summaryrefslogtreecommitdiff
path: root/ruby_2_2/complex.c
diff options
context:
space:
mode:
Diffstat (limited to 'ruby_2_2/complex.c')
-rw-r--r--ruby_2_2/complex.c2217
1 files changed, 0 insertions, 2217 deletions
diff --git a/ruby_2_2/complex.c b/ruby_2_2/complex.c
deleted file mode 100644
index 4548c5e2a5..0000000000
--- a/ruby_2_2/complex.c
+++ /dev/null
@@ -1,2217 +0,0 @@
-/*
- complex.c: Coded by Tadayoshi Funaba 2008-2012
-
- This implementation is based on Keiju Ishitsuka's Complex library
- which is written in ruby.
-*/
-
-#include "internal.h"
-#include <math.h>
-
-#define NDEBUG
-#include <assert.h>
-
-#define ZERO INT2FIX(0)
-#define ONE INT2FIX(1)
-#define TWO INT2FIX(2)
-
-VALUE rb_cComplex;
-
-static ID id_abs, id_arg, id_convert,
- id_denominator, id_eqeq_p, id_expt, id_fdiv,
- id_negate, id_numerator, id_quo,
- id_real_p, id_to_f, id_to_i, id_to_r,
- id_i_real, id_i_imag;
-
-#define f_boolcast(x) ((x) ? Qtrue : Qfalse)
-
-#define binop(n,op) \
-inline static VALUE \
-f_##n(VALUE x, VALUE y)\
-{\
- return rb_funcall(x, (op), 1, y);\
-}
-
-#define fun1(n) \
-inline static VALUE \
-f_##n(VALUE x)\
-{\
- return rb_funcall(x, id_##n, 0);\
-}
-
-#define fun2(n) \
-inline static VALUE \
-f_##n(VALUE x, VALUE y)\
-{\
- return rb_funcall(x, id_##n, 1, y);\
-}
-
-#define math1(n) \
-inline static VALUE \
-m_##n(VALUE x)\
-{\
- return rb_funcall(rb_mMath, id_##n, 1, x);\
-}
-
-#define math2(n) \
-inline static VALUE \
-m_##n(VALUE x, VALUE y)\
-{\
- return rb_funcall(rb_mMath, id_##n, 2, x, y);\
-}
-
-#define PRESERVE_SIGNEDZERO
-
-inline static VALUE
-f_add(VALUE x, VALUE y)
-{
-#ifndef PRESERVE_SIGNEDZERO
- if (FIXNUM_P(y) && FIX2LONG(y) == 0)
- return x;
- else if (FIXNUM_P(x) && FIX2LONG(x) == 0)
- return y;
-#endif
- return rb_funcall(x, '+', 1, y);
-}
-
-inline static VALUE
-f_div(VALUE x, VALUE y)
-{
- if (FIXNUM_P(y) && FIX2LONG(y) == 1)
- return x;
- return rb_funcall(x, '/', 1, y);
-}
-
-inline static VALUE
-f_gt_p(VALUE x, VALUE y)
-{
- if (FIXNUM_P(x) && FIXNUM_P(y))
- return f_boolcast(FIX2LONG(x) > FIX2LONG(y));
- return rb_funcall(x, '>', 1, y);
-}
-
-inline static VALUE
-f_mul(VALUE x, VALUE y)
-{
-#ifndef PRESERVE_SIGNEDZERO
- if (FIXNUM_P(y)) {
- long iy = FIX2LONG(y);
- if (iy == 0) {
- if (FIXNUM_P(x) || RB_TYPE_P(x, T_BIGNUM))
- return ZERO;
- }
- else if (iy == 1)
- return x;
- }
- else if (FIXNUM_P(x)) {
- long ix = FIX2LONG(x);
- if (ix == 0) {
- if (FIXNUM_P(y) || RB_TYPE_P(y, T_BIGNUM))
- return ZERO;
- }
- else if (ix == 1)
- return y;
- }
-#endif
- return rb_funcall(x, '*', 1, y);
-}
-
-inline static VALUE
-f_sub(VALUE x, VALUE y)
-{
-#ifndef PRESERVE_SIGNEDZERO
- if (FIXNUM_P(y) && FIX2LONG(y) == 0)
- return x;
-#endif
- return rb_funcall(x, '-', 1, y);
-}
-
-fun1(abs)
-fun1(arg)
-fun1(denominator)
-fun1(negate)
-fun1(numerator)
-fun1(real_p)
-
-inline static VALUE
-f_to_i(VALUE x)
-{
- if (RB_TYPE_P(x, T_STRING))
- return rb_str_to_inum(x, 10, 0);
- return rb_funcall(x, id_to_i, 0);
-}
-inline static VALUE
-f_to_f(VALUE x)
-{
- if (RB_TYPE_P(x, T_STRING))
- return DBL2NUM(rb_str_to_dbl(x, 0));
- return rb_funcall(x, id_to_f, 0);
-}
-
-fun1(to_r)
-
-inline static VALUE
-f_eqeq_p(VALUE x, VALUE y)
-{
- if (FIXNUM_P(x) && FIXNUM_P(y))
- return f_boolcast(FIX2LONG(x) == FIX2LONG(y));
- return rb_funcall(x, id_eqeq_p, 1, y);
-}
-
-fun2(expt)
-fun2(fdiv)
-fun2(quo)
-
-inline static VALUE
-f_negative_p(VALUE x)
-{
- if (FIXNUM_P(x))
- return f_boolcast(FIX2LONG(x) < 0);
- return rb_funcall(x, '<', 1, ZERO);
-}
-
-#define f_positive_p(x) (!f_negative_p(x))
-
-inline static VALUE
-f_zero_p(VALUE x)
-{
- if (RB_TYPE_P(x, T_FIXNUM)) {
- return f_boolcast(FIX2LONG(x) == 0);
- }
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return Qfalse;
- }
- else if (RB_TYPE_P(x, T_RATIONAL)) {
- VALUE num = RRATIONAL(x)->num;
-
- return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == 0);
- }
- return rb_funcall(x, id_eqeq_p, 1, ZERO);
-}
-
-#define f_nonzero_p(x) (!f_zero_p(x))
-
-inline static VALUE
-f_one_p(VALUE x)
-{
- if (RB_TYPE_P(x, T_FIXNUM)) {
- return f_boolcast(FIX2LONG(x) == 1);
- }
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return Qfalse;
- }
- else if (RB_TYPE_P(x, T_RATIONAL)) {
- VALUE num = RRATIONAL(x)->num;
- VALUE den = RRATIONAL(x)->den;
-
- return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == 1 &&
- FIXNUM_P(den) && FIX2LONG(den) == 1);
- }
- return rb_funcall(x, id_eqeq_p, 1, ONE);
-}
-
-inline static VALUE
-f_kind_of_p(VALUE x, VALUE c)
-{
- return rb_obj_is_kind_of(x, c);
-}
-
-inline static VALUE
-k_numeric_p(VALUE x)
-{
- return f_kind_of_p(x, rb_cNumeric);
-}
-
-inline static VALUE
-k_fixnum_p(VALUE x)
-{
- return f_kind_of_p(x, rb_cFixnum);
-}
-
-inline static VALUE
-k_bignum_p(VALUE x)
-{
- return f_kind_of_p(x, rb_cBignum);
-}
-
-inline static VALUE
-k_float_p(VALUE x)
-{
- return f_kind_of_p(x, rb_cFloat);
-}
-
-inline static VALUE
-k_rational_p(VALUE x)
-{
- return f_kind_of_p(x, rb_cRational);
-}
-
-inline static VALUE
-k_complex_p(VALUE x)
-{
- return f_kind_of_p(x, rb_cComplex);
-}
-
-#define k_exact_p(x) (!k_float_p(x))
-#define k_inexact_p(x) k_float_p(x)
-
-#define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x))
-#define k_exact_one_p(x) (k_exact_p(x) && f_one_p(x))
-
-#define get_dat1(x) \
- struct RComplex *dat;\
- dat = ((struct RComplex *)(x))
-
-#define get_dat2(x,y) \
- struct RComplex *adat, *bdat;\
- adat = ((struct RComplex *)(x));\
- bdat = ((struct RComplex *)(y))
-
-inline static VALUE
-nucomp_s_new_internal(VALUE klass, VALUE real, VALUE imag)
-{
- NEWOBJ_OF(obj, struct RComplex, klass, T_COMPLEX | (RGENGC_WB_PROTECTED_COMPLEX ? FL_WB_PROTECTED : 0));
-
- RCOMPLEX_SET_REAL(obj, real);
- RCOMPLEX_SET_IMAG(obj, imag);
-
- return (VALUE)obj;
-}
-
-static VALUE
-nucomp_s_alloc(VALUE klass)
-{
- return nucomp_s_new_internal(klass, ZERO, ZERO);
-}
-
-#if 0
-static VALUE
-nucomp_s_new_bang(int argc, VALUE *argv, VALUE klass)
-{
- VALUE real, imag;
-
- switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
- case 1:
- if (!k_numeric_p(real))
- real = f_to_i(real);
- imag = ZERO;
- break;
- default:
- if (!k_numeric_p(real))
- real = f_to_i(real);
- if (!k_numeric_p(imag))
- imag = f_to_i(imag);
- break;
- }
-
- return nucomp_s_new_internal(klass, real, imag);
-}
-#endif
-
-inline static VALUE
-f_complex_new_bang1(VALUE klass, VALUE x)
-{
- assert(!k_complex_p(x));
- return nucomp_s_new_internal(klass, x, ZERO);
-}
-
-inline static VALUE
-f_complex_new_bang2(VALUE klass, VALUE x, VALUE y)
-{
- assert(!k_complex_p(x));
- assert(!k_complex_p(y));
- return nucomp_s_new_internal(klass, x, y);
-}
-
-#ifdef CANONICALIZATION_FOR_MATHN
-#define CANON
-#endif
-
-#ifdef CANON
-static int canonicalization = 0;
-
-RUBY_FUNC_EXPORTED void
-nucomp_canonicalization(int f)
-{
- canonicalization = f;
-}
-#endif
-
-inline static void
-nucomp_real_check(VALUE num)
-{
- if (!RB_TYPE_P(num, T_FIXNUM) &&
- !RB_TYPE_P(num, T_BIGNUM) &&
- !RB_TYPE_P(num, T_FLOAT) &&
- !RB_TYPE_P(num, T_RATIONAL)) {
- if (!k_numeric_p(num) || !f_real_p(num))
- rb_raise(rb_eTypeError, "not a real");
- }
-}
-
-inline static VALUE
-nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE imag)
-{
-#ifdef CANON
-#define CL_CANON
-#ifdef CL_CANON
- if (k_exact_zero_p(imag) && canonicalization)
- return real;
-#else
- if (f_zero_p(imag) && canonicalization)
- return real;
-#endif
-#endif
- if (f_real_p(real) && f_real_p(imag))
- return nucomp_s_new_internal(klass, real, imag);
- else if (f_real_p(real)) {
- get_dat1(imag);
-
- return nucomp_s_new_internal(klass,
- f_sub(real, dat->imag),
- f_add(ZERO, dat->real));
- }
- else if (f_real_p(imag)) {
- get_dat1(real);
-
- return nucomp_s_new_internal(klass,
- dat->real,
- f_add(dat->imag, imag));
- }
- else {
- get_dat2(real, imag);
-
- return nucomp_s_new_internal(klass,
- f_sub(adat->real, bdat->imag),
- f_add(adat->imag, bdat->real));
- }
-}
-
-/*
- * call-seq:
- * Complex.rect(real[, imag]) -> complex
- * Complex.rectangular(real[, imag]) -> complex
- *
- * Returns a complex object which denotes the given rectangular form.
- *
- * Complex.rectangular(1, 2) #=> (1+2i)
- */
-static VALUE
-nucomp_s_new(int argc, VALUE *argv, VALUE klass)
-{
- VALUE real, imag;
-
- switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
- case 1:
- nucomp_real_check(real);
- imag = ZERO;
- break;
- default:
- nucomp_real_check(real);
- nucomp_real_check(imag);
- break;
- }
-
- return nucomp_s_canonicalize_internal(klass, real, imag);
-}
-
-inline static VALUE
-f_complex_new2(VALUE klass, VALUE x, VALUE y)
-{
- assert(!k_complex_p(x));
- return nucomp_s_canonicalize_internal(klass, x, y);
-}
-
-/*
- * call-seq:
- * Complex(x[, y]) -> numeric
- *
- * Returns x+i*y;
- *
- * Complex(1, 2) #=> (1+2i)
- * Complex('1+2i') #=> (1+2i)
- * Complex(nil) #=> TypeError
- * Complex(1, nil) #=> TypeError
- *
- * Syntax of string form:
- *
- * string form = extra spaces , complex , extra spaces ;
- * complex = real part | [ sign ] , imaginary part
- * | real part , sign , imaginary part
- * | rational , "@" , rational ;
- * real part = rational ;
- * imaginary part = imaginary unit | unsigned rational , imaginary unit ;
- * rational = [ sign ] , unsigned rational ;
- * unsigned rational = numerator | numerator , "/" , denominator ;
- * numerator = integer part | fractional part | integer part , fractional part ;
- * denominator = digits ;
- * integer part = digits ;
- * fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ;
- * imaginary unit = "i" | "I" | "j" | "J" ;
- * sign = "-" | "+" ;
- * digits = digit , { digit | "_" , digit };
- * digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
- * extra spaces = ? \s* ? ;
- *
- * See String#to_c.
- */
-static VALUE
-nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
-{
- return rb_funcall2(rb_cComplex, id_convert, argc, argv);
-}
-
-#define imp1(n) \
-inline static VALUE \
-m_##n##_bang(VALUE x)\
-{\
- return rb_math_##n(x);\
-}
-
-#define imp2(n) \
-inline static VALUE \
-m_##n##_bang(VALUE x, VALUE y)\
-{\
- return rb_math_##n(x, y);\
-}
-
-imp2(atan2)
-imp1(cos)
-imp1(cosh)
-imp1(exp)
-imp2(hypot)
-
-#define m_hypot(x,y) m_hypot_bang((x),(y))
-
-static VALUE
-m_log_bang(VALUE x)
-{
- return rb_math_log(1, &x);
-}
-
-imp1(sin)
-imp1(sinh)
-
-static VALUE
-m_cos(VALUE x)
-{
- if (f_real_p(x))
- return m_cos_bang(x);
- {
- get_dat1(x);
- return f_complex_new2(rb_cComplex,
- f_mul(m_cos_bang(dat->real),
- m_cosh_bang(dat->imag)),
- f_mul(f_negate(m_sin_bang(dat->real)),
- m_sinh_bang(dat->imag)));
- }
-}
-
-static VALUE
-m_sin(VALUE x)
-{
- if (f_real_p(x))
- return m_sin_bang(x);
- {
- get_dat1(x);
- return f_complex_new2(rb_cComplex,
- f_mul(m_sin_bang(dat->real),
- m_cosh_bang(dat->imag)),
- f_mul(m_cos_bang(dat->real),
- m_sinh_bang(dat->imag)));
- }
-}
-
-#if 0
-imp1(sqrt)
-
-static VALUE
-m_sqrt(VALUE x)
-{
- if (f_real_p(x)) {
- if (f_positive_p(x))
- return m_sqrt_bang(x);
- return f_complex_new2(rb_cComplex, ZERO, m_sqrt_bang(f_negate(x)));
- }
- else {
- get_dat1(x);
-
- if (f_negative_p(dat->imag))
- return f_conj(m_sqrt(f_conj(x)));
- else {
- VALUE a = f_abs(x);
- return f_complex_new2(rb_cComplex,
- m_sqrt_bang(f_div(f_add(a, dat->real), TWO)),
- m_sqrt_bang(f_div(f_sub(a, dat->real), TWO)));
- }
- }
-}
-#endif
-
-inline static VALUE
-f_complex_polar(VALUE klass, VALUE x, VALUE y)
-{
- assert(!k_complex_p(x));
- assert(!k_complex_p(y));
- return nucomp_s_canonicalize_internal(klass,
- f_mul(x, m_cos(y)),
- f_mul(x, m_sin(y)));
-}
-
-/*
- * call-seq:
- * Complex.polar(abs[, arg]) -> complex
- *
- * Returns a complex object which denotes the given polar form.
- *
- * Complex.polar(3, 0) #=> (3.0+0.0i)
- * Complex.polar(3, Math::PI/2) #=> (1.836909530733566e-16+3.0i)
- * Complex.polar(3, Math::PI) #=> (-3.0+3.673819061467132e-16i)
- * Complex.polar(3, -Math::PI/2) #=> (1.836909530733566e-16-3.0i)
- */
-static VALUE
-nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
-{
- VALUE abs, arg;
-
- switch (rb_scan_args(argc, argv, "11", &abs, &arg)) {
- case 1:
- nucomp_real_check(abs);
- arg = ZERO;
- break;
- default:
- nucomp_real_check(abs);
- nucomp_real_check(arg);
- break;
- }
- return f_complex_polar(klass, abs, arg);
-}
-
-/*
- * call-seq:
- * cmp.real -> real
- *
- * Returns the real part.
- *
- * Complex(7).real #=> 7
- * Complex(9, -4).real #=> 9
- */
-static VALUE
-nucomp_real(VALUE self)
-{
- get_dat1(self);
- return dat->real;
-}
-
-/*
- * call-seq:
- * cmp.imag -> real
- * cmp.imaginary -> real
- *
- * Returns the imaginary part.
- *
- * Complex(7).imaginary #=> 0
- * Complex(9, -4).imaginary #=> -4
- */
-static VALUE
-nucomp_imag(VALUE self)
-{
- get_dat1(self);
- return dat->imag;
-}
-
-/*
- * call-seq:
- * -cmp -> complex
- *
- * Returns negation of the value.
- *
- * -Complex(1, 2) #=> (-1-2i)
- */
-static VALUE
-nucomp_negate(VALUE self)
-{
- get_dat1(self);
- return f_complex_new2(CLASS_OF(self),
- f_negate(dat->real), f_negate(dat->imag));
-}
-
-inline static VALUE
-f_addsub(VALUE self, VALUE other,
- VALUE (*func)(VALUE, VALUE), ID id)
-{
- if (k_complex_p(other)) {
- VALUE real, imag;
-
- get_dat2(self, other);
-
- real = (*func)(adat->real, bdat->real);
- imag = (*func)(adat->imag, bdat->imag);
-
- return f_complex_new2(CLASS_OF(self), real, imag);
- }
- if (k_numeric_p(other) && f_real_p(other)) {
- get_dat1(self);
-
- return f_complex_new2(CLASS_OF(self),
- (*func)(dat->real, other), dat->imag);
- }
- return rb_num_coerce_bin(self, other, id);
-}
-
-/*
- * call-seq:
- * cmp + numeric -> complex
- *
- * Performs addition.
- *
- * Complex(2, 3) + Complex(2, 3) #=> (4+6i)
- * Complex(900) + Complex(1) #=> (901+0i)
- * Complex(-2, 9) + Complex(-9, 2) #=> (-11+11i)
- * Complex(9, 8) + 4 #=> (13+8i)
- * Complex(20, 9) + 9.8 #=> (29.8+9i)
- */
-static VALUE
-nucomp_add(VALUE self, VALUE other)
-{
- return f_addsub(self, other, f_add, '+');
-}
-
-/*
- * call-seq:
- * cmp - numeric -> complex
- *
- * Performs subtraction.
- *
- * Complex(2, 3) - Complex(2, 3) #=> (0+0i)
- * Complex(900) - Complex(1) #=> (899+0i)
- * Complex(-2, 9) - Complex(-9, 2) #=> (7+7i)
- * Complex(9, 8) - 4 #=> (5+8i)
- * Complex(20, 9) - 9.8 #=> (10.2+9i)
- */
-static VALUE
-nucomp_sub(VALUE self, VALUE other)
-{
- return f_addsub(self, other, f_sub, '-');
-}
-
-/*
- * call-seq:
- * cmp * numeric -> complex
- *
- * Performs multiplication.
- *
- * Complex(2, 3) * Complex(2, 3) #=> (-5+12i)
- * Complex(900) * Complex(1) #=> (900+0i)
- * Complex(-2, 9) * Complex(-9, 2) #=> (0-85i)
- * Complex(9, 8) * 4 #=> (36+32i)
- * Complex(20, 9) * 9.8 #=> (196.0+88.2i)
- */
-static VALUE
-nucomp_mul(VALUE self, VALUE other)
-{
- if (k_complex_p(other)) {
- VALUE real, imag;
-
- get_dat2(self, other);
-
- real = f_sub(f_mul(adat->real, bdat->real),
- f_mul(adat->imag, bdat->imag));
- imag = f_add(f_mul(adat->real, bdat->imag),
- f_mul(adat->imag, bdat->real));
-
- return f_complex_new2(CLASS_OF(self), real, imag);
- }
- if (k_numeric_p(other) && f_real_p(other)) {
- get_dat1(self);
-
- return f_complex_new2(CLASS_OF(self),
- f_mul(dat->real, other),
- f_mul(dat->imag, other));
- }
- return rb_num_coerce_bin(self, other, '*');
-}
-
-inline static VALUE
-f_divide(VALUE self, VALUE other,
- VALUE (*func)(VALUE, VALUE), ID id)
-{
- if (k_complex_p(other)) {
- int flo;
- get_dat2(self, other);
-
- flo = (k_float_p(adat->real) || k_float_p(adat->imag) ||
- k_float_p(bdat->real) || k_float_p(bdat->imag));
-
- if (f_gt_p(f_abs(bdat->real), f_abs(bdat->imag))) {
- VALUE r, n;
-
- r = (*func)(bdat->imag, bdat->real);
- n = f_mul(bdat->real, f_add(ONE, f_mul(r, r)));
- if (flo)
- return f_complex_new2(CLASS_OF(self),
- (*func)(self, n),
- (*func)(f_negate(f_mul(self, r)), n));
- return f_complex_new2(CLASS_OF(self),
- (*func)(f_add(adat->real,
- f_mul(adat->imag, r)), n),
- (*func)(f_sub(adat->imag,
- f_mul(adat->real, r)), n));
- }
- else {
- VALUE r, n;
-
- r = (*func)(bdat->real, bdat->imag);
- n = f_mul(bdat->imag, f_add(ONE, f_mul(r, r)));
- if (flo)
- return f_complex_new2(CLASS_OF(self),
- (*func)(f_mul(self, r), n),
- (*func)(f_negate(self), n));
- return f_complex_new2(CLASS_OF(self),
- (*func)(f_add(f_mul(adat->real, r),
- adat->imag), n),
- (*func)(f_sub(f_mul(adat->imag, r),
- adat->real), n));
- }
- }
- if (k_numeric_p(other) && f_real_p(other)) {
- get_dat1(self);
-
- return f_complex_new2(CLASS_OF(self),
- (*func)(dat->real, other),
- (*func)(dat->imag, other));
- }
- return rb_num_coerce_bin(self, other, id);
-}
-
-#define rb_raise_zerodiv() rb_raise(rb_eZeroDivError, "divided by 0")
-
-/*
- * call-seq:
- * cmp / numeric -> complex
- * cmp.quo(numeric) -> complex
- *
- * Performs division.
- *
- * Complex(2, 3) / Complex(2, 3) #=> ((1/1)+(0/1)*i)
- * Complex(900) / Complex(1) #=> ((900/1)+(0/1)*i)
- * Complex(-2, 9) / Complex(-9, 2) #=> ((36/85)-(77/85)*i)
- * Complex(9, 8) / 4 #=> ((9/4)+(2/1)*i)
- * Complex(20, 9) / 9.8 #=> (2.0408163265306123+0.9183673469387754i)
- */
-static VALUE
-nucomp_div(VALUE self, VALUE other)
-{
- return f_divide(self, other, f_quo, id_quo);
-}
-
-#define nucomp_quo nucomp_div
-
-/*
- * call-seq:
- * cmp.fdiv(numeric) -> complex
- *
- * Performs division as each part is a float, never returns a float.
- *
- * Complex(11, 22).fdiv(3) #=> (3.6666666666666665+7.333333333333333i)
- */
-static VALUE
-nucomp_fdiv(VALUE self, VALUE other)
-{
- return f_divide(self, other, f_fdiv, id_fdiv);
-}
-
-inline static VALUE
-f_reciprocal(VALUE x)
-{
- return f_quo(ONE, x);
-}
-
-/*
- * call-seq:
- * cmp ** numeric -> complex
- *
- * Performs exponentiation.
- *
- * Complex('i') ** 2 #=> (-1+0i)
- * Complex(-8) ** Rational(1, 3) #=> (1.0000000000000002+1.7320508075688772i)
- */
-static VALUE
-nucomp_expt(VALUE self, VALUE other)
-{
- if (k_numeric_p(other) && k_exact_zero_p(other))
- return f_complex_new_bang1(CLASS_OF(self), ONE);
-
- if (k_rational_p(other) && f_one_p(f_denominator(other)))
- other = f_numerator(other); /* c14n */
-
- if (k_complex_p(other)) {
- get_dat1(other);
-
- if (k_exact_zero_p(dat->imag))
- other = dat->real; /* c14n */
- }
-
- if (k_complex_p(other)) {
- VALUE r, theta, nr, ntheta;
-
- get_dat1(other);
-
- r = f_abs(self);
- theta = f_arg(self);
-
- nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
- f_mul(dat->imag, theta)));
- ntheta = f_add(f_mul(theta, dat->real),
- f_mul(dat->imag, m_log_bang(r)));
- return f_complex_polar(CLASS_OF(self), nr, ntheta);
- }
- if (k_fixnum_p(other)) {
- if (f_gt_p(other, ZERO)) {
- VALUE x, z;
- long n;
-
- x = self;
- z = x;
- n = FIX2LONG(other) - 1;
-
- while (n) {
- long q, r;
-
- while (1) {
- get_dat1(x);
-
- q = n / 2;
- r = n % 2;
-
- if (r)
- break;
-
- x = nucomp_s_new_internal(CLASS_OF(self),
- f_sub(f_mul(dat->real, dat->real),
- f_mul(dat->imag, dat->imag)),
- f_mul(f_mul(TWO, dat->real), dat->imag));
- n = q;
- }
- z = f_mul(z, x);
- n--;
- }
- return z;
- }
- return f_expt(f_reciprocal(self), f_negate(other));
- }
- if (k_numeric_p(other) && f_real_p(other)) {
- VALUE r, theta;
-
- if (k_bignum_p(other))
- rb_warn("in a**b, b may be too big");
-
- r = f_abs(self);
- theta = f_arg(self);
-
- return f_complex_polar(CLASS_OF(self), f_expt(r, other),
- f_mul(theta, other));
- }
- return rb_num_coerce_bin(self, other, id_expt);
-}
-
-/*
- * call-seq:
- * cmp == object -> true or false
- *
- * Returns true if cmp equals object numerically.
- *
- * Complex(2, 3) == Complex(2, 3) #=> true
- * Complex(5) == 5 #=> true
- * Complex(0) == 0.0 #=> true
- * Complex('1/3') == 0.33 #=> false
- * Complex('1/2') == '1/2' #=> false
- */
-static VALUE
-nucomp_eqeq_p(VALUE self, VALUE other)
-{
- if (k_complex_p(other)) {
- get_dat2(self, other);
-
- return f_boolcast(f_eqeq_p(adat->real, bdat->real) &&
- f_eqeq_p(adat->imag, bdat->imag));
- }
- if (k_numeric_p(other) && f_real_p(other)) {
- get_dat1(self);
-
- return f_boolcast(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
- }
- return f_eqeq_p(other, self);
-}
-
-/* :nodoc: */
-static VALUE
-nucomp_coerce(VALUE self, VALUE other)
-{
- if (k_numeric_p(other) && f_real_p(other))
- return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
- if (RB_TYPE_P(other, T_COMPLEX))
- return rb_assoc_new(other, self);
-
- rb_raise(rb_eTypeError, "%s can't be coerced into %s",
- rb_obj_classname(other), rb_obj_classname(self));
- return Qnil;
-}
-
-/*
- * call-seq:
- * cmp.abs -> real
- * cmp.magnitude -> real
- *
- * Returns the absolute part of its polar form.
- *
- * Complex(-1).abs #=> 1
- * Complex(3.0, -4.0).abs #=> 5.0
- */
-static VALUE
-nucomp_abs(VALUE self)
-{
- get_dat1(self);
-
- if (f_zero_p(dat->real)) {
- VALUE a = f_abs(dat->imag);
- if (k_float_p(dat->real) && !k_float_p(dat->imag))
- a = f_to_f(a);
- return a;
- }
- if (f_zero_p(dat->imag)) {
- VALUE a = f_abs(dat->real);
- if (!k_float_p(dat->real) && k_float_p(dat->imag))
- a = f_to_f(a);
- return a;
- }
- return m_hypot(dat->real, dat->imag);
-}
-
-/*
- * call-seq:
- * cmp.abs2 -> real
- *
- * Returns square of the absolute value.
- *
- * Complex(-1).abs2 #=> 1
- * Complex(3.0, -4.0).abs2 #=> 25.0
- */
-static VALUE
-nucomp_abs2(VALUE self)
-{
- get_dat1(self);
- return f_add(f_mul(dat->real, dat->real),
- f_mul(dat->imag, dat->imag));
-}
-
-/*
- * call-seq:
- * cmp.arg -> float
- * cmp.angle -> float
- * cmp.phase -> float
- *
- * Returns the angle part of its polar form.
- *
- * Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966
- */
-static VALUE
-nucomp_arg(VALUE self)
-{
- get_dat1(self);
- return m_atan2_bang(dat->imag, dat->real);
-}
-
-/*
- * call-seq:
- * cmp.rect -> array
- * cmp.rectangular -> array
- *
- * Returns an array; [cmp.real, cmp.imag].
- *
- * Complex(1, 2).rectangular #=> [1, 2]
- */
-static VALUE
-nucomp_rect(VALUE self)
-{
- get_dat1(self);
- return rb_assoc_new(dat->real, dat->imag);
-}
-
-/*
- * call-seq:
- * cmp.polar -> array
- *
- * Returns an array; [cmp.abs, cmp.arg].
- *
- * Complex(1, 2).polar #=> [2.23606797749979, 1.1071487177940904]
- */
-static VALUE
-nucomp_polar(VALUE self)
-{
- return rb_assoc_new(f_abs(self), f_arg(self));
-}
-
-/*
- * call-seq:
- * cmp.conj -> complex
- * cmp.conjugate -> complex
- *
- * Returns the complex conjugate.
- *
- * Complex(1, 2).conjugate #=> (1-2i)
- */
-static VALUE
-nucomp_conj(VALUE self)
-{
- get_dat1(self);
- return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
-}
-
-#if 0
-/* :nodoc: */
-static VALUE
-nucomp_true(VALUE self)
-{
- return Qtrue;
-}
-#endif
-
-/*
- * call-seq:
- * cmp.real? -> false
- *
- * Returns false.
- */
-static VALUE
-nucomp_false(VALUE self)
-{
- return Qfalse;
-}
-
-#if 0
-/* :nodoc: */
-static VALUE
-nucomp_exact_p(VALUE self)
-{
- get_dat1(self);
- return f_boolcast(k_exact_p(dat->real) && k_exact_p(dat->imag));
-}
-
-/* :nodoc: */
-static VALUE
-nucomp_inexact_p(VALUE self)
-{
- return f_boolcast(!nucomp_exact_p(self));
-}
-#endif
-
-/*
- * call-seq:
- * cmp.denominator -> integer
- *
- * Returns the denominator (lcm of both denominator - real and imag).
- *
- * See numerator.
- */
-static VALUE
-nucomp_denominator(VALUE self)
-{
- get_dat1(self);
- return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
-}
-
-/*
- * call-seq:
- * cmp.numerator -> numeric
- *
- * Returns the numerator.
- *
- * 1 2 3+4i <- numerator
- * - + -i -> ----
- * 2 3 6 <- denominator
- *
- * c = Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i)
- * n = c.numerator #=> (3+4i)
- * d = c.denominator #=> 6
- * n / d #=> ((1/2)+(2/3)*i)
- * Complex(Rational(n.real, d), Rational(n.imag, d))
- * #=> ((1/2)+(2/3)*i)
- * See denominator.
- */
-static VALUE
-nucomp_numerator(VALUE self)
-{
- VALUE cd;
-
- get_dat1(self);
-
- cd = f_denominator(self);
- return f_complex_new2(CLASS_OF(self),
- f_mul(f_numerator(dat->real),
- f_div(cd, f_denominator(dat->real))),
- f_mul(f_numerator(dat->imag),
- f_div(cd, f_denominator(dat->imag))));
-}
-
-/* :nodoc: */
-static VALUE
-nucomp_hash(VALUE self)
-{
- st_index_t v, h[2];
- VALUE n;
-
- get_dat1(self);
- n = rb_hash(dat->real);
- h[0] = NUM2LONG(n);
- n = rb_hash(dat->imag);
- h[1] = NUM2LONG(n);
- v = rb_memhash(h, sizeof(h));
- return LONG2FIX(v);
-}
-
-/* :nodoc: */
-static VALUE
-nucomp_eql_p(VALUE self, VALUE other)
-{
- if (k_complex_p(other)) {
- get_dat2(self, other);
-
- return f_boolcast((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) &&
- (CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) &&
- f_eqeq_p(self, other));
-
- }
- return Qfalse;
-}
-
-inline static VALUE
-f_signbit(VALUE x)
-{
-#if defined(HAVE_SIGNBIT) && defined(__GNUC__) && defined(__sun) && \
- !defined(signbit)
- extern int signbit(double);
-#endif
- if (RB_TYPE_P(x, T_FLOAT)) {
- double f = RFLOAT_VALUE(x);
- return f_boolcast(!isnan(f) && signbit(f));
- }
- return f_negative_p(x);
-}
-
-inline static VALUE
-f_tpositive_p(VALUE x)
-{
- return f_boolcast(!f_signbit(x));
-}
-
-static VALUE
-f_format(VALUE self, VALUE (*func)(VALUE))
-{
- VALUE s, impos;
-
- get_dat1(self);
-
- impos = f_tpositive_p(dat->imag);
-
- s = (*func)(dat->real);
- rb_str_cat2(s, !impos ? "-" : "+");
-
- rb_str_concat(s, (*func)(f_abs(dat->imag)));
- if (!rb_isdigit(RSTRING_PTR(s)[RSTRING_LEN(s) - 1]))
- rb_str_cat2(s, "*");
- rb_str_cat2(s, "i");
-
- return s;
-}
-
-/*
- * call-seq:
- * cmp.to_s -> string
- *
- * Returns the value as a string.
- *
- * Complex(2).to_s #=> "2+0i"
- * Complex('-8/6').to_s #=> "-4/3+0i"
- * Complex('1/2i').to_s #=> "0+1/2i"
- * Complex(0, Float::INFINITY).to_s #=> "0+Infinity*i"
- * Complex(Float::NAN, Float::NAN).to_s #=> "NaN+NaN*i"
- */
-static VALUE
-nucomp_to_s(VALUE self)
-{
- return f_format(self, rb_String);
-}
-
-/*
- * call-seq:
- * cmp.inspect -> string
- *
- * Returns the value as a string for inspection.
- *
- * Complex(2).inspect #=> "(2+0i)"
- * Complex('-8/6').inspect #=> "((-4/3)+0i)"
- * Complex('1/2i').inspect #=> "(0+(1/2)*i)"
- * Complex(0, Float::INFINITY).inspect #=> "(0+Infinity*i)"
- * Complex(Float::NAN, Float::NAN).inspect #=> "(NaN+NaN*i)"
- */
-static VALUE
-nucomp_inspect(VALUE self)
-{
- VALUE s;
-
- s = rb_usascii_str_new2("(");
- rb_str_concat(s, f_format(self, rb_inspect));
- rb_str_cat2(s, ")");
-
- return s;
-}
-
-/* :nodoc: */
-static VALUE
-nucomp_dumper(VALUE self)
-{
- return self;
-}
-
-/* :nodoc: */
-static VALUE
-nucomp_loader(VALUE self, VALUE a)
-{
- get_dat1(self);
-
- RCOMPLEX_SET_REAL(dat, rb_ivar_get(a, id_i_real));
- RCOMPLEX_SET_IMAG(dat, rb_ivar_get(a, id_i_imag));
-
- return self;
-}
-
-/* :nodoc: */
-static VALUE
-nucomp_marshal_dump(VALUE self)
-{
- VALUE a;
- get_dat1(self);
-
- a = rb_assoc_new(dat->real, dat->imag);
- rb_copy_generic_ivar(a, self);
- return a;
-}
-
-/* :nodoc: */
-static VALUE
-nucomp_marshal_load(VALUE self, VALUE a)
-{
- Check_Type(a, T_ARRAY);
- if (RARRAY_LEN(a) != 2)
- rb_raise(rb_eArgError, "marshaled complex must have an array whose length is 2 but %ld", RARRAY_LEN(a));
- rb_ivar_set(self, id_i_real, RARRAY_AREF(a, 0));
- rb_ivar_set(self, id_i_imag, RARRAY_AREF(a, 1));
- return self;
-}
-
-/* --- */
-
-VALUE
-rb_complex_raw(VALUE x, VALUE y)
-{
- return nucomp_s_new_internal(rb_cComplex, x, y);
-}
-
-VALUE
-rb_complex_new(VALUE x, VALUE y)
-{
- return nucomp_s_canonicalize_internal(rb_cComplex, x, y);
-}
-
-VALUE
-rb_complex_polar(VALUE x, VALUE y)
-{
- return f_complex_polar(rb_cComplex, x, y);
-}
-
-static VALUE nucomp_s_convert(int argc, VALUE *argv, VALUE klass);
-
-VALUE
-rb_Complex(VALUE x, VALUE y)
-{
- VALUE a[2];
- a[0] = x;
- a[1] = y;
- return nucomp_s_convert(2, a, rb_cComplex);
-}
-
-VALUE
-rb_complex_set_real(VALUE cmp, VALUE r)
-{
- RCOMPLEX_SET_REAL(cmp, r);
- return cmp;
-}
-
-VALUE
-rb_complex_set_imag(VALUE cmp, VALUE i)
-{
- RCOMPLEX_SET_IMAG(cmp, i);
- return cmp;
-}
-
-/*
- * call-seq:
- * cmp.to_i -> integer
- *
- * Returns the value as an integer if possible (the imaginary part
- * should be exactly zero).
- *
- * Complex(1, 0).to_i #=> 1
- * Complex(1, 0.0).to_i # RangeError
- * Complex(1, 2).to_i # RangeError
- */
-static VALUE
-nucomp_to_i(VALUE self)
-{
- get_dat1(self);
-
- if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
- rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer",
- self);
- }
- return f_to_i(dat->real);
-}
-
-/*
- * call-seq:
- * cmp.to_f -> float
- *
- * Returns the value as a float if possible (the imaginary part should
- * be exactly zero).
- *
- * Complex(1, 0).to_f #=> 1.0
- * Complex(1, 0.0).to_f # RangeError
- * Complex(1, 2).to_f # RangeError
- */
-static VALUE
-nucomp_to_f(VALUE self)
-{
- get_dat1(self);
-
- if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
- rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float",
- self);
- }
- return f_to_f(dat->real);
-}
-
-/*
- * call-seq:
- * cmp.to_r -> rational
- *
- * Returns the value as a rational if possible (the imaginary part
- * should be exactly zero).
- *
- * Complex(1, 0).to_r #=> (1/1)
- * Complex(1, 0.0).to_r # RangeError
- * Complex(1, 2).to_r # RangeError
- *
- * See rationalize.
- */
-static VALUE
-nucomp_to_r(VALUE self)
-{
- get_dat1(self);
-
- if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
- rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
- self);
- }
- return f_to_r(dat->real);
-}
-
-/*
- * call-seq:
- * cmp.rationalize([eps]) -> rational
- *
- * Returns the value as a rational if possible (the imaginary part
- * should be exactly zero).
- *
- * Complex(1.0/3, 0).rationalize #=> (1/3)
- * Complex(1, 0.0).rationalize # RangeError
- * Complex(1, 2).rationalize # RangeError
- *
- * See to_r.
- */
-static VALUE
-nucomp_rationalize(int argc, VALUE *argv, VALUE self)
-{
- get_dat1(self);
-
- rb_scan_args(argc, argv, "01", NULL);
-
- if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
- rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
- self);
- }
- return rb_funcall2(dat->real, rb_intern("rationalize"), argc, argv);
-}
-
-/*
- * call-seq:
- * complex.to_c -> self
- *
- * Returns self.
- *
- * Complex(2).to_c #=> (2+0i)
- * Complex(-8, 6).to_c #=> (-8+6i)
- */
-static VALUE
-nucomp_to_c(VALUE self)
-{
- return self;
-}
-
-/*
- * call-seq:
- * nil.to_c -> (0+0i)
- *
- * Returns zero as a complex.
- */
-static VALUE
-nilclass_to_c(VALUE self)
-{
- return rb_complex_new1(INT2FIX(0));
-}
-
-/*
- * call-seq:
- * num.to_c -> complex
- *
- * Returns the value as a complex.
- */
-static VALUE
-numeric_to_c(VALUE self)
-{
- return rb_complex_new1(self);
-}
-
-#include <ctype.h>
-
-inline static int
-issign(int c)
-{
- return (c == '-' || c == '+');
-}
-
-static int
-read_sign(const char **s,
- char **b)
-{
- int sign = '?';
-
- if (issign(**s)) {
- sign = **b = **s;
- (*s)++;
- (*b)++;
- }
- return sign;
-}
-
-inline static int
-isdecimal(int c)
-{
- return isdigit((unsigned char)c);
-}
-
-static int
-read_digits(const char **s, int strict,
- char **b)
-{
- int us = 1;
-
- if (!isdecimal(**s))
- return 0;
-
- while (isdecimal(**s) || **s == '_') {
- if (**s == '_') {
- if (strict) {
- if (us)
- return 0;
- }
- us = 1;
- }
- else {
- **b = **s;
- (*b)++;
- us = 0;
- }
- (*s)++;
- }
- if (us)
- do {
- (*s)--;
- } while (**s == '_');
- return 1;
-}
-
-inline static int
-islettere(int c)
-{
- return (c == 'e' || c == 'E');
-}
-
-static int
-read_num(const char **s, int strict,
- char **b)
-{
- if (**s != '.') {
- if (!read_digits(s, strict, b))
- return 0;
- }
-
- if (**s == '.') {
- **b = **s;
- (*s)++;
- (*b)++;
- if (!read_digits(s, strict, b)) {
- (*b)--;
- return 0;
- }
- }
-
- if (islettere(**s)) {
- **b = **s;
- (*s)++;
- (*b)++;
- read_sign(s, b);
- if (!read_digits(s, strict, b)) {
- (*b)--;
- return 0;
- }
- }
- return 1;
-}
-
-inline static int
-read_den(const char **s, int strict,
- char **b)
-{
- if (!read_digits(s, strict, b))
- return 0;
- return 1;
-}
-
-static int
-read_rat_nos(const char **s, int strict,
- char **b)
-{
- if (!read_num(s, strict, b))
- return 0;
- if (**s == '/') {
- **b = **s;
- (*s)++;
- (*b)++;
- if (!read_den(s, strict, b)) {
- (*b)--;
- return 0;
- }
- }
- return 1;
-}
-
-static int
-read_rat(const char **s, int strict,
- char **b)
-{
- read_sign(s, b);
- if (!read_rat_nos(s, strict, b))
- return 0;
- return 1;
-}
-
-inline static int
-isimagunit(int c)
-{
- return (c == 'i' || c == 'I' ||
- c == 'j' || c == 'J');
-}
-
-static VALUE
-str2num(char *s)
-{
- if (strchr(s, '/'))
- return rb_cstr_to_rat(s, 0);
- if (strpbrk(s, ".eE"))
- return DBL2NUM(rb_cstr_to_dbl(s, 0));
- return rb_cstr_to_inum(s, 10, 0);
-}
-
-static int
-read_comp(const char **s, int strict,
- VALUE *ret, char **b)
-{
- char *bb;
- int sign;
- VALUE num, num2;
-
- bb = *b;
-
- sign = read_sign(s, b);
-
- if (isimagunit(**s)) {
- (*s)++;
- num = INT2FIX((sign == '-') ? -1 : + 1);
- *ret = rb_complex_new2(ZERO, num);
- return 1; /* e.g. "i" */
- }
-
- if (!read_rat_nos(s, strict, b)) {
- **b = '\0';
- num = str2num(bb);
- *ret = rb_complex_new2(num, ZERO);
- return 0; /* e.g. "-" */
- }
- **b = '\0';
- num = str2num(bb);
-
- if (isimagunit(**s)) {
- (*s)++;
- *ret = rb_complex_new2(ZERO, num);
- return 1; /* e.g. "3i" */
- }
-
- if (**s == '@') {
- int st;
-
- (*s)++;
- bb = *b;
- st = read_rat(s, strict, b);
- **b = '\0';
- if (strlen(bb) < 1 ||
- !isdecimal(*(bb + strlen(bb) - 1))) {
- *ret = rb_complex_new2(num, ZERO);
- return 0; /* e.g. "1@-" */
- }
- num2 = str2num(bb);
- *ret = rb_complex_polar(num, num2);
- if (!st)
- return 0; /* e.g. "1@2." */
- else
- return 1; /* e.g. "1@2" */
- }
-
- if (issign(**s)) {
- bb = *b;
- sign = read_sign(s, b);
- if (isimagunit(**s))
- num2 = INT2FIX((sign == '-') ? -1 : + 1);
- else {
- if (!read_rat_nos(s, strict, b)) {
- *ret = rb_complex_new2(num, ZERO);
- return 0; /* e.g. "1+xi" */
- }
- **b = '\0';
- num2 = str2num(bb);
- }
- if (!isimagunit(**s)) {
- *ret = rb_complex_new2(num, ZERO);
- return 0; /* e.g. "1+3x" */
- }
- (*s)++;
- *ret = rb_complex_new2(num, num2);
- return 1; /* e.g. "1+2i" */
- }
- /* !(@, - or +) */
- {
- *ret = rb_complex_new2(num, ZERO);
- return 1; /* e.g. "3" */
- }
-}
-
-inline static void
-skip_ws(const char **s)
-{
- while (isspace((unsigned char)**s))
- (*s)++;
-}
-
-static int
-parse_comp(const char *s, int strict,
- VALUE *num)
-{
- char *buf, *b;
- VALUE tmp;
- int ret = 1;
-
- buf = ALLOCV_N(char, tmp, strlen(s) + 1);
- b = buf;
-
- skip_ws(&s);
- if (!read_comp(&s, strict, num, &b)) {
- ret = 0;
- }
- else {
- skip_ws(&s);
-
- if (strict)
- if (*s != '\0')
- ret = 0;
- }
- ALLOCV_END(tmp);
-
- return ret;
-}
-
-static VALUE
-string_to_c_strict(VALUE self)
-{
- char *s;
- VALUE num;
-
- rb_must_asciicompat(self);
-
- s = RSTRING_PTR(self);
-
- if (!s || memchr(s, '\0', RSTRING_LEN(self)))
- rb_raise(rb_eArgError, "string contains null byte");
-
- if (s && s[RSTRING_LEN(self)]) {
- rb_str_modify(self);
- s = RSTRING_PTR(self);
- s[RSTRING_LEN(self)] = '\0';
- }
-
- if (!s)
- s = (char *)"";
-
- if (!parse_comp(s, 1, &num)) {
- rb_raise(rb_eArgError, "invalid value for convert(): %+"PRIsVALUE,
- self);
- }
-
- return num;
-}
-
-/*
- * call-seq:
- * str.to_c -> complex
- *
- * Returns a complex which denotes the string form. The parser
- * ignores leading whitespaces and trailing garbage. Any digit
- * sequences can be separated by an underscore. Returns zero for null
- * or garbage string.
- *
- * '9'.to_c #=> (9+0i)
- * '2.5'.to_c #=> (2.5+0i)
- * '2.5/1'.to_c #=> ((5/2)+0i)
- * '-3/2'.to_c #=> ((-3/2)+0i)
- * '-i'.to_c #=> (0-1i)
- * '45i'.to_c #=> (0+45i)
- * '3-4i'.to_c #=> (3-4i)
- * '-4e2-4e-2i'.to_c #=> (-400.0-0.04i)
- * '-0.0-0.0i'.to_c #=> (-0.0-0.0i)
- * '1/2+3/4i'.to_c #=> ((1/2)+(3/4)*i)
- * 'ruby'.to_c #=> (0+0i)
- *
- * See Kernel.Complex.
- */
-static VALUE
-string_to_c(VALUE self)
-{
- char *s;
- VALUE num;
-
- rb_must_asciicompat(self);
-
- s = RSTRING_PTR(self);
-
- if (s && s[RSTRING_LEN(self)]) {
- rb_str_modify(self);
- s = RSTRING_PTR(self);
- s[RSTRING_LEN(self)] = '\0';
- }
-
- if (!s)
- s = (char *)"";
-
- (void)parse_comp(s, 0, &num);
-
- return num;
-}
-
-static VALUE
-nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
-{
- VALUE a1, a2, backref;
-
- rb_scan_args(argc, argv, "11", &a1, &a2);
-
- if (NIL_P(a1) || (argc == 2 && NIL_P(a2)))
- rb_raise(rb_eTypeError, "can't convert nil into Complex");
-
- backref = rb_backref_get();
- rb_match_busy(backref);
-
- if (RB_TYPE_P(a1, T_STRING)) {
- a1 = string_to_c_strict(a1);
- }
-
- if (RB_TYPE_P(a2, T_STRING)) {
- a2 = string_to_c_strict(a2);
- }
-
- rb_backref_set(backref);
-
- if (RB_TYPE_P(a1, T_COMPLEX)) {
- {
- get_dat1(a1);
-
- if (k_exact_zero_p(dat->imag))
- a1 = dat->real;
- }
- }
-
- if (RB_TYPE_P(a2, T_COMPLEX)) {
- {
- get_dat1(a2);
-
- if (k_exact_zero_p(dat->imag))
- a2 = dat->real;
- }
- }
-
- if (RB_TYPE_P(a1, T_COMPLEX)) {
- if (argc == 1 || (k_exact_zero_p(a2)))
- return a1;
- }
-
- if (argc == 1) {
- if (k_numeric_p(a1) && !f_real_p(a1))
- return a1;
- /* should raise exception for consistency */
- if (!k_numeric_p(a1))
- return rb_convert_type(a1, T_COMPLEX, "Complex", "to_c");
- }
- else {
- if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
- (!f_real_p(a1) || !f_real_p(a2)))
- return f_add(a1,
- f_mul(a2,
- f_complex_new_bang2(rb_cComplex, ZERO, ONE)));
- }
-
- {
- VALUE argv2[2];
- argv2[0] = a1;
- argv2[1] = a2;
- return nucomp_s_new(argc, argv2, klass);
- }
-}
-
-/* --- */
-
-/*
- * call-seq:
- * num.real -> self
- *
- * Returns self.
- */
-static VALUE
-numeric_real(VALUE self)
-{
- return self;
-}
-
-/*
- * call-seq:
- * num.imag -> 0
- * num.imaginary -> 0
- *
- * Returns zero.
- */
-static VALUE
-numeric_imag(VALUE self)
-{
- return INT2FIX(0);
-}
-
-/*
- * call-seq:
- * num.abs2 -> real
- *
- * Returns square of self.
- */
-static VALUE
-numeric_abs2(VALUE self)
-{
- return f_mul(self, self);
-}
-
-#define id_PI rb_intern("PI")
-
-/*
- * call-seq:
- * num.arg -> 0 or float
- * num.angle -> 0 or float
- * num.phase -> 0 or float
- *
- * Returns 0 if the value is positive, pi otherwise.
- */
-static VALUE
-numeric_arg(VALUE self)
-{
- if (f_positive_p(self))
- return INT2FIX(0);
- return rb_const_get(rb_mMath, id_PI);
-}
-
-/*
- * call-seq:
- * num.rect -> array
- * num.rectangular -> array
- *
- * Returns an array; [num, 0].
- */
-static VALUE
-numeric_rect(VALUE self)
-{
- return rb_assoc_new(self, INT2FIX(0));
-}
-
-/*
- * call-seq:
- * num.polar -> array
- *
- * Returns an array; [num.abs, num.arg].
- */
-static VALUE
-numeric_polar(VALUE self)
-{
- return rb_assoc_new(f_abs(self), f_arg(self));
-}
-
-/*
- * call-seq:
- * num.conj -> self
- * num.conjugate -> self
- *
- * Returns self.
- */
-static VALUE
-numeric_conj(VALUE self)
-{
- return self;
-}
-
-/*
- * call-seq:
- * flo.arg -> 0 or float
- * flo.angle -> 0 or float
- * flo.phase -> 0 or float
- *
- * Returns 0 if the value is positive, pi otherwise.
- */
-static VALUE
-float_arg(VALUE self)
-{
- if (isnan(RFLOAT_VALUE(self)))
- return self;
- if (f_tpositive_p(self))
- return INT2FIX(0);
- return rb_const_get(rb_mMath, id_PI);
-}
-
-/*
- * A complex number can be represented as a paired real number with
- * imaginary unit; a+bi. Where a is real part, b is imaginary part
- * and i is imaginary unit. Real a equals complex a+0i
- * mathematically.
- *
- * In ruby, you can create complex object with Complex, Complex::rect,
- * Complex::polar or to_c method.
- *
- * Complex(1) #=> (1+0i)
- * Complex(2, 3) #=> (2+3i)
- * Complex.polar(2, 3) #=> (-1.9799849932008908+0.2822400161197344i)
- * 3.to_c #=> (3+0i)
- *
- * You can also create complex object from floating-point numbers or
- * strings.
- *
- * Complex(0.3) #=> (0.3+0i)
- * Complex('0.3-0.5i') #=> (0.3-0.5i)
- * Complex('2/3+3/4i') #=> ((2/3)+(3/4)*i)
- * Complex('1@2') #=> (-0.4161468365471424+0.9092974268256817i)
- *
- * 0.3.to_c #=> (0.3+0i)
- * '0.3-0.5i'.to_c #=> (0.3-0.5i)
- * '2/3+3/4i'.to_c #=> ((2/3)+(3/4)*i)
- * '1@2'.to_c #=> (-0.4161468365471424+0.9092974268256817i)
- *
- * A complex object is either an exact or an inexact number.
- *
- * Complex(1, 1) / 2 #=> ((1/2)+(1/2)*i)
- * Complex(1, 1) / 2.0 #=> (0.5+0.5i)
- */
-void
-Init_Complex(void)
-{
- VALUE compat;
-#undef rb_intern
-#define rb_intern(str) rb_intern_const(str)
-
- assert(fprintf(stderr, "assert() is now active\n"));
-
- id_abs = rb_intern("abs");
- id_arg = rb_intern("arg");
- id_convert = rb_intern("convert");
- id_denominator = rb_intern("denominator");
- id_eqeq_p = rb_intern("==");
- id_expt = rb_intern("**");
- id_fdiv = rb_intern("fdiv");
- id_negate = rb_intern("-@");
- id_numerator = rb_intern("numerator");
- id_quo = rb_intern("quo");
- id_real_p = rb_intern("real?");
- id_to_f = rb_intern("to_f");
- id_to_i = rb_intern("to_i");
- id_to_r = rb_intern("to_r");
- id_i_real = rb_intern("@real");
- id_i_imag = rb_intern("@image"); /* @image, not @imag */
-
- rb_cComplex = rb_define_class("Complex", rb_cNumeric);
-
- rb_define_alloc_func(rb_cComplex, nucomp_s_alloc);
- rb_undef_method(CLASS_OF(rb_cComplex), "allocate");
-
-#if 0
- rb_define_private_method(CLASS_OF(rb_cComplex), "new!", nucomp_s_new_bang, -1);
- rb_define_private_method(CLASS_OF(rb_cComplex), "new", nucomp_s_new, -1);
-#else
- rb_undef_method(CLASS_OF(rb_cComplex), "new");
-#endif
-
- rb_define_singleton_method(rb_cComplex, "rectangular", nucomp_s_new, -1);
- rb_define_singleton_method(rb_cComplex, "rect", nucomp_s_new, -1);
- rb_define_singleton_method(rb_cComplex, "polar", nucomp_s_polar, -1);
-
- rb_define_global_function("Complex", nucomp_f_complex, -1);
-
- rb_undef_method(rb_cComplex, "%");
- rb_undef_method(rb_cComplex, "<");
- rb_undef_method(rb_cComplex, "<=");
- rb_undef_method(rb_cComplex, "<=>");
- rb_undef_method(rb_cComplex, ">");
- rb_undef_method(rb_cComplex, ">=");
- rb_undef_method(rb_cComplex, "between?");
- rb_undef_method(rb_cComplex, "div");
- rb_undef_method(rb_cComplex, "divmod");
- rb_undef_method(rb_cComplex, "floor");
- rb_undef_method(rb_cComplex, "ceil");
- rb_undef_method(rb_cComplex, "modulo");
- rb_undef_method(rb_cComplex, "remainder");
- rb_undef_method(rb_cComplex, "round");
- rb_undef_method(rb_cComplex, "step");
- rb_undef_method(rb_cComplex, "truncate");
- rb_undef_method(rb_cComplex, "i");
-
-#if 0 /* NUBY */
- rb_undef_method(rb_cComplex, "//");
-#endif
-
- rb_define_method(rb_cComplex, "real", nucomp_real, 0);
- rb_define_method(rb_cComplex, "imaginary", nucomp_imag, 0);
- rb_define_method(rb_cComplex, "imag", nucomp_imag, 0);
-
- rb_define_method(rb_cComplex, "-@", nucomp_negate, 0);
- rb_define_method(rb_cComplex, "+", nucomp_add, 1);
- rb_define_method(rb_cComplex, "-", nucomp_sub, 1);
- rb_define_method(rb_cComplex, "*", nucomp_mul, 1);
- rb_define_method(rb_cComplex, "/", nucomp_div, 1);
- rb_define_method(rb_cComplex, "quo", nucomp_quo, 1);
- rb_define_method(rb_cComplex, "fdiv", nucomp_fdiv, 1);
- rb_define_method(rb_cComplex, "**", nucomp_expt, 1);
-
- rb_define_method(rb_cComplex, "==", nucomp_eqeq_p, 1);
- rb_define_method(rb_cComplex, "coerce", nucomp_coerce, 1);
-
- rb_define_method(rb_cComplex, "abs", nucomp_abs, 0);
- rb_define_method(rb_cComplex, "magnitude", nucomp_abs, 0);
- rb_define_method(rb_cComplex, "abs2", nucomp_abs2, 0);
- rb_define_method(rb_cComplex, "arg", nucomp_arg, 0);
- rb_define_method(rb_cComplex, "angle", nucomp_arg, 0);
- rb_define_method(rb_cComplex, "phase", nucomp_arg, 0);
- rb_define_method(rb_cComplex, "rectangular", nucomp_rect, 0);
- rb_define_method(rb_cComplex, "rect", nucomp_rect, 0);
- rb_define_method(rb_cComplex, "polar", nucomp_polar, 0);
- rb_define_method(rb_cComplex, "conjugate", nucomp_conj, 0);
- rb_define_method(rb_cComplex, "conj", nucomp_conj, 0);
-#if 0
- rb_define_method(rb_cComplex, "~", nucomp_conj, 0); /* gcc */
-#endif
-
- rb_define_method(rb_cComplex, "real?", nucomp_false, 0);
-#if 0
- rb_define_method(rb_cComplex, "complex?", nucomp_true, 0);
- rb_define_method(rb_cComplex, "exact?", nucomp_exact_p, 0);
- rb_define_method(rb_cComplex, "inexact?", nucomp_inexact_p, 0);
-#endif
-
- rb_define_method(rb_cComplex, "numerator", nucomp_numerator, 0);
- rb_define_method(rb_cComplex, "denominator", nucomp_denominator, 0);
-
- rb_define_method(rb_cComplex, "hash", nucomp_hash, 0);
- rb_define_method(rb_cComplex, "eql?", nucomp_eql_p, 1);
-
- rb_define_method(rb_cComplex, "to_s", nucomp_to_s, 0);
- rb_define_method(rb_cComplex, "inspect", nucomp_inspect, 0);
-
- rb_define_private_method(rb_cComplex, "marshal_dump", nucomp_marshal_dump, 0);
- compat = rb_define_class_under(rb_cComplex, "compatible", rb_cObject); /* :nodoc: */
- rb_define_private_method(compat, "marshal_load", nucomp_marshal_load, 1);
- rb_marshal_define_compat(rb_cComplex, compat, nucomp_dumper, nucomp_loader);
-
- /* --- */
-
- rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0);
- rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0);
- rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0);
- rb_define_method(rb_cComplex, "rationalize", nucomp_rationalize, -1);
- rb_define_method(rb_cComplex, "to_c", nucomp_to_c, 0);
- rb_define_method(rb_cNilClass, "to_c", nilclass_to_c, 0);
- rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0);
-
- rb_define_method(rb_cString, "to_c", string_to_c, 0);
-
- rb_define_private_method(CLASS_OF(rb_cComplex), "convert", nucomp_s_convert, -1);
-
- /* --- */
-
- rb_define_method(rb_cNumeric, "real", numeric_real, 0);
- rb_define_method(rb_cNumeric, "imaginary", numeric_imag, 0);
- rb_define_method(rb_cNumeric, "imag", numeric_imag, 0);
- rb_define_method(rb_cNumeric, "abs2", numeric_abs2, 0);
- rb_define_method(rb_cNumeric, "arg", numeric_arg, 0);
- rb_define_method(rb_cNumeric, "angle", numeric_arg, 0);
- rb_define_method(rb_cNumeric, "phase", numeric_arg, 0);
- rb_define_method(rb_cNumeric, "rectangular", numeric_rect, 0);
- rb_define_method(rb_cNumeric, "rect", numeric_rect, 0);
- rb_define_method(rb_cNumeric, "polar", numeric_polar, 0);
- rb_define_method(rb_cNumeric, "conjugate", numeric_conj, 0);
- rb_define_method(rb_cNumeric, "conj", numeric_conj, 0);
-
- rb_define_method(rb_cFloat, "arg", float_arg, 0);
- rb_define_method(rb_cFloat, "angle", float_arg, 0);
- rb_define_method(rb_cFloat, "phase", float_arg, 0);
-
- /*
- * The imaginary unit.
- */
- rb_define_const(rb_cComplex, "I",
- f_complex_new_bang2(rb_cComplex, ZERO, ONE));
-
- rb_provide("complex.so"); /* for backward compatibility */
-}
-
-/*
-Local variables:
-c-file-style: "ruby"
-End:
-*/