th, TRUE)); + + /* OK. killed. */ + break; + default: + if (err == RUBY_FATAL_FIBER_KILLED) { // not integer constant so can't be a case expression + // root fiber killed in non-main thread + break; + } + rb_bug("thread_join: Fixnum (%d) should not reach here.", FIX2INT(err)); + } + } + else if (THROW_DATA_P(target_th->ec->errinfo)) { + rb_bug("thread_join: THROW_DATA should not reach here."); + } + else { + /* normal exception */ + rb_exc_raise(err); + } + } + return target_th->self; +} + +/* + * call-seq: + * thr.join -> thr + * thr.join(limit) -> thr + * + * The calling thread will suspend execution and run this +thr+. + * + * Does not return until +thr+ exits or until the given +limit+ seconds have + * passed. + * + * If the time limit expires, +nil+ will be returned, otherwise +thr+ is + * returned. + * + * Any threads not joined will be killed when the main program exits. + * + * If +thr+ had previously raised an exception and the ::abort_on_exception or + * $DEBUG flags are not set, (so the exception has not yet been processed), it + * will be processed at this time. + * + * a = Thread.new { print "a"; sleep(10); print "b"; print "c" } + * x = Thread.new { print "x"; Thread.pass; print "y"; print "z" } + * x.join # Let thread x finish, thread a will be killed on exit. + * #=> "axyz" + * + * The following example illustrates the +limit+ parameter. + * + * y = Thread.new { 4.times { sleep 0.1; puts 'tick... ' }} + * puts "Waiting" until y.join(0.15) + * + * This will produce: + * + * tick... + * Waiting + * tick... + * Waiting + * tick... + * tick... + */ + +static VALUE +thread_join_m(int argc, VALUE *argv, VALUE self) +{ + VALUE timeout = Qnil; + rb_hrtime_t rel = 0, *limit = 0; + + if (rb_check_arity(argc, 0, 1)) { + timeout = argv[0]; + } + + // Convert the timeout eagerly, so it's always converted and deterministic + /* + * This supports INFINITY and negative values, so we can't use + * rb_time_interval right now... + */ + if (NIL_P(timeout)) { + /* unlimited */ + } + else if (FIXNUM_P(timeout)) { + rel = rb_sec2hrtime(NUM2TIMET(timeout)); + limit = &rel; + } + else { + limit = double2hrtime(&rel, rb_num2dbl(timeout)); + } + + return thread_join(rb_thread_ptr(self), timeout, limit); +} + +/* + * call-seq: + * thr.value -> obj + * + * Waits for +thr+ to complete, using #join, and returns its value or raises + * the exception which terminated the thread. + * + * a = Thread.new { 2 + 2 } + * a.value #=> 4 + * + * b = Thread.new { raise 'something went wrong' } + * b.value #=> RuntimeError: something went wrong + */ + +static VALUE +thread_value(VALUE self) +{ + rb_thread_t *th = rb_thread_ptr(self); + thread_join(th, Qnil, 0); + if (UNDEF_P(th->value)) { + // If the thread is dead because we forked th->value is still Qundef. + return Qnil; + } + return th->value; +} + +/* + * Thread Scheduling + */ + +static void +getclockofday(struct timespec *ts) +{ +#if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) + if (clock_gettime(CLOCK_MONOTONIC, ts) == 0) + return; +#endif + rb_timespec_now(ts); +} + +/* + * Don't inline this, since library call is already time consuming + * and we don't want "struct timespec" on stack too long for GC + */ +NOINLINE(rb_hrtime_t rb_hrtime_now(void)); +rb_hrtime_t +rb_hrtime_now(void) +{ + struct timespec ts; + + getclockofday(&ts); + return rb_timespec2hrtime(&ts); +} + +/* + * at least gcc 7.2 and 7.3 complains about "rb_hrtime_t end" + * being uninitialized, maybe other versions, too. + */ +COMPILER_WARNING_PUSH +#if defined(__GNUC__) && __GNUC__ == 7 && __GNUC_MINOR__ <= 3 +COMPILER_WARNING_IGNORED(-Wmaybe-uninitialized) +#endif +#ifndef PRIu64 +#define PRIu64 PRI_64_PREFIX "u" +#endif +/* + * @end is the absolute time when @ts is set to expire + * Returns true if @end has past + * Updates @ts and returns false otherwise + */ +static int +hrtime_update_expire(rb_hrtime_t *timeout, const rb_hrtime_t end) +{ + rb_hrtime_t now = rb_hrtime_now(); + + if (now > end) return 1; + + RUBY_DEBUG_LOG("%"PRIu64" > %"PRIu64"", (uint64_t)end, (uint64_t)now); + + *timeout = end - now; + return 0; +} +COMPILER_WARNING_POP + +static int +sleep_hrtime(rb_thread_t *th, rb_hrtime_t rel, unsigned int fl) +{ + enum rb_thread_status prev_status = th->status; + int woke; + rb_hrtime_t end = rb_hrtime_add(rb_hrtime_now(), rel); + + th->status = THREAD_STOPPED; + RUBY_VM_CHECK_INTS_BLOCKING(th->ec); + while (th->status == THREAD_STOPPED) { + native_sleep(th, &rel); + woke = vm_check_ints_blocking(th->ec); + if (woke && !(fl & SLEEP_SPURIOUS_CHECK)) + break; + if (hrtime_update_expire(&rel, end)) + break; + woke = 1; + } + th->status = prev_status; + return woke; +} + +static int +sleep_hrtime_until(rb_thread_t *th, rb_hrtime_t end, unsigned int fl) +{ + enum rb_thread_status prev_status = th->status; + int woke; + rb_hrtime_t rel = rb_hrtime_sub(end, rb_hrtime_now()); + + th->status = THREAD_STOPPED; + RUBY_VM_CHECK_INTS_BLOCKING(th->ec); + while (th->status == THREAD_STOPPED) { + native_sleep(th, &rel); + woke = vm_check_ints_blocking(th->ec); + if (woke && !(fl & SLEEP_SPURIOUS_CHECK)) + break; + if (hrtime_update_expire(&rel, end)) + break; + woke = 1; + } + th->status = prev_status; + return woke; +} + +static void +sleep_forever(rb_thread_t *th, unsigned int fl) +{ + enum rb_thread_status prev_status = th->status; + enum rb_thread_status status; + int woke; + + status = fl & SLEEP_DEADLOCKABLE ? THREAD_STOPPED_FOREVER : THREAD_STOPPED; + th->status = status; + + if (!(fl & SLEEP_NO_CHECKINTS)) RUBY_VM_CHECK_INTS_BLOCKING(th->ec); + + while (th->status == status) { + if (fl & SLEEP_DEADLOCKABLE) { + rb_ractor_sleeper_threads_inc(th->ractor); + rb_check_deadlock(th->ractor); + } + { + native_sleep(th, 0); + } + if (fl & SLEEP_DEADLOCKABLE) { + rb_ractor_sleeper_threads_dec(th->ractor); + } + if (fl & SLEEP_ALLOW_SPURIOUS) { + break; + } + + woke = vm_check_ints_blocking(th->ec); + + if (woke && !(fl & SLEEP_SPURIOUS_CHECK)) { + break; + } + } + th->status = prev_status; +} + +void +rb_thread_sleep_forever(void) +{ + RUBY_DEBUG_LOG("forever"); + sleep_forever(GET_THREAD(), SLEEP_SPURIOUS_CHECK); +} + +void +rb_thread_sleep_deadly(void) +{ + RUBY_DEBUG_LOG("deadly"); + sleep_forever(GET_THREAD(), SLEEP_DEADLOCKABLE|SLEEP_SPURIOUS_CHECK); +} + +static void +rb_thread_sleep_deadly_allow_spurious_wakeup(VALUE blocker, VALUE timeout, rb_hrtime_t end) +{ + rb_thread_t *th = GET_THREAD(); + VALUE scheduler = rb_fiber_scheduler_current_for_threadptr(th); + if (scheduler != Qnil) { + rb_fiber_scheduler_block(scheduler, blocker, timeout); + } + else { + RUBY_DEBUG_LOG("..."); + if (end) { + sleep_hrtime_until(th, end, SLEEP_SPURIOUS_CHECK); + } + else { + sleep_forever(th, SLEEP_DEADLOCKABLE); + } + } +} + +void +rb_thread_wait_for(struct timeval time) +{ + rb_thread_t *th = GET_THREAD(); + + sleep_hrtime(th, rb_timeval2hrtime(&time), SLEEP_SPURIOUS_CHECK); +} + +void +rb_ec_check_ints(rb_execution_context_t *ec) +{ + RUBY_VM_CHECK_INTS_BLOCKING(ec); +} + +/* + * CAUTION: This function causes thread switching. + * rb_thread_check_ints() check ruby's interrupts. + * some interrupt needs thread switching/invoke handlers, + * and so on. + */ + +void +rb_thread_check_ints(void) +{ + rb_ec_check_ints(GET_EC()); +} + +/* + * Hidden API for tcl/tk wrapper. + * There is no guarantee to perpetuate it. + */ +int +rb_thread_check_trap_pending(void) +{ + return rb_signal_buff_size() != 0; +} + +/* This function can be called in blocking region. */ +int +rb_thread_interrupted(VALUE thval) +{ + return (int)RUBY_VM_INTERRUPTED(rb_thread_ptr(thval)->ec); +} + +void +rb_thread_sleep(int sec) +{ + rb_thread_wait_for(rb_time_timeval(INT2FIX(sec))); +} + +static void +rb_thread_schedule_limits(uint32_t limits_us) +{ + if (!rb_thread_alone()) { + rb_thread_t *th = GET_THREAD(); + RUBY_DEBUG_LOG("us:%u", (unsigned int)limits_us); + + if (th->running_time_us >= limits_us) { + RUBY_DEBUG_LOG("switch %s", "start"); + + RB_VM_SAVE_MACHINE_CONTEXT(th); + thread_sched_yield(TH_SCHED(th), th); + rb_ractor_thread_switch(th->ractor, th, true); + + RUBY_DEBUG_LOG("switch %s", "done"); + } + } +} + +void +rb_thread_schedule(void) +{ + rb_thread_schedule_limits(0); + RUBY_VM_CHECK_INTS(GET_EC()); +} + +/* blocking region */ + +static inline int +blocking_region_begin(rb_thread_t *th, struct rb_blocking_region_buffer *region, + rb_unblock_function_t *ubf, void *arg, int fail_if_interrupted) +{ +#ifdef RUBY_ASSERT_CRITICAL_SECTION + VM_ASSERT(ruby_assert_critical_section_entered == 0); +#endif + VM_ASSERT(th == GET_THREAD()); + + region->prev_status = th->status; + if (unblock_function_set(th, ubf, arg, fail_if_interrupted)) { + th->blocking_region_buffer = region; + th->status = THREAD_STOPPED; + rb_ractor_blocking_threads_inc(th->ractor, __FILE__, __LINE__); + + RUBY_DEBUG_LOG("thread_id:%p", (void *)th->nt->thread_id); + return TRUE; + } + else { + return FALSE; + } +} + +static inline void +blocking_region_end(rb_thread_t *th, struct rb_blocking_region_buffer *region) +{ + /* entry to ubf_list still permitted at this point, make it impossible: */ + unblock_function_clear(th); + /* entry to ubf_list impossible at this point, so unregister is safe: */ + unregister_ubf_list(th); + + thread_sched_to_running(TH_SCHED(th), th); + rb_ractor_thread_switch(th->ractor, th, false); + + th->blocking_region_buffer = 0; + rb_ractor_blocking_threads_dec(th->ractor, __FILE__, __LINE__); + if (th->status == THREAD_STOPPED) { + th->status = region->prev_status; + } + + RUBY_DEBUG_LOG("end"); + +#ifndef _WIN32 + // GET_THREAD() clears WSAGetLastError() + VM_ASSERT(th == GET_THREAD()); +#endif +} + +/* + * Resolve sentinel unblock function values to their actual function pointers + * and appropriate data2 values. This centralizes the logic for handling + * RUBY_UBF_IO and RUBY_UBF_PROCESS sentinel values. + * + * @param unblock_function Pointer to unblock function pointer (modified in place) + * @param data2 Pointer to data2 pointer (modified in place) + * @param thread Thread context for resolving data2 when needed + * @return true if sentinel values were resolved, false otherwise + */ +bool +rb_thread_resolve_unblock_function(rb_unblock_function_t **unblock_function, void **data2, struct rb_thread_struct *thread) +{ + rb_unblock_function_t *ubf = *unblock_function; + + if ((ubf == RUBY_UBF_IO) || (ubf == RUBY_UBF_PROCESS)) { + *unblock_function = ubf_select; + *data2 = thread; + return true; + } + return false; +} + +void * +rb_nogvl(void *(*func)(void *), void *data1, + rb_unblock_function_t *ubf, void *data2, + int flags) +{ + if (flags & RB_NOGVL_OFFLOAD_SAFE) { + VALUE scheduler = rb_fiber_scheduler_current(); + if (scheduler != Qnil) { + struct rb_fiber_scheduler_blocking_operation_state state = {0}; + + VALUE result = rb_fiber_scheduler_blocking_operation_wait(scheduler, func, data1, ubf, data2, flags, &state); + + if (!UNDEF_P(result)) { + rb_errno_set(state.saved_errno); + return state.result; + } + } + } + + void *val = 0; + rb_execution_context_t *ec = GET_EC(); + rb_thread_t *th = rb_ec_thread_ptr(ec); + rb_vm_t *vm = rb_ec_vm_ptr(ec); + bool is_main_thread = vm->ractor.main_thread == th; + int saved_errno = 0; + + rb_thread_resolve_unblock_function(&ubf, &data2, th); + + if (ubf && rb_ractor_living_thread_num(th->ractor) == 1 && is_main_thread) { + if (flags & RB_NOGVL_UBF_ASYNC_SAFE) { + vm->ubf_async_safe = 1; + } + } + + rb_vm_t *volatile saved_vm = vm; + BLOCKING_REGION(th, { + val = func(data1); + saved_errno = rb_errno(); + }, ubf, data2, flags & RB_NOGVL_INTR_FAIL); + vm = saved_vm; + + if (is_main_thread) vm->ubf_async_safe = 0; + + if ((flags & RB_NOGVL_INTR_FAIL) == 0) { + RUBY_VM_CHECK_INTS_BLOCKING(ec); + } + + rb_errno_set(saved_errno); + + return val; +} + +/* + * rb_thread_call_without_gvl - permit concurrent/parallel execution. + * rb_thread_call_without_gvl2 - permit concurrent/parallel execution + * without interrupt process. + * + * rb_thread_call_without_gvl() does: + * (1) Check interrupts. + * (2) release GVL. + * Other Ruby threads may run in parallel. + * (3) call func with data1 + * (4) acquire GVL. + * Other Ruby threads can not run in parallel any more. + * (5) Check interrupts. + * + * rb_thread_call_without_gvl2() does: + * (1) Check interrupt and return if interrupted. + * (2) release GVL. + * (3) call func with data1 and a pointer to the flags. + * (4) acquire GVL. + * + * If another thread interrupts this thread (Thread#kill, signal delivery, + * VM-shutdown request, and so on), `ubf()' is called (`ubf()' means + * "un-blocking function"). `ubf()' should interrupt `func()' execution by + * toggling a cancellation flag, canceling the invocation of a call inside + * `func()' or similar. Note that `ubf()' may not be called with the GVL. + * + * There are built-in ubfs and you can specify these ubfs: + * + * * RUBY_UBF_IO: ubf for IO operation + * * RUBY_UBF_PROCESS: ubf for process operation + * + * However, we can not guarantee our built-in ubfs interrupt your `func()' + * correctly. Be careful to use rb_thread_call_without_gvl(). If you don't + * provide proper ubf(), your program will not stop for Control+C or other + * shutdown events. + * + * "Check interrupts" on above list means checking asynchronous + * interrupt events (such as Thread#kill, signal delivery, VM-shutdown + * request, and so on) and calling corresponding procedures + * (such as `trap' for signals, raise an exception for Thread#raise). + * If `func()' finished and received interrupts, you may skip interrupt + * checking. For example, assume the following func() it reads data from file. + * + * read_func(...) { + * // (a) before read + * read(buffer); // (b) reading + * // (c) after read + * } + * + * If an interrupt occurs at (a) or (b), then `ubf()' cancels this + * `read_func()' and interrupts are checked. However, if an interrupt occurs + * at (c), after *read* operation is completed, checking interrupts is harmful + * because it causes irrevocable side-effect, the read data will vanish. To + * avoid such problem, the `read_func()' should be used with + * `rb_thread_call_without_gvl2()'. + * + * If `rb_thread_call_without_gvl2()' detects interrupt, it returns + * immediately. This function does not show when the execution was interrupted. + * For example, there are 4 possible timing (a), (b), (c) and before calling + * read_func(). You need to record progress of a read_func() and check + * the progress after `rb_thread_call_without_gvl2()'. You may need to call + * `rb_thread_check_ints()' correctly or your program can not process proper + * process such as `trap' and so on. + * + * NOTE: You can not execute most of Ruby C API and touch Ruby + * objects in `func()' and `ubf()', including raising an + * exception, because current thread doesn't acquire GVL + * (it causes synchronization problems). If you need to + * call ruby functions either use rb_thread_call_with_gvl() + * or read source code of C APIs and confirm safety by + * yourself. + * + * NOTE: In short, this API is difficult to use safely. I recommend you + * use other ways if you have. We lack experiences to use this API. + * Please report your problem related on it. + * + * NOTE: Releasing GVL and re-acquiring GVL may be expensive operations + * for a short running `func()'. Be sure to benchmark and use this + * mechanism when `func()' consumes enough time. + * + * Safe C API: + * * rb_thread_interrupted() - check interrupt flag + * * ruby_xmalloc(), ruby_xrealloc(), ruby_xfree() - + * they will work without GVL, and may acquire GVL when GC is needed. + */ +void * +rb_thread_call_without_gvl2(void *(*func)(void *), void *data1, + rb_unblock_function_t *ubf, void *data2) +{ + return rb_nogvl(func, data1, ubf, data2, RB_NOGVL_INTR_FAIL); +} + +void * +rb_thread_call_without_gvl(void *(*func)(void *data), void *data1, + rb_unblock_function_t *ubf, void *data2) +{ + return rb_nogvl(func, data1, ubf, data2, 0); +} + +static int +waitfd_to_waiting_flag(int wfd_event) +{ + return wfd_event << 1; +} + +static struct ccan_list_head * +rb_io_blocking_operations(struct rb_io *io) +{ + rb_serial_t fork_generation = GET_VM()->fork_gen; + + // On fork, all existing entries in this list (which are stack allocated) become invalid. + // Therefore, we re-initialize the list which clears it. + if (io->fork_generation != fork_generation) { + ccan_list_head_init(&io->blocking_operations); + io->fork_generation = fork_generation; + } + + return &io->blocking_operations; +} + +/* + * Registers a blocking operation for an IO object. This is used to track all threads and fibers + * that are currently blocked on this IO for reading, writing or other operations. + * + * When the IO is closed, all blocking operations will be notified via rb_fiber_scheduler_fiber_interrupt + * for fibers with a scheduler, or via rb_threadptr_interrupt for threads without a scheduler. + * + * @parameter io The IO object on which the operation will block + * @parameter blocking_operation The operation details including the execution context that will be blocked + */ +static void +rb_io_blocking_operation_enter(struct rb_io *io, struct rb_io_blocking_operation *blocking_operation) +{ + ccan_list_add(rb_io_blocking_operations(io), &blocking_operation->list); +} + +static void +rb_io_blocking_operation_pop(struct rb_io *io, struct rb_io_blocking_operation *blocking_operation) +{ + ccan_list_del(&blocking_operation->list); +} + +struct io_blocking_operation_arguments { + struct rb_io *io; + struct rb_io_blocking_operation *blocking_operation; +}; + +static VALUE +io_blocking_operation_exit(VALUE _arguments) +{ + struct io_blocking_operation_arguments *arguments = (void*)_arguments; + struct rb_io_blocking_operation *blocking_operation = arguments->blocking_operation; + + rb_io_blocking_operation_pop(arguments->io, blocking_operation); + + rb_io_t *io = arguments->io; + rb_thread_t *thread = io->closing_ec->thread_ptr; + rb_fiber_t *fiber = io->closing_ec->fiber_ptr; + + if (thread->scheduler != Qnil) { + // This can cause spurious wakeups... + rb_fiber_scheduler_unblock(thread->scheduler, io->self, rb_fiberptr_self(fiber)); + } + else { + rb_thread_wakeup(thread->self); + } + + return Qnil; +} + +/* + * Called when a blocking operation completes or is interrupted. Removes the operation from + * the IO's blocking_operations list and wakes up any waiting threads/fibers. + * + * If there's a wakeup_mutex (meaning an IO close is in progress), synchronizes the cleanup + * through that mutex to ensure proper coordination with the closing thread. + * + * @parameter io The IO object the operation was performed on + * @parameter blocking_operation The completed operation to clean up + */ +static void +rb_io_blocking_operation_exit(struct rb_io *io, struct rb_io_blocking_operation *blocking_operation) +{ + VALUE wakeup_mutex = io->wakeup_mutex; + + // Indicate that the blocking operation is no longer active: + blocking_operation->ec = NULL; + + if (RB_TEST(wakeup_mutex)) { + struct io_blocking_operation_arguments arguments = { + .io = io, + .blocking_operation = blocking_operation + }; + + rb_mutex_synchronize(wakeup_mutex, io_blocking_operation_exit, (VALUE)&arguments); + } + else { + // If there's no wakeup_mutex, we can safely remove the operation directly: + rb_io_blocking_operation_pop(io, blocking_operation); + } +} + +static VALUE +rb_thread_io_blocking_operation_ensure(VALUE _argument) +{ + struct io_blocking_operation_arguments *arguments = (void*)_argument; + + rb_io_blocking_operation_exit(arguments->io, arguments->blocking_operation); + + return Qnil; +} + +/* + * Executes a function that performs a blocking IO operation, while properly tracking + * the operation in the IO's blocking_operations list. This ensures proper cleanup + * and interruption handling if the IO is closed while blocked. + * + * The operation is automatically removed from the blocking_operations list when the function + * returns, whether normally or due to an exception. + * + * @parameter self The IO object + * @parameter function The function to execute that will perform the blocking operation + * @parameter argument The argument to pass to the function + * @returns The result of the blocking operation function + */ +VALUE +rb_thread_io_blocking_operation(VALUE self, VALUE(*function)(VALUE), VALUE argument) +{ + struct rb_io *io; + RB_IO_POINTER(self, io); + + rb_execution_context_t *ec = GET_EC(); + struct rb_io_blocking_operation blocking_operation = { + .ec = ec, + }; + rb_io_blocking_operation_enter(io, &blocking_operation); + + struct io_blocking_operation_arguments io_blocking_operation_arguments = { + .io = io, + .blocking_operation = &blocking_operation + }; + + return rb_ensure(function, argument, rb_thread_io_blocking_operation_ensure, (VALUE)&io_blocking_operation_arguments); +} + +static bool +thread_io_mn_schedulable(rb_thread_t *th, int events, const struct timeval *timeout) +{ +#if defined(USE_MN_THREADS) && USE_MN_THREADS + return !th_has_dedicated_nt(th) && (events || timeout) && th->blocking; +#else + return false; +#endif +} + +// true if need retry +static bool +thread_io_wait_events(rb_thread_t *th, int fd, int events, const struct timeval *timeout) +{ +#if defined(USE_MN_THREADS) && USE_MN_THREADS + if (thread_io_mn_schedulable(th, events, timeout)) { + rb_hrtime_t rel, *prel; + + if (timeout) { + rel = rb_timeval2hrtime(timeout); + prel = &rel; + } + else { + prel = NULL; + } + + VM_ASSERT(prel || (events & (RB_WAITFD_IN | RB_WAITFD_OUT))); + + if (thread_sched_wait_events(TH_SCHED(th), th, fd, waitfd_to_waiting_flag(events), prel)) { + // timeout + return false; + } + else { + return true; + } + } +#endif // defined(USE_MN_THREADS) && USE_MN_THREADS + return false; +} + +// assume read/write +static bool +blocking_call_retryable_p(int r, int eno) +{ + if (r != -1) return false; + + switch (eno) { + case EAGAIN: +#if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN + case EWOULDBLOCK: +#endif + return true; + default: + return false; + } +} + +bool +rb_thread_mn_schedulable(VALUE thval) +{ + rb_thread_t *th = rb_thread_ptr(thval); + return th->mn_schedulable; +} + +VALUE +rb_thread_io_blocking_call(struct rb_io* io, rb_blocking_function_t *func, void *data1, int events) +{ + rb_execution_context_t * volatile ec = GET_EC(); + rb_thread_t * volatile th = rb_ec_thread_ptr(ec); + + RUBY_DEBUG_LOG("th:%u fd:%d ev:%d", rb_th_serial(th), io->fd, events); + + volatile VALUE val = Qundef; /* shouldn't be used */ + volatile int saved_errno = 0; + enum ruby_tag_type state; + volatile bool prev_mn_schedulable = th->mn_schedulable; + th->mn_schedulable = thread_io_mn_schedulable(th, events, NULL); + + int fd = io->fd; + + // `errno` is only valid when there is an actual error - but we can't + // extract that from the return value of `func` alone, so we clear any + // prior `errno` value here so that we can later check if it was set by + // `func` or not (as opposed to some previously set value). + errno = 0; + + struct rb_io_blocking_operation blocking_operation = { + .ec = ec, + }; + rb_io_blocking_operation_enter(io, &blocking_operation); + + { + EC_PUSH_TAG(ec); + if ((state = EC_EXEC_TAG()) == TAG_NONE) { + volatile enum ruby_tag_type saved_state = state; /* for BLOCKING_REGION */ + retry: + BLOCKING_REGION(th, { + val = func(data1); + saved_errno = errno; + }, ubf_select, th, FALSE); + + RUBY_ASSERT(th == rb_ec_thread_ptr(ec)); + if (events && + blocking_call_retryable_p((int)val, saved_errno) && + thread_io_wait_events(th, fd, events, NULL)) { + RUBY_VM_CHECK_INTS_BLOCKING(ec); + goto retry; + } + + RUBY_VM_CHECK_INTS_BLOCKING(ec); + + state = saved_state; + } + EC_POP_TAG(); + + th = rb_ec_thread_ptr(ec); + th->mn_schedulable = prev_mn_schedulable; + } + + rb_io_blocking_operation_exit(io, &blocking_operation); + + if (state) { + EC_JUMP_TAG(ec, state); + } + + // If the error was a timeout, we raise a specific exception for that: + if (saved_errno == ETIMEDOUT) { + rb_raise(rb_eIOTimeoutError, "Blocking operation timed out!"); + } + + errno = saved_errno; + + return val; +} + +VALUE +rb_thread_io_blocking_region(struct rb_io *io, rb_blocking_function_t *func, void *data1) +{ + return rb_thread_io_blocking_call(io, func, data1, 0); +} + +/* + * rb_thread_call_with_gvl - re-enter the Ruby world after GVL release. + * + * After releasing GVL using + * rb_thread_call_without_gvl() you can not access Ruby values or invoke + * methods. If you need to access Ruby you must use this function + * rb_thread_call_with_gvl(). + * + * This function rb_thread_call_with_gvl() does: + * (1) acquire GVL. + * (2) call passed function `func'. + * (3) release GVL. + * (4) return a value which is returned at (2). + * + * NOTE: You should not return Ruby object at (2) because such Object + * will not be marked. + * + * NOTE: If an exception is raised in `func', this function DOES NOT + * protect (catch) the exception. If you have any resources + * which should free before throwing exception, you need use + * rb_protect() in `func' and return a value which represents + * exception was raised. + * + * NOTE: This function should not be called by a thread which was not + * created as Ruby thread (created by Thread.new or so). In other + * words, this function *DOES NOT* associate or convert a NON-Ruby + * thread to a Ruby thread. + * + * NOTE: If this thread has already acquired the GVL, then the method call + * is performed without acquiring or releasing the GVL (from Ruby 4.0). + */ +void * +rb_thread_call_with_gvl(void *(*func)(void *), void *data1) +{ + rb_thread_t *th = ruby_thread_from_native(); + struct rb_blocking_region_buffer *brb; + struct rb_unblock_callback prev_unblock; + void *r; + + if (th == 0) { + /* Error has occurred, but we can't use rb_bug() + * because this thread is not Ruby's thread. + * What should we do? + */ + bp(); + fprintf(stderr, "[BUG] rb_thread_call_with_gvl() is called by non-ruby thread\n"); + exit(EXIT_FAILURE); + } + + brb = (struct rb_blocking_region_buffer *)th->blocking_region_buffer; + prev_unblock = th->unblock; + + if (brb == 0) { + /* the GVL is already acquired, call method directly */ + return (*func)(data1); + } + + blocking_region_end(th, brb); + /* enter to Ruby world: You can access Ruby values, methods and so on. */ + r = (*func)(data1); + /* leave from Ruby world: You can not access Ruby values, etc. */ + int released = blocking_region_begin(th, brb, prev_unblock.func, prev_unblock.arg, FALSE); + RUBY_ASSERT_ALWAYS(released); + RB_VM_SAVE_MACHINE_CONTEXT(th); + thread_sched_to_waiting(TH_SCHED(th), th); + return r; +} + +/* + * ruby_thread_has_gvl_p - check if current native thread has GVL. + */ + +int +ruby_thread_has_gvl_p(void) +{ + rb_thread_t *th = ruby_thread_from_native(); + + if (th && th->blocking_region_buffer == 0) { + return 1; + } + else { + return 0; + } +} + +/* + * call-seq: + * Thread.pass -> nil + * + * Give the thread scheduler a hint to pass execution to another thread. + * A running thread may or may not switch, it depends on OS and processor. + */ + +static VALUE +thread_s_pass(VALUE klass) +{ + rb_thread_schedule(); + return Qnil; +} + +/*****************************************************/ + +/* + * rb_threadptr_pending_interrupt_* - manage asynchronous error queue + * + * Async events such as an exception thrown by Thread#raise, + * Thread#kill and thread termination (after main thread termination) + * will be queued to th->pending_interrupt_queue. + * - clear: clear the queue. + * - enque: enqueue err object into queue. + * - deque: dequeue err object from queue. + * - active_p: return 1 if the queue should be checked. + * + * All rb_threadptr_pending_interrupt_* functions are called by + * a GVL acquired thread, of course. + * Note that all "rb_" prefix APIs need GVL to call. + */ + +void +rb_threadptr_pending_interrupt_clear(rb_thread_t *th) +{ + rb_ary_clear(th->pending_interrupt_queue); +} + +void +rb_threadptr_pending_interrupt_enque(rb_thread_t *th, VALUE v) +{ + rb_ary_push(th->pending_interrupt_queue, v); + th->pending_interrupt_queue_checked = 0; +} + +static void +threadptr_check_pending_interrupt_queue(rb_thread_t *th) +{ + if (!th->pending_interrupt_queue) { + rb_raise(rb_eThreadError, "uninitialized thread"); + } +} + +enum handle_interrupt_timing { + INTERRUPT_NONE, + INTERRUPT_IMMEDIATE, + INTERRUPT_ON_BLOCKING, + INTERRUPT_NEVER +}; + +static enum handle_interrupt_timing +rb_threadptr_pending_interrupt_from_symbol(rb_thread_t *th, VALUE sym) +{ + if (sym == sym_immediate) { + return INTERRUPT_IMMEDIATE; + } + else if (sym == sym_on_blocking) { + return INTERRUPT_ON_BLOCKING; + } + else if (sym == sym_never) { + return INTERRUPT_NEVER; + } + else { + rb_raise(rb_eThreadError, "unknown mask signature"); + } +} + +static enum handle_interrupt_timing +rb_threadptr_pending_interrupt_check_mask(rb_thread_t *th, VALUE err) +{ + VALUE mask; + long mask_stack_len = RARRAY_LEN(th->pending_interrupt_mask_stack); + const VALUE *mask_stack = RARRAY_CONST_PTR(th->pending_interrupt_mask_stack); + VALUE mod; + long i; + + for (i=0; i<mask_stack_len; i++) { + mask = mask_stack[mask_stack_len-(i+1)]; + + if (SYMBOL_P(mask)) { + /* do not match RUBY_FATAL_THREAD_KILLED etc */ + if (err != rb_cInteger) { + return rb_threadptr_pending_interrupt_from_symbol(th, mask); + } + else { + continue; + } + } + + for (mod = err; mod; mod = RCLASS_SUPER(mod)) { + VALUE klass = mod; + VALUE sym; + + if (BUILTIN_TYPE(mod) == T_ICLASS) { + klass = RBASIC(mod)->klass; + } + else if (mod != RCLASS_ORIGIN(mod)) { + continue; + } + + if ((sym = rb_hash_aref(mask, klass)) != Qnil) { + return rb_threadptr_pending_interrupt_from_symbol(th, sym); + } + } + /* try to next mask */ + } + return INTERRUPT_NONE; +} + +static int +rb_threadptr_pending_interrupt_empty_p(const rb_thread_t *th) +{ + return RARRAY_LEN(th->pending_interrupt_queue) == 0; +} + +static int +rb_threadptr_pending_interrupt_include_p(rb_thread_t *th, VALUE err) +{ + int i; + for (i=0; i<RARRAY_LEN(th->pending_interrupt_queue); i++) { + VALUE e = RARRAY_AREF(th->pending_interrupt_queue, i); + if (rb_obj_is_kind_of(e, err)) { + return TRUE; + } + } + return FALSE; +} + +static VALUE +rb_threadptr_pending_interrupt_deque(rb_thread_t *th, enum handle_interrupt_timing timing) +{ +#if 1 /* 1 to enable Thread#handle_interrupt, 0 to ignore it */ + int i; + + for (i=0; i<RARRAY_LEN(th->pending_interrupt_queue); i++) { + VALUE err = RARRAY_AREF(th->pending_interrupt_queue, i); + + enum handle_interrupt_timing mask_timing = rb_threadptr_pending_interrupt_check_mask(th, CLASS_OF(err)); + + switch (mask_timing) { + case INTERRUPT_ON_BLOCKING: + if (timing != INTERRUPT_ON_BLOCKING) { + break; + } + /* fall through */ + case INTERRUPT_NONE: /* default: IMMEDIATE */ + case INTERRUPT_IMMEDIATE: + rb_ary_delete_at(th->pending_interrupt_queue, i); + return err; + case INTERRUPT_NEVER: + break; + } + } + + th->pending_interrupt_queue_checked = 1; + return Qundef; +#else + VALUE err = rb_ary_shift(th->pending_interrupt_queue); + if (rb_threadptr_pending_interrupt_empty_p(th)) { + th->pending_interrupt_queue_checked = 1; + } + return err; +#endif +} + +static int +threadptr_pending_interrupt_active_p(rb_thread_t *th) +{ + /* + * For optimization, we don't check async errinfo queue + * if the queue and the thread interrupt mask were not changed + * since last check. + */ + if (th->pending_interrupt_queue_checked) { + return 0; + } + + if (rb_threadptr_pending_interrupt_empty_p(th)) { + return 0; + } + + return 1; +} + +static int +handle_interrupt_arg_check_i(VALUE key, VALUE val, VALUE args) +{ + VALUE *maskp = (VALUE *)args; + + if (val != sym_immediate && val != sym_on_blocking && val != sym_never) { + rb_raise(rb_eArgError, "unknown mask signature"); + } + + if (key == rb_eException && (UNDEF_P(*maskp) || NIL_P(*maskp))) { + *maskp = val; + return ST_CONTINUE; + } + + if (RTEST(*maskp)) { + if (!RB_TYPE_P(*maskp, T_HASH)) { + VALUE prev = *maskp; + *maskp = rb_ident_hash_new(); + if (SYMBOL_P(prev)) { + rb_hash_aset(*maskp, rb_eException, prev); + } + } + rb_hash_aset(*maskp, key, val); + } + else { + *maskp = Qfalse; + } + + return ST_CONTINUE; +} + +/* + * call-seq: + * Thread.handle_interrupt(hash) { ... } -> result of the block + * + * Changes asynchronous interrupt timing. + * + * _interrupt_ means asynchronous event and corresponding procedure + * by Thread#raise, Thread#kill, signal trap (not supported yet) + * and main thread termination (if main thread terminates, then all + * other thread will be killed). + * + * The given +hash+ has pairs like <code>ExceptionClass => + * :TimingSymbol</code>. Where the ExceptionClass is the interrupt handled by + * the given block. The TimingSymbol can be one of the following symbols: + * + * [+:immediate+] Invoke interrupts immediately. + * [+:on_blocking+] Invoke interrupts while _BlockingOperation_. + * [+:never+] Never invoke all interrupts. + * + * _BlockingOperation_ means that the operation will block the calling thread, + * such as read and write. On CRuby implementation, _BlockingOperation_ is any + * operation executed without GVL. + * + * Masked asynchronous interrupts are delayed until they are enabled. + * This method is similar to sigprocmask(3). + * + * === NOTE + * + * Asynchronous interrupts are difficult to use. + * + * If you need to communicate between threads, please consider to use another way such as Queue. + * + * Or use them with deep understanding about this method. + * + * === Usage + * + * In this example, we can guard from Thread#raise exceptions. + * + * Using the +:never+ TimingSymbol the RuntimeError exception will always be + * ignored in the first block of the main thread. In the second + * ::handle_interrupt block we can purposefully handle RuntimeError exceptions. + * + * th = Thread.new do + * Thread.handle_interrupt(RuntimeError => :never) { + * begin + * # You can write resource allocation code safely. + * Thread.handle_interrupt(RuntimeError => :immediate) { + * # ... + * } + * ensure + * # You can write resource deallocation code safely. + * end + * } + * end + * Thread.pass + * # ... + * th.raise "stop" + * + * While we are ignoring the RuntimeError exception, it's safe to write our + * resource allocation code. Then, the ensure block is where we can safely + * deallocate your resources. + * + * ==== Stack control settings + * + * It's possible to stack multiple levels of ::handle_interrupt blocks in order + * to control more than one ExceptionClass and TimingSymbol at a time. + * + * Thread.handle_interrupt(FooError => :never) { + * Thread.handle_interrupt(BarError => :never) { + * # FooError and BarError are prohibited. + * } + * } + * + * ==== Inheritance with ExceptionClass + * + * All exceptions inherited from the ExceptionClass parameter will be considered. + * + * Thread.handle_interrupt(Exception => :never) { + * # all exceptions inherited from Exception are prohibited. + * } + * + * For handling all interrupts, use +Object+ and not +Exception+ + * as the ExceptionClass, as kill/terminate interrupts are not handled by +Exception+. + */ +static VALUE +rb_thread_s_handle_interrupt(VALUE self, VALUE mask_arg) +{ + VALUE mask = Qundef; + rb_execution_context_t * volatile ec = GET_EC(); + rb_thread_t * volatile th = rb_ec_thread_ptr(ec); + volatile VALUE r = Qnil; + enum ruby_tag_type state; + + if (!rb_block_given_p()) { + rb_raise(rb_eArgError, "block is needed."); + } + + mask_arg = rb_to_hash_type(mask_arg); + + if (OBJ_FROZEN(mask_arg) && rb_hash_compare_by_id_p(mask_arg)) { + mask = Qnil; + } + + rb_hash_foreach(mask_arg, handle_interrupt_arg_check_i, (VALUE)&mask); + + if (UNDEF_P(mask)) { + return rb_yield(Qnil); + } + + if (!RTEST(mask)) { + mask = mask_arg; + } + else if (RB_TYPE_P(mask, T_HASH)) { + OBJ_FREEZE(mask); + } + + rb_ary_push(th->pending_interrupt_mask_stack, mask); + if (!rb_threadptr_pending_interrupt_empty_p(th)) { + th->pending_interrupt_queue_checked = 0; + RUBY_VM_SET_INTERRUPT(th->ec); + } + + EC_PUSH_TAG(th->ec); + if ((state = EC_EXEC_TAG()) == TAG_NONE) { + r = rb_yield(Qnil); + } + EC_POP_TAG(); + + rb_ary_pop(th->pending_interrupt_mask_stack); + if (!rb_threadptr_pending_interrupt_empty_p(th)) { + th->pending_interrupt_queue_checked = 0; + RUBY_VM_SET_INTERRUPT(th->ec); + } + + RUBY_VM_CHECK_INTS(th->ec); + + if (state) { + EC_JUMP_TAG(th->ec, state); + } + + return r; +} + +/* + * call-seq: + * target_thread.pending_interrupt?(error = nil) -> true/false + * + * Returns whether or not the asynchronous queue is empty for the target thread. + * + * If +error+ is given, then check only for +error+ type deferred events. + * + * See ::pending_interrupt? for more information. + */ +static VALUE +rb_thread_pending_interrupt_p(int argc, VALUE *argv, VALUE target_thread) +{ + rb_thread_t *target_th = rb_thread_ptr(target_thread); + + if (!target_th->pending_interrupt_queue) { + return Qfalse; + } + if (rb_threadptr_pending_interrupt_empty_p(target_th)) { + return Qfalse; + } + if (rb_check_arity(argc, 0, 1)) { + VALUE err = argv[0]; + if (!rb_obj_is_kind_of(err, rb_cModule)) { + rb_raise(rb_eTypeError, "class or module required for rescue clause"); + } + return RBOOL(rb_threadptr_pending_interrupt_include_p(target_th, err)); + } + else { + return Qtrue; + } +} + +/* + * call-seq: + * Thread.pending_interrupt?(error = nil) -> true/false + * + * Returns whether or not the asynchronous queue is empty. + * + * Since Thread::handle_interrupt can be used to defer asynchronous events, + * this method can be used to determine if there are any deferred events. + * + * If you find this method returns true, then you may finish +:never+ blocks. + * + * For example, the following method processes deferred asynchronous events + * immediately. + * + * def Thread.kick_interrupt_immediately + * Thread.handle_interrupt(Object => :immediate) { + * Thread.pass + * } + * end + * + * If +error+ is given, then check only for +error+ type deferred events. + * + * === Usage + * + * th = Thread.new{ + * Thread.handle_interrupt(RuntimeError => :on_blocking){ + * while true + * ... + * # reach safe point to invoke interrupt + * if Thread.pending_interrupt? + * Thread.handle_interrupt(Object => :immediate){} + * end + * ... + * end + * } + * } + * ... + * th.raise # stop thread + * + * This example can also be written as the following, which you should use to + * avoid asynchronous interrupts. + * + * flag = true + * th = Thread.new{ + * Thread.handle_interrupt(RuntimeError => :on_blocking){ + * while true + * ... + * # reach safe point to invoke interrupt + * break if flag == false + * ... + * end + * } + * } + * ... + * flag = false # stop thread + */ + +static VALUE +rb_thread_s_pending_interrupt_p(int argc, VALUE *argv, VALUE self) +{ + return rb_thread_pending_interrupt_p(argc, argv, GET_THREAD()->self); +} + +NORETURN(static void rb_threadptr_to_kill(rb_thread_t *th)); + +static void +rb_threadptr_to_kill(rb_thread_t *th) +{ + VM_ASSERT(GET_THREAD() == th); + rb_threadptr_pending_interrupt_clear(th); + th->status = THREAD_RUNNABLE; + th->to_kill = 1; + th->ec->errinfo = INT2FIX(TAG_FATAL); + EC_JUMP_TAG(th->ec, TAG_FATAL); +} + +static inline rb_atomic_t +threadptr_get_interrupts(rb_thread_t *th) +{ + rb_execution_context_t *ec = th->ec; + rb_atomic_t interrupt; + rb_atomic_t old; + + old = ATOMIC_LOAD_RELAXED(ec->interrupt_flag); + do { + interrupt = old; + old = ATOMIC_CAS(ec->interrupt_flag, interrupt, interrupt & ec->interrupt_mask); + } while (old != interrupt); + return interrupt & (rb_atomic_t)~ec->interrupt_mask; +} + +static void threadptr_interrupt_exec_exec(rb_thread_t *th); + +// Execute interrupts on currently running thread +// In certain situations, calling this function will raise an exception. Some examples are: +// * during VM shutdown (`rb_ractor_terminate_all`) +// * Call to Thread#exit for current thread (`rb_thread_kill`) +// * Call to Thread#raise for current thread +int +rb_threadptr_execute_interrupts(rb_thread_t *th, int blocking_timing) +{ + rb_atomic_t interrupt; + int postponed_job_interrupt = 0; + int ret = FALSE; + + VM_ASSERT(GET_THREAD() == th); + + if (th->ec->raised_flag) return ret; + + while ((interrupt = threadptr_get_interrupts(th)) != 0) { + int sig; + int timer_interrupt; + int pending_interrupt; + int trap_interrupt; + int terminate_interrupt; + + timer_interrupt = interrupt & TIMER_INTERRUPT_MASK; + pending_interrupt = interrupt & PENDING_INTERRUPT_MASK; + postponed_job_interrupt = interrupt & POSTPONED_JOB_INTERRUPT_MASK; + trap_interrupt = interrupt & TRAP_INTERRUPT_MASK; + terminate_interrupt = interrupt & TERMINATE_INTERRUPT_MASK; // request from other ractors + + if (interrupt & VM_BARRIER_INTERRUPT_MASK) { + RB_VM_LOCKING(); + } + + if (postponed_job_interrupt) { + rb_postponed_job_flush(th->vm); + } + + if (trap_interrupt) { + /* signal handling */ + if (th == th->vm->ractor.main_thread) { + enum rb_thread_status prev_status = th->status; + + th->status = THREAD_RUNNABLE; + { + while ((sig = rb_get_next_signal()) != 0) { + ret |= rb_signal_exec(th, sig); + } + } + th->status = prev_status; + } + + if (!ccan_list_empty(&th->interrupt_exec_tasks)) { + enum rb_thread_status prev_status = th->status; + + th->status = THREAD_RUNNABLE; + { + threadptr_interrupt_exec_exec(th); + } + th->status = prev_status; + } + } + + /* exception from another thread */ + if (pending_interrupt && threadptr_pending_interrupt_active_p(th)) { + VALUE err = rb_threadptr_pending_interrupt_deque(th, blocking_timing ? INTERRUPT_ON_BLOCKING : INTERRUPT_NONE); + RUBY_DEBUG_LOG("err:%"PRIdVALUE, err); + ret = TRUE; + + if (UNDEF_P(err)) { + /* no error */ + } + else if (err == RUBY_FATAL_THREAD_KILLED /* Thread#kill received */ || + err == RUBY_FATAL_THREAD_TERMINATED /* Terminate thread */ || + err == INT2FIX(TAG_FATAL) /* Thread.exit etc. */ ) { + terminate_interrupt = 1; + } + else { + if (err == th->vm->special_exceptions[ruby_error_stream_closed]) { + /* the only special exception to be queued across thread */ + err = ruby_vm_special_exception_copy(err); + } + /* set runnable if th was slept. */ + if (th->status == THREAD_STOPPED || + th->status == THREAD_STOPPED_FOREVER) + th->status = THREAD_RUNNABLE; + rb_exc_raise(err); + } + } + + if (terminate_interrupt) { + rb_threadptr_to_kill(th); + } + + if (timer_interrupt) { + uint32_t limits_us = thread_default_quantum_ms * 1000; + + if (th->priority > 0) + limits_us <<= th->priority; + else + limits_us >>= -th->priority; + + if (th->status == THREAD_RUNNABLE) + th->running_time_us += 10 * 1000; // 10ms = 10_000us // TODO: use macro + + VM_ASSERT(th->ec->cfp); + EXEC_EVENT_HOOK(th->ec, RUBY_INTERNAL_EVENT_SWITCH, th->ec->cfp->self, + 0, 0, 0, Qundef); + + rb_thread_schedule_limits(limits_us); + } + } + return ret; +} + +void +rb_thread_execute_interrupts(VALUE thval) +{ + rb_threadptr_execute_interrupts(rb_thread_ptr(thval), 1); +} + +static void +rb_threadptr_ready(rb_thread_t *th) +{ + rb_threadptr_interrupt(th); +} + +static VALUE +rb_threadptr_raise(rb_thread_t *target_th, int argc, VALUE *argv) +{ + if (rb_threadptr_dead(target_th)) { + return Qnil; + } + + VALUE exception = rb_exception_setup(argc, argv); + + /* making an exception object can switch thread, + so we need to check thread deadness again */ + if (rb_threadptr_dead(target_th)) { + return Qnil; + } + + rb_threadptr_pending_interrupt_enque(target_th, exception); + rb_threadptr_interrupt(target_th); + + return Qnil; +} + +void +rb_threadptr_signal_raise(rb_thread_t *th, int sig) +{ + VALUE argv[2]; + + argv[0] = rb_eSignal; + argv[1] = INT2FIX(sig); + rb_threadptr_raise(th->vm->ractor.main_thread, 2, argv); +} + +void +rb_threadptr_signal_exit(rb_thread_t *th) +{ + VALUE argv[2]; + + argv[0] = rb_eSystemExit; + argv[1] = rb_str_new2("exit"); + + // TODO: check signal raise deliverly + rb_threadptr_raise(th->vm->ractor.main_thread, 2, argv); +} + +int +rb_ec_set_raised(rb_execution_context_t *ec) +{ + if (ec->raised_flag & RAISED_EXCEPTION) { + return 1; + } + ec->raised_flag |= RAISED_EXCEPTION; + return 0; +} + +int +rb_ec_reset_raised(rb_execution_context_t *ec) +{ + if (!(ec->raised_flag & RAISED_EXCEPTION)) { + return 0; + } + ec->raised_flag &= ~RAISED_EXCEPTION; + return 1; +} + +/* + * Thread-safe IO closing mechanism. + * + * When an IO is closed while other threads or fibers are blocked on it, we need to: + * 1. Track and notify all blocking operations through io->blocking_operations + * 2. Ensure only one thread can close at a time using io->closing_ec + * 3. Synchronize cleanup using wakeup_mutex + * + * The close process works as follows: + * - First check if any thread is already closing (io->closing_ec) + * - Set up wakeup_mutex for synchronization + * - Iterate through all blocking operations in io->blocking_operations + * - For each blocked fiber with a scheduler: + * - Notify via rb_fiber_scheduler_fiber_interrupt + * - For each blocked thread without a scheduler: + * - Enqueue IOError via rb_threadptr_pending_interrupt_enque + * - Wake via rb_threadptr_interrupt + * - Wait on wakeup_mutex until all operations are cleaned up + * - Only then clear closing state and allow actual close to proceed + */ +static VALUE +thread_io_close_notify_all(VALUE _io) +{ + struct rb_io *io = (struct rb_io *)_io; + + size_t count = 0; + rb_vm_t *vm = io->closing_ec->thread_ptr->vm; + VALUE error = vm->special_exceptions[ruby_error_stream_closed]; + + struct rb_io_blocking_operation *blocking_operation; + ccan_list_for_each(rb_io_blocking_operations(io), blocking_operation, list) { + rb_execution_context_t *ec = blocking_operation->ec; + + // If the operation is in progress, we need to interrupt it: + if (ec) { + rb_thread_t *thread = ec->thread_ptr; + + VALUE result = RUBY_Qundef; + if (thread->scheduler != Qnil) { + result = rb_fiber_scheduler_fiber_interrupt(thread->scheduler, rb_fiberptr_self(ec->fiber_ptr), error); + } + + if (result == RUBY_Qundef) { + // If the thread is not the current thread, we need to enqueue an error: + rb_threadptr_pending_interrupt_enque(thread, error); + rb_threadptr_interrupt(thread); + } + } + + count += 1; + } + + return (VALUE)count; +} + +size_t +rb_thread_io_close_interrupt(struct rb_io *io) +{ + // We guard this operation based on `io->closing_ec` -> only one thread will ever enter this function. + if (io->closing_ec) { + return 0; + } + + // If there are no blocking operations, we are done: + if (ccan_list_empty(rb_io_blocking_operations(io))) { + return 0; + } + + // Otherwise, we are now closing the IO: + rb_execution_context_t *ec = GET_EC(); + io->closing_ec = ec; + + // This is used to ensure the correct execution context is woken up after the blocking operation is interrupted: + io->wakeup_mutex = rb_mutex_new(); + rb_mutex_allow_trap(io->wakeup_mutex, 1); + + // We need to use a mutex here as entering the fiber scheduler may cause a context switch: + VALUE result = rb_mutex_synchronize(io->wakeup_mutex, thread_io_close_notify_all, (VALUE)io); + + return (size_t)result; +} + +void +rb_thread_io_close_wait(struct rb_io* io) +{ + VALUE wakeup_mutex = io->wakeup_mutex; + + if (!RB_TEST(wakeup_mutex)) { + // There was nobody else using this file when we closed it, so we never bothered to allocate a mutex: + return; + } + + rb_mutex_lock(wakeup_mutex); + while (!ccan_list_empty(rb_io_blocking_operations(io))) { + rb_mutex_sleep(wakeup_mutex, Qnil); + } + rb_mutex_unlock(wakeup_mutex); + + // We are done closing: + io->wakeup_mutex = Qnil; + io->closing_ec = NULL; +} + +void +rb_thread_fd_close(int fd) +{ + rb_warn("rb_thread_fd_close is deprecated (and is now a no-op)."); +} + +/* + * call-seq: + * raise(exception, message = exception.to_s, backtrace = nil, cause: $!) + * raise(message = nil, cause: $!) + * + * Raises an exception from the given thread. The caller does not have to be + * +thr+. See Kernel#raise for more information on arguments. + * + * Thread.abort_on_exception = true + * a = Thread.new { sleep(200) } + * a.raise("Gotcha") + * + * This will produce: + * + * prog.rb:3: Gotcha (RuntimeError) + * from prog.rb:2:in `initialize' + * from prog.rb:2:in `new' + * from prog.rb:2 + */ + +static VALUE +thread_raise_m(int argc, VALUE *argv, VALUE self) +{ + rb_thread_t *target_th = rb_thread_ptr(self); + const rb_thread_t *current_th = GET_THREAD(); + + threadptr_check_pending_interrupt_queue(target_th); + rb_threadptr_raise(target_th, argc, argv); + + /* To perform Thread.current.raise as Kernel.raise */ + if (current_th == target_th) { + RUBY_VM_CHECK_INTS(target_th->ec); + } + return Qnil; +} + + +/* + * call-seq: + * thr.exit -> thr + * thr.kill -> thr + * thr.terminate -> thr + * + * Terminates +thr+ and schedules another thread to be run, returning + * the terminated Thread. If this is the main thread, or the last + * thread, exits the process. Note that the caller does not wait for + * the thread to terminate if the receiver is different from the currently + * running thread. The termination is asynchronous, and the thread can still + * run a small amount of ruby code before exiting. + */ + +VALUE +rb_thread_kill(VALUE thread) +{ + rb_thread_t *target_th = rb_thread_ptr(thread); + + if (target_th->to_kill || target_th->status == THREAD_KILLED) { + return thread; + } + if (target_th == target_th->vm->ractor.main_thread) { + rb_exit(EXIT_SUCCESS); + } + + RUBY_DEBUG_LOG("target_th:%u", rb_th_serial(target_th)); + + if (target_th == GET_THREAD()) { + /* kill myself immediately */ + rb_threadptr_to_kill(target_th); + } + else { + threadptr_check_pending_interrupt_queue(target_th); + rb_threadptr_pending_interrupt_enque(target_th, RUBY_FATAL_THREAD_KILLED); + rb_threadptr_interrupt(target_th); + } + + return thread; +} + +int +rb_thread_to_be_killed(VALUE thread) +{ + rb_thread_t *target_th = rb_thread_ptr(thread); + + if (target_th->to_kill || target_th->status == THREAD_KILLED) { + return TRUE; + } + return FALSE; +} + +/* + * call-seq: + * Thread.kill(thread) -> thread + * + * Causes the given +thread+ to exit, see also Thread::exit. + * + * count = 0 + * a = Thread.new { loop { count += 1 } } + * sleep(0.1) #=> 0 + * Thread.kill(a) #=> #<Thread:0x401b3d30 dead> + * count #=> 93947 + * a.alive? #=> false + */ + +static VALUE +rb_thread_s_kill(VALUE obj, VALUE th) +{ + return rb_thread_kill(th); +} + + +/* + * call-seq: + * Thread.exit -> thread + * + * Terminates the currently running thread and schedules another thread to be + * run. + * + * If this thread is already marked to be killed, ::exit returns the Thread. + * + * If this is the main thread, or the last thread, exit the process. + */ + +static VALUE +rb_thread_exit(VALUE _) +{ + rb_thread_t *th = GET_THREAD(); + return rb_thread_kill(th->self); +} + + +/* + * call-seq: + * thr.wakeup -> thr + * + * Marks a given thread as eligible for scheduling, however it may still + * remain blocked on I/O. + * + * *Note:* This does not invoke the scheduler, see #run for more information. + * + * c = Thread.new { Thread.stop; puts "hey!" } + * sleep 0.1 while c.status!='sleep' + * c.wakeup + * c.join + * #=> "hey!" + */ + +VALUE +rb_thread_wakeup(VALUE thread) +{ + if (!RTEST(rb_thread_wakeup_alive(thread))) { + rb_raise(rb_eThreadError, "killed thread"); + } + return thread; +} + +VALUE +rb_thread_wakeup_alive(VALUE thread) +{ + rb_thread_t *target_th = rb_thread_ptr(thread); + if (target_th->status == THREAD_KILLED) return Qnil; + + rb_threadptr_ready(target_th); + + if (target_th->status == THREAD_STOPPED || + target_th->status == THREAD_STOPPED_FOREVER) { + target_th->status = THREAD_RUNNABLE; + } + + return thread; +} + + +/* + * call-seq: + * thr.run -> thr + * + * Wakes up +thr+, making it eligible for scheduling. + * + * a = Thread.new { puts "a"; Thread.stop; puts "c" } + * sleep 0.1 while a.status!='sleep' + * puts "Got here" + * a.run + * a.join + * + * This will produce: + * + * a + * Got here + * c + * + * See also the instance method #wakeup. + */ + +VALUE +rb_thread_run(VALUE thread) +{ + rb_thread_wakeup(thread); + rb_thread_schedule(); + return thread; +} + + +VALUE +rb_thread_stop(void) +{ + if (rb_thread_alone()) { + rb_raise(rb_eThreadError, + "stopping only thread\n\tnote: use sleep to stop forever"); + } + rb_thread_sleep_deadly(); + return Qnil; +} + +/* + * call-seq: + * Thread.stop -> nil + * + * Stops execution of the current thread, putting it into a ``sleep'' state, + * and schedules execution of another thread. + * + * a = Thread.new { print "a"; Thread.stop; print "c" } + * sleep 0.1 while a.status!='sleep' + * print "b" + * a.run + * a.join + * #=> "abc" + */ + +static VALUE +thread_stop(VALUE _) +{ + return rb_thread_stop(); +} + +/********************************************************************/ + +VALUE +rb_thread_list(void) +{ + // TODO + return rb_ractor_thread_list(); +} + +/* + * call-seq: + * Thread.list -> array + * + * Returns an array of Thread objects for all threads that are either runnable + * or stopped. + * + * Thread.new { sleep(200) } + * Thread.new { 1000000.times {|i| i*i } } + * Thread.new { Thread.stop } + * Thread.list.each {|t| p t} + * + * This will produce: + * + * #<Thread:0x401b3e84 sleep> + * #<Thread:0x401b3f38 run> + * #<Thread:0x401b3fb0 sleep> + * #<Thread:0x401bdf4c run> + */ + +static VALUE +thread_list(VALUE _) +{ + return rb_thread_list(); +} + +VALUE +rb_thread_current(void) +{ + return GET_THREAD()->self; +} + +/* + * call-seq: + * Thread.current -> thread + * + * Returns the currently executing thread. + * + * Thread.current #=> #<Thread:0x401bdf4c run> + */ + +static VALUE +thread_s_current(VALUE klass) +{ + return rb_thread_current(); +} + +VALUE +rb_thread_main(void) +{ + return GET_RACTOR()->threads.main->self; +} + +/* + * call-seq: + * Thread.main -> thread + * + * Returns the main thread. + */ + +static VALUE +rb_thread_s_main(VALUE klass) +{ + return rb_thread_main(); +} + + +/* + * call-seq: + * Thread.abort_on_exception -> true or false + * + * Returns the status of the global ``abort on exception'' condition. + * + * The default is +false+. + * + * When set to +true+, if any thread is aborted by an exception, the + * raised exception will be re-raised in the main thread. + * + * Can also be specified by the global $DEBUG flag or command line option + * +-d+. + * + * See also ::abort_on_exception=. + * + * There is also an instance level method to set this for a specific thread, + * see #abort_on_exception. + */ + +static VALUE +rb_thread_s_abort_exc(VALUE _) +{ + return RBOOL(GET_THREAD()->vm->thread_abort_on_exception); +} + + +/* + * call-seq: + * Thread.abort_on_exception= boolean -> true or false + * + * When set to +true+, if any thread is aborted by an exception, the + * raised exception will be re-raised in the main thread. + * Returns the new state. + * + * Thread.abort_on_exception = true + * t1 = Thread.new do + * puts "In new thread" + * raise "Exception from thread" + * end + * sleep(1) + * puts "not reached" + * + * This will produce: + * + * In new thread + * prog.rb:4: Exception from thread (RuntimeError) + * from prog.rb:2:in `initialize' + * from prog.rb:2:in `new' + * from prog.rb:2 + * + * See also ::abort_on_exception. + * + * There is also an instance level method to set this for a specific thread, + * see #abort_on_exception=. + */ + +static VALUE +rb_thread_s_abort_exc_set(VALUE self, VALUE val) +{ + GET_THREAD()->vm->thread_abort_on_exception = RTEST(val); + return val; +} + + +/* + * call-seq: + * thr.abort_on_exception -> true or false + * + * Returns the status of the thread-local ``abort on exception'' condition for + * this +thr+. + * + * The default is +false+. + * + * See also #abort_on_exception=. + * + * There is also a class level method to set this for all threads, see + * ::abort_on_exception. + */ + +static VALUE +rb_thread_abort_exc(VALUE thread) +{ + return RBOOL(rb_thread_ptr(thread)->abort_on_exception); +} + + +/* + * call-seq: + * thr.abort_on_exception= boolean -> true or false + * + * When set to +true+, if this +thr+ is aborted by an exception, the + * raised exception will be re-raised in the main thread. + * + * See also #abort_on_exception. + * + * There is also a class level method to set this for all threads, see + * ::abort_on_exception=. + */ + +static VALUE +rb_thread_abort_exc_set(VALUE thread, VALUE val) +{ + rb_thread_ptr(thread)->abort_on_exception = RTEST(val); + return val; +} + + +/* + * call-seq: + * Thread.report_on_exception -> true or false + * + * Returns the status of the global ``report on exception'' condition. + * + * The default is +true+ since Ruby 2.5. + * + * All threads created when this flag is true will report + * a message on $stderr if an exception kills the thread. + * + * Thread.new { 1.times { raise } } + * + * will produce this output on $stderr: + * + * #<Thread:...> terminated with exception (report_on_exception is true): + * Traceback (most recent call last): + * 2: from -e:1:in `block in <main>' + * 1: from -e:1:in `times' + * + * This is done to catch errors in threads early. + * In some cases, you might not want this output. + * There are multiple ways to avoid the extra output: + * + * * If the exception is not intended, the best is to fix the cause of + * the exception so it does not happen anymore. + * * If the exception is intended, it might be better to rescue it closer to + * where it is raised rather then let it kill the Thread. + * * If it is guaranteed the Thread will be joined with Thread#join or + * Thread#value, then it is safe to disable this report with + * <code>Thread.current.report_on_exception = false</code> + * when starting the Thread. + * However, this might handle the exception much later, or not at all + * if the Thread is never joined due to the parent thread being blocked, etc. + * + * See also ::report_on_exception=. + * + * There is also an instance level method to set this for a specific thread, + * see #report_on_exception=. + * + */ + +static VALUE +rb_thread_s_report_exc(VALUE _) +{ + return RBOOL(GET_THREAD()->vm->thread_report_on_exception); +} + + +/* + * call-seq: + * Thread.report_on_exception= boolean -> true or false + * + * Returns the new state. + * When set to +true+, all threads created afterwards will inherit the + * condition and report a message on $stderr if an exception kills a thread: + * + * Thread.report_on_exception = true + * t1 = Thread.new do + * puts "In new thread" + * raise "Exception from thread" + * end + * sleep(1) + * puts "In the main thread" + * + * This will produce: + * + * In new thread + * #<Thread:...prog.rb:2> terminated with exception (report_on_exception is true): + * Traceback (most recent call last): + * prog.rb:4:in `block in <main>': Exception from thread (RuntimeError) + * In the main thread + * + * See also ::report_on_exception. + * + * There is also an instance level method to set this for a specific thread, + * see #report_on_exception=. + */ + +static VALUE +rb_thread_s_report_exc_set(VALUE self, VALUE val) +{ + GET_THREAD()->vm->thread_report_on_exception = RTEST(val); + return val; +} + + +/* + * call-seq: + * Thread.ignore_deadlock -> true or false + * + * Returns the status of the global ``ignore deadlock'' condition. + * The default is +false+, so that deadlock conditions are not ignored. + * + * See also ::ignore_deadlock=. + * + */ + +static VALUE +rb_thread_s_ignore_deadlock(VALUE _) +{ + return RBOOL(GET_THREAD()->vm->thread_ignore_deadlock); +} + + +/* + * call-seq: + * Thread.ignore_deadlock = boolean -> true or false + * + * Returns the new state. + * When set to +true+, the VM will not check for deadlock conditions. + * It is only useful to set this if your application can break a + * deadlock condition via some other means, such as a signal. + * + * Thread.ignore_deadlock = true + * queue = Thread::Queue.new + * + * trap(:SIGUSR1){queue.push "Received signal"} + * + * # raises fatal error unless ignoring deadlock + * puts queue.pop + * + * See also ::ignore_deadlock. + */ + +static VALUE +rb_thread_s_ignore_deadlock_set(VALUE self, VALUE val) +{ + GET_THREAD()->vm->thread_ignore_deadlock = RTEST(val); + return val; +} + + +/* + * call-seq: + * thr.report_on_exception -> true or false + * + * Returns the status of the thread-local ``report on exception'' condition for + * this +thr+. + * + * The default value when creating a Thread is the value of + * the global flag Thread.report_on_exception. + * + * See also #report_on_exception=. + * + * There is also a class level method to set this for all new threads, see + * ::report_on_exception=. + */ + +static VALUE +rb_thread_report_exc(VALUE thread) +{ + return RBOOL(rb_thread_ptr(thread)->report_on_exception); +} + + +/* + * call-seq: + * thr.report_on_exception= boolean -> true or false + * + * When set to +true+, a message is printed on $stderr if an exception + * kills this +thr+. See ::report_on_exception for details. + * + * See also #report_on_exception. + * + * There is also a class level method to set this for all new threads, see + * ::report_on_exception=. + */ + +static VALUE +rb_thread_report_exc_set(VALUE thread, VALUE val) +{ + rb_thread_ptr(thread)->report_on_exception = RTEST(val); + return val; +} + + +/* + * call-seq: + * thr.group -> thgrp or nil + * + * Returns the ThreadGroup which contains the given thread. + * + * Thread.main.group #=> #<ThreadGroup:0x4029d914> + */ + +VALUE +rb_thread_group(VALUE thread) +{ + return rb_thread_ptr(thread)->thgroup; +} + +static const char * +thread_status_name(rb_thread_t *th, int detail) +{ + switch (th->status) { + case THREAD_RUNNABLE: + return th->to_kill ? "aborting" : "run"; + case THREAD_STOPPED_FOREVER: + if (detail) return "sleep_forever"; + case THREAD_STOPPED: + return "sleep"; + case THREAD_KILLED: + return "dead"; + default: + return "unknown"; + } +} + +static int +rb_threadptr_dead(rb_thread_t *th) +{ + return th->status == THREAD_KILLED; +} + + +/* + * call-seq: + * thr.status -> string, false or nil + * + * Returns the status of +thr+. + * + * [<tt>"sleep"</tt>] + * Returned if this thread is sleeping or waiting on I/O + * [<tt>"run"</tt>] + * When this thread is executing + * [<tt>"aborting"</tt>] + * If this thread is aborting + * [+false+] + * When this thread is terminated normally + * [+nil+] + * If terminated with an exception. + * + * a = Thread.new { raise("die now") } + * b = Thread.new { Thread.stop } + * c = Thread.new { Thread.exit } + * d = Thread.new { sleep } + * d.kill #=> #<Thread:0x401b3678 aborting> + * a.status #=> nil + * b.status #=> "sleep" + * c.status #=> false + * d.status #=> "aborting" + * Thread.current.status #=> "run" + * + * See also the instance methods #alive? and #stop? + */ + +static VALUE +rb_thread_status(VALUE thread) +{ + rb_thread_t *target_th = rb_thread_ptr(thread); + + if (rb_threadptr_dead(target_th)) { + if (!NIL_P(target_th->ec->errinfo) && + !FIXNUM_P(target_th->ec->errinfo)) { + return Qnil; + } + else { + return Qfalse; + } + } + else { + return rb_str_new2(thread_status_name(target_th, FALSE)); + } +} + + +/* + * call-seq: + * thr.alive? -> true or false + * + * Returns +true+ if +thr+ is running or sleeping. + * + * thr = Thread.new { } + * thr.join #=> #<Thread:0x401b3fb0 dead> + * Thread.current.alive? #=> true + * thr.alive? #=> false + * + * See also #stop? and #status. + */ + +static VALUE +rb_thread_alive_p(VALUE thread) +{ + return RBOOL(!thread_finished(rb_thread_ptr(thread))); +} + +/* + * call-seq: + * thr.stop? -> true or false + * + * Returns +true+ if +thr+ is dead or sleeping. + * + * a = Thread.new { Thread.stop } + * b = Thread.current + * a.stop? #=> true + * b.stop? #=> false + * + * See also #alive? and #status. + */ + +static VALUE +rb_thread_stop_p(VALUE thread) +{ + rb_thread_t *th = rb_thread_ptr(thread); + + if (rb_threadptr_dead(th)) { + return Qtrue; + } + return RBOOL(th->status == THREAD_STOPPED || th->status == THREAD_STOPPED_FOREVER); +} + +/* + * call-seq: + * thr.name -> string + * + * show the name of the thread. + */ + +static VALUE +rb_thread_getname(VALUE thread) +{ + return rb_thread_ptr(thread)->name; +} + +/* + * call-seq: + * thr.name=(name) -> string + * + * set given name to the ruby thread. + * On some platform, it may set the name to pthread and/or kernel. + */ + +static VALUE +rb_thread_setname(VALUE thread, VALUE name) +{ + rb_thread_t *target_th = rb_thread_ptr(thread); + + if (!NIL_P(name)) { + rb_encoding *enc; + StringValueCStr(name); + enc = rb_enc_get(name); + if (!rb_enc_asciicompat(enc)) { + rb_raise(rb_eArgError, "ASCII incompatible encoding (%s)", + rb_enc_name(enc)); + } + name = rb_str_new_frozen(name); + } + target_th->name = name; + if (threadptr_initialized(target_th) && target_th->has_dedicated_nt) { + native_set_another_thread_name(target_th->nt->thread_id, name); + } + return name; +} + +#if USE_NATIVE_THREAD_NATIVE_THREAD_ID +/* + * call-seq: + * thr.native_thread_id -> integer + * + * Return the native thread ID which is used by the Ruby thread. + * + * The ID depends on the OS. (not POSIX thread ID returned by pthread_self(3)) + * * On Linux it is TID returned by gettid(2). + * * On macOS it is the system-wide unique integral ID of thread returned + * by pthread_threadid_np(3). + * * On FreeBSD it is the unique integral ID of the thread returned by + * pthread_getthreadid_np(3). + * * On Windows it is the thread identifier returned by GetThreadId(). + * * On other platforms, it raises NotImplementedError. + * + * NOTE: + * If the thread is not associated yet or already deassociated with a native + * thread, it returns _nil_. + * If the Ruby implementation uses M:N thread model, the ID may change + * depending on the timing. + */ + +static VALUE +rb_thread_native_thread_id(VALUE thread) +{ + rb_thread_t *target_th = rb_thread_ptr(thread); + if (rb_threadptr_dead(target_th)) return Qnil; + return native_thread_native_thread_id(target_th); +} +#else +# define rb_thread_native_thread_id rb_f_notimplement +#endif + +/* + * call-seq: + * thr.to_s -> string + * + * Dump the name, id, and status of _thr_ to a string. + */ + +static VALUE +rb_thread_to_s(VALUE thread) +{ + VALUE cname = rb_class_path(rb_obj_class(thread)); + rb_thread_t *target_th = rb_thread_ptr(thread); + const char *status; + VALUE str, loc; + + status = thread_status_name(target_th, TRUE); + str = rb_sprintf("#<%"PRIsVALUE":%p", cname, (void *)thread); + if (!NIL_P(target_th->name)) { + rb_str_catf(str, "@%"PRIsVALUE, target_th->name); + } + if ((loc = threadptr_invoke_proc_location(target_th)) != Qnil) { + rb_str_catf(str, " %"PRIsVALUE":%"PRIsVALUE, + RARRAY_AREF(loc, 0), RARRAY_AREF(loc, 1)); + } + rb_str_catf(str, " %s>", status); + + return str; +} + +/* variables for recursive traversals */ +#define recursive_key id__recursive_key__ + +static VALUE +threadptr_local_aref(rb_thread_t *th, ID id) +{ + if (id == recursive_key) { + return th->ec->local_storage_recursive_hash; + } + else { + VALUE val; + struct rb_id_table *local_storage = th->ec->local_storage; + + if (local_storage != NULL && rb_id_table_lookup(local_storage, id, &val)) { + return val; + } + else { + return Qnil; + } + } +} + +VALUE +rb_thread_local_aref(VALUE thread, ID id) +{ + return threadptr_local_aref(rb_thread_ptr(thread), id); +} + +/* + * call-seq: + * thr[sym] -> obj or nil + * + * Attribute Reference---Returns the value of a fiber-local variable (current thread's root fiber + * if not explicitly inside a Fiber), using either a symbol or a string name. + * If the specified variable does not exist, returns +nil+. + * + * [ + * Thread.new { Thread.current["name"] = "A" }, + * Thread.new { Thread.current[:name] = "B" }, + * Thread.new { Thread.current["name"] = "C" } + * ].each do |th| + * th.join + * puts "#{th.inspect}: #{th[:name]}" + * end + * + * This will produce: + * + * #<Thread:0x00000002a54220 dead>: A + * #<Thread:0x00000002a541a8 dead>: B + * #<Thread:0x00000002a54130 dead>: C + * + * Thread#[] and Thread#[]= are not thread-local but fiber-local. + * This confusion did not exist in Ruby 1.8 because + * fibers are only available since Ruby 1.9. + * Ruby 1.9 chooses that the methods behaves fiber-local to save + * following idiom for dynamic scope. + * + * def meth(newvalue) + * begin + * oldvalue = Thread.current[:name] + * Thread.current[:name] = newvalue + * yield + * ensure + * Thread.current[:name] = oldvalue + * end + * end + * + * The idiom may not work as dynamic scope if the methods are thread-local + * and a given block switches fiber. + * + * f = Fiber.new { + * meth(1) { + * Fiber.yield + * } + * } + * meth(2) { + * f.resume + * } + * f.resume + * p Thread.current[:name] + * #=> nil if fiber-local + * #=> 2 if thread-local (The value 2 is leaked to outside of meth method.) + * + * For thread-local variables, please see #thread_variable_get and + * #thread_variable_set. + * + */ + +static VALUE +rb_thread_aref(VALUE thread, VALUE key) +{ + ID id = rb_check_id(&key); + if (!id) return Qnil; + return rb_thread_local_aref(thread, id); +} + +/* + * call-seq: + * thr.fetch(sym) -> obj + * thr.fetch(sym) { } -> obj + * thr.fetch(sym, default) -> obj + * + * Returns a fiber-local for the given key. If the key can't be + * found, there are several options: With no other arguments, it will + * raise a KeyError exception; if <i>default</i> is given, then that + * will be returned; if the optional code block is specified, then + * that will be run and its result returned. See Thread#[] and + * Hash#fetch. + */ +static VALUE +rb_thread_fetch(int argc, VALUE *argv, VALUE self) +{ + VALUE key, val; + ID id; + rb_thread_t *target_th = rb_thread_ptr(self); + int block_given; + + rb_check_arity(argc, 1, 2); + key = argv[0]; + + block_given = rb_block_given_p(); + if (block_given && argc == 2) { + rb_warn("block supersedes default value argument"); + } + + id = rb_check_id(&key); + + if (id == recursive_key) { + return target_th->ec->local_storage_recursive_hash; + } + else if (id && target_th->ec->local_storage && + rb_id_table_lookup(target_th->ec->local_storage, id, &val)) { + return val; + } + else if (block_given) { + return rb_yield(key); + } + else if (argc == 1) { + rb_key_err_raise(rb_sprintf("key not found: %+"PRIsVALUE, key), self, key); + } + else { + return argv[1]; + } +} + +static VALUE +threadptr_local_aset(rb_thread_t *th, ID id, VALUE val) +{ + if (id == recursive_key) { + th->ec->local_storage_recursive_hash = val; + return val; + } + else { + struct rb_id_table *local_storage = th->ec->local_storage; + + if (NIL_P(val)) { + if (!local_storage) return Qnil; + rb_id_table_delete(local_storage, id); + return Qnil; + } + else { + if (local_storage == NULL) { + th->ec->local_storage = local_storage = rb_id_table_create(0); + } + rb_id_table_insert(local_storage, id, val); + return val; + } + } +} + +VALUE +rb_thread_local_aset(VALUE thread, ID id, VALUE val) +{ + if (OBJ_FROZEN(thread)) { + rb_frozen_error_raise(thread, "can't modify frozen thread locals"); + } + + return threadptr_local_aset(rb_thread_ptr(thread), id, val); +} + +/* + * call-seq: + * thr[sym] = obj -> obj + * + * Attribute Assignment---Sets or creates the value of a fiber-local variable, + * using either a symbol or a string. + * + * See also Thread#[]. + * + * For thread-local variables, please see #thread_variable_set and + * #thread_variable_get. + */ + +static VALUE +rb_thread_aset(VALUE self, VALUE id, VALUE val) +{ + return rb_thread_local_aset(self, rb_to_id(id), val); +} + +/* + * call-seq: + * thr.thread_variable_get(key) -> obj or nil + * + * Returns the value of a thread local variable that has been set. Note that + * these are different than fiber local values. For fiber local values, + * please see Thread#[] and Thread#[]=. + * + * Thread local values are carried along with threads, and do not respect + * fibers. For example: + * + * Thread.new { + * Thread.current.thread_variable_set("foo", "bar") # set a thread local + * Thread.current["foo"] = "bar" # set a fiber local + * + * Fiber.new { + * Fiber.yield [ + * Thread.current.thread_variable_get("foo"), # get the thread local + * Thread.current["foo"], # get the fiber local + * ] + * }.resume + * }.join.value # => ['bar', nil] + * + * The value "bar" is returned for the thread local, where nil is returned + * for the fiber local. The fiber is executed in the same thread, so the + * thread local values are available. + */ + +static VALUE +rb_thread_variable_get(VALUE thread, VALUE key) +{ + VALUE locals; + VALUE symbol = rb_to_symbol(key); + + if (LIKELY(!THREAD_LOCAL_STORAGE_INITIALISED_P(thread))) { + return Qnil; + } + locals = rb_thread_local_storage(thread); + return rb_hash_aref(locals, symbol); +} + +/* + * call-seq: + * thr.thread_variable_set(key, value) + * + * Sets a thread local with +key+ to +value+. Note that these are local to + * threads, and not to fibers. Please see Thread#thread_variable_get and + * Thread#[] for more information. + */ + +static VALUE +rb_thread_variable_set(VALUE thread, VALUE key, VALUE val) +{ + VALUE locals; + + if (OBJ_FROZEN(thread)) { + rb_frozen_error_raise(thread, "can't modify frozen thread locals"); + } + + locals = rb_thread_local_storage(thread); + return rb_hash_aset(locals, rb_to_symbol(key), val); +} + +/* + * call-seq: + * thr.key?(sym) -> true or false + * + * Returns +true+ if the given string (or symbol) exists as a fiber-local + * variable. + * + * me = Thread.current + * me[:oliver] = "a" + * me.key?(:oliver) #=> true + * me.key?(:stanley) #=> false + */ + +static VALUE +rb_thread_key_p(VALUE self, VALUE key) +{ + VALUE val; + ID id = rb_check_id(&key); + struct rb_id_table *local_storage = rb_thread_ptr(self)->ec->local_storage; + + if (!id || local_storage == NULL) { + return Qfalse; + } + return RBOOL(rb_id_table_lookup(local_storage, id, &val)); +} + +static enum rb_id_table_iterator_result +thread_keys_i(ID key, VALUE value, void *ary) +{ + rb_ary_push((VALUE)ary, ID2SYM(key)); + return ID_TABLE_CONTINUE; +} + +int +rb_thread_alone(void) +{ + // TODO + return rb_ractor_living_thread_num(GET_RACTOR()) == 1; +} + +/* + * call-seq: + * thr.keys -> array + * + * Returns an array of the names of the fiber-local variables (as Symbols). + * + * thr = Thread.new do + * Thread.current[:cat] = 'meow' + * Thread.current["dog"] = 'woof' + * end + * thr.join #=> #<Thread:0x401b3f10 dead> + * thr.keys #=> [:dog, :cat] + */ + +static VALUE +rb_thread_keys(VALUE self) +{ + struct rb_id_table *local_storage = rb_thread_ptr(self)->ec->local_storage; + VALUE ary = rb_ary_new(); + + if (local_storage) { + rb_id_table_foreach(local_storage, thread_keys_i, (void *)ary); + } + return ary; +} + +static int +keys_i(VALUE key, VALUE value, VALUE ary) +{ + rb_ary_push(ary, key); + return ST_CONTINUE; +} + +/* + * call-seq: + * thr.thread_variables -> array + * + * Returns an array of the names of the thread-local variables (as Symbols). + * + * thr = Thread.new do + * Thread.current.thread_variable_set(:cat, 'meow') + * Thread.current.thread_variable_set("dog", 'woof') + * end + * thr.join #=> #<Thread:0x401b3f10 dead> + * thr.thread_variables #=> [:dog, :cat] + * + * Note that these are not fiber local variables. Please see Thread#[] and + * Thread#thread_variable_get for more details. + */ + +static VALUE +rb_thread_variables(VALUE thread) +{ + VALUE locals; + VALUE ary; + + ary = rb_ary_new(); + if (LIKELY(!THREAD_LOCAL_STORAGE_INITIALISED_P(thread))) { + return ary; + } + locals = rb_thread_local_storage(thread); + rb_hash_foreach(locals, keys_i, ary); + + return ary; +} + +/* + * call-seq: + * thr.thread_variable?(key) -> true or false + * + * Returns +true+ if the given string (or symbol) exists as a thread-local + * variable. + * + * me = Thread.current + * me.thread_variable_set(:oliver, "a") + * me.thread_variable?(:oliver) #=> true + * me.thread_variable?(:stanley) #=> false + * + * Note that these are not fiber local variables. Please see Thread#[] and + * Thread#thread_variable_get for more details. + */ + +static VALUE +rb_thread_variable_p(VALUE thread, VALUE key) +{ + VALUE locals; + VALUE symbol = rb_to_symbol(key); + + if (LIKELY(!THREAD_LOCAL_STORAGE_INITIALISED_P(thread))) { + return Qfalse; + } + locals = rb_thread_local_storage(thread); + + return RBOOL(rb_hash_lookup(locals, symbol) != Qnil); +} + +/* + * call-seq: + * thr.priority -> integer + * + * Returns the priority of <i>thr</i>. Default is inherited from the + * current thread which creating the new thread, or zero for the + * initial main thread; higher-priority thread will run more frequently + * than lower-priority threads (but lower-priority threads can also run). + * + * This is just hint for Ruby thread scheduler. It may be ignored on some + * platform. + * + * Thread.current.priority #=> 0 + */ + +static VALUE +rb_thread_priority(VALUE thread) +{ + return INT2NUM(rb_thread_ptr(thread)->priority); +} + + +/* + * call-seq: + * thr.priority= integer -> thr + * + * Sets the priority of <i>thr</i> to <i>integer</i>. Higher-priority threads + * will run more frequently than lower-priority threads (but lower-priority + * threads can also run). + * + * This is just hint for Ruby thread scheduler. It may be ignored on some + * platform. + * + * count1 = count2 = 0 + * a = Thread.new do + * loop { count1 += 1 } + * end + * a.priority = -1 + * + * b = Thread.new do + * loop { count2 += 1 } + * end + * b.priority = -2 + * sleep 1 #=> 1 + * count1 #=> 622504 + * count2 #=> 5832 + */ + +static VALUE +rb_thread_priority_set(VALUE thread, VALUE prio) +{ + rb_thread_t *target_th = rb_thread_ptr(thread); + int priority; + +#if USE_NATIVE_THREAD_PRIORITY + target_th->priority = NUM2INT(prio); + native_thread_apply_priority(th); +#else + priority = NUM2INT(prio); + if (priority > RUBY_THREAD_PRIORITY_MAX) { + priority = RUBY_THREAD_PRIORITY_MAX; + } + else if (priority < RUBY_THREAD_PRIORITY_MIN) { + priority = RUBY_THREAD_PRIORITY_MIN; + } + target_th->priority = (int8_t)priority; +#endif + return INT2NUM(target_th->priority); +} + +/* for IO */ + +#if defined(NFDBITS) && defined(HAVE_RB_FD_INIT) + +/* + * several Unix platforms support file descriptors bigger than FD_SETSIZE + * in select(2) system call. + * + * - Linux 2.2.12 (?) + * - NetBSD 1.2 (src/sys/kern/sys_generic.c:1.25) + * select(2) documents how to allocate fd_set dynamically. + * http://netbsd.gw.com/cgi-bin/man-cgi?select++NetBSD-4.0 + * - FreeBSD 2.2 (src/sys/kern/sys_generic.c:1.19) + * - OpenBSD 2.0 (src/sys/kern/sys_generic.c:1.4) + * select(2) documents how to allocate fd_set dynamically. + * http://www.openbsd.org/cgi-bin/man.cgi?query=select&manpath=OpenBSD+4.4 + * - Solaris 8 has select_large_fdset + * - Mac OS X 10.7 (Lion) + * select(2) returns EINVAL if nfds is greater than FD_SET_SIZE and + * _DARWIN_UNLIMITED_SELECT (or _DARWIN_C_SOURCE) isn't defined. + * https://developer.apple.com/library/archive/releasenotes/Darwin/SymbolVariantsRelNotes/index.html + * + * When fd_set is not big enough to hold big file descriptors, + * it should be allocated dynamically. + * Note that this assumes fd_set is structured as bitmap. + * + * rb_fd_init allocates the memory. + * rb_fd_term free the memory. + * rb_fd_set may re-allocates bitmap. + * + * So rb_fd_set doesn't reject file descriptors bigger than FD_SETSIZE. + */ + +void +rb_fd_init(rb_fdset_t *fds) +{ + fds->maxfd = 0; + fds->fdset = ALLOC(fd_set); + FD_ZERO(fds->fdset); +} + +void +rb_fd_init_copy(rb_fdset_t *dst, rb_fdset_t *src) +{ + size_t size = howmany(rb_fd_max(src), NFDBITS) * sizeof(fd_mask); + + if (size < sizeof(fd_set)) + size = sizeof(fd_set); + dst->maxfd = src->maxfd; + dst->fdset = xmalloc(size); + memcpy(dst->fdset, src->fdset, size); +} + +void +rb_fd_term(rb_fdset_t *fds) +{ + xfree(fds->fdset); + fds->maxfd = 0; + fds->fdset = 0; +} + +void +rb_fd_zero(rb_fdset_t *fds) +{ + if (fds->fdset) + MEMZERO(fds->fdset, fd_mask, howmany(fds->maxfd, NFDBITS)); +} + +static void +rb_fd_resize(int n, rb_fdset_t *fds) +{ + size_t m = howmany(n + 1, NFDBITS) * sizeof(fd_mask); + size_t o = howmany(fds->maxfd, NFDBITS) * sizeof(fd_mask); + + if (m < sizeof(fd_set)) m = sizeof(fd_set); + if (o < sizeof(fd_set)) o = sizeof(fd_set); + + if (m > o) { + fds->fdset = xrealloc(fds->fdset, m); + memset((char *)fds->fdset + o, 0, m - o); + } + if (n >= fds->maxfd) fds->maxfd = n + 1; +} + +void +rb_fd_set(int n, rb_fdset_t *fds) +{ + rb_fd_resize(n, fds); + FD_SET(n, fds->fdset); +} + +void +rb_fd_clr(int n, rb_fdset_t *fds) +{ + if (n >= fds->maxfd) return; + FD_CLR(n, fds->fdset); +} + +int +rb_fd_isset(int n, const rb_fdset_t *fds) +{ + if (n >= fds->maxfd) return 0; + return FD_ISSET(n, fds->fdset) != 0; /* "!= 0" avoids FreeBSD PR 91421 */ +} + +void +rb_fd_copy(rb_fdset_t *dst, const fd_set *src, int max) +{ + size_t size = howmany(max, NFDBITS) * sizeof(fd_mask); + + if (size < sizeof(fd_set)) size = sizeof(fd_set); + dst->maxfd = max; + dst->fdset = xrealloc(dst->fdset, size); + memcpy(dst->fdset, src, size); +} + +void +rb_fd_dup(rb_fdset_t *dst, const rb_fdset_t *src) +{ + size_t size = howmany(rb_fd_max(src), NFDBITS) * sizeof(fd_mask); + + if (size < sizeof(fd_set)) + size = sizeof(fd_set); + dst->maxfd = src->maxfd; + dst->fdset = xrealloc(dst->fdset, size); + memcpy(dst->fdset, src->fdset, size); +} + +int +rb_fd_select(int n, rb_fdset_t *readfds, rb_fdset_t *writefds, rb_fdset_t *exceptfds, struct timeval *timeout) +{ + fd_set *r = NULL, *w = NULL, *e = NULL; + if (readfds) { + rb_fd_resize(n - 1, readfds); + r = rb_fd_ptr(readfds); + } + if (writefds) { + rb_fd_resize(n - 1, writefds); + w = rb_fd_ptr(writefds); + } + if (exceptfds) { + rb_fd_resize(n - 1, exceptfds); + e = rb_fd_ptr(exceptfds); + } + return select(n, r, w, e, timeout); +} + +#define rb_fd_no_init(fds) ((void)((fds)->fdset = 0), (void)((fds)->maxfd = 0)) + +#undef FD_ZERO +#undef FD_SET +#undef FD_CLR +#undef FD_ISSET + +#define FD_ZERO(f) rb_fd_zero(f) +#define FD_SET(i, f) rb_fd_set((i), (f)) +#define FD_CLR(i, f) rb_fd_clr((i), (f)) +#define FD_ISSET(i, f) rb_fd_isset((i), (f)) + +#elif defined(_WIN32) + +void +rb_fd_init(rb_fdset_t *set) +{ + set->capa = FD_SETSIZE; + set->fdset = ALLOC(fd_set); + FD_ZERO(set->fdset); +} + +void +rb_fd_init_copy(rb_fdset_t *dst, rb_fdset_t *src) +{ + rb_fd_init(dst); + rb_fd_dup(dst, src); +} + +void +rb_fd_term(rb_fdset_t *set) +{ + xfree(set->fdset); + set->fdset = NULL; + set->capa = 0; +} + +void +rb_fd_set(int fd, rb_fdset_t *set) +{ + unsigned int i; + SOCKET s = rb_w32_get_osfhandle(fd); + + for (i = 0; i < set->fdset->fd_count; i++) { + if (set->fdset->fd_array[i] == s) { + return; + } + } + if (set->fdset->fd_count >= (unsigned)set->capa) { + set->capa = (set->fdset->fd_count / FD_SETSIZE + 1) * FD_SETSIZE; + set->fdset = + rb_xrealloc_mul_add( + set->fdset, set->capa, sizeof(SOCKET), sizeof(unsigned int)); + } + set->fdset->fd_array[set->fdset->fd_count++] = s; +} + +#undef FD_ZERO +#undef FD_SET +#undef FD_CLR +#undef FD_ISSET + +#define FD_ZERO(f) rb_fd_zero(f) +#define FD_SET(i, f) rb_fd_set((i), (f)) +#define FD_CLR(i, f) rb_fd_clr((i), (f)) +#define FD_ISSET(i, f) rb_fd_isset((i), (f)) + +#define rb_fd_no_init(fds) (void)((fds)->fdset = 0) + +#endif + +#ifndef rb_fd_no_init +#define rb_fd_no_init(fds) (void)(fds) +#endif + +static int +wait_retryable(volatile int *result, int errnum, rb_hrtime_t *rel, rb_hrtime_t end) +{ + int r = *result; + if (r < 0) { + switch (errnum) { + case EINTR: +#ifdef ERESTART + case ERESTART: +#endif + *result = 0; + if (rel && hrtime_update_expire(rel, end)) { + *rel = 0; + } + return TRUE; + } + return FALSE; + } + else if (r == 0) { + /* check for spurious wakeup */ + if (rel) { + return !hrtime_update_expire(rel, end); + } + return TRUE; + } + return FALSE; +} + +struct select_set { + int max; + rb_thread_t *th; + rb_fdset_t *rset; + rb_fdset_t *wset; + rb_fdset_t *eset; + rb_fdset_t orig_rset; + rb_fdset_t orig_wset; + rb_fdset_t orig_eset; + struct timeval *timeout; +}; + +static VALUE +select_set_free(VALUE p) +{ + struct select_set *set = (struct select_set *)p; + + rb_fd_term(&set->orig_rset); + rb_fd_term(&set->orig_wset); + rb_fd_term(&set->orig_eset); + + return Qfalse; +} + +static VALUE +do_select(VALUE p) +{ + struct select_set *set = (struct select_set *)p; + volatile int result = 0; + int lerrno; + rb_hrtime_t *to, rel, end = 0; + + timeout_prepare(&to, &rel, &end, set->timeout); + volatile rb_hrtime_t endtime = end; +#define restore_fdset(dst, src) \ + ((dst) ? rb_fd_dup(dst, src) : (void)0) +#define do_select_update() \ + (restore_fdset(set->rset, &set->orig_rset), \ + restore_fdset(set->wset, &set->orig_wset), \ + restore_fdset(set->eset, &set->orig_eset), \ + TRUE) + + do { + lerrno = 0; + + BLOCKING_REGION(set->th, { + struct timeval tv; + + if (!RUBY_VM_INTERRUPTED(set->th->ec)) { + result = native_fd_select(set->max, + set->rset, set->wset, set->eset, + rb_hrtime2timeval(&tv, to), set->th); + if (result < 0) lerrno = errno; + } + }, ubf_select, set->th, TRUE); + + RUBY_VM_CHECK_INTS_BLOCKING(set->th->ec); /* may raise */ + } while (wait_retryable(&result, lerrno, to, endtime) && do_select_update()); + + RUBY_VM_CHECK_INTS_BLOCKING(set->th->ec); + + if (result < 0) { + errno = lerrno; + } + + return (VALUE)result; +} + +int +rb_thread_fd_select(int max, rb_fdset_t * read, rb_fdset_t * write, rb_fdset_t * except, + struct timeval *timeout) +{ + struct select_set set; + + set.th = GET_THREAD(); + RUBY_VM_CHECK_INTS_BLOCKING(set.th->ec); + set.max = max; + set.rset = read; + set.wset = write; + set.eset = except; + set.timeout = timeout; + + if (!set.rset && !set.wset && !set.eset) { + if (!timeout) { + rb_thread_sleep_forever(); + return 0; + } + rb_thread_wait_for(*timeout); + return 0; + } + +#define fd_init_copy(f) do { \ + if (set.f) { \ + rb_fd_resize(set.max - 1, set.f); \ + if (&set.orig_##f != set.f) { /* sigwait_fd */ \ + rb_fd_init_copy(&set.orig_##f, set.f); \ + } \ + } \ + else { \ + rb_fd_no_init(&set.orig_##f); \ + } \ + } while (0) + fd_init_copy(rset); + fd_init_copy(wset); + fd_init_copy(eset); +#undef fd_init_copy + + return (int)rb_ensure(do_select, (VALUE)&set, select_set_free, (VALUE)&set); +} + +#ifdef USE_POLL + +/* The same with linux kernel. TODO: make platform independent definition. */ +#define POLLIN_SET (POLLRDNORM | POLLRDBAND | POLLIN | POLLHUP | POLLERR) +#define POLLOUT_SET (POLLWRBAND | POLLWRNORM | POLLOUT | POLLERR) +#define POLLEX_SET (POLLPRI) + +#ifndef POLLERR_SET /* defined for FreeBSD for now */ +# define POLLERR_SET (0) +#endif + +static int +wait_for_single_fd_blocking_region(rb_thread_t *th, struct pollfd *fds, nfds_t nfds, + rb_hrtime_t *const to, volatile int *lerrno) +{ + struct timespec ts; + volatile int result = 0; + + *lerrno = 0; + BLOCKING_REGION(th, { + if (!RUBY_VM_INTERRUPTED(th->ec)) { + result = ppoll(fds, nfds, rb_hrtime2timespec(&ts, to), 0); + if (result < 0) *lerrno = errno; + } + }, ubf_select, th, TRUE); + return result; +} + +/* + * returns a mask of events + */ +static int +thread_io_wait(rb_thread_t *th, struct rb_io *io, int fd, int events, struct timeval *timeout) +{ + struct pollfd fds[1] = {{ + .fd = fd, + .events = (short)events, + .revents = 0, + }}; + volatile int result = 0; + nfds_t nfds; + struct rb_io_blocking_operation blocking_operation; + enum ruby_tag_type state; + volatile int lerrno; + + RUBY_ASSERT(th); + rb_execution_context_t *ec = th->ec; + + if (io) { + blocking_operation.ec = ec; + rb_io_blocking_operation_enter(io, &blocking_operation); + } + + if (timeout == NULL && thread_io_wait_events(th, fd, events, NULL)) { + // fd is readable + state = 0; + fds[0].revents = events; + errno = 0; + } + else { + EC_PUSH_TAG(ec); + if ((state = EC_EXEC_TAG()) == TAG_NONE) { + rb_hrtime_t *to, rel, end = 0; + RUBY_VM_CHECK_INTS_BLOCKING(ec); + timeout_prepare(&to, &rel, &end, timeout); + do { + nfds = numberof(fds); + result = wait_for_single_fd_blocking_region(th, fds, nfds, to, &lerrno); + + RUBY_VM_CHECK_INTS_BLOCKING(ec); + } while (wait_retryable(&result, lerrno, to, end)); + + RUBY_VM_CHECK_INTS_BLOCKING(ec); + } + + EC_POP_TAG(); + } + + if (io) { + rb_io_blocking_operation_exit(io, &blocking_operation); + } + + if (state) { + EC_JUMP_TAG(ec, state); + } + + if (result < 0) { + errno = lerrno; + return -1; + } + + if (fds[0].revents & POLLNVAL) { + errno = EBADF; + return -1; + } + + /* + * POLLIN, POLLOUT have a different meanings from select(2)'s read/write bit. + * Therefore we need to fix it up. + */ + result = 0; + if (fds[0].revents & POLLIN_SET) + result |= RB_WAITFD_IN; + if (fds[0].revents & POLLOUT_SET) + result |= RB_WAITFD_OUT; + if (fds[0].revents & POLLEX_SET) + result |= RB_WAITFD_PRI; + + /* all requested events are ready if there is an error */ + if (fds[0].revents & POLLERR_SET) + result |= events; + + return result; +} +#else /* ! USE_POLL - implement rb_io_poll_fd() using select() */ +struct select_args { + struct rb_io *io; + struct rb_io_blocking_operation *blocking_operation; + + union { + int fd; + int error; + } as; + rb_fdset_t *read; + rb_fdset_t *write; + rb_fdset_t *except; + struct timeval *tv; +}; + +static VALUE +select_single(VALUE ptr) +{ + struct select_args *args = (struct select_args *)ptr; + int r; + + r = rb_thread_fd_select(args->as.fd + 1, + args->read, args->write, args->except, args->tv); + if (r == -1) + args->as.error = errno; + if (r > 0) { + r = 0; + if (args->read && rb_fd_isset(args->as.fd, args->read)) + r |= RB_WAITFD_IN; + if (args->write && rb_fd_isset(args->as.fd, args->write)) + r |= RB_WAITFD_OUT; + if (args->except && rb_fd_isset(args->as.fd, args->except)) + r |= RB_WAITFD_PRI; + } + return (VALUE)r; +} + +static VALUE +select_single_cleanup(VALUE ptr) +{ + struct select_args *args = (struct select_args *)ptr; + + if (args->blocking_operation) { + rb_io_blocking_operation_exit(args->io, args->blocking_operation); + } + + if (args->read) rb_fd_term(args->read); + if (args->write) rb_fd_term(args->write); + if (args->except) rb_fd_term(args->except); + + return (VALUE)-1; +} + +static rb_fdset_t * +init_set_fd(int fd, rb_fdset_t *fds) +{ + if (fd < 0) { + return 0; + } + rb_fd_init(fds); + rb_fd_set(fd, fds); + + return fds; +} + +static int +thread_io_wait(rb_thread_t *th, struct rb_io *io, int fd, int events, struct timeval *timeout) +{ + rb_fdset_t rfds, wfds, efds; + struct select_args args; + VALUE ptr = (VALUE)&args; + + struct rb_io_blocking_operation blocking_operation; + if (io) { + args.io = io; + blocking_operation.ec = th->ec; + rb_io_blocking_operation_enter(io, &blocking_operation); + args.blocking_operation = &blocking_operation; + } + else { + args.io = NULL; + blocking_operation.ec = NULL; + args.blocking_operation = NULL; + } + + args.as.fd = fd; + args.read = (events & RB_WAITFD_IN) ? init_set_fd(fd, &rfds) : NULL; + args.write = (events & RB_WAITFD_OUT) ? init_set_fd(fd, &wfds) : NULL; + args.except = (events & RB_WAITFD_PRI) ? init_set_fd(fd, &efds) : NULL; + args.tv = timeout; + + int result = (int)rb_ensure(select_single, ptr, select_single_cleanup, ptr); + if (result == -1) + errno = args.as.error; + + return result; +} +#endif /* ! USE_POLL */ + +int +rb_thread_wait_for_single_fd(rb_thread_t *th, int fd, int events, struct timeval *timeout) +{ + return thread_io_wait(th, NULL, fd, events, timeout); +} + +int +rb_thread_io_wait(rb_thread_t *th, struct rb_io *io, int events, struct timeval * timeout) +{ + return thread_io_wait(th, io, io->fd, events, timeout); +} + +/* + * for GC + */ + +#ifdef USE_CONSERVATIVE_STACK_END +void +rb_gc_set_stack_end(VALUE **stack_end_p) +{ + VALUE stack_end; +COMPILER_WARNING_PUSH +#if RBIMPL_COMPILER_IS(GCC) +COMPILER_WARNING_IGNORED(-Wdangling-pointer); +#endif + *stack_end_p = &stack_end; +COMPILER_WARNING_POP +} +#endif + +/* + * + */ + +void +rb_threadptr_check_signal(rb_thread_t *mth) +{ + /* mth must be main_thread */ + if (rb_signal_buff_size() > 0) { + /* wakeup main thread */ + threadptr_trap_interrupt(mth); + } +} + +static void +async_bug_fd(const char *mesg, int errno_arg, int fd) +{ + char buff[64]; + size_t n = strlcpy(buff, mesg, sizeof(buff)); + if (n < sizeof(buff)-3) { + ruby_snprintf(buff+n, sizeof(buff)-n, "(%d)", fd); + } + rb_async_bug_errno(buff, errno_arg); +} + +/* VM-dependent API is not available for this function */ +static int +consume_communication_pipe(int fd) +{ +#if USE_EVENTFD + uint64_t buff[1]; +#else + /* buffer can be shared because no one refers to them. */ + static char buff[1024]; +#endif + ssize_t result; + int ret = FALSE; /* for rb_sigwait_sleep */ + + while (1) { + result = read(fd, buff, sizeof(buff)); +#if USE_EVENTFD + RUBY_DEBUG_LOG("resultf:%d buff:%lu", (int)result, (unsigned long)buff[0]); +#else + RUBY_DEBUG_LOG("result:%d", (int)result); +#endif + if (result > 0) { + ret = TRUE; + if (USE_EVENTFD || result < (ssize_t)sizeof(buff)) { + return ret; + } + } + else if (result == 0) { + return ret; + } + else if (result < 0) { + int e = errno; + switch (e) { + case EINTR: + continue; /* retry */ + case EAGAIN: +#if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN + case EWOULDBLOCK: +#endif + return ret; + default: + async_bug_fd("consume_communication_pipe: read", e, fd); + } + } + } +} + +void +rb_thread_stop_timer_thread(void) +{ + if (TIMER_THREAD_CREATED_P() && native_stop_timer_thread()) { + native_reset_timer_thread(); + } +} + +void +rb_thread_reset_timer_thread(void) +{ + native_reset_timer_thread(); +} + +void +rb_thread_start_timer_thread(void) +{ + system_working = 1; + rb_thread_create_timer_thread(); +} + +static int +clear_coverage_i(st_data_t key, st_data_t val, st_data_t dummy) +{ + int i; + VALUE coverage = (VALUE)val; + VALUE lines = RARRAY_AREF(coverage, COVERAGE_INDEX_LINES); + VALUE branches = RARRAY_AREF(coverage, COVERAGE_INDEX_BRANCHES); + + if (lines) { + if (GET_VM()->coverage_mode & COVERAGE_TARGET_ONESHOT_LINES) { + rb_ary_clear(lines); + } + else { + int i; + for (i = 0; i < RARRAY_LEN(lines); i++) { + if (RARRAY_AREF(lines, i) != Qnil) + RARRAY_ASET(lines, i, INT2FIX(0)); + } + } + } + if (branches) { + VALUE counters = RARRAY_AREF(branches, 1); + for (i = 0; i < RARRAY_LEN(counters); i++) { + RARRAY_ASET(counters, i, INT2FIX(0)); + } + } + + return ST_CONTINUE; +} + +void +rb_clear_coverages(void) +{ + VALUE coverages = rb_get_coverages(); + if (RTEST(coverages)) { + rb_hash_foreach(coverages, clear_coverage_i, 0); + } +} + +#if defined(HAVE_WORKING_FORK) + +static void +rb_thread_atfork_internal(rb_thread_t *th, void (*atfork)(rb_thread_t *, const rb_thread_t *)) +{ + rb_thread_t *i = 0; + rb_vm_t *vm = th->vm; + rb_ractor_t *r = th->ractor; + vm->ractor.main_ractor = r; + vm->ractor.main_thread = th; + r->threads.main = th; + r->status_ = ractor_created; + + thread_sched_atfork(TH_SCHED(th)); + ubf_list_atfork(); + rb_signal_atfork(); + + // OK. Only this thread accesses: + ccan_list_for_each(&vm->ractor.set, r, vmlr_node) { + if (r != vm->ractor.main_ractor) { + rb_ractor_terminate_atfork(vm, r); + } + ccan_list_for_each(&r->threads.set, i, lt_node) { + atfork(i, th); + } + } + rb_vm_living_threads_init(vm); + + rb_ractor_atfork(vm, th); + rb_vm_postponed_job_atfork(); + + /* may be held by any thread in parent */ + rb_native_mutex_initialize(&th->interrupt_lock); + ccan_list_head_init(&th->interrupt_exec_tasks); + + vm->fork_gen++; + rb_ractor_sleeper_threads_clear(th->ractor); + rb_clear_coverages(); + + // restart timer thread (timer threads access to `vm->waitpid_lock` and so on. + rb_thread_reset_timer_thread(); + rb_thread_start_timer_thread(); + + VM_ASSERT(vm->ractor.blocking_cnt == 0); + VM_ASSERT(vm->ractor.cnt == 1); +} + +static void +terminate_atfork_i(rb_thread_t *th, const rb_thread_t *current_th) +{ + if (th != current_th) { + // Clear the scheduler as it is no longer operational: + th->scheduler = Qnil; + + rb_native_mutex_initialize(&th->interrupt_lock); + rb_mutex_abandon_keeping_mutexes(th); + rb_mutex_abandon_locking_mutex(th); + thread_cleanup_func(th, TRUE); + } +} + +void rb_fiber_atfork(rb_thread_t *); +void +rb_thread_atfork(void) +{ + rb_thread_t *th = GET_THREAD(); + rb_threadptr_pending_interrupt_clear(th); + rb_thread_atfork_internal(th, terminate_atfork_i); + th->join_list = NULL; + th->scheduler = Qnil; + rb_fiber_atfork(th); + + /* We don't want reproduce CVE-2003-0900. */ + rb_reset_random_seed(); +} + +static void +terminate_atfork_before_exec_i(rb_thread_t *th, const rb_thread_t *current_th) +{ + if (th != current_th) { + thread_cleanup_func_before_exec(th); + } +} + +void +rb_thread_atfork_before_exec(void) +{ + rb_thread_t *th = GET_THREAD(); + rb_thread_atfork_internal(th, terminate_atfork_before_exec_i); +} +#else +void +rb_thread_atfork(void) +{ +} + +void +rb_thread_atfork_before_exec(void) +{ +} +#endif + +struct thgroup { + int enclosed; +}; + +static const rb_data_type_t thgroup_data_type = { + "thgroup", + { + 0, + RUBY_TYPED_DEFAULT_FREE, + NULL, // No external memory to report + }, + 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_EMBEDDABLE +}; + +/* + * Document-class: ThreadGroup + * + * ThreadGroup provides a means of keeping track of a number of threads as a + * group. + * + * A given Thread object can only belong to one ThreadGroup at a time; adding + * a thread to a new group will remove it from any previous group. + * + * Newly created threads belong to the same group as the thread from which they + * were created. + */ + +/* + * Document-const: Default + * + * The default ThreadGroup created when Ruby starts; all Threads belong to it + * by default. + */ +static VALUE +thgroup_s_alloc(VALUE klass) +{ + VALUE group; + struct thgroup *data; + + group = TypedData_Make_Struct(klass, struct thgroup, &thgroup_data_type, data); + data->enclosed = 0; + + return group; +} + +/* + * call-seq: + * thgrp.list -> array + * + * Returns an array of all existing Thread objects that belong to this group. + * + * ThreadGroup::Default.list #=> [#<Thread:0x401bdf4c run>] + */ + +static VALUE +thgroup_list(VALUE group) +{ + VALUE ary = rb_ary_new(); + rb_thread_t *th = 0; + rb_ractor_t *r = GET_RACTOR(); + + ccan_list_for_each(&r->threads.set, th, lt_node) { + if (th->thgroup == group) { + rb_ary_push(ary, th->self); + } + } + return ary; +} + + +/* + * call-seq: + * thgrp.enclose -> thgrp + * + * Prevents threads from being added to or removed from the receiving + * ThreadGroup. + * + * New threads can still be started in an enclosed ThreadGroup. + * + * ThreadGroup::Default.enclose #=> #<ThreadGroup:0x4029d914> + * thr = Thread.new { Thread.stop } #=> #<Thread:0x402a7210 sleep> + * tg = ThreadGroup.new #=> #<ThreadGroup:0x402752d4> + * tg.add thr + * #=> ThreadError: can't move from the enclosed thread group + */ + +static VALUE +thgroup_enclose(VALUE group) +{ + struct thgroup *data; + + TypedData_Get_Struct(group, struct thgroup, &thgroup_data_type, data); + data->enclosed = 1; + + return group; +} + + +/* + * call-seq: + * thgrp.enclosed? -> true or false + * + * Returns +true+ if the +thgrp+ is enclosed. See also ThreadGroup#enclose. + */ + +static VALUE +thgroup_enclosed_p(VALUE group) +{ + struct thgroup *data; + + TypedData_Get_Struct(group, struct thgroup, &thgroup_data_type, data); + return RBOOL(data->enclosed); +} + + +/* + * call-seq: + * thgrp.add(thread) -> thgrp + * + * Adds the given +thread+ to this group, removing it from any other + * group to which it may have previously been a member. + * + * puts "Initial group is #{ThreadGroup::Default.list}" + * tg = ThreadGroup.new + * t1 = Thread.new { sleep } + * t2 = Thread.new { sleep } + * puts "t1 is #{t1}" + * puts "t2 is #{t2}" + * tg.add(t1) + * puts "Initial group now #{ThreadGroup::Default.list}" + * puts "tg group now #{tg.list}" + * + * This will produce: + * + * Initial group is #<Thread:0x401bdf4c> + * t1 is #<Thread:0x401b3c90> + * t2 is #<Thread:0x401b3c18> + * Initial group now #<Thread:0x401b3c18>#<Thread:0x401bdf4c> + * tg group now #<Thread:0x401b3c90> + */ + +static VALUE +thgroup_add(VALUE group, VALUE thread) +{ + rb_thread_t *target_th = rb_thread_ptr(thread); + struct thgroup *data; + + if (OBJ_FROZEN(group)) { + rb_raise(rb_eThreadError, "can't move to the frozen thread group"); + } + TypedData_Get_Struct(group, struct thgroup, &thgroup_data_type, data); + if (data->enclosed) { + rb_raise(rb_eThreadError, "can't move to the enclosed thread group"); + } + + if (OBJ_FROZEN(target_th->thgroup)) { + rb_raise(rb_eThreadError, "can't move from the frozen thread group"); + } + TypedData_Get_Struct(target_th->thgroup, struct thgroup, &thgroup_data_type, data); + if (data->enclosed) { + rb_raise(rb_eThreadError, + "can't move from the enclosed thread group"); + } + + target_th->thgroup = group; + return group; +} + +/* + * Document-class: ThreadShield + */ +static void +thread_shield_mark(void *ptr) +{ + rb_gc_mark((VALUE)ptr); +} + +static const rb_data_type_t thread_shield_data_type = { + "thread_shield", + {thread_shield_mark, 0, 0,}, + 0, 0, RUBY_TYPED_FREE_IMMEDIATELY +}; + +static VALUE +thread_shield_alloc(VALUE klass) +{ + return TypedData_Wrap_Struct(klass, &thread_shield_data_type, (void *)mutex_alloc(0)); +} + +#define GetThreadShieldPtr(obj) ((VALUE)rb_check_typeddata((obj), &thread_shield_data_type)) +#define THREAD_SHIELD_WAITING_MASK (((FL_USER19-1)&~(FL_USER0-1))|FL_USER19) +#define THREAD_SHIELD_WAITING_SHIFT (FL_USHIFT) +#define THREAD_SHIELD_WAITING_MAX (THREAD_SHIELD_WAITING_MASK>>THREAD_SHIELD_WAITING_SHIFT) +STATIC_ASSERT(THREAD_SHIELD_WAITING_MAX, THREAD_SHIELD_WAITING_MAX <= UINT_MAX); +static inline unsigned int +rb_thread_shield_waiting(VALUE b) +{ + return ((RBASIC(b)->flags&THREAD_SHIELD_WAITING_MASK)>>THREAD_SHIELD_WAITING_SHIFT); +} + +static inline void +rb_thread_shield_waiting_inc(VALUE b) +{ + unsigned int w = rb_thread_shield_waiting(b); + w++; + if (w > THREAD_SHIELD_WAITING_MAX) + rb_raise(rb_eRuntimeError, "waiting count overflow"); + RBASIC(b)->flags &= ~THREAD_SHIELD_WAITING_MASK; + RBASIC(b)->flags |= ((VALUE)w << THREAD_SHIELD_WAITING_SHIFT); +} + +static inline void +rb_thread_shield_waiting_dec(VALUE b) +{ + unsigned int w = rb_thread_shield_waiting(b); + if (!w) rb_raise(rb_eRuntimeError, "waiting count underflow"); + w--; + RBASIC(b)->flags &= ~THREAD_SHIELD_WAITING_MASK; + RBASIC(b)->flags |= ((VALUE)w << THREAD_SHIELD_WAITING_SHIFT); +} + +VALUE +rb_thread_shield_new(void) +{ + VALUE thread_shield = thread_shield_alloc(rb_cThreadShield); + rb_mutex_lock((VALUE)DATA_PTR(thread_shield)); + return thread_shield; +} + +bool +rb_thread_shield_owned(VALUE self) +{ + VALUE mutex = GetThreadShieldPtr(self); + if (!mutex) return false; + + rb_mutex_t *m = mutex_ptr(mutex); + + return m->ec_serial == rb_ec_serial(GET_EC()); +} + +/* + * Wait a thread shield. + * + * Returns + * true: acquired the thread shield + * false: the thread shield was destroyed and no other threads waiting + * nil: the thread shield was destroyed but still in use + */ +VALUE +rb_thread_shield_wait(VALUE self) +{ + VALUE mutex = GetThreadShieldPtr(self); + rb_mutex_t *m; + + if (!mutex) return Qfalse; + m = mutex_ptr(mutex); + if (m->ec_serial == rb_ec_serial(GET_EC())) return Qnil; + rb_thread_shield_waiting_inc(self); + rb_mutex_lock(mutex); + rb_thread_shield_waiting_dec(self); + if (DATA_PTR(self)) return Qtrue; + rb_mutex_unlock(mutex); + return rb_thread_shield_waiting(self) > 0 ? Qnil : Qfalse; +} + +static VALUE +thread_shield_get_mutex(VALUE self) +{ + VALUE mutex = GetThreadShieldPtr(self); + if (!mutex) + rb_raise(rb_eThreadError, "destroyed thread shield - %p", (void *)self); + return mutex; +} + +/* + * Release a thread shield, and return true if it has waiting threads. + */ +VALUE +rb_thread_shield_release(VALUE self) +{ + VALUE mutex = thread_shield_get_mutex(self); + rb_mutex_unlock(mutex); + return RBOOL(rb_thread_shield_waiting(self) > 0); +} + +/* + * Release and destroy a thread shield, and return true if it has waiting threads. + */ +VALUE +rb_thread_shield_destroy(VALUE self) +{ + VALUE mutex = thread_shield_get_mutex(self); + DATA_PTR(self) = 0; + rb_mutex_unlock(mutex); + return RBOOL(rb_thread_shield_waiting(self) > 0); +} + +static VALUE +threadptr_recursive_hash(rb_thread_t *th) +{ + return th->ec->local_storage_recursive_hash; +} + +static void +threadptr_recursive_hash_set(rb_thread_t *th, VALUE hash) +{ + th->ec->local_storage_recursive_hash = hash; +} + +ID rb_frame_last_func(void); + +/* + * Returns the current "recursive list" used to detect recursion. + * This list is a hash table, unique for the current thread and for + * the current __callee__. + */ + +static VALUE +recursive_list_access(VALUE sym) +{ + rb_thread_t *th = GET_THREAD(); + VALUE hash = threadptr_recursive_hash(th); + VALUE list; + if (NIL_P(hash) || !RB_TYPE_P(hash, T_HASH)) { + hash = rb_ident_hash_new(); + threadptr_recursive_hash_set(th, hash); + list = Qnil; + } + else { + list = rb_hash_aref(hash, sym); + } + if (NIL_P(list) || !RB_TYPE_P(list, T_HASH)) { + list = rb_ident_hash_new(); + rb_hash_aset(hash, sym, list); + } + return list; +} + +/* + * Returns true if and only if obj (or the pair <obj, paired_obj>) is already + * in the recursion list. + * Assumes the recursion list is valid. + */ + +static bool +recursive_check(VALUE list, VALUE obj, VALUE paired_obj_id) +{ +#if SIZEOF_LONG == SIZEOF_VOIDP + #define OBJ_ID_EQL(obj_id, other) ((obj_id) == (other)) +#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP + #define OBJ_ID_EQL(obj_id, other) (RB_BIGNUM_TYPE_P((obj_id)) ? \ + rb_big_eql((obj_id), (other)) : ((obj_id) == (other))) +#endif + + VALUE pair_list = rb_hash_lookup2(list, obj, Qundef); + if (UNDEF_P(pair_list)) + return false; + if (paired_obj_id) { + if (!RB_TYPE_P(pair_list, T_HASH)) { + if (!OBJ_ID_EQL(paired_obj_id, pair_list)) + return false; + } + else { + if (NIL_P(rb_hash_lookup(pair_list, paired_obj_id))) + return false; + } + } + return true; +} + +/* + * Pushes obj (or the pair <obj, paired_obj>) in the recursion list. + * For a single obj, it sets list[obj] to Qtrue. + * For a pair, it sets list[obj] to paired_obj_id if possible, + * otherwise list[obj] becomes a hash like: + * {paired_obj_id_1 => true, paired_obj_id_2 => true, ... } + * Assumes the recursion list is valid. + */ + +static void +recursive_push(VALUE list, VALUE obj, VALUE paired_obj) +{ + VALUE pair_list; + + if (!paired_obj) { + rb_hash_aset(list, obj, Qtrue); + } + else if (UNDEF_P(pair_list = rb_hash_lookup2(list, obj, Qundef))) { + rb_hash_aset(list, obj, paired_obj); + } + else { + if (!RB_TYPE_P(pair_list, T_HASH)){ + VALUE other_paired_obj = pair_list; + pair_list = rb_hash_new(); + rb_hash_aset(pair_list, other_paired_obj, Qtrue); + rb_hash_aset(list, obj, pair_list); + } + rb_hash_aset(pair_list, paired_obj, Qtrue); + } +} + +/* + * Pops obj (or the pair <obj, paired_obj>) from the recursion list. + * For a pair, if list[obj] is a hash, then paired_obj_id is + * removed from the hash and no attempt is made to simplify + * list[obj] from {only_one_paired_id => true} to only_one_paired_id + * Assumes the recursion list is valid. + */ + +static int +recursive_pop(VALUE list, VALUE obj, VALUE paired_obj) +{ + if (paired_obj) { + VALUE pair_list = rb_hash_lookup2(list, obj, Qundef); + if (UNDEF_P(pair_list)) { + return 0; + } + if (RB_TYPE_P(pair_list, T_HASH)) { + rb_hash_delete_entry(pair_list, paired_obj); + if (!RHASH_EMPTY_P(pair_list)) { + return 1; /* keep hash until is empty */ + } + } + } + rb_hash_delete_entry(list, obj); + return 1; +} + +struct exec_recursive_params { + VALUE (*func) (VALUE, VALUE, int); + VALUE list; + VALUE obj; + VALUE pairid; + VALUE arg; +}; + +static VALUE +exec_recursive_i(RB_BLOCK_CALL_FUNC_ARGLIST(tag, data)) +{ + struct exec_recursive_params *p = (void *)data; + return (*p->func)(p->obj, p->arg, FALSE); +} + +/* + * Calls func(obj, arg, recursive), where recursive is non-zero if the + * current method is called recursively on obj, or on the pair <obj, pairid> + * If outer is 0, then the innermost func will be called with recursive set + * to true, otherwise the outermost func will be called. In the latter case, + * all inner func are short-circuited by throw. + * Implementation details: the value thrown is the recursive list which is + * proper to the current method and unlikely to be caught anywhere else. + * list[recursive_key] is used as a flag for the outermost call. + */ + +static VALUE +exec_recursive(VALUE (*func) (VALUE, VALUE, int), VALUE obj, VALUE pairid, VALUE arg, int outer, ID mid) +{ + VALUE result = Qundef; + const VALUE sym = mid ? ID2SYM(mid) : ID2SYM(idNULL); + struct exec_recursive_params p; + int outermost; + p.list = recursive_list_access(sym); + p.obj = obj; + p.pairid = pairid; + p.arg = arg; + outermost = outer && !recursive_check(p.list, ID2SYM(recursive_key), 0); + + if (recursive_check(p.list, p.obj, pairid)) { + if (outer && !outermost) { + rb_throw_obj(p.list, p.list); + } + return (*func)(obj, arg, TRUE); + } + else { + enum ruby_tag_type state; + + p.func = func; + + if (outermost) { + recursive_push(p.list, ID2SYM(recursive_key), 0); + recursive_push(p.list, p.obj, p.pairid); + result = rb_catch_protect(p.list, exec_recursive_i, (VALUE)&p, &state); + if (!recursive_pop(p.list, p.obj, p.pairid)) goto invalid; + if (!recursive_pop(p.list, ID2SYM(recursive_key), 0)) goto invalid; + if (state != TAG_NONE) EC_JUMP_TAG(GET_EC(), state); + if (result == p.list) { + result = (*func)(obj, arg, TRUE); + } + } + else { + volatile VALUE ret = Qundef; + recursive_push(p.list, p.obj, p.pairid); + EC_PUSH_TAG(GET_EC()); + if ((state = EC_EXEC_TAG()) == TAG_NONE) { + ret = (*func)(obj, arg, FALSE); + } + EC_POP_TAG(); + if (!recursive_pop(p.list, p.obj, p.pairid)) { + goto invalid; + } + if (state != TAG_NONE) EC_JUMP_TAG(GET_EC(), state); + result = ret; + } + } + *(volatile struct exec_recursive_params *)&p; + return result; + + invalid: + rb_raise(rb_eTypeError, "invalid inspect_tbl pair_list " + "for %+"PRIsVALUE" in %+"PRIsVALUE, + sym, rb_thread_current()); + UNREACHABLE_RETURN(Qundef); +} + +/* + * Calls func(obj, arg, recursive), where recursive is non-zero if the + * current method is called recursively on obj + */ + +VALUE +rb_exec_recursive(VALUE (*func) (VALUE, VALUE, int), VALUE obj, VALUE arg) +{ + return exec_recursive(func, obj, 0, arg, 0, rb_frame_last_func()); +} + +/* + * Calls func(obj, arg, recursive), where recursive is non-zero if the + * current method is called recursively on the ordered pair <obj, paired_obj> + */ + +VALUE +rb_exec_recursive_paired(VALUE (*func) (VALUE, VALUE, int), VALUE obj, VALUE paired_obj, VALUE arg) +{ + return exec_recursive(func, obj, rb_memory_id(paired_obj), arg, 0, rb_frame_last_func()); +} + +/* + * If recursion is detected on the current method and obj, the outermost + * func will be called with (obj, arg, true). All inner func will be + * short-circuited using throw. + */ + +VALUE +rb_exec_recursive_outer(VALUE (*func) (VALUE, VALUE, int), VALUE obj, VALUE arg) +{ + return exec_recursive(func, obj, 0, arg, 1, rb_frame_last_func()); +} + +VALUE +rb_exec_recursive_outer_mid(VALUE (*func) (VALUE, VALUE, int), VALUE obj, VALUE arg, ID mid) +{ + return exec_recursive(func, obj, 0, arg, 1, mid); +} + +/* + * If recursion is detected on the current method, obj and paired_obj, + * the outermost func will be called with (obj, arg, true). All inner + * func will be short-circuited using throw. + */ + +VALUE +rb_exec_recursive_paired_outer(VALUE (*func) (VALUE, VALUE, int), VALUE obj, VALUE paired_obj, VALUE arg) +{ + return exec_recursive(func, obj, rb_memory_id(paired_obj), arg, 1, rb_frame_last_func()); +} + +/* + * call-seq: + * thread.backtrace -> array or nil + * + * Returns the current backtrace of the target thread. + * + */ + +static VALUE +rb_thread_backtrace_m(int argc, VALUE *argv, VALUE thval) +{ + return rb_vm_thread_backtrace(argc, argv, thval); +} + +/* call-seq: + * thread.backtrace_locations(*args) -> array or nil + * + * Returns the execution stack for the target thread---an array containing + * backtrace location objects. + * + * See Thread::Backtrace::Location for more information. + * + * This method behaves similarly to Kernel#caller_locations except it applies + * to a specific thread. + */ +static VALUE +rb_thread_backtrace_locations_m(int argc, VALUE *argv, VALUE thval) +{ + return rb_vm_thread_backtrace_locations(argc, argv, thval); +} + +void +Init_Thread_Mutex(void) +{ + rb_thread_t *th = GET_THREAD(); + + rb_native_mutex_initialize(&th->vm->workqueue_lock); + rb_native_mutex_initialize(&th->interrupt_lock); +} + +/* + * Document-class: ThreadError + * + * Raised when an invalid operation is attempted on a thread. + * + * For example, when no other thread has been started: + * + * Thread.stop + * + * This will raises the following exception: + * + * ThreadError: stopping only thread + * note: use sleep to stop forever + */ + +void +Init_Thread(void) +{ + rb_thread_t *th = GET_THREAD(); + + sym_never = ID2SYM(rb_intern_const("never")); + sym_immediate = ID2SYM(rb_intern_const("immediate")); + sym_on_blocking = ID2SYM(rb_intern_const("on_blocking")); + + rb_define_singleton_method(rb_cThread, "new", thread_s_new, -1); + rb_define_singleton_method(rb_cThread, "start", thread_start, -2); + rb_define_singleton_method(rb_cThread, "fork", thread_start, -2); + rb_define_singleton_method(rb_cThread, "main", rb_thread_s_main, 0); + rb_define_singleton_method(rb_cThread, "current", thread_s_current, 0); + rb_define_singleton_method(rb_cThread, "stop", thread_stop, 0); + rb_define_singleton_method(rb_cThread, "kill", rb_thread_s_kill, 1); + rb_define_singleton_method(rb_cThread, "exit", rb_thread_exit, 0); + rb_define_singleton_method(rb_cThread, "pass", thread_s_pass, 0); + rb_define_singleton_method(rb_cThread, "list", thread_list, 0); + rb_define_singleton_method(rb_cThread, "abort_on_exception", rb_thread_s_abort_exc, 0); + rb_define_singleton_method(rb_cThread, "abort_on_exception=", rb_thread_s_abort_exc_set, 1); + rb_define_singleton_method(rb_cThread, "report_on_exception", rb_thread_s_report_exc, 0); + rb_define_singleton_method(rb_cThread, "report_on_exception=", rb_thread_s_report_exc_set, 1); + rb_define_singleton_method(rb_cThread, "ignore_deadlock", rb_thread_s_ignore_deadlock, 0); + rb_define_singleton_method(rb_cThread, "ignore_deadlock=", rb_thread_s_ignore_deadlock_set, 1); + rb_define_singleton_method(rb_cThread, "handle_interrupt", rb_thread_s_handle_interrupt, 1); + rb_define_singleton_method(rb_cThread, "pending_interrupt?", rb_thread_s_pending_interrupt_p, -1); + rb_define_method(rb_cThread, "pending_interrupt?", rb_thread_pending_interrupt_p, -1); + + rb_define_method(rb_cThread, "initialize", thread_initialize, -2); + rb_define_method(rb_cThread, "raise", thread_raise_m, -1); + rb_define_method(rb_cThread, "join", thread_join_m, -1); + rb_define_method(rb_cThread, "value", thread_value, 0); + rb_define_method(rb_cThread, "kill", rb_thread_kill, 0); + rb_define_method(rb_cThread, "terminate", rb_thread_kill, 0); + rb_define_method(rb_cThread, "exit", rb_thread_kill, 0); + rb_define_method(rb_cThread, "run", rb_thread_run, 0); + rb_define_method(rb_cThread, "wakeup", rb_thread_wakeup, 0); + rb_define_method(rb_cThread, "[]", rb_thread_aref, 1); + rb_define_method(rb_cThread, "[]=", rb_thread_aset, 2); + rb_define_method(rb_cThread, "fetch", rb_thread_fetch, -1); + rb_define_method(rb_cThread, "key?", rb_thread_key_p, 1); + rb_define_method(rb_cThread, "keys", rb_thread_keys, 0); + rb_define_method(rb_cThread, "priority", rb_thread_priority, 0); + rb_define_method(rb_cThread, "priority=", rb_thread_priority_set, 1); + rb_define_method(rb_cThread, "status", rb_thread_status, 0); + rb_define_method(rb_cThread, "thread_variable_get", rb_thread_variable_get, 1); + rb_define_method(rb_cThread, "thread_variable_set", rb_thread_variable_set, 2); + rb_define_method(rb_cThread, "thread_variables", rb_thread_variables, 0); + rb_define_method(rb_cThread, "thread_variable?", rb_thread_variable_p, 1); + rb_define_method(rb_cThread, "alive?", rb_thread_alive_p, 0); + rb_define_method(rb_cThread, "stop?", rb_thread_stop_p, 0); + rb_define_method(rb_cThread, "abort_on_exception", rb_thread_abort_exc, 0); + rb_define_method(rb_cThread, "abort_on_exception=", rb_thread_abort_exc_set, 1); + rb_define_method(rb_cThread, "report_on_exception", rb_thread_report_exc, 0); + rb_define_method(rb_cThread, "report_on_exception=", rb_thread_report_exc_set, 1); + rb_define_method(rb_cThread, "group", rb_thread_group, 0); + rb_define_method(rb_cThread, "backtrace", rb_thread_backtrace_m, -1); + rb_define_method(rb_cThread, "backtrace_locations", rb_thread_backtrace_locations_m, -1); + + rb_define_method(rb_cThread, "name", rb_thread_getname, 0); + rb_define_method(rb_cThread, "name=", rb_thread_setname, 1); + rb_define_method(rb_cThread, "native_thread_id", rb_thread_native_thread_id, 0); + rb_define_method(rb_cThread, "to_s", rb_thread_to_s, 0); + rb_define_alias(rb_cThread, "inspect", "to_s"); + + rb_vm_register_special_exception(ruby_error_stream_closed, rb_eIOError, + "stream closed in another thread"); + + cThGroup = rb_define_class("ThreadGroup", rb_cObject); + rb_define_alloc_func(cThGroup, thgroup_s_alloc); + rb_define_method(cThGroup, "list", thgroup_list, 0); + rb_define_method(cThGroup, "enclose", thgroup_enclose, 0); + rb_define_method(cThGroup, "enclosed?", thgroup_enclosed_p, 0); + rb_define_method(cThGroup, "add", thgroup_add, 1); + + const char * ptr = getenv("RUBY_THREAD_TIMESLICE"); + + if (ptr) { + long quantum = strtol(ptr, NULL, 0); + if (quantum > 0 && !(SIZEOF_LONG > 4 && quantum > UINT32_MAX)) { + thread_default_quantum_ms = (uint32_t)quantum; + } + else if (0) { + fprintf(stderr, "Ignored RUBY_THREAD_TIMESLICE=%s\n", ptr); + } + } + + { + th->thgroup = th->ractor->thgroup_default = rb_obj_alloc(cThGroup); + rb_define_const(cThGroup, "Default", th->thgroup); + } + + rb_eThreadError = rb_define_class("ThreadError", rb_eStandardError); + + /* init thread core */ + { + /* main thread setting */ + { + /* acquire global vm lock */ +#ifdef HAVE_PTHREAD_NP_H + VM_ASSERT(TH_SCHED(th)->running == th); +#endif + // thread_sched_to_running() should not be called because + // it assumes blocked by thread_sched_to_waiting(). + // thread_sched_to_running(sched, th); + + th->pending_interrupt_queue = rb_ary_hidden_new(0); + th->pending_interrupt_queue_checked = 0; + th->pending_interrupt_mask_stack = rb_ary_hidden_new(0); + } + } + + rb_thread_create_timer_thread(); + + Init_thread_sync(); + + // TODO: Suppress unused function warning for now + // if (0) rb_thread_sched_destroy(NULL); +} + +int +ruby_native_thread_p(void) +{ + rb_thread_t *th = ruby_thread_from_native(); + + return th != 0; +} + +#ifdef NON_SCALAR_THREAD_ID + #define thread_id_str(th) (NULL) +#else + #define thread_id_str(th) ((void *)(uintptr_t)(th)->nt->thread_id) +#endif + +static void +debug_deadlock_check(rb_ractor_t *r, VALUE msg) +{ + rb_thread_t *th = 0; + VALUE sep = rb_str_new_cstr("\n "); + + rb_str_catf(msg, "\n%d threads, %d sleeps current:%p main thread:%p\n", + rb_ractor_living_thread_num(r), rb_ractor_sleeper_thread_num(r), + (void *)GET_THREAD(), (void *)r->threads.main); + + ccan_list_for_each(&r->threads.set, th, lt_node) { + rb_str_catf(msg, "* %+"PRIsVALUE"\n rb_thread_t:%p " + "native:%p int:%u", + th->self, (void *)th, th->nt ? thread_id_str(th) : "N/A", th->ec->interrupt_flag); + + if (th->locking_mutex) { + rb_mutex_t *mutex = mutex_ptr(th->locking_mutex); + rb_str_catf(msg, " mutex:%llu cond:%"PRIuSIZE, + (unsigned long long)mutex->ec_serial, rb_mutex_num_waiting(mutex)); + } + + { + struct rb_waiting_list *list = th->join_list; + while (list) { + rb_str_catf(msg, "\n depended by: tb_thread_id:%p", (void *)list->thread); + list = list->next; + } + } + rb_str_catf(msg, "\n "); + rb_str_concat(msg, rb_ary_join(rb_ec_backtrace_str_ary(th->ec, RUBY_BACKTRACE_START, RUBY_ALL_BACKTRACE_LINES), sep)); + rb_str_catf(msg, "\n"); + } +} + +static void +rb_check_deadlock(rb_ractor_t *r) +{ + if (GET_THREAD()->vm->thread_ignore_deadlock) return; + +#ifdef RUBY_THREAD_PTHREAD_H + if (r->threads.sched.readyq_cnt > 0) return; +#endif + + int sleeper_num = rb_ractor_sleeper_thread_num(r); + int ltnum = rb_ractor_living_thread_num(r); + + if (ltnum > sleeper_num) return; + if (ltnum < sleeper_num) rb_bug("sleeper must not be more than vm_living_thread_num(vm)"); + + int found = 0; + rb_thread_t *th = NULL; + + ccan_list_for_each(&r->threads.set, th, lt_node) { + if (th->status != THREAD_STOPPED_FOREVER || RUBY_VM_INTERRUPTED(th->ec)) { + found = 1; + } + else if (th->locking_mutex) { + rb_mutex_t *mutex = mutex_ptr(th->locking_mutex); + if (mutex->ec_serial == rb_ec_serial(th->ec) || (!mutex->ec_serial && !ccan_list_empty(&mutex->waitq))) { + found = 1; + } + } + if (found) + break; + } + + if (!found) { + VALUE argv[2]; + argv[0] = rb_eFatal; + argv[1] = rb_str_new2("No live threads left. Deadlock?"); + debug_deadlock_check(r, argv[1]); + rb_ractor_sleeper_threads_dec(GET_RACTOR()); + rb_threadptr_raise(r->threads.main, 2, argv); + } +} + +static void +update_line_coverage(VALUE data, const rb_trace_arg_t *trace_arg) +{ + const rb_control_frame_t *cfp = GET_EC()->cfp; + VALUE coverage = rb_iseq_coverage(cfp->iseq); + if (RB_TYPE_P(coverage, T_ARRAY) && !RBASIC_CLASS(coverage)) { + VALUE lines = RARRAY_AREF(coverage, COVERAGE_INDEX_LINES); + if (lines) { + long line = rb_sourceline() - 1; + VM_ASSERT(line >= 0); + long count; + VALUE num; + void rb_iseq_clear_event_flags(const rb_iseq_t *iseq, size_t pos, rb_event_flag_t reset); + if (GET_VM()->coverage_mode & COVERAGE_TARGET_ONESHOT_LINES) { + rb_iseq_clear_event_flags(cfp->iseq, cfp->pc - ISEQ_BODY(cfp->iseq)->iseq_encoded - 1, RUBY_EVENT_COVERAGE_LINE); + rb_ary_push(lines, LONG2FIX(line + 1)); + return; + } + if (line >= RARRAY_LEN(lines)) { /* no longer tracked */ + return; + } + num = RARRAY_AREF(lines, line); + if (!FIXNUM_P(num)) return; + count = FIX2LONG(num) + 1; + if (POSFIXABLE(count)) { + RARRAY_ASET(lines, line, LONG2FIX(count)); + } + } + } +} + +static void +update_branch_coverage(VALUE data, const rb_trace_arg_t *trace_arg) +{ + const rb_control_frame_t *cfp = GET_EC()->cfp; + VALUE coverage = rb_iseq_coverage(cfp->iseq); + if (RB_TYPE_P(coverage, T_ARRAY) && !RBASIC_CLASS(coverage)) { + VALUE branches = RARRAY_AREF(coverage, COVERAGE_INDEX_BRANCHES); + if (branches) { + long pc = cfp->pc - ISEQ_BODY(cfp->iseq)->iseq_encoded - 1; + long idx = FIX2INT(RARRAY_AREF(ISEQ_PC2BRANCHINDEX(cfp->iseq), pc)), count; + VALUE counters = RARRAY_AREF(branches, 1); + VALUE num = RARRAY_AREF(counters, idx); + count = FIX2LONG(num) + 1; + if (POSFIXABLE(count)) { + RARRAY_ASET(counters, idx, LONG2FIX(count)); + } + } + } +} + +const rb_method_entry_t * +rb_resolve_me_location(const rb_method_entry_t *me, VALUE resolved_location[5]) +{ + VALUE path, beg_pos_lineno, beg_pos_column, end_pos_lineno, end_pos_column; + + if (!me->def) return NULL; // negative cme + + retry: + switch (me->def->type) { + case VM_METHOD_TYPE_ISEQ: { + const rb_iseq_t *iseq = me->def->body.iseq.iseqptr; + rb_iseq_location_t *loc = &ISEQ_BODY(iseq)->location; + path = rb_iseq_path(iseq); + beg_pos_lineno = INT2FIX(loc->code_location.beg_pos.lineno); + beg_pos_column = INT2FIX(loc->code_location.beg_pos.column); + end_pos_lineno = INT2FIX(loc->code_location.end_pos.lineno); + end_pos_column = INT2FIX(loc->code_location.end_pos.column); + break; + } + case VM_METHOD_TYPE_BMETHOD: { + const rb_iseq_t *iseq = rb_proc_get_iseq(me->def->body.bmethod.proc, 0); + if (iseq) { + rb_iseq_location_t *loc; + rb_iseq_check(iseq); + path = rb_iseq_path(iseq); + loc = &ISEQ_BODY(iseq)->location; + beg_pos_lineno = INT2FIX(loc->code_location.beg_pos.lineno); + beg_pos_column = INT2FIX(loc->code_location.beg_pos.column); + end_pos_lineno = INT2FIX(loc->code_location.end_pos.lineno); + end_pos_column = INT2FIX(loc->code_location.end_pos.column); + break; + } + return NULL; + } + case VM_METHOD_TYPE_ALIAS: + me = me->def->body.alias.original_me; + goto retry; + case VM_METHOD_TYPE_REFINED: + me = me->def->body.refined.orig_me; + if (!me) return NULL; + goto retry; + default: + return NULL; + } + + /* found */ + if (RB_TYPE_P(path, T_ARRAY)) { + path = rb_ary_entry(path, 1); + if (!RB_TYPE_P(path, T_STRING)) return NULL; /* just for the case... */ + } + if (resolved_location) { + resolved_location[0] = path; + resolved_location[1] = beg_pos_lineno; + resolved_location[2] = beg_pos_column; + resolved_location[3] = end_pos_lineno; + resolved_location[4] = end_pos_column; + } + return me; +} + +static void +update_method_coverage(VALUE me2counter, rb_trace_arg_t *trace_arg) +{ + const rb_control_frame_t *cfp = GET_EC()->cfp; + const rb_callable_method_entry_t *cme = rb_vm_frame_method_entry(cfp); + const rb_method_entry_t *me = (const rb_method_entry_t *)cme; + VALUE rcount; + long count; + + me = rb_resolve_me_location(me, 0); + if (!me) return; + + rcount = rb_hash_aref(me2counter, (VALUE) me); + count = FIXNUM_P(rcount) ? FIX2LONG(rcount) + 1 : 1; + if (POSFIXABLE(count)) { + rb_hash_aset(me2counter, (VALUE) me, LONG2FIX(count)); + } +} + +VALUE +rb_get_coverages(void) +{ + return GET_VM()->coverages; +} + +int +rb_get_coverage_mode(void) +{ + return GET_VM()->coverage_mode; +} + +void +rb_set_coverages(VALUE coverages, int mode, VALUE me2counter) +{ + GET_VM()->coverages = coverages; + GET_VM()->me2counter = me2counter; + GET_VM()->coverage_mode = mode; +} + +void +rb_resume_coverages(void) +{ + int mode = GET_VM()->coverage_mode; + VALUE me2counter = GET_VM()->me2counter; + rb_add_event_hook2((rb_event_hook_func_t) update_line_coverage, RUBY_EVENT_COVERAGE_LINE, Qnil, RUBY_EVENT_HOOK_FLAG_SAFE | RUBY_EVENT_HOOK_FLAG_RAW_ARG); + if (mode & COVERAGE_TARGET_BRANCHES) { + rb_add_event_hook2((rb_event_hook_func_t) update_branch_coverage, RUBY_EVENT_COVERAGE_BRANCH, Qnil, RUBY_EVENT_HOOK_FLAG_SAFE | RUBY_EVENT_HOOK_FLAG_RAW_ARG); + } + if (mode & COVERAGE_TARGET_METHODS) { + rb_add_event_hook2((rb_event_hook_func_t) update_method_coverage, RUBY_EVENT_CALL, me2counter, RUBY_EVENT_HOOK_FLAG_SAFE | RUBY_EVENT_HOOK_FLAG_RAW_ARG); + } +} + +void +rb_suspend_coverages(void) +{ + rb_remove_event_hook((rb_event_hook_func_t) update_line_coverage); + if (GET_VM()->coverage_mode & COVERAGE_TARGET_BRANCHES) { + rb_remove_event_hook((rb_event_hook_func_t) update_branch_coverage); + } + if (GET_VM()->coverage_mode & COVERAGE_TARGET_METHODS) { + rb_remove_event_hook((rb_event_hook_func_t) update_method_coverage); + } +} + +/* Make coverage arrays empty so old covered files are no longer tracked. */ +void +rb_reset_coverages(void) +{ + rb_clear_coverages(); + rb_iseq_remove_coverage_all(); + GET_VM()->coverages = Qfalse; +} + +VALUE +rb_default_coverage(int n) +{ + VALUE coverage = rb_ary_hidden_new_fill(3); + VALUE lines = Qfalse, branches = Qfalse; + int mode = GET_VM()->coverage_mode; + + if (mode & COVERAGE_TARGET_LINES) { + lines = n > 0 ? rb_ary_hidden_new_fill(n) : rb_ary_hidden_new(0); + } + RARRAY_ASET(coverage, COVERAGE_INDEX_LINES, lines); + + if (mode & COVERAGE_TARGET_BRANCHES) { + branches = rb_ary_hidden_new_fill(2); + /* internal data structures for branch coverage: + * + * { branch base node => + * [base_type, base_first_lineno, base_first_column, base_last_lineno, base_last_column, { + * branch target id => + * [target_type, target_first_lineno, target_first_column, target_last_lineno, target_last_column, target_counter_index], + * ... + * }], + * ... + * } + * + * Example: + * { NODE_CASE => + * [1, 0, 4, 3, { + * NODE_WHEN => [2, 8, 2, 9, 0], + * NODE_WHEN => [3, 8, 3, 9, 1], + * ... + * }], + * ... + * } + */ + VALUE structure = rb_hash_new(); + rb_obj_hide(structure); + RARRAY_ASET(branches, 0, structure); + /* branch execution counters */ + RARRAY_ASET(branches, 1, rb_ary_hidden_new(0)); + } + RARRAY_ASET(coverage, COVERAGE_INDEX_BRANCHES, branches); + + return coverage; +} + +static VALUE +uninterruptible_exit(VALUE v) +{ + rb_thread_t *cur_th = GET_THREAD(); + rb_ary_pop(cur_th->pending_interrupt_mask_stack); + + cur_th->pending_interrupt_queue_checked = 0; + if (!rb_threadptr_pending_interrupt_empty_p(cur_th)) { + RUBY_VM_SET_INTERRUPT(cur_th->ec); + } + return Qnil; +} + +VALUE +rb_uninterruptible(VALUE (*b_proc)(VALUE), VALUE data) +{ + VALUE interrupt_mask = rb_ident_hash_new(); + rb_thread_t *cur_th = GET_THREAD(); + + rb_hash_aset(interrupt_mask, rb_cObject, sym_never); + OBJ_FREEZE(interrupt_mask); + rb_ary_push(cur_th->pending_interrupt_mask_stack, interrupt_mask); + + VALUE ret = rb_ensure(b_proc, data, uninterruptible_exit, Qnil); + + RUBY_VM_CHECK_INTS(cur_th->ec); + return ret; +} + +static void +thread_specific_storage_alloc(rb_thread_t *th) +{ + VM_ASSERT(th->specific_storage == NULL); + + if (UNLIKELY(specific_key_count > 0)) { + th->specific_storage = ZALLOC_N(void *, RB_INTERNAL_THREAD_SPECIFIC_KEY_MAX); + } +} + +rb_internal_thread_specific_key_t +rb_internal_thread_specific_key_create(void) +{ + rb_vm_t *vm = GET_VM(); + + if (specific_key_count == 0 && vm->ractor.cnt > 1) { + rb_raise(rb_eThreadError, "The first rb_internal_thread_specific_key_create() is called with multiple ractors"); + } + else if (specific_key_count > RB_INTERNAL_THREAD_SPECIFIC_KEY_MAX) { + rb_raise(rb_eThreadError, "rb_internal_thread_specific_key_create() is called more than %d times", RB_INTERNAL_THREAD_SPECIFIC_KEY_MAX); + } + else { + rb_internal_thread_specific_key_t key = specific_key_count++; + + if (key == 0) { + // allocate + rb_ractor_t *cr = GET_RACTOR(); + rb_thread_t *th; + + ccan_list_for_each(&cr->threads.set, th, lt_node) { + thread_specific_storage_alloc(th); + } + } + return key; + } +} + +// async and native thread safe. +void * +rb_internal_thread_specific_get(VALUE thread_val, rb_internal_thread_specific_key_t key) +{ + rb_thread_t *th = DATA_PTR(thread_val); + + VM_ASSERT(rb_thread_ptr(thread_val) == th); + VM_ASSERT(key < RB_INTERNAL_THREAD_SPECIFIC_KEY_MAX); + VM_ASSERT(th->specific_storage); + + return th->specific_storage[key]; +} + +// async and native thread safe. +void +rb_internal_thread_specific_set(VALUE thread_val, rb_internal_thread_specific_key_t key, void *data) +{ + rb_thread_t *th = DATA_PTR(thread_val); + + VM_ASSERT(rb_thread_ptr(thread_val) == th); + VM_ASSERT(key < RB_INTERNAL_THREAD_SPECIFIC_KEY_MAX); + VM_ASSERT(th->specific_storage); + + th->specific_storage[key] = data; +} + +// interrupt_exec + +struct rb_interrupt_exec_task { + struct ccan_list_node node; + + rb_interrupt_exec_func_t *func; + void *data; + enum rb_interrupt_exec_flag flags; +}; + +void +rb_threadptr_interrupt_exec_task_mark(rb_thread_t *th) +{ + struct rb_interrupt_exec_task *task; + + ccan_list_for_each(&th->interrupt_exec_tasks, task, node) { + if (task->flags & rb_interrupt_exec_flag_value_data) { + rb_gc_mark((VALUE)task->data); + } + } +} + +// native thread safe +// th should be available +void +rb_threadptr_interrupt_exec(rb_thread_t *th, rb_interrupt_exec_func_t *func, void *data, enum rb_interrupt_exec_flag flags) +{ + // should not use ALLOC + struct rb_interrupt_exec_task *task = ALLOC(struct rb_interrupt_exec_task); + *task = (struct rb_interrupt_exec_task) { + .flags = flags, + .func = func, + .data = data, + }; + + rb_native_mutex_lock(&th->interrupt_lock); + { + ccan_list_add_tail(&th->interrupt_exec_tasks, &task->node); + threadptr_set_interrupt_locked(th, true); + } + rb_native_mutex_unlock(&th->interrupt_lock); +} + +static void +threadptr_interrupt_exec_exec(rb_thread_t *th) +{ + while (1) { + struct rb_interrupt_exec_task *task; + + rb_native_mutex_lock(&th->interrupt_lock); + { + task = ccan_list_pop(&th->interrupt_exec_tasks, struct rb_interrupt_exec_task, node); + } + rb_native_mutex_unlock(&th->interrupt_lock); + + RUBY_DEBUG_LOG("task:%p", task); + + if (task) { + if (task->flags & rb_interrupt_exec_flag_new_thread) { + rb_thread_create(task->func, task->data); + } + else { + (*task->func)(task->data); + } + ruby_xfree(task); + } + else { + break; + } + } +} + +static void +threadptr_interrupt_exec_cleanup(rb_thread_t *th) +{ + rb_native_mutex_lock(&th->interrupt_lock); + { + struct rb_interrupt_exec_task *task; + + while ((task = ccan_list_pop(&th->interrupt_exec_tasks, struct rb_interrupt_exec_task, node)) != NULL) { + ruby_xfree(task); + } + } + rb_native_mutex_unlock(&th->interrupt_lock); +} + +// native thread safe +// func/data should be native thread safe +void +rb_ractor_interrupt_exec(struct rb_ractor_struct *target_r, + rb_interrupt_exec_func_t *func, void *data, enum rb_interrupt_exec_flag flags) +{ + RUBY_DEBUG_LOG("flags:%d", (int)flags); + + rb_thread_t *main_th = target_r->threads.main; + rb_threadptr_interrupt_exec(main_th, func, data, flags | rb_interrupt_exec_flag_new_thread); +} + |
