summaryrefslogtreecommitdiff
path: root/ruby_1_9_3/ext/bigdecimal/bigdecimal.c
diff options
context:
space:
mode:
Diffstat (limited to 'ruby_1_9_3/ext/bigdecimal/bigdecimal.c')
-rw-r--r--ruby_1_9_3/ext/bigdecimal/bigdecimal.c5945
1 files changed, 5945 insertions, 0 deletions
diff --git a/ruby_1_9_3/ext/bigdecimal/bigdecimal.c b/ruby_1_9_3/ext/bigdecimal/bigdecimal.c
new file mode 100644
index 0000000000..14f80b1929
--- /dev/null
+++ b/ruby_1_9_3/ext/bigdecimal/bigdecimal.c
@@ -0,0 +1,5945 @@
+/*
+ *
+ * Ruby BigDecimal(Variable decimal precision) extension library.
+ *
+ * Copyright(C) 2002 by Shigeo Kobayashi(shigeo@tinyforest.gr.jp)
+ *
+ * You may distribute under the terms of either the GNU General Public
+ * License or the Artistic License, as specified in the README file
+ * of this BigDecimal distribution.
+ *
+ * NOTE: Change log in this source removed to reduce source code size.
+ * See rev. 1.25 if needed.
+ *
+ */
+
+/* #define BIGDECIMAL_DEBUG 1 */
+#ifdef BIGDECIMAL_DEBUG
+# define BIGDECIMAL_ENABLE_VPRINT 1
+#endif
+#include "bigdecimal.h"
+
+#ifndef BIGDECIMAL_DEBUG
+# define NDEBUG
+#endif
+#include <assert.h>
+
+#include <ctype.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+#include <math.h>
+#include "math.h"
+
+#ifdef HAVE_IEEEFP_H
+#include <ieeefp.h>
+#endif
+
+/* #define ENABLE_NUMERIC_STRING */
+
+VALUE rb_cBigDecimal;
+VALUE rb_mBigMath;
+
+static ID id_BigDecimal_exception_mode;
+static ID id_BigDecimal_rounding_mode;
+static ID id_BigDecimal_precision_limit;
+
+static ID id_up;
+static ID id_down;
+static ID id_truncate;
+static ID id_half_up;
+static ID id_default;
+static ID id_half_down;
+static ID id_half_even;
+static ID id_banker;
+static ID id_ceiling;
+static ID id_ceil;
+static ID id_floor;
+static ID id_to_r;
+static ID id_eq;
+
+/* MACRO's to guard objects from GC by keeping them in stack */
+#define ENTER(n) volatile VALUE vStack[n];int iStack=0
+#define PUSH(x) vStack[iStack++] = (VALUE)(x);
+#define SAVE(p) PUSH(p->obj);
+#define GUARD_OBJ(p,y) {p=y;SAVE(p);}
+
+#define BASE_FIG RMPD_COMPONENT_FIGURES
+#define BASE RMPD_BASE
+
+#define HALF_BASE (BASE/2)
+#define BASE1 (BASE/10)
+
+#ifndef DBLE_FIG
+#define DBLE_FIG (DBL_DIG+1) /* figure of double */
+#endif
+
+#ifndef RBIGNUM_ZERO_P
+# define RBIGNUM_ZERO_P(x) (RBIGNUM_LEN(x) == 0 || \
+ (RBIGNUM_DIGITS(x)[0] == 0 && \
+ (RBIGNUM_LEN(x) == 1 || bigzero_p(x))))
+#endif
+
+static inline int
+bigzero_p(VALUE x)
+{
+ long i;
+ BDIGIT *ds = RBIGNUM_DIGITS(x);
+
+ for (i = RBIGNUM_LEN(x) - 1; 0 <= i; i--) {
+ if (ds[i]) return 0;
+ }
+ return 1;
+}
+
+#ifndef RRATIONAL_ZERO_P
+# define RRATIONAL_ZERO_P(x) (FIXNUM_P(RRATIONAL(x)->num) && \
+ FIX2LONG(RRATIONAL(x)->num) == 0)
+#endif
+
+#ifndef RRATIONAL_NEGATIVE_P
+# define RRATIONAL_NEGATIVE_P(x) RTEST(rb_funcall((x), '<', 1, INT2FIX(0)))
+#endif
+
+/*
+ * ================== Ruby Interface part ==========================
+ */
+#define DoSomeOne(x,y,f) rb_num_coerce_bin(x,y,f)
+
+/*
+ * Returns the BigDecimal version number.
+ *
+ * Ruby 1.8.0 returns 1.0.0.
+ * Ruby 1.8.1 thru 1.8.3 return 1.0.1.
+ */
+static VALUE
+BigDecimal_version(VALUE self)
+{
+ /*
+ * 1.0.0: Ruby 1.8.0
+ * 1.0.1: Ruby 1.8.1
+ * 1.1.0: Ruby 1.9.3
+ */
+ return rb_str_new2("1.1.0");
+}
+
+/*
+ * VP routines used in BigDecimal part
+ */
+static unsigned short VpGetException(void);
+static void VpSetException(unsigned short f);
+static void VpInternalRound(Real *c, size_t ixDigit, BDIGIT vPrev, BDIGIT v);
+static int VpLimitRound(Real *c, size_t ixDigit);
+static Real *VpDup(Real const* const x);
+
+/*
+ * **** BigDecimal part ****
+ */
+
+static void
+BigDecimal_delete(void *pv)
+{
+ VpFree(pv);
+}
+
+static size_t
+BigDecimal_memsize(const void *ptr)
+{
+ const Real *pv = ptr;
+ return pv ? (sizeof(*pv) + pv->MaxPrec * sizeof(BDIGIT)) : 0;
+}
+
+static const rb_data_type_t BigDecimal_data_type = {
+ "BigDecimal",
+ {0, BigDecimal_delete, BigDecimal_memsize,},
+};
+
+static inline int
+is_kind_of_BigDecimal(VALUE const v)
+{
+ return rb_typeddata_is_kind_of(v, &BigDecimal_data_type);
+}
+
+static VALUE
+ToValue(Real *p)
+{
+ if(VpIsNaN(p)) {
+ VpException(VP_EXCEPTION_NaN,"Computation results to 'NaN'(Not a Number)",0);
+ } else if(VpIsPosInf(p)) {
+ VpException(VP_EXCEPTION_INFINITY,"Computation results to 'Infinity'",0);
+ } else if(VpIsNegInf(p)) {
+ VpException(VP_EXCEPTION_INFINITY,"Computation results to '-Infinity'",0);
+ }
+ return p->obj;
+}
+
+NORETURN(static void cannot_be_coerced_into_BigDecimal(VALUE, VALUE));
+
+static void
+cannot_be_coerced_into_BigDecimal(VALUE exc_class, VALUE v)
+{
+ VALUE str;
+
+ if (rb_special_const_p(v)) {
+ str = rb_str_cat2(rb_str_dup(rb_inspect(v)),
+ " can't be coerced into BigDecimal");
+ }
+ else {
+ str = rb_str_cat2(rb_str_dup(rb_class_name(rb_obj_class(v))),
+ " can't be coerced into BigDecimal");
+ }
+
+ rb_exc_raise(rb_exc_new3(exc_class, str));
+}
+
+static VALUE BigDecimal_div2(int, VALUE*, VALUE);
+
+static Real*
+GetVpValueWithPrec(VALUE v, long prec, int must)
+{
+ Real *pv;
+ VALUE num, bg, args[2];
+ char szD[128];
+ VALUE orig = Qundef;
+
+again:
+ switch(TYPE(v))
+ {
+ case T_FLOAT:
+ if (prec < 0) goto unable_to_coerce_without_prec;
+ if (prec > DBL_DIG+1)goto SomeOneMayDoIt;
+ v = rb_funcall(v, id_to_r, 0);
+ goto again;
+ case T_RATIONAL:
+ if (prec < 0) goto unable_to_coerce_without_prec;
+
+ if (orig == Qundef ? (orig = v, 1) : orig != v) {
+ num = RRATIONAL(v)->num;
+ pv = GetVpValueWithPrec(num, -1, must);
+ if (pv == NULL) goto SomeOneMayDoIt;
+
+ args[0] = RRATIONAL(v)->den;
+ args[1] = LONG2NUM(prec);
+ v = BigDecimal_div2(2, args, ToValue(pv));
+ goto again;
+ }
+
+ v = orig;
+ goto SomeOneMayDoIt;
+
+ case T_DATA:
+ if (is_kind_of_BigDecimal(v)) {
+ pv = DATA_PTR(v);
+ return pv;
+ }
+ else {
+ goto SomeOneMayDoIt;
+ }
+ break;
+
+ case T_FIXNUM:
+ sprintf(szD, "%ld", FIX2LONG(v));
+ return VpCreateRbObject(VpBaseFig() * 2 + 1, szD);
+
+#ifdef ENABLE_NUMERIC_STRING
+ case T_STRING:
+ SafeStringValue(v);
+ return VpCreateRbObject(strlen(RSTRING_PTR(v)) + VpBaseFig() + 1,
+ RSTRING_PTR(v));
+#endif /* ENABLE_NUMERIC_STRING */
+
+ case T_BIGNUM:
+ bg = rb_big2str(v, 10);
+ return VpCreateRbObject(strlen(RSTRING_PTR(bg)) + VpBaseFig() + 1,
+ RSTRING_PTR(bg));
+ default:
+ goto SomeOneMayDoIt;
+ }
+
+SomeOneMayDoIt:
+ if (must) {
+ cannot_be_coerced_into_BigDecimal(rb_eTypeError, v);
+ }
+ return NULL; /* NULL means to coerce */
+
+unable_to_coerce_without_prec:
+ if (must) {
+ rb_raise(rb_eArgError,
+ "%s can't be coerced into BigDecimal without a precision",
+ rb_obj_classname(v));
+ }
+ return NULL;
+}
+
+static Real*
+GetVpValue(VALUE v, int must)
+{
+ return GetVpValueWithPrec(v, -1, must);
+}
+
+/* call-seq:
+ * BigDecimal.double_fig
+ *
+ * The BigDecimal.double_fig class method returns the number of digits a
+ * Float number is allowed to have. The result depends upon the CPU and OS
+ * in use.
+ */
+static VALUE
+BigDecimal_double_fig(VALUE self)
+{
+ return INT2FIX(VpDblFig());
+}
+
+/* call-seq:
+ * precs
+ *
+ * Returns an Array of two Integer values.
+ *
+ * The first value is the current number of significant digits in the
+ * BigDecimal. The second value is the maximum number of significant digits
+ * for the BigDecimal.
+ */
+static VALUE
+BigDecimal_prec(VALUE self)
+{
+ ENTER(1);
+ Real *p;
+ VALUE obj;
+
+ GUARD_OBJ(p,GetVpValue(self,1));
+ obj = rb_assoc_new(INT2NUM(p->Prec*VpBaseFig()),
+ INT2NUM(p->MaxPrec*VpBaseFig()));
+ return obj;
+}
+
+static VALUE
+BigDecimal_hash(VALUE self)
+{
+ ENTER(1);
+ Real *p;
+ st_index_t hash;
+
+ GUARD_OBJ(p,GetVpValue(self,1));
+ hash = (st_index_t)p->sign;
+ /* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */
+ if(hash == 2 || hash == (st_index_t)-2) {
+ hash ^= rb_memhash(p->frac, sizeof(BDIGIT)*p->Prec);
+ hash += p->exponent;
+ }
+ return INT2FIX(hash);
+}
+
+static VALUE
+BigDecimal_dump(int argc, VALUE *argv, VALUE self)
+{
+ ENTER(5);
+ Real *vp;
+ char *psz;
+ VALUE dummy;
+ volatile VALUE dump;
+
+ rb_scan_args(argc, argv, "01", &dummy);
+ GUARD_OBJ(vp,GetVpValue(self,1));
+ dump = rb_str_new(0,VpNumOfChars(vp,"E")+50);
+ psz = RSTRING_PTR(dump);
+ sprintf(psz, "%"PRIuSIZE":", VpMaxPrec(vp)*VpBaseFig());
+ VpToString(vp, psz+strlen(psz), 0, 0);
+ rb_str_resize(dump, strlen(psz));
+ return dump;
+}
+
+/*
+ * Internal method used to provide marshalling support. See the Marshal module.
+ */
+static VALUE
+BigDecimal_load(VALUE self, VALUE str)
+{
+ ENTER(2);
+ Real *pv;
+ unsigned char *pch;
+ unsigned char ch;
+ unsigned long m=0;
+
+ SafeStringValue(str);
+ pch = (unsigned char *)RSTRING_PTR(str);
+ /* First get max prec */
+ while((*pch)!=(unsigned char)'\0' && (ch=*pch++)!=(unsigned char)':') {
+ if(!ISDIGIT(ch)) {
+ rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string");
+ }
+ m = m*10 + (unsigned long)(ch-'0');
+ }
+ if(m>VpBaseFig()) m -= VpBaseFig();
+ GUARD_OBJ(pv,VpNewRbClass(m,(char *)pch,self));
+ m /= VpBaseFig();
+ if(m && pv->MaxPrec>m) pv->MaxPrec = m+1;
+ return ToValue(pv);
+}
+
+static unsigned short
+check_rounding_mode(VALUE const v)
+{
+ unsigned short sw;
+ ID id;
+ switch (TYPE(v)) {
+ case T_SYMBOL:
+ id = SYM2ID(v);
+ if (id == id_up)
+ return VP_ROUND_UP;
+ if (id == id_down || id == id_truncate)
+ return VP_ROUND_DOWN;
+ if (id == id_half_up || id == id_default)
+ return VP_ROUND_HALF_UP;
+ if (id == id_half_down)
+ return VP_ROUND_HALF_DOWN;
+ if (id == id_half_even || id == id_banker)
+ return VP_ROUND_HALF_EVEN;
+ if (id == id_ceiling || id == id_ceil)
+ return VP_ROUND_CEIL;
+ if (id == id_floor)
+ return VP_ROUND_FLOOR;
+ rb_raise(rb_eArgError, "invalid rounding mode");
+
+ default:
+ break;
+ }
+
+ Check_Type(v, T_FIXNUM);
+ sw = (unsigned short)FIX2UINT(v);
+ if (!VpIsRoundMode(sw)) {
+ rb_raise(rb_eArgError, "invalid rounding mode");
+ }
+ return sw;
+}
+
+/* call-seq:
+ * BigDecimal.mode(mode, value)
+ *
+ * Controls handling of arithmetic exceptions and rounding. If no value
+ * is supplied, the current value is returned.
+ *
+ * Six values of the mode parameter control the handling of arithmetic
+ * exceptions:
+ *
+ * BigDecimal::EXCEPTION_NaN
+ * BigDecimal::EXCEPTION_INFINITY
+ * BigDecimal::EXCEPTION_UNDERFLOW
+ * BigDecimal::EXCEPTION_OVERFLOW
+ * BigDecimal::EXCEPTION_ZERODIVIDE
+ * BigDecimal::EXCEPTION_ALL
+ *
+ * For each mode parameter above, if the value set is false, computation
+ * continues after an arithmetic exception of the appropriate type.
+ * When computation continues, results are as follows:
+ *
+ * EXCEPTION_NaN:: NaN
+ * EXCEPTION_INFINITY:: +infinity or -infinity
+ * EXCEPTION_UNDERFLOW:: 0
+ * EXCEPTION_OVERFLOW:: +infinity or -infinity
+ * EXCEPTION_ZERODIVIDE:: +infinity or -infinity
+ *
+ * One value of the mode parameter controls the rounding of numeric values:
+ * BigDecimal::ROUND_MODE. The values it can take are:
+ *
+ * ROUND_UP, :up:: round away from zero
+ * ROUND_DOWN, :down, :truncate:: round towards zero (truncate)
+ * ROUND_HALF_UP, :half_up, :default:: round towards the nearest neighbor, unless both neighbors are equidistant, in which case round away from zero. (default)
+ * ROUND_HALF_DOWN, :half_down:: round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards zero.
+ * ROUND_HALF_EVEN, :half_even, :banker:: round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards the even neighbor (Banker's rounding)
+ * ROUND_CEILING, :ceiling, :ceil:: round towards positive infinity (ceil)
+ * ROUND_FLOOR, :floor:: round towards negative infinity (floor)
+ *
+ */
+static VALUE
+BigDecimal_mode(int argc, VALUE *argv, VALUE self)
+{
+ VALUE which;
+ VALUE val;
+ unsigned long f,fo;
+
+ if(rb_scan_args(argc,argv,"11",&which,&val)==1) val = Qnil;
+
+ Check_Type(which, T_FIXNUM);
+ f = (unsigned long)FIX2INT(which);
+
+ if(f&VP_EXCEPTION_ALL) {
+ /* Exception mode setting */
+ fo = VpGetException();
+ if(val==Qnil) return INT2FIX(fo);
+ if(val!=Qfalse && val!=Qtrue) {
+ rb_raise(rb_eArgError, "second argument must be true or false");
+ return Qnil; /* Not reached */
+ }
+ if(f&VP_EXCEPTION_INFINITY) {
+ VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_INFINITY):
+ (fo&(~VP_EXCEPTION_INFINITY))));
+ }
+ fo = VpGetException();
+ if(f&VP_EXCEPTION_NaN) {
+ VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_NaN):
+ (fo&(~VP_EXCEPTION_NaN))));
+ }
+ fo = VpGetException();
+ if(f&VP_EXCEPTION_UNDERFLOW) {
+ VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_UNDERFLOW):
+ (fo&(~VP_EXCEPTION_UNDERFLOW))));
+ }
+ fo = VpGetException();
+ if(f&VP_EXCEPTION_ZERODIVIDE) {
+ VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_ZERODIVIDE):
+ (fo&(~VP_EXCEPTION_ZERODIVIDE))));
+ }
+ fo = VpGetException();
+ return INT2FIX(fo);
+ }
+ if (VP_ROUND_MODE == f) {
+ /* Rounding mode setting */
+ unsigned short sw;
+ fo = VpGetRoundMode();
+ if (NIL_P(val)) return INT2FIX(fo);
+ sw = check_rounding_mode(val);
+ fo = VpSetRoundMode(sw);
+ return INT2FIX(fo);
+ }
+ rb_raise(rb_eTypeError, "first argument for BigDecimal#mode invalid");
+ return Qnil;
+}
+
+static size_t
+GetAddSubPrec(Real *a, Real *b)
+{
+ size_t mxs;
+ size_t mx = a->Prec;
+ SIGNED_VALUE d;
+
+ if(!VpIsDef(a) || !VpIsDef(b)) return (size_t)-1L;
+ if(mx < b->Prec) mx = b->Prec;
+ if(a->exponent!=b->exponent) {
+ mxs = mx;
+ d = a->exponent - b->exponent;
+ if (d < 0) d = -d;
+ mx = mx + (size_t)d;
+ if (mx<mxs) {
+ return VpException(VP_EXCEPTION_INFINITY,"Exponent overflow",0);
+ }
+ }
+ return mx;
+}
+
+static SIGNED_VALUE
+GetPositiveInt(VALUE v)
+{
+ SIGNED_VALUE n;
+ Check_Type(v, T_FIXNUM);
+ n = FIX2INT(v);
+ if (n < 0) {
+ rb_raise(rb_eArgError, "argument must be positive");
+ }
+ return n;
+}
+
+VP_EXPORT Real *
+VpNewRbClass(size_t mx, const char *str, VALUE klass)
+{
+ Real *pv = VpAlloc(mx,str);
+ pv->obj = TypedData_Wrap_Struct(klass, &BigDecimal_data_type, pv);
+ return pv;
+}
+
+VP_EXPORT Real *
+VpCreateRbObject(size_t mx, const char *str)
+{
+ Real *pv = VpAlloc(mx,str);
+ pv->obj = TypedData_Wrap_Struct(rb_cBigDecimal, &BigDecimal_data_type, pv);
+ return pv;
+}
+
+static Real *
+VpDup(Real const* const x)
+{
+ Real *pv;
+
+ assert(x != NULL);
+
+ pv = VpMemAlloc(sizeof(Real) + x->MaxPrec * sizeof(BDIGIT));
+ pv->MaxPrec = x->MaxPrec;
+ pv->Prec = x->Prec;
+ pv->exponent = x->exponent;
+ pv->sign = x->sign;
+ pv->flag = x->flag;
+ MEMCPY(pv->frac, x->frac, BDIGIT, pv->MaxPrec);
+
+ pv->obj = TypedData_Wrap_Struct(
+ rb_obj_class(x->obj), &BigDecimal_data_type, pv);
+
+ return pv;
+}
+
+/* Returns True if the value is Not a Number */
+static VALUE
+BigDecimal_IsNaN(VALUE self)
+{
+ Real *p = GetVpValue(self,1);
+ if(VpIsNaN(p)) return Qtrue;
+ return Qfalse;
+}
+
+/* Returns nil, -1, or +1 depending on whether the value is finite,
+ * -infinity, or +infinity.
+ */
+static VALUE
+BigDecimal_IsInfinite(VALUE self)
+{
+ Real *p = GetVpValue(self,1);
+ if(VpIsPosInf(p)) return INT2FIX(1);
+ if(VpIsNegInf(p)) return INT2FIX(-1);
+ return Qnil;
+}
+
+/* Returns True if the value is finite (not NaN or infinite) */
+static VALUE
+BigDecimal_IsFinite(VALUE self)
+{
+ Real *p = GetVpValue(self,1);
+ if(VpIsNaN(p)) return Qfalse;
+ if(VpIsInf(p)) return Qfalse;
+ return Qtrue;
+}
+
+static void
+BigDecimal_check_num(Real *p)
+{
+ if(VpIsNaN(p)) {
+ VpException(VP_EXCEPTION_NaN,"Computation results to 'NaN'(Not a Number)",1);
+ } else if(VpIsPosInf(p)) {
+ VpException(VP_EXCEPTION_INFINITY,"Computation results to 'Infinity'",1);
+ } else if(VpIsNegInf(p)) {
+ VpException(VP_EXCEPTION_INFINITY,"Computation results to '-Infinity'",1);
+ }
+}
+
+static VALUE BigDecimal_split(VALUE self);
+
+/* Returns the value as an integer (Fixnum or Bignum).
+ *
+ * If the BigNumber is infinity or NaN, raises FloatDomainError.
+ */
+static VALUE
+BigDecimal_to_i(VALUE self)
+{
+ ENTER(5);
+ ssize_t e, nf;
+ Real *p;
+
+ GUARD_OBJ(p,GetVpValue(self,1));
+ BigDecimal_check_num(p);
+
+ e = VpExponent10(p);
+ if(e<=0) return INT2FIX(0);
+ nf = VpBaseFig();
+ if(e<=nf) {
+ return LONG2NUM((long)(VpGetSign(p)*(BDIGIT_DBL_SIGNED)p->frac[0]));
+ }
+ else {
+ VALUE a = BigDecimal_split(self);
+ VALUE digits = RARRAY_PTR(a)[1];
+ VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
+ VALUE ret;
+ ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);
+
+ if (VpGetSign(p) < 0) {
+ numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
+ }
+ if (dpower < 0) {
+ ret = rb_funcall(numerator, rb_intern("div"), 1,
+ rb_funcall(INT2FIX(10), rb_intern("**"), 1,
+ INT2FIX(-dpower)));
+ }
+ else
+ ret = rb_funcall(numerator, '*', 1,
+ rb_funcall(INT2FIX(10), rb_intern("**"), 1,
+ INT2FIX(dpower)));
+ if (RB_TYPE_P(ret, T_FLOAT))
+ rb_raise(rb_eFloatDomainError, "Infinity");
+ return ret;
+ }
+}
+
+/* Returns a new Float object having approximately the same value as the
+ * BigDecimal number. Normal accuracy limits and built-in errors of binary
+ * Float arithmetic apply.
+ */
+static VALUE
+BigDecimal_to_f(VALUE self)
+{
+ ENTER(1);
+ Real *p;
+ double d;
+ SIGNED_VALUE e;
+ char *buf;
+ volatile VALUE str;
+
+ GUARD_OBJ(p, GetVpValue(self, 1));
+ if (VpVtoD(&d, &e, p) != 1)
+ return rb_float_new(d);
+ if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG))
+ goto overflow;
+ if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-BASE_FIG))
+ goto underflow;
+
+ str = rb_str_new(0, VpNumOfChars(p,"E"));
+ buf = RSTRING_PTR(str);
+ VpToString(p, buf, 0, 0);
+ errno = 0;
+ d = strtod(buf, 0);
+ if (errno == ERANGE)
+ goto overflow;
+ return rb_float_new(d);
+
+overflow:
+ VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0);
+ if (d > 0.0)
+ return rb_float_new(VpGetDoublePosInf());
+ else
+ return rb_float_new(VpGetDoubleNegInf());
+
+underflow:
+ VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0);
+ if (d > 0.0)
+ return rb_float_new(0.0);
+ else
+ return rb_float_new(-0.0);
+}
+
+
+/* Converts a BigDecimal to a Rational.
+ */
+static VALUE
+BigDecimal_to_r(VALUE self)
+{
+ Real *p;
+ ssize_t sign, power, denomi_power;
+ VALUE a, digits, numerator;
+
+ p = GetVpValue(self,1);
+ BigDecimal_check_num(p);
+
+ sign = VpGetSign(p);
+ power = VpExponent10(p);
+ a = BigDecimal_split(self);
+ digits = RARRAY_PTR(a)[1];
+ denomi_power = power - RSTRING_LEN(digits);
+ numerator = rb_funcall(digits, rb_intern("to_i"), 0);
+
+ if (sign < 0) {
+ numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
+ }
+ if (denomi_power < 0) {
+ return rb_Rational(numerator,
+ rb_funcall(INT2FIX(10), rb_intern("**"), 1,
+ INT2FIX(-denomi_power)));
+ }
+ else {
+ return rb_Rational1(rb_funcall(numerator, '*', 1,
+ rb_funcall(INT2FIX(10), rb_intern("**"), 1,
+ INT2FIX(denomi_power))));
+ }
+}
+
+/* The coerce method provides support for Ruby type coercion. It is not
+ * enabled by default.
+ *
+ * This means that binary operations like + * / or - can often be performed
+ * on a BigDecimal and an object of another type, if the other object can
+ * be coerced into a BigDecimal value.
+ *
+ * e.g.
+ * a = BigDecimal.new("1.0")
+ * b = a / 2.0 -> 0.5
+ *
+ * Note that coercing a String to a BigDecimal is not supported by default;
+ * it requires a special compile-time option when building Ruby.
+ */
+static VALUE
+BigDecimal_coerce(VALUE self, VALUE other)
+{
+ ENTER(2);
+ VALUE obj;
+ Real *b;
+
+ if (RB_TYPE_P(other, T_FLOAT)) {
+ obj = rb_assoc_new(other, BigDecimal_to_f(self));
+ }
+ else {
+ if (RB_TYPE_P(other, T_RATIONAL)) {
+ Real* pv = DATA_PTR(self);
+ GUARD_OBJ(b, GetVpValueWithPrec(other, pv->Prec*VpBaseFig(), 1));
+ }
+ else {
+ GUARD_OBJ(b, GetVpValue(other, 1));
+ }
+ obj = rb_assoc_new(b->obj, self);
+ }
+
+ return obj;
+}
+
+static VALUE
+BigDecimal_uplus(VALUE self)
+{
+ return self;
+}
+
+ /* call-seq:
+ * add(value, digits)
+ *
+ * Add the specified value.
+ *
+ * e.g.
+ * c = a.add(b,n)
+ * c = a + b
+ *
+ * digits:: If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
+ */
+static VALUE
+BigDecimal_add(VALUE self, VALUE r)
+{
+ ENTER(5);
+ Real *c, *a, *b;
+ size_t mx;
+
+ GUARD_OBJ(a, GetVpValue(self, 1));
+ if (RB_TYPE_P(r, T_FLOAT)) {
+ b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
+ }
+ else if (RB_TYPE_P(r, T_RATIONAL)) {
+ b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
+ }
+ else {
+ b = GetVpValue(r,0);
+ }
+
+ if (!b) return DoSomeOne(self,r,'+');
+ SAVE(b);
+
+ if (VpIsNaN(b)) return b->obj;
+ if (VpIsNaN(a)) return a->obj;
+
+ mx = GetAddSubPrec(a, b);
+ if (mx == (size_t)-1L) {
+ GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
+ VpAddSub(c, a, b, 1);
+ }
+ else {
+ GUARD_OBJ(c, VpCreateRbObject(mx * (VpBaseFig() + 1), "0"));
+ if(!mx) {
+ VpSetInf(c, VpGetSign(a));
+ }
+ else {
+ VpAddSub(c, a, b, 1);
+ }
+ }
+ return ToValue(c);
+}
+
+ /* call-seq:
+ * sub(value, digits)
+ *
+ * Subtract the specified value.
+ *
+ * e.g.
+ * c = a.sub(b,n)
+ * c = a - b
+ *
+ * digits:: If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
+ */
+static VALUE
+BigDecimal_sub(VALUE self, VALUE r)
+{
+ ENTER(5);
+ Real *c, *a, *b;
+ size_t mx;
+
+ GUARD_OBJ(a,GetVpValue(self,1));
+ if (RB_TYPE_P(r, T_FLOAT)) {
+ b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
+ }
+ else if (RB_TYPE_P(r, T_RATIONAL)) {
+ b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
+ }
+ else {
+ b = GetVpValue(r,0);
+ }
+
+ if(!b) return DoSomeOne(self,r,'-');
+ SAVE(b);
+
+ if(VpIsNaN(b)) return b->obj;
+ if(VpIsNaN(a)) return a->obj;
+
+ mx = GetAddSubPrec(a,b);
+ if (mx == (size_t)-1L) {
+ GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
+ VpAddSub(c, a, b, -1);
+ } else {
+ GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
+ if(!mx) {
+ VpSetInf(c,VpGetSign(a));
+ } else {
+ VpAddSub(c, a, b, -1);
+ }
+ }
+ return ToValue(c);
+}
+
+static VALUE
+BigDecimalCmp(VALUE self, VALUE r,char op)
+{
+ ENTER(5);
+ SIGNED_VALUE e;
+ Real *a, *b=0;
+ GUARD_OBJ(a,GetVpValue(self,1));
+ switch (TYPE(r)) {
+ case T_DATA:
+ if (!is_kind_of_BigDecimal(r)) break;
+ /* fall through */
+ case T_FIXNUM:
+ /* fall through */
+ case T_BIGNUM:
+ GUARD_OBJ(b, GetVpValue(r,0));
+ break;
+
+ case T_FLOAT:
+ GUARD_OBJ(b, GetVpValueWithPrec(r, DBL_DIG+1, 0));
+ break;
+
+ case T_RATIONAL:
+ GUARD_OBJ(b, GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 0));
+ break;
+
+ default:
+ break;
+ }
+ if (b == NULL) {
+ ID f = 0;
+
+ switch (op) {
+ case '*':
+ return rb_num_coerce_cmp(self, r, rb_intern("<=>"));
+
+ case '=':
+ return RTEST(rb_num_coerce_cmp(self, r, rb_intern("=="))) ? Qtrue : Qfalse;
+
+ case 'G':
+ f = rb_intern(">=");
+ break;
+
+ case 'L':
+ f = rb_intern("<=");
+ break;
+
+ case '>':
+ /* fall through */
+ case '<':
+ f = (ID)op;
+ break;
+
+ default:
+ break;
+ }
+ return rb_num_coerce_relop(self, r, f);
+ }
+ SAVE(b);
+ e = VpComp(a, b);
+ if (e == 999)
+ return (op == '*') ? Qnil : Qfalse;
+ switch (op) {
+ case '*':
+ return INT2FIX(e); /* any op */
+
+ case '=':
+ if(e==0) return Qtrue;
+ return Qfalse;
+
+ case 'G':
+ if(e>=0) return Qtrue;
+ return Qfalse;
+
+ case '>':
+ if(e> 0) return Qtrue;
+ return Qfalse;
+
+ case 'L':
+ if(e<=0) return Qtrue;
+ return Qfalse;
+
+ case '<':
+ if(e< 0) return Qtrue;
+ return Qfalse;
+
+ default:
+ break;
+ }
+
+ rb_bug("Undefined operation in BigDecimalCmp()");
+}
+
+/* Returns True if the value is zero. */
+static VALUE
+BigDecimal_zero(VALUE self)
+{
+ Real *a = GetVpValue(self,1);
+ return VpIsZero(a) ? Qtrue : Qfalse;
+}
+
+/* Returns self if the value is non-zero, nil otherwise. */
+static VALUE
+BigDecimal_nonzero(VALUE self)
+{
+ Real *a = GetVpValue(self,1);
+ return VpIsZero(a) ? Qnil : self;
+}
+
+/* The comparison operator.
+ * a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.
+ */
+static VALUE
+BigDecimal_comp(VALUE self, VALUE r)
+{
+ return BigDecimalCmp(self, r, '*');
+}
+
+/*
+ * Tests for value equality; returns true if the values are equal.
+ *
+ * The == and === operators and the eql? method have the same implementation
+ * for BigDecimal.
+ *
+ * Values may be coerced to perform the comparison:
+ *
+ * BigDecimal.new('1.0') == 1.0 -> true
+ */
+static VALUE
+BigDecimal_eq(VALUE self, VALUE r)
+{
+ return BigDecimalCmp(self, r, '=');
+}
+
+/* call-seq:
+ * a < b
+ *
+ * Returns true if a is less than b. Values may be coerced to perform the
+ * comparison (see ==, coerce).
+ */
+static VALUE
+BigDecimal_lt(VALUE self, VALUE r)
+{
+ return BigDecimalCmp(self, r, '<');
+}
+
+/* call-seq:
+ * a <= b
+ *
+ * Returns true if a is less than or equal to b. Values may be coerced to
+ * perform the comparison (see ==, coerce).
+ */
+static VALUE
+BigDecimal_le(VALUE self, VALUE r)
+{
+ return BigDecimalCmp(self, r, 'L');
+}
+
+/* call-seq:
+ * a > b
+ *
+ * Returns true if a is greater than b. Values may be coerced to
+ * perform the comparison (see ==, coerce).
+ */
+static VALUE
+BigDecimal_gt(VALUE self, VALUE r)
+{
+ return BigDecimalCmp(self, r, '>');
+}
+
+/* call-seq:
+ * a >= b
+ *
+ * Returns true if a is greater than or equal to b. Values may be coerced to
+ * perform the comparison (see ==, coerce)
+ */
+static VALUE
+BigDecimal_ge(VALUE self, VALUE r)
+{
+ return BigDecimalCmp(self, r, 'G');
+}
+
+static VALUE
+BigDecimal_neg(VALUE self)
+{
+ ENTER(5);
+ Real *c, *a;
+ GUARD_OBJ(a,GetVpValue(self,1));
+ GUARD_OBJ(c,VpCreateRbObject(a->Prec *(VpBaseFig() + 1), "0"));
+ VpAsgn(c, a, -1);
+ return ToValue(c);
+}
+
+ /* call-seq:
+ * mult(value, digits)
+ *
+ * Multiply by the specified value.
+ *
+ * e.g.
+ * c = a.mult(b,n)
+ * c = a * b
+ *
+ * digits:: If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
+ */
+static VALUE
+BigDecimal_mult(VALUE self, VALUE r)
+{
+ ENTER(5);
+ Real *c, *a, *b;
+ size_t mx;
+
+ GUARD_OBJ(a,GetVpValue(self,1));
+ if (RB_TYPE_P(r, T_FLOAT)) {
+ b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
+ }
+ else if (RB_TYPE_P(r, T_RATIONAL)) {
+ b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
+ }
+ else {
+ b = GetVpValue(r,0);
+ }
+
+ if(!b) return DoSomeOne(self,r,'*');
+ SAVE(b);
+
+ mx = a->Prec + b->Prec;
+ GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
+ VpMult(c, a, b);
+ return ToValue(c);
+}
+
+static VALUE
+BigDecimal_divide(Real **c, Real **res, Real **div, VALUE self, VALUE r)
+/* For c = self.div(r): with round operation */
+{
+ ENTER(5);
+ Real *a, *b;
+ size_t mx;
+
+ GUARD_OBJ(a,GetVpValue(self,1));
+ if (RB_TYPE_P(r, T_FLOAT)) {
+ b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
+ }
+ else if (RB_TYPE_P(r, T_RATIONAL)) {
+ b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
+ }
+ else {
+ b = GetVpValue(r,0);
+ }
+
+ if(!b) return DoSomeOne(self,r,'/');
+ SAVE(b);
+
+ *div = b;
+ mx = a->Prec + vabs(a->exponent);
+ if(mx<b->Prec + vabs(b->exponent)) mx = b->Prec + vabs(b->exponent);
+ mx =(mx + 1) * VpBaseFig();
+ GUARD_OBJ((*c),VpCreateRbObject(mx, "#0"));
+ GUARD_OBJ((*res),VpCreateRbObject((mx+1) * 2 +(VpBaseFig() + 1), "#0"));
+ VpDivd(*c, *res, a, b);
+ return (VALUE)0;
+}
+
+ /* call-seq:
+ * div(value, digits)
+ * quo(value)
+ *
+ * Divide by the specified value.
+ *
+ * e.g.
+ * c = a.div(b,n)
+ *
+ * digits:: If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
+ *
+ * If digits is 0, the result is the same as the / operator. If not, the
+ * result is an integer BigDecimal, by analogy with Float#div.
+ *
+ * The alias quo is provided since div(value, 0) is the same as computing
+ * the quotient; see divmod.
+ */
+static VALUE
+BigDecimal_div(VALUE self, VALUE r)
+/* For c = self/r: with round operation */
+{
+ ENTER(5);
+ Real *c=NULL, *res=NULL, *div = NULL;
+ r = BigDecimal_divide(&c, &res, &div, self, r);
+ if(r!=(VALUE)0) return r; /* coerced by other */
+ SAVE(c);SAVE(res);SAVE(div);
+ /* a/b = c + r/b */
+ /* c xxxxx
+ r 00000yyyyy ==> (y/b)*BASE >= HALF_BASE
+ */
+ /* Round */
+ if(VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
+ VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal()*(BDIGIT_DBL)res->frac[0]/div->frac[0]));
+ }
+ return ToValue(c);
+}
+
+/*
+ * %: mod = a%b = a - (a.to_f/b).floor * b
+ * div = (a.to_f/b).floor
+ */
+static VALUE
+BigDecimal_DoDivmod(VALUE self, VALUE r, Real **div, Real **mod)
+{
+ ENTER(8);
+ Real *c=NULL, *d=NULL, *res=NULL;
+ Real *a, *b;
+ size_t mx;
+
+ GUARD_OBJ(a,GetVpValue(self,1));
+ if (RB_TYPE_P(r, T_FLOAT)) {
+ b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
+ }
+ else if (RB_TYPE_P(r, T_RATIONAL)) {
+ b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
+ }
+ else {
+ b = GetVpValue(r,0);
+ }
+
+ if(!b) return Qfalse;
+ SAVE(b);
+
+ if(VpIsNaN(a) || VpIsNaN(b)) goto NaN;
+ if(VpIsInf(a) && VpIsInf(b)) goto NaN;
+ if(VpIsZero(b)) {
+ rb_raise(rb_eZeroDivError, "divided by 0");
+ }
+ if(VpIsInf(a)) {
+ GUARD_OBJ(d,VpCreateRbObject(1, "0"));
+ VpSetInf(d, (SIGNED_VALUE)(VpGetSign(a) == VpGetSign(b) ? 1 : -1));
+ GUARD_OBJ(c,VpCreateRbObject(1, "NaN"));
+ *div = d;
+ *mod = c;
+ return Qtrue;
+ }
+ if(VpIsInf(b)) {
+ GUARD_OBJ(d,VpCreateRbObject(1, "0"));
+ *div = d;
+ *mod = a;
+ return Qtrue;
+ }
+ if(VpIsZero(a)) {
+ GUARD_OBJ(c,VpCreateRbObject(1, "0"));
+ GUARD_OBJ(d,VpCreateRbObject(1, "0"));
+ *div = d;
+ *mod = c;
+ return Qtrue;
+ }
+
+ mx = a->Prec + vabs(a->exponent);
+ if(mx<b->Prec + vabs(b->exponent)) mx = b->Prec + vabs(b->exponent);
+ mx =(mx + 1) * VpBaseFig();
+ GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
+ GUARD_OBJ(res,VpCreateRbObject((mx+1) * 2 +(VpBaseFig() + 1), "#0"));
+ VpDivd(c, res, a, b);
+ mx = c->Prec *(VpBaseFig() + 1);
+ GUARD_OBJ(d,VpCreateRbObject(mx, "0"));
+ VpActiveRound(d,c,VP_ROUND_DOWN,0);
+ VpMult(res,d,b);
+ VpAddSub(c,a,res,-1);
+ if(!VpIsZero(c) && (VpGetSign(a)*VpGetSign(b)<0)) {
+ VpAddSub(res,d,VpOne(),-1);
+ GUARD_OBJ(d,VpCreateRbObject(GetAddSubPrec(c, b)*(VpBaseFig() + 1), "0"));
+ VpAddSub(d ,c,b, 1);
+ *div = res;
+ *mod = d;
+ } else {
+ *div = d;
+ *mod = c;
+ }
+ return Qtrue;
+
+NaN:
+ GUARD_OBJ(c,VpCreateRbObject(1, "NaN"));
+ GUARD_OBJ(d,VpCreateRbObject(1, "NaN"));
+ *div = d;
+ *mod = c;
+ return Qtrue;
+}
+
+/* call-seq:
+ * a % b
+ * a.modulo(b)
+ *
+ * Returns the modulus from dividing by b. See divmod.
+ */
+static VALUE
+BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
+{
+ ENTER(3);
+ Real *div=NULL, *mod=NULL;
+
+ if(BigDecimal_DoDivmod(self,r,&div,&mod)) {
+ SAVE(div); SAVE(mod);
+ return ToValue(mod);
+ }
+ return DoSomeOne(self,r,'%');
+}
+
+static VALUE
+BigDecimal_divremain(VALUE self, VALUE r, Real **dv, Real **rv)
+{
+ ENTER(10);
+ size_t mx;
+ Real *a=NULL, *b=NULL, *c=NULL, *res=NULL, *d=NULL, *rr=NULL, *ff=NULL;
+ Real *f=NULL;
+
+ GUARD_OBJ(a,GetVpValue(self,1));
+ if (RB_TYPE_P(r, T_FLOAT)) {
+ b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
+ }
+ else if (RB_TYPE_P(r, T_RATIONAL)) {
+ b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
+ }
+ else {
+ b = GetVpValue(r,0);
+ }
+
+ if(!b) return DoSomeOne(self,r,rb_intern("remainder"));
+ SAVE(b);
+
+ mx =(a->MaxPrec + b->MaxPrec) *VpBaseFig();
+ GUARD_OBJ(c ,VpCreateRbObject(mx, "0"));
+ GUARD_OBJ(res,VpCreateRbObject((mx+1) * 2 +(VpBaseFig() + 1), "#0"));
+ GUARD_OBJ(rr ,VpCreateRbObject((mx+1) * 2 +(VpBaseFig() + 1), "#0"));
+ GUARD_OBJ(ff ,VpCreateRbObject((mx+1) * 2 +(VpBaseFig() + 1), "#0"));
+
+ VpDivd(c, res, a, b);
+
+ mx = c->Prec *(VpBaseFig() + 1);
+
+ GUARD_OBJ(d,VpCreateRbObject(mx, "0"));
+ GUARD_OBJ(f,VpCreateRbObject(mx, "0"));
+
+ VpActiveRound(d,c,VP_ROUND_DOWN,0); /* 0: round off */
+
+ VpFrac(f, c);
+ VpMult(rr,f,b);
+ VpAddSub(ff,res,rr,1);
+
+ *dv = d;
+ *rv = ff;
+ return (VALUE)0;
+}
+
+/* Returns the remainder from dividing by the value.
+ *
+ * x.remainder(y) means x-y*(x/y).truncate
+ */
+static VALUE
+BigDecimal_remainder(VALUE self, VALUE r) /* remainder */
+{
+ VALUE f;
+ Real *d,*rv=0;
+ f = BigDecimal_divremain(self,r,&d,&rv);
+ if(f!=(VALUE)0) return f;
+ return ToValue(rv);
+}
+
+/* Divides by the specified value, and returns the quotient and modulus
+ * as BigDecimal numbers. The quotient is rounded towards negative infinity.
+ *
+ * For example:
+ *
+ * require 'bigdecimal'
+ *
+ * a = BigDecimal.new("42")
+ * b = BigDecimal.new("9")
+ *
+ * q,m = a.divmod(b)
+ *
+ * c = q * b + m
+ *
+ * a == c -> true
+ *
+ * The quotient q is (a/b).floor, and the modulus is the amount that must be
+ * added to q * b to get a.
+ */
+static VALUE
+BigDecimal_divmod(VALUE self, VALUE r)
+{
+ ENTER(5);
+ Real *div=NULL, *mod=NULL;
+
+ if(BigDecimal_DoDivmod(self,r,&div,&mod)) {
+ SAVE(div); SAVE(mod);
+ return rb_assoc_new(ToValue(div), ToValue(mod));
+ }
+ return DoSomeOne(self,r,rb_intern("divmod"));
+}
+
+static VALUE
+BigDecimal_div2(int argc, VALUE *argv, VALUE self)
+{
+ ENTER(5);
+ VALUE b,n;
+ int na = rb_scan_args(argc,argv,"11",&b,&n);
+ if(na==1) { /* div in Float sense */
+ Real *div=NULL;
+ Real *mod;
+ if(BigDecimal_DoDivmod(self,b,&div,&mod)) {
+ return BigDecimal_to_i(ToValue(div));
+ }
+ return DoSomeOne(self,b,rb_intern("div"));
+ } else { /* div in BigDecimal sense */
+ SIGNED_VALUE ix = GetPositiveInt(n);
+ if (ix == 0) return BigDecimal_div(self, b);
+ else {
+ Real *res=NULL;
+ Real *av=NULL, *bv=NULL, *cv=NULL;
+ size_t mx = (ix+VpBaseFig()*2);
+ size_t pl = VpSetPrecLimit(0);
+
+ GUARD_OBJ(cv,VpCreateRbObject(mx,"0"));
+ GUARD_OBJ(av,GetVpValue(self,1));
+ GUARD_OBJ(bv,GetVpValue(b,1));
+ mx = av->Prec + bv->Prec + 2;
+ if(mx <= cv->MaxPrec) mx = cv->MaxPrec+1;
+ GUARD_OBJ(res,VpCreateRbObject((mx * 2 + 2)*VpBaseFig(), "#0"));
+ VpDivd(cv,res,av,bv);
+ VpSetPrecLimit(pl);
+ VpLeftRound(cv,VpGetRoundMode(),ix);
+ return ToValue(cv);
+ }
+ }
+}
+
+static VALUE
+BigDecimal_add2(VALUE self, VALUE b, VALUE n)
+{
+ ENTER(2);
+ Real *cv;
+ SIGNED_VALUE mx = GetPositiveInt(n);
+ if (mx == 0) return BigDecimal_add(self, b);
+ else {
+ size_t pl = VpSetPrecLimit(0);
+ VALUE c = BigDecimal_add(self,b);
+ VpSetPrecLimit(pl);
+ GUARD_OBJ(cv,GetVpValue(c,1));
+ VpLeftRound(cv,VpGetRoundMode(),mx);
+ return ToValue(cv);
+ }
+}
+
+static VALUE
+BigDecimal_sub2(VALUE self, VALUE b, VALUE n)
+{
+ ENTER(2);
+ Real *cv;
+ SIGNED_VALUE mx = GetPositiveInt(n);
+ if (mx == 0) return BigDecimal_sub(self, b);
+ else {
+ size_t pl = VpSetPrecLimit(0);
+ VALUE c = BigDecimal_sub(self,b);
+ VpSetPrecLimit(pl);
+ GUARD_OBJ(cv,GetVpValue(c,1));
+ VpLeftRound(cv,VpGetRoundMode(),mx);
+ return ToValue(cv);
+ }
+}
+
+static VALUE
+BigDecimal_mult2(VALUE self, VALUE b, VALUE n)
+{
+ ENTER(2);
+ Real *cv;
+ SIGNED_VALUE mx = GetPositiveInt(n);
+ if (mx == 0) return BigDecimal_mult(self, b);
+ else {
+ size_t pl = VpSetPrecLimit(0);
+ VALUE c = BigDecimal_mult(self,b);
+ VpSetPrecLimit(pl);
+ GUARD_OBJ(cv,GetVpValue(c,1));
+ VpLeftRound(cv,VpGetRoundMode(),mx);
+ return ToValue(cv);
+ }
+}
+
+/* Returns the absolute value.
+ *
+ * BigDecimal('5').abs -> 5
+ *
+ * BigDecimal('-3').abs -> 3
+ */
+static VALUE
+BigDecimal_abs(VALUE self)
+{
+ ENTER(5);
+ Real *c, *a;
+ size_t mx;
+
+ GUARD_OBJ(a,GetVpValue(self,1));
+ mx = a->Prec *(VpBaseFig() + 1);
+ GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
+ VpAsgn(c, a, 1);
+ VpChangeSign(c, 1);
+ return ToValue(c);
+}
+
+/* call-seq:
+ * sqrt(n)
+ *
+ * Returns the square root of the value.
+ *
+ * If n is specified, returns at least that many significant digits.
+ */
+static VALUE
+BigDecimal_sqrt(VALUE self, VALUE nFig)
+{
+ ENTER(5);
+ Real *c, *a;
+ size_t mx, n;
+
+ GUARD_OBJ(a,GetVpValue(self,1));
+ mx = a->Prec *(VpBaseFig() + 1);
+
+ n = GetPositiveInt(nFig) + VpDblFig() + 1;
+ if(mx <= n) mx = n;
+ GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
+ VpSqrt(c, a);
+ return ToValue(c);
+}
+
+/* Return the integer part of the number.
+ */
+static VALUE
+BigDecimal_fix(VALUE self)
+{
+ ENTER(5);
+ Real *c, *a;
+ size_t mx;
+
+ GUARD_OBJ(a,GetVpValue(self,1));
+ mx = a->Prec *(VpBaseFig() + 1);
+ GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
+ VpActiveRound(c,a,VP_ROUND_DOWN,0); /* 0: round off */
+ return ToValue(c);
+}
+
+/* call-seq:
+ * round(n, mode)
+ *
+ * Round to the nearest 1 (by default), returning the result as a BigDecimal.
+ *
+ * BigDecimal('3.14159').round -> 3
+ *
+ * BigDecimal('8.7').round -> 9
+ *
+ * If n is specified and positive, the fractional part of the result has no
+ * more than that many digits.
+ *
+ * If n is specified and negative, at least that many digits to the left of the
+ * decimal point will be 0 in the result.
+ *
+ * BigDecimal('3.14159').round(3) -> 3.142
+ *
+ * BigDecimal('13345.234').round(-2) -> 13300.0
+ *
+ * The value of the optional mode argument can be used to determine how
+ * rounding is performed; see BigDecimal.mode.
+ */
+static VALUE
+BigDecimal_round(int argc, VALUE *argv, VALUE self)
+{
+ ENTER(5);
+ Real *c, *a;
+ int iLoc = 0;
+ VALUE vLoc;
+ VALUE vRound;
+ size_t mx, pl;
+
+ unsigned short sw = VpGetRoundMode();
+
+ switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) {
+ case 0:
+ iLoc = 0;
+ break;
+ case 1:
+ Check_Type(vLoc, T_FIXNUM);
+ iLoc = FIX2INT(vLoc);
+ break;
+ case 2:
+ Check_Type(vLoc, T_FIXNUM);
+ iLoc = FIX2INT(vLoc);
+ sw = check_rounding_mode(vRound);
+ break;
+ }
+
+ pl = VpSetPrecLimit(0);
+ GUARD_OBJ(a,GetVpValue(self,1));
+ mx = a->Prec *(VpBaseFig() + 1);
+ GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
+ VpSetPrecLimit(pl);
+ VpActiveRound(c,a,sw,iLoc);
+ if (argc == 0) {
+ return BigDecimal_to_i(ToValue(c));
+ }
+ return ToValue(c);
+}
+
+/* call-seq:
+ * truncate(n)
+ *
+ * Truncate to the nearest 1, returning the result as a BigDecimal.
+ *
+ * BigDecimal('3.14159').truncate -> 3
+ *
+ * BigDecimal('8.7').truncate -> 8
+ *
+ * If n is specified and positive, the fractional part of the result has no
+ * more than that many digits.
+ *
+ * If n is specified and negative, at least that many digits to the left of the
+ * decimal point will be 0 in the result.
+ *
+ * BigDecimal('3.14159').truncate(3) -> 3.141
+ *
+ * BigDecimal('13345.234').truncate(-2) -> 13300.0
+ */
+static VALUE
+BigDecimal_truncate(int argc, VALUE *argv, VALUE self)
+{
+ ENTER(5);
+ Real *c, *a;
+ int iLoc;
+ VALUE vLoc;
+ size_t mx, pl = VpSetPrecLimit(0);
+
+ if(rb_scan_args(argc,argv,"01",&vLoc)==0) {
+ iLoc = 0;
+ } else {
+ Check_Type(vLoc, T_FIXNUM);
+ iLoc = FIX2INT(vLoc);
+ }
+
+ GUARD_OBJ(a,GetVpValue(self,1));
+ mx = a->Prec *(VpBaseFig() + 1);
+ GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
+ VpSetPrecLimit(pl);
+ VpActiveRound(c,a,VP_ROUND_DOWN,iLoc); /* 0: truncate */
+ if (argc == 0) {
+ return BigDecimal_to_i(ToValue(c));
+ }
+ return ToValue(c);
+}
+
+/* Return the fractional part of the number.
+ */
+static VALUE
+BigDecimal_frac(VALUE self)
+{
+ ENTER(5);
+ Real *c, *a;
+ size_t mx;
+
+ GUARD_OBJ(a,GetVpValue(self,1));
+ mx = a->Prec *(VpBaseFig() + 1);
+ GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
+ VpFrac(c, a);
+ return ToValue(c);
+}
+
+/* call-seq:
+ * floor(n)
+ *
+ * Return the largest integer less than or equal to the value, as a BigDecimal.
+ *
+ * BigDecimal('3.14159').floor -> 3
+ *
+ * BigDecimal('-9.1').floor -> -10
+ *
+ * If n is specified and positive, the fractional part of the result has no
+ * more than that many digits.
+ *
+ * If n is specified and negative, at least that
+ * many digits to the left of the decimal point will be 0 in the result.
+ *
+ * BigDecimal('3.14159').floor(3) -> 3.141
+ *
+ * BigDecimal('13345.234').floor(-2) -> 13300.0
+ */
+static VALUE
+BigDecimal_floor(int argc, VALUE *argv, VALUE self)
+{
+ ENTER(5);
+ Real *c, *a;
+ int iLoc;
+ VALUE vLoc;
+ size_t mx, pl = VpSetPrecLimit(0);
+
+ if(rb_scan_args(argc,argv,"01",&vLoc)==0) {
+ iLoc = 0;
+ } else {
+ Check_Type(vLoc, T_FIXNUM);
+ iLoc = FIX2INT(vLoc);
+ }
+
+ GUARD_OBJ(a,GetVpValue(self,1));
+ mx = a->Prec *(VpBaseFig() + 1);
+ GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
+ VpSetPrecLimit(pl);
+ VpActiveRound(c,a,VP_ROUND_FLOOR,iLoc);
+#ifdef BIGDECIMAL_DEBUG
+ VPrint(stderr, "floor: c=%\n", c);
+#endif
+ if (argc == 0) {
+ return BigDecimal_to_i(ToValue(c));
+ }
+ return ToValue(c);
+}
+
+/* call-seq:
+ * ceil(n)
+ *
+ * Return the smallest integer greater than or equal to the value, as a BigDecimal.
+ *
+ * BigDecimal('3.14159').ceil -> 4
+ *
+ * BigDecimal('-9.1').ceil -> -9
+ *
+ * If n is specified and positive, the fractional part of the result has no
+ * more than that many digits.
+ *
+ * If n is specified and negative, at least that
+ * many digits to the left of the decimal point will be 0 in the result.
+ *
+ * BigDecimal('3.14159').ceil(3) -> 3.142
+ *
+ * BigDecimal('13345.234').ceil(-2) -> 13400.0
+ */
+static VALUE
+BigDecimal_ceil(int argc, VALUE *argv, VALUE self)
+{
+ ENTER(5);
+ Real *c, *a;
+ int iLoc;
+ VALUE vLoc;
+ size_t mx, pl = VpSetPrecLimit(0);
+
+ if(rb_scan_args(argc,argv,"01",&vLoc)==0) {
+ iLoc = 0;
+ } else {
+ Check_Type(vLoc, T_FIXNUM);
+ iLoc = FIX2INT(vLoc);
+ }
+
+ GUARD_OBJ(a,GetVpValue(self,1));
+ mx = a->Prec *(VpBaseFig() + 1);
+ GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
+ VpSetPrecLimit(pl);
+ VpActiveRound(c,a,VP_ROUND_CEIL,iLoc);
+ if (argc == 0) {
+ return BigDecimal_to_i(ToValue(c));
+ }
+ return ToValue(c);
+}
+
+/* call-seq:
+ * to_s(s)
+ *
+ * Converts the value to a string.
+ *
+ * The default format looks like 0.xxxxEnn.
+ *
+ * The optional parameter s consists of either an integer; or an optional '+'
+ * or ' ', followed by an optional number, followed by an optional 'E' or 'F'.
+ *
+ * If there is a '+' at the start of s, positive values are returned with
+ * a leading '+'.
+ *
+ * A space at the start of s returns positive values with a leading space.
+ *
+ * If s contains a number, a space is inserted after each group of that many
+ * fractional digits.
+ *
+ * If s ends with an 'E', engineering notation (0.xxxxEnn) is used.
+ *
+ * If s ends with an 'F', conventional floating point notation is used.
+ *
+ * Examples:
+ *
+ * BigDecimal.new('-123.45678901234567890').to_s('5F') -> '-123.45678 90123 45678 9'
+ *
+ * BigDecimal.new('123.45678901234567890').to_s('+8F') -> '+123.45678901 23456789'
+ *
+ * BigDecimal.new('123.45678901234567890').to_s(' F') -> ' 123.4567890123456789'
+ */
+static VALUE
+BigDecimal_to_s(int argc, VALUE *argv, VALUE self)
+{
+ ENTER(5);
+ int fmt = 0; /* 0:E format */
+ int fPlus = 0; /* =0:default,=1: set ' ' before digits ,set '+' before digits. */
+ Real *vp;
+ volatile VALUE str;
+ char *psz;
+ char ch;
+ size_t nc, mc = 0;
+ VALUE f;
+
+ GUARD_OBJ(vp,GetVpValue(self,1));
+
+ if (rb_scan_args(argc,argv,"01",&f)==1) {
+ if (RB_TYPE_P(f, T_STRING)) {
+ SafeStringValue(f);
+ psz = RSTRING_PTR(f);
+ if (*psz == ' ') {
+ fPlus = 1;
+ psz++;
+ }
+ else if (*psz == '+') {
+ fPlus = 2;
+ psz++;
+ }
+ while ((ch = *psz++) != 0) {
+ if (ISSPACE(ch)) {
+ continue;
+ }
+ if (!ISDIGIT(ch)) {
+ if (ch == 'F' || ch == 'f') {
+ fmt = 1; /* F format */
+ }
+ break;
+ }
+ mc = mc * 10 + ch - '0';
+ }
+ }
+ else {
+ mc = (size_t)GetPositiveInt(f);
+ }
+ }
+ if (fmt) {
+ nc = VpNumOfChars(vp, "F");
+ }
+ else {
+ nc = VpNumOfChars(vp, "E");
+ }
+ if (mc > 0) {
+ nc += (nc + mc - 1) / mc + 1;
+ }
+
+ str = rb_str_new(0, nc);
+ psz = RSTRING_PTR(str);
+
+ if (fmt) {
+ VpToFString(vp, psz, mc, fPlus);
+ }
+ else {
+ VpToString (vp, psz, mc, fPlus);
+ }
+ rb_str_resize(str, strlen(psz));
+ return str;
+}
+
+/* Splits a BigDecimal number into four parts, returned as an array of values.
+ *
+ * The first value represents the sign of the BigDecimal, and is -1 or 1, or 0
+ * if the BigDecimal is Not a Number.
+ *
+ * The second value is a string representing the significant digits of the
+ * BigDecimal, with no leading zeros.
+ *
+ * The third value is the base used for arithmetic (currently always 10) as an
+ * Integer.
+ *
+ * The fourth value is an Integer exponent.
+ *
+ * If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the
+ * string of significant digits with no leading zeros, and n is the exponent.
+ *
+ * From these values, you can translate a BigDecimal to a float as follows:
+ *
+ * sign, significant_digits, base, exponent = a.split
+ * f = sign * "0.#{significant_digits}".to_f * (base ** exponent)
+ *
+ * (Note that the to_f method is provided as a more convenient way to translate
+ * a BigDecimal to a Float.)
+ */
+static VALUE
+BigDecimal_split(VALUE self)
+{
+ ENTER(5);
+ Real *vp;
+ VALUE obj,str;
+ ssize_t e, s;
+ char *psz1;
+
+ GUARD_OBJ(vp,GetVpValue(self,1));
+ str = rb_str_new(0, VpNumOfChars(vp,"E"));
+ psz1 = RSTRING_PTR(str);
+ VpSzMantissa(vp,psz1);
+ s = 1;
+ if(psz1[0]=='-') {
+ size_t len = strlen(psz1+1);
+
+ memmove(psz1, psz1+1, len);
+ psz1[len] = '\0';
+ s = -1;
+ }
+ if(psz1[0]=='N') s=0; /* NaN */
+ e = VpExponent10(vp);
+ obj = rb_ary_new2(4);
+ rb_ary_push(obj, INT2FIX(s));
+ rb_ary_push(obj, str);
+ rb_str_resize(str, strlen(psz1));
+ rb_ary_push(obj, INT2FIX(10));
+ rb_ary_push(obj, INT2NUM(e));
+ return obj;
+}
+
+/* Returns the exponent of the BigDecimal number, as an Integer.
+ *
+ * If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string
+ * of digits with no leading zeros, then n is the exponent.
+ */
+static VALUE
+BigDecimal_exponent(VALUE self)
+{
+ ssize_t e = VpExponent10(GetVpValue(self, 1));
+ return INT2NUM(e);
+}
+
+/* Returns debugging information about the value as a string of comma-separated
+ * values in angle brackets with a leading #:
+ *
+ * BigDecimal.new("1234.5678").inspect ->
+ * "#<BigDecimal:b7ea1130,'0.12345678E4',8(12)>"
+ *
+ * The first part is the address, the second is the value as a string, and
+ * the final part ss(mm) is the current number of significant digits and the
+ * maximum number of significant digits, respectively.
+ */
+static VALUE
+BigDecimal_inspect(VALUE self)
+{
+ ENTER(5);
+ Real *vp;
+ volatile VALUE obj;
+ size_t nc;
+ char *psz, *tmp;
+
+ GUARD_OBJ(vp,GetVpValue(self,1));
+ nc = VpNumOfChars(vp,"E");
+ nc +=(nc + 9) / 10;
+
+ obj = rb_str_new(0, nc+256);
+ psz = RSTRING_PTR(obj);
+ sprintf(psz,"#<BigDecimal:%"PRIxVALUE",'",self);
+ tmp = psz + strlen(psz);
+ VpToString(vp, tmp, 10, 0);
+ tmp += strlen(tmp);
+ sprintf(tmp, "',%"PRIuSIZE"(%"PRIuSIZE")>", VpPrec(vp)*VpBaseFig(), VpMaxPrec(vp)*VpBaseFig());
+ rb_str_resize(obj, strlen(psz));
+ return obj;
+}
+
+static VALUE BigMath_s_exp(VALUE, VALUE, VALUE);
+static VALUE BigMath_s_log(VALUE, VALUE, VALUE);
+
+#define BigMath_exp(x, n) BigMath_s_exp(rb_mBigMath, (x), (n))
+#define BigMath_log(x, n) BigMath_s_log(rb_mBigMath, (x), (n))
+
+inline static int
+is_integer(VALUE x)
+{
+ return (RB_TYPE_P(x, T_FIXNUM) || RB_TYPE_P(x, T_BIGNUM));
+}
+
+inline static int
+is_negative(VALUE x)
+{
+ if (FIXNUM_P(x)) {
+ return FIX2LONG(x) < 0;
+ }
+ else if (RB_TYPE_P(x, T_BIGNUM)) {
+ return RBIGNUM_NEGATIVE_P(x);
+ }
+ else if (RB_TYPE_P(x, T_FLOAT)) {
+ return RFLOAT_VALUE(x) < 0.0;
+ }
+ return RTEST(rb_funcall(x, '<', 1, INT2FIX(0)));
+}
+
+#define is_positive(x) (!is_negative(x))
+
+inline static int
+is_zero(VALUE x)
+{
+ VALUE num;
+
+ switch (TYPE(x)) {
+ case T_FIXNUM:
+ return FIX2LONG(x) == 0;
+
+ case T_BIGNUM:
+ return Qfalse;
+
+ case T_RATIONAL:
+ num = RRATIONAL(x)->num;
+ return FIXNUM_P(num) && FIX2LONG(num) == 0;
+
+ default:
+ break;
+ }
+
+ return RTEST(rb_funcall(x, id_eq, 1, INT2FIX(0)));
+}
+
+inline static int
+is_one(VALUE x)
+{
+ VALUE num, den;
+
+ switch (TYPE(x)) {
+ case T_FIXNUM:
+ return FIX2LONG(x) == 1;
+
+ case T_BIGNUM:
+ return Qfalse;
+
+ case T_RATIONAL:
+ num = RRATIONAL(x)->num;
+ den = RRATIONAL(x)->den;
+ return FIXNUM_P(den) && FIX2LONG(den) == 1 &&
+ FIXNUM_P(num) && FIX2LONG(num) == 1;
+
+ default:
+ break;
+ }
+
+ return RTEST(rb_funcall(x, id_eq, 1, INT2FIX(1)));
+}
+
+inline static int
+is_even(VALUE x)
+{
+ switch (TYPE(x)) {
+ case T_FIXNUM:
+ return (FIX2LONG(x) % 2) == 0;
+
+ case T_BIGNUM:
+ return (RBIGNUM_DIGITS(x)[0] % 2) == 0;
+
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+static VALUE
+rmpd_power_by_big_decimal(Real const* x, Real const* exp, ssize_t const n)
+{
+ VALUE log_x, multiplied, y;
+
+ if (VpIsZero(exp)) {
+ return ToValue(VpCreateRbObject(n, "1"));
+ }
+
+ log_x = BigMath_log(x->obj, SSIZET2NUM(n+1));
+ multiplied = BigDecimal_mult2(exp->obj, log_x, SSIZET2NUM(n+1));
+ y = BigMath_exp(multiplied, SSIZET2NUM(n));
+
+ return y;
+}
+
+/* call-seq:
+ * power(n)
+ * power(n, prec)
+ *
+ * Returns the value raised to the power of n. Note that n must be an Integer.
+ *
+ * Also available as the operator **
+ */
+static VALUE
+BigDecimal_power(int argc, VALUE*argv, VALUE self)
+{
+ ENTER(5);
+ VALUE vexp, prec;
+ Real* exp = NULL;
+ Real *x, *y;
+ ssize_t mp, ma, n;
+ SIGNED_VALUE int_exp;
+ double d;
+
+ rb_scan_args(argc, argv, "11", &vexp, &prec);
+
+ GUARD_OBJ(x, GetVpValue(self, 1));
+ n = NIL_P(prec) ? (ssize_t)(x->Prec*VpBaseFig()) : NUM2SSIZET(prec);
+
+ if (VpIsNaN(x)) {
+ y = VpCreateRbObject(n, "0#");
+ RB_GC_GUARD(y->obj);
+ VpSetNaN(y);
+ return ToValue(y);
+ }
+
+retry:
+ switch (TYPE(vexp)) {
+ case T_FIXNUM:
+ break;
+
+ case T_BIGNUM:
+ break;
+
+ case T_FLOAT:
+ d = RFLOAT_VALUE(vexp);
+ if (d == round(d)) {
+ vexp = LL2NUM((LONG_LONG)round(d));
+ goto retry;
+ }
+ exp = GetVpValueWithPrec(vexp, DBL_DIG+1, 1);
+ break;
+
+ case T_RATIONAL:
+ if (is_zero(RRATIONAL(vexp)->num)) {
+ if (is_positive(vexp)) {
+ vexp = INT2FIX(0);
+ goto retry;
+ }
+ }
+ else if (is_one(RRATIONAL(vexp)->den)) {
+ vexp = RRATIONAL(vexp)->num;
+ goto retry;
+ }
+ exp = GetVpValueWithPrec(vexp, n, 1);
+ break;
+
+ case T_DATA:
+ if (is_kind_of_BigDecimal(vexp)) {
+ VALUE zero = INT2FIX(0);
+ VALUE rounded = BigDecimal_round(1, &zero, vexp);
+ if (RTEST(BigDecimal_eq(vexp, rounded))) {
+ vexp = BigDecimal_to_i(vexp);
+ goto retry;
+ }
+ exp = DATA_PTR(vexp);
+ break;
+ }
+ /* fall through */
+ default:
+ rb_raise(rb_eTypeError,
+ "wrong argument type %s (expected scalar Numeric)",
+ rb_obj_classname(vexp));
+ }
+
+ if (VpIsZero(x)) {
+ if (is_negative(vexp)) {
+ y = VpCreateRbObject(n, "#0");
+ RB_GC_GUARD(y->obj);
+ if (VpGetSign(x) < 0) {
+ if (is_integer(vexp)) {
+ if (is_even(vexp)) {
+ /* (-0) ** (-even_integer) -> Infinity */
+ VpSetPosInf(y);
+ }
+ else {
+ /* (-0) ** (-odd_integer) -> -Infinity */
+ VpSetNegInf(y);
+ }
+ }
+ else {
+ /* (-0) ** (-non_integer) -> Infinity */
+ VpSetPosInf(y);
+ }
+ }
+ else {
+ /* (+0) ** (-num) -> Infinity */
+ VpSetPosInf(y);
+ }
+ return ToValue(y);
+ }
+ else if (is_zero(vexp)) {
+ return ToValue(VpCreateRbObject(n, "1"));
+ }
+ else {
+ return ToValue(VpCreateRbObject(n, "0"));
+ }
+ }
+
+ if (is_zero(vexp)) {
+ return ToValue(VpCreateRbObject(n, "1"));
+ }
+ else if (is_one(vexp)) {
+ return self;
+ }
+
+ if (VpIsInf(x)) {
+ if (is_negative(vexp)) {
+ if (VpGetSign(x) < 0) {
+ if (is_integer(vexp)) {
+ if (is_even(vexp)) {
+ /* (-Infinity) ** (-even_integer) -> +0 */
+ return ToValue(VpCreateRbObject(n, "0"));
+ }
+ else {
+ /* (-Infinity) ** (-odd_integer) -> -0 */
+ return ToValue(VpCreateRbObject(n, "-0"));
+ }
+ }
+ else {
+ /* (-Infinity) ** (-non_integer) -> -0 */
+ return ToValue(VpCreateRbObject(n, "-0"));
+ }
+ }
+ else {
+ return ToValue(VpCreateRbObject(n, "0"));
+ }
+ }
+ else {
+ y = VpCreateRbObject(n, "0#");
+ if (VpGetSign(x) < 0) {
+ if (is_integer(vexp)) {
+ if (is_even(vexp)) {
+ VpSetPosInf(y);
+ }
+ else {
+ VpSetNegInf(y);
+ }
+ }
+ else {
+ /* TODO: support complex */
+ rb_raise(rb_eMathDomainError,
+ "a non-integral exponent for a negative base");
+ }
+ }
+ else {
+ VpSetPosInf(y);
+ }
+ return ToValue(y);
+ }
+ }
+
+ if (exp != NULL) {
+ return rmpd_power_by_big_decimal(x, exp, n);
+ }
+ else if (RB_TYPE_P(vexp, T_BIGNUM)) {
+ VALUE abs_value = BigDecimal_abs(self);
+ if (is_one(abs_value)) {
+ return ToValue(VpCreateRbObject(n, "1"));
+ }
+ else if (RTEST(rb_funcall(abs_value, '<', 1, INT2FIX(1)))) {
+ if (is_negative(vexp)) {
+ y = VpCreateRbObject(n, "0#");
+ if (is_even(vexp)) {
+ VpSetInf(y, VpGetSign(x));
+ }
+ else {
+ VpSetInf(y, -VpGetSign(x));
+ }
+ return ToValue(y);
+ }
+ else if (VpGetSign(x) < 0 && is_even(vexp)) {
+ return ToValue(VpCreateRbObject(n, "-0"));
+ }
+ else {
+ return ToValue(VpCreateRbObject(n, "0"));
+ }
+ }
+ else {
+ if (is_positive(vexp)) {
+ y = VpCreateRbObject(n, "0#");
+ if (is_even(vexp)) {
+ VpSetInf(y, VpGetSign(x));
+ }
+ else {
+ VpSetInf(y, -VpGetSign(x));
+ }
+ return ToValue(y);
+ }
+ else if (VpGetSign(x) < 0 && is_even(vexp)) {
+ return ToValue(VpCreateRbObject(n, "-0"));
+ }
+ else {
+ return ToValue(VpCreateRbObject(n, "0"));
+ }
+ }
+ }
+
+ int_exp = FIX2INT(vexp);
+ ma = int_exp;
+ if (ma < 0) ma = -ma;
+ if (ma == 0) ma = 1;
+
+ if (VpIsDef(x)) {
+ mp = x->Prec * (VpBaseFig() + 1);
+ GUARD_OBJ(y, VpCreateRbObject(mp * (ma + 1), "0"));
+ }
+ else {
+ GUARD_OBJ(y, VpCreateRbObject(1, "0"));
+ }
+ VpPower(y, x, int_exp);
+ return ToValue(y);
+}
+
+/* call-seq:
+ * big_decimal ** exp -> big_decimal
+ *
+ * It is a synonym of big_decimal.power(exp).
+ */
+static VALUE
+BigDecimal_power_op(VALUE self, VALUE exp)
+{
+ return BigDecimal_power(1, &exp, self);
+}
+
+/* call-seq:
+ * new(initial, digits)
+ *
+ * Create a new BigDecimal object.
+ *
+ * initial:: The initial value, as an Integer, a Float, a Rational,
+ * a BigDecimal, or a String.
+ * If it is a String, spaces are ignored and unrecognized characters
+ * terminate the value.
+ *
+ * digits:: The number of significant digits, as a Fixnum. If omitted or 0,
+ * the number of significant digits is determined from the initial
+ * value.
+ *
+ * The actual number of significant digits used in computation is usually
+ * larger than the specified number.
+ */
+static VALUE
+BigDecimal_new(int argc, VALUE *argv, VALUE self)
+{
+ ENTER(5);
+ Real *pv;
+ size_t mf;
+ VALUE nFig;
+ VALUE iniValue;
+
+ if (rb_scan_args(argc, argv, "11", &iniValue, &nFig) == 1) {
+ mf = 0;
+ }
+ else {
+ mf = GetPositiveInt(nFig);
+ }
+
+ switch (TYPE(iniValue)) {
+ case T_DATA:
+ if (is_kind_of_BigDecimal(iniValue)) {
+ pv = VpDup(DATA_PTR(iniValue));
+ return ToValue(pv);
+ }
+ break;
+
+ case T_FIXNUM:
+ /* fall through */
+ case T_BIGNUM:
+ return ToValue(GetVpValue(iniValue, 1));
+
+ case T_FLOAT:
+ if (mf > DBL_DIG+1) {
+ rb_raise(rb_eArgError, "precision too large.");
+ }
+ /* fall through */
+ case T_RATIONAL:
+ if (NIL_P(nFig)) {
+ rb_raise(rb_eArgError, "can't omit precision for a Rational.");
+ }
+ return ToValue(GetVpValueWithPrec(iniValue, mf, 1));
+
+ case T_STRING:
+ /* fall through */
+ default:
+ break;
+ }
+ SafeStringValue(iniValue);
+ GUARD_OBJ(pv, VpNewRbClass(mf, RSTRING_PTR(iniValue),self));
+
+ return ToValue(pv);
+}
+
+static VALUE
+BigDecimal_global_new(int argc, VALUE *argv, VALUE self)
+{
+ return BigDecimal_new(argc, argv, rb_cBigDecimal);
+}
+
+ /* call-seq:
+ * BigDecimal.limit(digits)
+ *
+ * Limit the number of significant digits in newly created BigDecimal
+ * numbers to the specified value. Rounding is performed as necessary,
+ * as specified by BigDecimal.mode.
+ *
+ * A limit of 0, the default, means no upper limit.
+ *
+ * The limit specified by this method takes less priority over any limit
+ * specified to instance methods such as ceil, floor, truncate, or round.
+ */
+static VALUE
+BigDecimal_limit(int argc, VALUE *argv, VALUE self)
+{
+ VALUE nFig;
+ VALUE nCur = INT2NUM(VpGetPrecLimit());
+
+ if(rb_scan_args(argc,argv,"01",&nFig)==1) {
+ int nf;
+ if(nFig==Qnil) return nCur;
+ Check_Type(nFig, T_FIXNUM);
+ nf = FIX2INT(nFig);
+ if(nf<0) {
+ rb_raise(rb_eArgError, "argument must be positive");
+ }
+ VpSetPrecLimit(nf);
+ }
+ return nCur;
+}
+
+/* Returns the sign of the value.
+ *
+ * Returns a positive value if > 0, a negative value if < 0, and a
+ * zero if == 0.
+ *
+ * The specific value returned indicates the type and sign of the BigDecimal,
+ * as follows:
+ *
+ * BigDecimal::SIGN_NaN:: value is Not a Number
+ * BigDecimal::SIGN_POSITIVE_ZERO:: value is +0
+ * BigDecimal::SIGN_NEGATIVE_ZERO:: value is -0
+ * BigDecimal::SIGN_POSITIVE_INFINITE:: value is +infinity
+ * BigDecimal::SIGN_NEGATIVE_INFINITE:: value is -infinity
+ * BigDecimal::SIGN_POSITIVE_FINITE:: value is positive
+ * BigDecimal::SIGN_NEGATIVE_FINITE:: value is negative
+ */
+static VALUE
+BigDecimal_sign(VALUE self)
+{ /* sign */
+ int s = GetVpValue(self,1)->sign;
+ return INT2FIX(s);
+}
+
+/* call-seq:
+ * BigDecimal.save_exception_mode { ... }
+ */
+static VALUE
+BigDecimal_save_exception_mode(VALUE self)
+{
+ unsigned short const exception_mode = VpGetException();
+ int state;
+ VALUE ret = rb_protect(rb_yield, Qnil, &state);
+ VpSetException(exception_mode);
+ if (state) rb_jump_tag(state);
+ return ret;
+}
+
+/* call-seq:
+ * BigDecimal.save_rounding_mode { ... }
+ */
+static VALUE
+BigDecimal_save_rounding_mode(VALUE self)
+{
+ unsigned short const round_mode = VpGetRoundMode();
+ int state;
+ VALUE ret = rb_protect(rb_yield, Qnil, &state);
+ VpSetRoundMode(round_mode);
+ if (state) rb_jump_tag(state);
+ return ret;
+}
+
+/* call-seq:
+ * BigDecimal.save_limit { ... }
+ */
+static VALUE
+BigDecimal_save_limit(VALUE self)
+{
+ size_t const limit = VpGetPrecLimit();
+ int state;
+ VALUE ret = rb_protect(rb_yield, Qnil, &state);
+ VpSetPrecLimit(limit);
+ if (state) rb_jump_tag(state);
+ return ret;
+}
+
+/* call-seq:
+ * BigMath.exp(x, prec)
+ *
+ * Computes the value of e (the base of natural logarithms) raised to the
+ * power of x, to the specified number of digits of precision.
+ *
+ * If x is infinite, returns Infinity.
+ *
+ * If x is NaN, returns NaN.
+ */
+static VALUE
+BigMath_s_exp(VALUE klass, VALUE x, VALUE vprec)
+{
+ ssize_t prec, n, i;
+ Real* vx = NULL;
+ VALUE one, d, x1, y, z;
+ int negative = 0;
+ int infinite = 0;
+ int nan = 0;
+ double flo;
+
+ prec = NUM2SSIZET(vprec);
+ if (prec <= 0) {
+ rb_raise(rb_eArgError, "Zero or negative precision for exp");
+ }
+
+ /* TODO: the following switch statement is almostly the same as one in the
+ * BigDecimalCmp function. */
+ switch (TYPE(x)) {
+ case T_DATA:
+ if (!is_kind_of_BigDecimal(x)) break;
+ vx = DATA_PTR(x);
+ negative = VpGetSign(vx) < 0;
+ infinite = VpIsPosInf(vx) || VpIsNegInf(vx);
+ nan = VpIsNaN(vx);
+ break;
+
+ case T_FIXNUM:
+ /* fall through */
+ case T_BIGNUM:
+ vx = GetVpValue(x, 0);
+ break;
+
+ case T_FLOAT:
+ flo = RFLOAT_VALUE(x);
+ negative = flo < 0;
+ infinite = isinf(flo);
+ nan = isnan(flo);
+ if (!infinite && !nan) {
+ vx = GetVpValueWithPrec(x, DBL_DIG+1, 0);
+ }
+ break;
+
+ case T_RATIONAL:
+ vx = GetVpValueWithPrec(x, prec, 0);
+ break;
+
+ default:
+ break;
+ }
+ if (infinite) {
+ if (negative) {
+ return ToValue(GetVpValueWithPrec(INT2NUM(0), prec, 1));
+ }
+ else {
+ Real* vy;
+ vy = VpCreateRbObject(prec, "#0");
+ RB_GC_GUARD(vy->obj);
+ VpSetInf(vy, VP_SIGN_POSITIVE_INFINITE);
+ return ToValue(vy);
+ }
+ }
+ else if (nan) {
+ Real* vy;
+ vy = VpCreateRbObject(prec, "#0");
+ RB_GC_GUARD(vy->obj);
+ VpSetNaN(vy);
+ return ToValue(vy);
+ }
+ else if (vx == NULL) {
+ cannot_be_coerced_into_BigDecimal(rb_eArgError, x);
+ }
+ RB_GC_GUARD(vx->obj);
+
+ n = prec + rmpd_double_figures();
+ negative = VpGetSign(vx) < 0;
+ if (negative) {
+ VpSetSign(vx, 1);
+ }
+
+ RB_GC_GUARD(one) = ToValue(VpCreateRbObject(1, "1"));
+ RB_GC_GUARD(x1) = one;
+ RB_GC_GUARD(y) = one;
+ RB_GC_GUARD(d) = y;
+ RB_GC_GUARD(z) = one;
+ i = 0;
+
+ while (!VpIsZero((Real*)DATA_PTR(d))) {
+ VALUE argv[2];
+ SIGNED_VALUE const ey = VpExponent10(DATA_PTR(y));
+ SIGNED_VALUE const ed = VpExponent10(DATA_PTR(d));
+ ssize_t m = n - vabs(ey - ed);
+ if (m <= 0) {
+ break;
+ }
+ else if ((size_t)m < rmpd_double_figures()) {
+ m = rmpd_double_figures();
+ }
+
+ x1 = BigDecimal_mult2(x1, x, SSIZET2NUM(n));
+ ++i;
+ z = BigDecimal_mult(z, SSIZET2NUM(i));
+ argv[0] = z;
+ argv[1] = SSIZET2NUM(m);
+ d = BigDecimal_div2(2, argv, x1);
+ y = BigDecimal_add(y, d);
+ }
+
+ if (negative) {
+ VALUE argv[2];
+ argv[0] = y;
+ argv[1] = vprec;
+ return BigDecimal_div2(2, argv, one);
+ }
+ else {
+ vprec = SSIZET2NUM(prec - VpExponent10(DATA_PTR(y)));
+ return BigDecimal_round(1, &vprec, y);
+ }
+}
+
+/* call-seq:
+ * BigMath.log(x, prec)
+ *
+ * Computes the natural logarithm of x to the specified number of digits of
+ * precision.
+ *
+ * If x is zero or negative, raises Math::DomainError.
+ *
+ * If x is positive infinite, returns Infinity.
+ *
+ * If x is NaN, returns NaN.
+ */
+static VALUE
+BigMath_s_log(VALUE klass, VALUE x, VALUE vprec)
+{
+ ssize_t prec, n, i;
+ SIGNED_VALUE expo;
+ Real* vx = NULL;
+ VALUE argv[2], vn, one, two, w, x2, y, d;
+ int zero = 0;
+ int negative = 0;
+ int infinite = 0;
+ int nan = 0;
+ double flo;
+ long fix;
+
+ if (!is_integer(vprec)) {
+ rb_raise(rb_eArgError, "precision must be an Integer");
+ }
+
+ prec = NUM2SSIZET(vprec);
+ if (prec <= 0) {
+ rb_raise(rb_eArgError, "Zero or negative precision for exp");
+ }
+
+ /* TODO: the following switch statement is almostly the same as one in the
+ * BigDecimalCmp function. */
+ switch (TYPE(x)) {
+ case T_DATA:
+ if (!is_kind_of_BigDecimal(x)) break;
+ vx = DATA_PTR(x);
+ zero = VpIsZero(vx);
+ negative = VpGetSign(vx) < 0;
+ infinite = VpIsPosInf(vx) || VpIsNegInf(vx);
+ nan = VpIsNaN(vx);
+ break;
+
+ case T_FIXNUM:
+ fix = FIX2LONG(x);
+ zero = fix == 0;
+ negative = fix < 0;
+ goto get_vp_value;
+
+ case T_BIGNUM:
+ zero = RBIGNUM_ZERO_P(x);
+ negative = RBIGNUM_NEGATIVE_P(x);
+get_vp_value:
+ if (zero || negative) break;
+ vx = GetVpValue(x, 0);
+ break;
+
+ case T_FLOAT:
+ flo = RFLOAT_VALUE(x);
+ zero = flo == 0;
+ negative = flo < 0;
+ infinite = isinf(flo);
+ nan = isnan(flo);
+ if (!zero && !negative && !infinite && !nan) {
+ vx = GetVpValueWithPrec(x, DBL_DIG+1, 1);
+ }
+ break;
+
+ case T_RATIONAL:
+ zero = RRATIONAL_ZERO_P(x);
+ negative = RRATIONAL_NEGATIVE_P(x);
+ if (zero || negative) break;
+ vx = GetVpValueWithPrec(x, prec, 1);
+ break;
+
+ case T_COMPLEX:
+ rb_raise(rb_eMathDomainError,
+ "Complex argument for BigMath.log");
+
+ default:
+ break;
+ }
+ if (infinite && !negative) {
+ Real* vy;
+ vy = VpCreateRbObject(prec, "#0");
+ RB_GC_GUARD(vy->obj);
+ VpSetInf(vy, VP_SIGN_POSITIVE_INFINITE);
+ return ToValue(vy);
+ }
+ else if (nan) {
+ Real* vy;
+ vy = VpCreateRbObject(prec, "#0");
+ RB_GC_GUARD(vy->obj);
+ VpSetNaN(vy);
+ return ToValue(vy);
+ }
+ else if (zero || negative) {
+ rb_raise(rb_eMathDomainError,
+ "Zero or negative argument for log");
+ }
+ else if (vx == NULL) {
+ cannot_be_coerced_into_BigDecimal(rb_eArgError, x);
+ }
+ x = ToValue(vx);
+
+ RB_GC_GUARD(one) = ToValue(VpCreateRbObject(1, "1"));
+ RB_GC_GUARD(two) = ToValue(VpCreateRbObject(1, "2"));
+
+ n = prec + rmpd_double_figures();
+ RB_GC_GUARD(vn) = SSIZET2NUM(n);
+ expo = VpExponent10(vx);
+ if (expo < 0 || expo >= 3) {
+ char buf[16];
+ snprintf(buf, 16, "1E%ld", -expo);
+ x = BigDecimal_mult2(x, ToValue(VpCreateRbObject(1, buf)), vn);
+ }
+ else {
+ expo = 0;
+ }
+ w = BigDecimal_sub(x, one);
+ argv[0] = BigDecimal_add(x, one);
+ argv[1] = vn;
+ x = BigDecimal_div2(2, argv, w);
+ RB_GC_GUARD(x2) = BigDecimal_mult2(x, x, vn);
+ RB_GC_GUARD(y) = x;
+ RB_GC_GUARD(d) = y;
+ i = 1;
+ while (!VpIsZero((Real*)DATA_PTR(d))) {
+ SIGNED_VALUE const ey = VpExponent10(DATA_PTR(y));
+ SIGNED_VALUE const ed = VpExponent10(DATA_PTR(d));
+ ssize_t m = n - vabs(ey - ed);
+ if (m <= 0) {
+ break;
+ }
+ else if ((size_t)m < rmpd_double_figures()) {
+ m = rmpd_double_figures();
+ }
+
+ x = BigDecimal_mult2(x2, x, vn);
+ i += 2;
+ argv[0] = SSIZET2NUM(i);
+ argv[1] = SSIZET2NUM(m);
+ d = BigDecimal_div2(2, argv, x);
+ y = BigDecimal_add(y, d);
+ }
+
+ y = BigDecimal_mult(y, two);
+ if (expo != 0) {
+ VALUE log10, vexpo, dy;
+ log10 = BigMath_s_log(klass, INT2FIX(10), vprec);
+ vexpo = ToValue(GetVpValue(SSIZET2NUM(expo), 1));
+ dy = BigDecimal_mult(log10, vexpo);
+ y = BigDecimal_add(y, dy);
+ }
+
+ return y;
+}
+
+/* Document-class: BigDecimal
+ * BigDecimal provides arbitrary-precision floating point decimal arithmetic.
+ *
+ * Copyright (C) 2002 by Shigeo Kobayashi <shigeo@tinyforest.gr.jp>.
+ * You may distribute under the terms of either the GNU General Public
+ * License or the Artistic License, as specified in the README file
+ * of the BigDecimal distribution.
+ *
+ * Documented by mathew <meta@pobox.com>.
+ *
+ * = Introduction
+ *
+ * Ruby provides built-in support for arbitrary precision integer arithmetic.
+ * For example:
+ *
+ * 42**13 -> 1265437718438866624512
+ *
+ * BigDecimal provides similar support for very large or very accurate floating
+ * point numbers.
+ *
+ * Decimal arithmetic is also useful for general calculation, because it
+ * provides the correct answers people expect--whereas normal binary floating
+ * point arithmetic often introduces subtle errors because of the conversion
+ * between base 10 and base 2. For example, try:
+ *
+ * sum = 0
+ * for i in (1..10000)
+ * sum = sum + 0.0001
+ * end
+ * print sum
+ *
+ * and contrast with the output from:
+ *
+ * require 'bigdecimal'
+ *
+ * sum = BigDecimal.new("0")
+ * for i in (1..10000)
+ * sum = sum + BigDecimal.new("0.0001")
+ * end
+ * print sum
+ *
+ * Similarly:
+ *
+ * (BigDecimal.new("1.2") - BigDecimal("1.0")) == BigDecimal("0.2") -> true
+ *
+ * (1.2 - 1.0) == 0.2 -> false
+ *
+ * = Special features of accurate decimal arithmetic
+ *
+ * Because BigDecimal is more accurate than normal binary floating point
+ * arithmetic, it requires some special values.
+ *
+ * == Infinity
+ *
+ * BigDecimal sometimes needs to return infinity, for example if you divide
+ * a value by zero.
+ *
+ * BigDecimal.new("1.0") / BigDecimal.new("0.0") -> infinity
+ *
+ * BigDecimal.new("-1.0") / BigDecimal.new("0.0") -> -infinity
+ *
+ * You can represent infinite numbers to BigDecimal using the strings
+ * 'Infinity', '+Infinity' and '-Infinity' (case-sensitive)
+ *
+ * == Not a Number
+ *
+ * When a computation results in an undefined value, the special value NaN
+ * (for 'not a number') is returned.
+ *
+ * Example:
+ *
+ * BigDecimal.new("0.0") / BigDecimal.new("0.0") -> NaN
+ *
+ * You can also create undefined values. NaN is never considered to be the
+ * same as any other value, even NaN itself:
+ *
+ * n = BigDecimal.new('NaN')
+ *
+ * n == 0.0 -> nil
+ *
+ * n == n -> nil
+ *
+ * == Positive and negative zero
+ *
+ * If a computation results in a value which is too small to be represented as
+ * a BigDecimal within the currently specified limits of precision, zero must
+ * be returned.
+ *
+ * If the value which is too small to be represented is negative, a BigDecimal
+ * value of negative zero is returned. If the value is positive, a value of
+ * positive zero is returned.
+ *
+ * BigDecimal.new("1.0") / BigDecimal.new("-Infinity") -> -0.0
+ *
+ * BigDecimal.new("1.0") / BigDecimal.new("Infinity") -> 0.0
+ *
+ * (See BigDecimal.mode for how to specify limits of precision.)
+ *
+ * Note that -0.0 and 0.0 are considered to be the same for the purposes of
+ * comparison.
+ *
+ * Note also that in mathematics, there is no particular concept of negative
+ * or positive zero; true mathematical zero has no sign.
+ */
+void
+Init_bigdecimal(void)
+{
+ VALUE arg;
+
+ id_BigDecimal_exception_mode = rb_intern_const("BigDecimal.exception_mode");
+ id_BigDecimal_rounding_mode = rb_intern_const("BigDecimal.rounding_mode");
+ id_BigDecimal_precision_limit = rb_intern_const("BigDecimal.precision_limit");
+
+ /* Initialize VP routines */
+ VpInit(0UL);
+
+ /* Class and method registration */
+ rb_cBigDecimal = rb_define_class("BigDecimal",rb_cNumeric);
+
+ /* Global function */
+ rb_define_global_function("BigDecimal", BigDecimal_global_new, -1);
+
+ /* Class methods */
+ rb_define_singleton_method(rb_cBigDecimal, "new", BigDecimal_new, -1);
+ rb_define_singleton_method(rb_cBigDecimal, "mode", BigDecimal_mode, -1);
+ rb_define_singleton_method(rb_cBigDecimal, "limit", BigDecimal_limit, -1);
+ rb_define_singleton_method(rb_cBigDecimal, "double_fig", BigDecimal_double_fig, 0);
+ rb_define_singleton_method(rb_cBigDecimal, "_load", BigDecimal_load, 1);
+ rb_define_singleton_method(rb_cBigDecimal, "ver", BigDecimal_version, 0);
+
+ rb_define_singleton_method(rb_cBigDecimal, "save_exception_mode", BigDecimal_save_exception_mode, 0);
+ rb_define_singleton_method(rb_cBigDecimal, "save_rounding_mode", BigDecimal_save_rounding_mode, 0);
+ rb_define_singleton_method(rb_cBigDecimal, "save_limit", BigDecimal_save_limit, 0);
+
+ /* Constants definition */
+
+ /*
+ * Base value used in internal calculations. On a 32 bit system, BASE
+ * is 10000, indicating that calculation is done in groups of 4 digits.
+ * (If it were larger, BASE**2 wouldn't fit in 32 bits, so you couldn't
+ * guarantee that two groups could always be multiplied together without
+ * overflow.)
+ */
+ rb_define_const(rb_cBigDecimal, "BASE", INT2FIX((SIGNED_VALUE)VpBaseVal()));
+
+ /* Exceptions */
+
+ /*
+ * 0xff: Determines whether overflow, underflow or zero divide result in
+ * an exception being thrown. See BigDecimal.mode.
+ */
+ rb_define_const(rb_cBigDecimal, "EXCEPTION_ALL",INT2FIX(VP_EXCEPTION_ALL));
+
+ /*
+ * 0x02: Determines what happens when the result of a computation is not a
+ * number (NaN). See BigDecimal.mode.
+ */
+ rb_define_const(rb_cBigDecimal, "EXCEPTION_NaN",INT2FIX(VP_EXCEPTION_NaN));
+
+ /*
+ * 0x01: Determines what happens when the result of a computation is
+ * infinity. See BigDecimal.mode.
+ */
+ rb_define_const(rb_cBigDecimal, "EXCEPTION_INFINITY",INT2FIX(VP_EXCEPTION_INFINITY));
+
+ /*
+ * 0x04: Determines what happens when the result of a computation is an
+ * underflow (a result too small to be represented). See BigDecimal.mode.
+ */
+ rb_define_const(rb_cBigDecimal, "EXCEPTION_UNDERFLOW",INT2FIX(VP_EXCEPTION_UNDERFLOW));
+
+ /*
+ * 0x01: Determines what happens when the result of a computation is an
+ * overflow (a result too large to be represented). See BigDecimal.mode.
+ */
+ rb_define_const(rb_cBigDecimal, "EXCEPTION_OVERFLOW",INT2FIX(VP_EXCEPTION_OVERFLOW));
+
+ /*
+ * 0x01: Determines what happens when a division by zero is performed.
+ * See BigDecimal.mode.
+ */
+ rb_define_const(rb_cBigDecimal, "EXCEPTION_ZERODIVIDE",INT2FIX(VP_EXCEPTION_ZERODIVIDE));
+
+ /*
+ * 0x100: Determines what happens when a result must be rounded in order to
+ * fit in the appropriate number of significant digits. See
+ * BigDecimal.mode.
+ */
+ rb_define_const(rb_cBigDecimal, "ROUND_MODE",INT2FIX(VP_ROUND_MODE));
+
+ /* 1: Indicates that values should be rounded away from zero. See
+ * BigDecimal.mode.
+ */
+ rb_define_const(rb_cBigDecimal, "ROUND_UP",INT2FIX(VP_ROUND_UP));
+
+ /* 2: Indicates that values should be rounded towards zero. See
+ * BigDecimal.mode.
+ */
+ rb_define_const(rb_cBigDecimal, "ROUND_DOWN",INT2FIX(VP_ROUND_DOWN));
+
+ /* 3: Indicates that digits >= 5 should be rounded up, others rounded down.
+ * See BigDecimal.mode. */
+ rb_define_const(rb_cBigDecimal, "ROUND_HALF_UP",INT2FIX(VP_ROUND_HALF_UP));
+
+ /* 4: Indicates that digits >= 6 should be rounded up, others rounded down.
+ * See BigDecimal.mode.
+ */
+ rb_define_const(rb_cBigDecimal, "ROUND_HALF_DOWN",INT2FIX(VP_ROUND_HALF_DOWN));
+ /* 5: Round towards +infinity. See BigDecimal.mode. */
+ rb_define_const(rb_cBigDecimal, "ROUND_CEILING",INT2FIX(VP_ROUND_CEIL));
+
+ /* 6: Round towards -infinity. See BigDecimal.mode. */
+ rb_define_const(rb_cBigDecimal, "ROUND_FLOOR",INT2FIX(VP_ROUND_FLOOR));
+
+ /* 7: Round towards the even neighbor. See BigDecimal.mode. */
+ rb_define_const(rb_cBigDecimal, "ROUND_HALF_EVEN",INT2FIX(VP_ROUND_HALF_EVEN));
+
+ /* 0: Indicates that a value is not a number. See BigDecimal.sign. */
+ rb_define_const(rb_cBigDecimal, "SIGN_NaN",INT2FIX(VP_SIGN_NaN));
+
+ /* 1: Indicates that a value is +0. See BigDecimal.sign. */
+ rb_define_const(rb_cBigDecimal, "SIGN_POSITIVE_ZERO",INT2FIX(VP_SIGN_POSITIVE_ZERO));
+
+ /* -1: Indicates that a value is -0. See BigDecimal.sign. */
+ rb_define_const(rb_cBigDecimal, "SIGN_NEGATIVE_ZERO",INT2FIX(VP_SIGN_NEGATIVE_ZERO));
+
+ /* 2: Indicates that a value is positive and finite. See BigDecimal.sign. */
+ rb_define_const(rb_cBigDecimal, "SIGN_POSITIVE_FINITE",INT2FIX(VP_SIGN_POSITIVE_FINITE));
+
+ /* -2: Indicates that a value is negative and finite. See BigDecimal.sign. */
+ rb_define_const(rb_cBigDecimal, "SIGN_NEGATIVE_FINITE",INT2FIX(VP_SIGN_NEGATIVE_FINITE));
+
+ /* 3: Indicates that a value is positive and infinite. See BigDecimal.sign. */
+ rb_define_const(rb_cBigDecimal, "SIGN_POSITIVE_INFINITE",INT2FIX(VP_SIGN_POSITIVE_INFINITE));
+
+ /* -3: Indicates that a value is negative and infinite. See BigDecimal.sign. */
+ rb_define_const(rb_cBigDecimal, "SIGN_NEGATIVE_INFINITE",INT2FIX(VP_SIGN_NEGATIVE_INFINITE));
+
+ arg = rb_str_new2("+Infinity");
+ rb_define_const(rb_cBigDecimal, "INFINITY", BigDecimal_global_new(1, &arg, rb_cBigDecimal));
+ arg = rb_str_new2("NaN");
+ rb_define_const(rb_cBigDecimal, "NAN", BigDecimal_global_new(1, &arg, rb_cBigDecimal));
+
+
+ /* instance methods */
+ rb_define_method(rb_cBigDecimal, "precs", BigDecimal_prec, 0);
+
+ rb_define_method(rb_cBigDecimal, "add", BigDecimal_add2, 2);
+ rb_define_method(rb_cBigDecimal, "sub", BigDecimal_sub2, 2);
+ rb_define_method(rb_cBigDecimal, "mult", BigDecimal_mult2, 2);
+ rb_define_method(rb_cBigDecimal, "div", BigDecimal_div2, -1);
+ rb_define_method(rb_cBigDecimal, "hash", BigDecimal_hash, 0);
+ rb_define_method(rb_cBigDecimal, "to_s", BigDecimal_to_s, -1);
+ rb_define_method(rb_cBigDecimal, "to_i", BigDecimal_to_i, 0);
+ rb_define_method(rb_cBigDecimal, "to_int", BigDecimal_to_i, 0);
+ rb_define_method(rb_cBigDecimal, "to_r", BigDecimal_to_r, 0);
+ rb_define_method(rb_cBigDecimal, "split", BigDecimal_split, 0);
+ rb_define_method(rb_cBigDecimal, "+", BigDecimal_add, 1);
+ rb_define_method(rb_cBigDecimal, "-", BigDecimal_sub, 1);
+ rb_define_method(rb_cBigDecimal, "+@", BigDecimal_uplus, 0);
+ rb_define_method(rb_cBigDecimal, "-@", BigDecimal_neg, 0);
+ rb_define_method(rb_cBigDecimal, "*", BigDecimal_mult, 1);
+ rb_define_method(rb_cBigDecimal, "/", BigDecimal_div, 1);
+ rb_define_method(rb_cBigDecimal, "quo", BigDecimal_div, 1);
+ rb_define_method(rb_cBigDecimal, "%", BigDecimal_mod, 1);
+ rb_define_method(rb_cBigDecimal, "modulo", BigDecimal_mod, 1);
+ rb_define_method(rb_cBigDecimal, "remainder", BigDecimal_remainder, 1);
+ rb_define_method(rb_cBigDecimal, "divmod", BigDecimal_divmod, 1);
+ /* rb_define_method(rb_cBigDecimal, "dup", BigDecimal_dup, 0); */
+ rb_define_method(rb_cBigDecimal, "to_f", BigDecimal_to_f, 0);
+ rb_define_method(rb_cBigDecimal, "abs", BigDecimal_abs, 0);
+ rb_define_method(rb_cBigDecimal, "sqrt", BigDecimal_sqrt, 1);
+ rb_define_method(rb_cBigDecimal, "fix", BigDecimal_fix, 0);
+ rb_define_method(rb_cBigDecimal, "round", BigDecimal_round, -1);
+ rb_define_method(rb_cBigDecimal, "frac", BigDecimal_frac, 0);
+ rb_define_method(rb_cBigDecimal, "floor", BigDecimal_floor, -1);
+ rb_define_method(rb_cBigDecimal, "ceil", BigDecimal_ceil, -1);
+ rb_define_method(rb_cBigDecimal, "power", BigDecimal_power, -1);
+ rb_define_method(rb_cBigDecimal, "**", BigDecimal_power_op, 1);
+ rb_define_method(rb_cBigDecimal, "<=>", BigDecimal_comp, 1);
+ rb_define_method(rb_cBigDecimal, "==", BigDecimal_eq, 1);
+ rb_define_method(rb_cBigDecimal, "===", BigDecimal_eq, 1);
+ rb_define_method(rb_cBigDecimal, "eql?", BigDecimal_eq, 1);
+ rb_define_method(rb_cBigDecimal, "<", BigDecimal_lt, 1);
+ rb_define_method(rb_cBigDecimal, "<=", BigDecimal_le, 1);
+ rb_define_method(rb_cBigDecimal, ">", BigDecimal_gt, 1);
+ rb_define_method(rb_cBigDecimal, ">=", BigDecimal_ge, 1);
+ rb_define_method(rb_cBigDecimal, "zero?", BigDecimal_zero, 0);
+ rb_define_method(rb_cBigDecimal, "nonzero?", BigDecimal_nonzero, 0);
+ rb_define_method(rb_cBigDecimal, "coerce", BigDecimal_coerce, 1);
+ rb_define_method(rb_cBigDecimal, "inspect", BigDecimal_inspect, 0);
+ rb_define_method(rb_cBigDecimal, "exponent", BigDecimal_exponent, 0);
+ rb_define_method(rb_cBigDecimal, "sign", BigDecimal_sign, 0);
+ rb_define_method(rb_cBigDecimal, "nan?", BigDecimal_IsNaN, 0);
+ rb_define_method(rb_cBigDecimal, "infinite?", BigDecimal_IsInfinite, 0);
+ rb_define_method(rb_cBigDecimal, "finite?", BigDecimal_IsFinite, 0);
+ rb_define_method(rb_cBigDecimal, "truncate", BigDecimal_truncate, -1);
+ rb_define_method(rb_cBigDecimal, "_dump", BigDecimal_dump, -1);
+
+ /* mathematical functions */
+ rb_mBigMath = rb_define_module("BigMath");
+ rb_define_singleton_method(rb_mBigMath, "exp", BigMath_s_exp, 2);
+ rb_define_singleton_method(rb_mBigMath, "log", BigMath_s_log, 2);
+
+ id_up = rb_intern_const("up");
+ id_down = rb_intern_const("down");
+ id_truncate = rb_intern_const("truncate");
+ id_half_up = rb_intern_const("half_up");
+ id_default = rb_intern_const("default");
+ id_half_down = rb_intern_const("half_down");
+ id_half_even = rb_intern_const("half_even");
+ id_banker = rb_intern_const("banker");
+ id_ceiling = rb_intern_const("ceiling");
+ id_ceil = rb_intern_const("ceil");
+ id_floor = rb_intern_const("floor");
+ id_to_r = rb_intern_const("to_r");
+ id_eq = rb_intern_const("==");
+}
+
+/*
+ *
+ * ============================================================================
+ *
+ * vp_ routines begin from here.
+ *
+ * ============================================================================
+ *
+ */
+#ifdef BIGDECIMAL_DEBUG
+static int gfDebug = 1; /* Debug switch */
+#if 0
+static int gfCheckVal = 1; /* Value checking flag in VpNmlz() */
+#endif
+#endif /* BIGDECIMAL_DEBUG */
+
+static Real *VpConstOne; /* constant 1.0 */
+static Real *VpPt5; /* constant 0.5 */
+#define maxnr 100UL /* Maximum iterations for calcurating sqrt. */
+ /* used in VpSqrt() */
+
+/* ETC */
+#define MemCmp(x,y,z) memcmp(x,y,z)
+#define StrCmp(x,y) strcmp(x,y)
+
+static int VpIsDefOP(Real *c,Real *a,Real *b,int sw);
+static int AddExponent(Real *a, SIGNED_VALUE n);
+static BDIGIT VpAddAbs(Real *a,Real *b,Real *c);
+static BDIGIT VpSubAbs(Real *a,Real *b,Real *c);
+static size_t VpSetPTR(Real *a, Real *b, Real *c, size_t *a_pos, size_t *b_pos, size_t *c_pos, BDIGIT *av, BDIGIT *bv);
+static int VpNmlz(Real *a);
+static void VpFormatSt(char *psz, size_t fFmt);
+static int VpRdup(Real *m, size_t ind_m);
+
+#ifdef BIGDECIMAL_DEBUG
+static int gnAlloc=0; /* Memory allocation counter */
+#endif /* BIGDECIMAL_DEBUG */
+
+VP_EXPORT void *
+VpMemAlloc(size_t mb)
+{
+ void *p = xmalloc(mb);
+ if (!p) {
+ VpException(VP_EXCEPTION_MEMORY, "failed to allocate memory", 1);
+ }
+ memset(p, 0, mb);
+#ifdef BIGDECIMAL_DEBUG
+ gnAlloc++; /* Count allocation call */
+#endif /* BIGDECIMAL_DEBUG */
+ return p;
+}
+
+VP_EXPORT void
+VpFree(Real *pv)
+{
+ if(pv != NULL) {
+ xfree(pv);
+#ifdef BIGDECIMAL_DEBUG
+ gnAlloc--; /* Decrement allocation count */
+ if(gnAlloc==0) {
+ printf(" *************** All memories allocated freed ****************");
+ getchar();
+ }
+ if(gnAlloc<0) {
+ printf(" ??????????? Too many memory free calls(%d) ?????????????\n",gnAlloc);
+ getchar();
+ }
+#endif /* BIGDECIMAL_DEBUG */
+ }
+}
+
+/*
+ * EXCEPTION Handling.
+ */
+
+#define rmpd_set_thread_local_exception_mode(mode) \
+ rb_thread_local_aset( \
+ rb_thread_current(), \
+ id_BigDecimal_exception_mode, \
+ INT2FIX((int)(mode)) \
+ )
+
+static unsigned short
+VpGetException (void)
+{
+ VALUE const vmode = rb_thread_local_aref(
+ rb_thread_current(),
+ id_BigDecimal_exception_mode
+ );
+
+ if (NIL_P(vmode)) {
+ rmpd_set_thread_local_exception_mode(RMPD_EXCEPTION_MODE_DEFAULT);
+ return RMPD_EXCEPTION_MODE_DEFAULT;
+ }
+
+ return (unsigned short)FIX2UINT(vmode);
+}
+
+static void
+VpSetException(unsigned short f)
+{
+ rmpd_set_thread_local_exception_mode(f);
+}
+
+/*
+ * Precision limit.
+ */
+
+#define rmpd_set_thread_local_precision_limit(limit) \
+ rb_thread_local_aset( \
+ rb_thread_current(), \
+ id_BigDecimal_precision_limit, \
+ SIZET2NUM(limit) \
+ )
+#define RMPD_PRECISION_LIMIT_DEFAULT ((size_t)0)
+
+/* These 2 functions added at v1.1.7 */
+VP_EXPORT size_t
+VpGetPrecLimit(void)
+{
+ VALUE const vlimit = rb_thread_local_aref(
+ rb_thread_current(),
+ id_BigDecimal_precision_limit
+ );
+
+ if (NIL_P(vlimit)) {
+ rmpd_set_thread_local_precision_limit(RMPD_PRECISION_LIMIT_DEFAULT);
+ return RMPD_PRECISION_LIMIT_DEFAULT;
+ }
+
+ return NUM2SIZET(vlimit);
+}
+
+VP_EXPORT size_t
+VpSetPrecLimit(size_t n)
+{
+ size_t const s = VpGetPrecLimit();
+ rmpd_set_thread_local_precision_limit(n);
+ return s;
+}
+
+/*
+ * Rounding mode.
+ */
+
+#define rmpd_set_thread_local_rounding_mode(mode) \
+ rb_thread_local_aset( \
+ rb_thread_current(), \
+ id_BigDecimal_rounding_mode, \
+ INT2FIX((int)(mode)) \
+ )
+
+VP_EXPORT unsigned short
+VpGetRoundMode(void)
+{
+ VALUE const vmode = rb_thread_local_aref(
+ rb_thread_current(),
+ id_BigDecimal_rounding_mode
+ );
+
+ if (NIL_P(vmode)) {
+ rmpd_set_thread_local_rounding_mode(RMPD_ROUNDING_MODE_DEFAULT);
+ return RMPD_ROUNDING_MODE_DEFAULT;
+ }
+
+ return (unsigned short)FIX2INT(vmode);
+}
+
+VP_EXPORT int
+VpIsRoundMode(unsigned short n)
+{
+ switch (n) {
+ case VP_ROUND_UP:
+ case VP_ROUND_DOWN:
+ case VP_ROUND_HALF_UP:
+ case VP_ROUND_HALF_DOWN:
+ case VP_ROUND_CEIL:
+ case VP_ROUND_FLOOR:
+ case VP_ROUND_HALF_EVEN:
+ return 1;
+
+ default:
+ return 0;
+ }
+}
+
+VP_EXPORT unsigned short
+VpSetRoundMode(unsigned short n)
+{
+ if (VpIsRoundMode(n)) {
+ rmpd_set_thread_local_rounding_mode(n);
+ return n;
+ }
+
+ return VpGetRoundMode();
+}
+
+/*
+ * 0.0 & 1.0 generator
+ * These gZero_..... and gOne_..... can be any name
+ * referenced from nowhere except Zero() and One().
+ * gZero_..... and gOne_..... must have global scope
+ * (to let the compiler know they may be changed in outside
+ * (... but not actually..)).
+ */
+volatile const double gZero_ABCED9B1_CE73__00400511F31D = 0.0;
+volatile const double gOne_ABCED9B4_CE73__00400511F31D = 1.0;
+static double
+Zero(void)
+{
+ return gZero_ABCED9B1_CE73__00400511F31D;
+}
+
+static double
+One(void)
+{
+ return gOne_ABCED9B4_CE73__00400511F31D;
+}
+
+/*
+ ----------------------------------------------------------------
+ Value of sign in Real structure is reserved for future use.
+ short sign;
+ ==0 : NaN
+ 1 : Positive zero
+ -1 : Negative zero
+ 2 : Positive number
+ -2 : Negative number
+ 3 : Positive infinite number
+ -3 : Negative infinite number
+ ----------------------------------------------------------------
+*/
+
+VP_EXPORT double
+VpGetDoubleNaN(void) /* Returns the value of NaN */
+{
+ static double fNaN = 0.0;
+ if(fNaN==0.0) fNaN = Zero()/Zero();
+ return fNaN;
+}
+
+VP_EXPORT double
+VpGetDoublePosInf(void) /* Returns the value of +Infinity */
+{
+ static double fInf = 0.0;
+ if(fInf==0.0) fInf = One()/Zero();
+ return fInf;
+}
+
+VP_EXPORT double
+VpGetDoubleNegInf(void) /* Returns the value of -Infinity */
+{
+ static double fInf = 0.0;
+ if(fInf==0.0) fInf = -(One()/Zero());
+ return fInf;
+}
+
+VP_EXPORT double
+VpGetDoubleNegZero(void) /* Returns the value of -0 */
+{
+ static double nzero = 1000.0;
+ if(nzero!=0.0) nzero = (One()/VpGetDoubleNegInf());
+ return nzero;
+}
+
+#if 0 /* unused */
+VP_EXPORT int
+VpIsNegDoubleZero(double v)
+{
+ double z = VpGetDoubleNegZero();
+ return MemCmp(&v,&z,sizeof(v))==0;
+}
+#endif
+
+VP_EXPORT int
+VpException(unsigned short f, const char *str,int always)
+{
+ VALUE exc;
+ int fatal=0;
+ unsigned short const exception_mode = VpGetException();
+
+ if(f==VP_EXCEPTION_OP || f==VP_EXCEPTION_MEMORY) always = 1;
+
+ if (always || (exception_mode & f)) {
+ switch(f)
+ {
+ /*
+ case VP_EXCEPTION_OVERFLOW:
+ */
+ case VP_EXCEPTION_ZERODIVIDE:
+ case VP_EXCEPTION_INFINITY:
+ case VP_EXCEPTION_NaN:
+ case VP_EXCEPTION_UNDERFLOW:
+ case VP_EXCEPTION_OP:
+ exc = rb_eFloatDomainError;
+ goto raise;
+ case VP_EXCEPTION_MEMORY:
+ fatal = 1;
+ goto raise;
+ default:
+ fatal = 1;
+ goto raise;
+ }
+ }
+ return 0; /* 0 Means VpException() raised no exception */
+
+raise:
+ if(fatal) rb_fatal("%s", str);
+ else rb_raise(exc, "%s", str);
+ return 0;
+}
+
+/* Throw exception or returns 0,when resulting c is Inf or NaN */
+/* sw=1:+ 2:- 3:* 4:/ */
+static int
+VpIsDefOP(Real *c,Real *a,Real *b,int sw)
+{
+ if(VpIsNaN(a) || VpIsNaN(b)) {
+ /* at least a or b is NaN */
+ VpSetNaN(c);
+ goto NaN;
+ }
+
+ if(VpIsInf(a)) {
+ if(VpIsInf(b)) {
+ switch(sw)
+ {
+ case 1: /* + */
+ if(VpGetSign(a)==VpGetSign(b)) {
+ VpSetInf(c,VpGetSign(a));
+ goto Inf;
+ } else {
+ VpSetNaN(c);
+ goto NaN;
+ }
+ case 2: /* - */
+ if(VpGetSign(a)!=VpGetSign(b)) {
+ VpSetInf(c,VpGetSign(a));
+ goto Inf;
+ } else {
+ VpSetNaN(c);
+ goto NaN;
+ }
+ break;
+ case 3: /* * */
+ VpSetInf(c,VpGetSign(a)*VpGetSign(b));
+ goto Inf;
+ break;
+ case 4: /* / */
+ VpSetNaN(c);
+ goto NaN;
+ }
+ VpSetNaN(c);
+ goto NaN;
+ }
+ /* Inf op Finite */
+ switch(sw)
+ {
+ case 1: /* + */
+ case 2: /* - */
+ VpSetInf(c,VpGetSign(a));
+ break;
+ case 3: /* * */
+ if(VpIsZero(b)) {
+ VpSetNaN(c);
+ goto NaN;
+ }
+ VpSetInf(c,VpGetSign(a)*VpGetSign(b));
+ break;
+ case 4: /* / */
+ VpSetInf(c,VpGetSign(a)*VpGetSign(b));
+ }
+ goto Inf;
+ }
+
+ if(VpIsInf(b)) {
+ switch(sw)
+ {
+ case 1: /* + */
+ VpSetInf(c,VpGetSign(b));
+ break;
+ case 2: /* - */
+ VpSetInf(c,-VpGetSign(b));
+ break;
+ case 3: /* * */
+ if(VpIsZero(a)) {
+ VpSetNaN(c);
+ goto NaN;
+ }
+ VpSetInf(c,VpGetSign(a)*VpGetSign(b));
+ break;
+ case 4: /* / */
+ VpSetZero(c,VpGetSign(a)*VpGetSign(b));
+ }
+ goto Inf;
+ }
+ return 1; /* Results OK */
+
+Inf:
+ return VpException(VP_EXCEPTION_INFINITY,"Computation results to 'Infinity'",0);
+NaN:
+ return VpException(VP_EXCEPTION_NaN,"Computation results to 'NaN'",0);
+}
+
+/*
+ ----------------------------------------------------------------
+*/
+
+/*
+ * returns number of chars needed to represent vp in specified format.
+ */
+VP_EXPORT size_t
+VpNumOfChars(Real *vp,const char *pszFmt)
+{
+ SIGNED_VALUE ex;
+ size_t nc;
+
+ if(vp == NULL) return BASE_FIG*2+6;
+ if(!VpIsDef(vp)) return 32; /* not sure,may be OK */
+
+ switch(*pszFmt)
+ {
+ case 'F':
+ nc = BASE_FIG*(vp->Prec + 1)+2;
+ ex = vp->exponent;
+ if(ex < 0) {
+ nc += BASE_FIG*(size_t)(-ex);
+ }
+ else {
+ if((size_t)ex > vp->Prec) {
+ nc += BASE_FIG*((size_t)ex - vp->Prec);
+ }
+ }
+ break;
+ case 'E':
+ default:
+ nc = BASE_FIG*(vp->Prec + 2)+6; /* 3: sign + exponent chars */
+ }
+ return nc;
+}
+
+/*
+ * Initializer for Vp routines and constants used.
+ * [Input]
+ * BaseVal: Base value(assigned to BASE) for Vp calculation.
+ * It must be the form BaseVal=10**n.(n=1,2,3,...)
+ * If Base <= 0L,then the BASE will be calcurated so
+ * that BASE is as large as possible satisfying the
+ * relation MaxVal <= BASE*(BASE+1). Where the value
+ * MaxVal is the largest value which can be represented
+ * by one BDIGIT word in the computer used.
+ *
+ * [Returns]
+ * 1+DBL_DIG ... OK
+ */
+VP_EXPORT size_t
+VpInit(BDIGIT BaseVal)
+{
+ /* Setup +/- Inf NaN -0 */
+ VpGetDoubleNaN();
+ VpGetDoublePosInf();
+ VpGetDoubleNegInf();
+ VpGetDoubleNegZero();
+
+ /* Allocates Vp constants. */
+ VpConstOne = VpAlloc(1UL, "1");
+ VpPt5 = VpAlloc(1UL, ".5");
+
+#ifdef BIGDECIMAL_DEBUG
+ gnAlloc = 0;
+#endif /* BIGDECIMAL_DEBUG */
+
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ printf("VpInit: BaseVal = %lu\n", BaseVal);
+ printf(" BASE = %lu\n", BASE);
+ printf(" HALF_BASE = %lu\n", HALF_BASE);
+ printf(" BASE1 = %lu\n", BASE1);
+ printf(" BASE_FIG = %u\n", BASE_FIG);
+ printf(" DBLE_FIG = %d\n", DBLE_FIG);
+ }
+#endif /* BIGDECIMAL_DEBUG */
+
+ return rmpd_double_figures();
+}
+
+VP_EXPORT Real *
+VpOne(void)
+{
+ return VpConstOne;
+}
+
+/* If exponent overflows,then raise exception or returns 0 */
+static int
+AddExponent(Real *a, SIGNED_VALUE n)
+{
+ SIGNED_VALUE e = a->exponent;
+ SIGNED_VALUE m = e+n;
+ SIGNED_VALUE eb, mb;
+ if(e>0) {
+ if(n>0) {
+ mb = m*(SIGNED_VALUE)BASE_FIG;
+ eb = e*(SIGNED_VALUE)BASE_FIG;
+ if(mb<eb) goto overflow;
+ }
+ } else if(n<0) {
+ mb = m*(SIGNED_VALUE)BASE_FIG;
+ eb = e*(SIGNED_VALUE)BASE_FIG;
+ if(mb>eb) goto underflow;
+ }
+ a->exponent = m;
+ return 1;
+
+/* Overflow/Underflow ==> Raise exception or returns 0 */
+underflow:
+ VpSetZero(a,VpGetSign(a));
+ return VpException(VP_EXCEPTION_UNDERFLOW,"Exponent underflow",0);
+
+overflow:
+ VpSetInf(a,VpGetSign(a));
+ return VpException(VP_EXCEPTION_OVERFLOW,"Exponent overflow",0);
+}
+
+/*
+ * Allocates variable.
+ * [Input]
+ * mx ... allocation unit, if zero then mx is determined by szVal.
+ * The mx is the number of effective digits can to be stored.
+ * szVal ... value assigned(char). If szVal==NULL,then zero is assumed.
+ * If szVal[0]=='#' then Max. Prec. will not be considered(1.1.7),
+ * full precision specified by szVal is allocated.
+ *
+ * [Returns]
+ * Pointer to the newly allocated variable, or
+ * NULL be returned if memory allocation is failed,or any error.
+ */
+VP_EXPORT Real *
+VpAlloc(size_t mx, const char *szVal)
+{
+ size_t i, ni, ipn, ipf, nf, ipe, ne, nalloc;
+ char v,*psz;
+ int sign=1;
+ Real *vp = NULL;
+ size_t mf = VpGetPrecLimit();
+ VALUE buf;
+
+ mx = (mx + BASE_FIG - 1) / BASE_FIG + 1; /* Determine allocation unit. */
+ if (szVal) {
+ while (ISSPACE(*szVal)) szVal++;
+ if (*szVal != '#') {
+ if (mf) {
+ mf = (mf + BASE_FIG - 1) / BASE_FIG + 2; /* Needs 1 more for div */
+ if (mx > mf) {
+ mx = mf;
+ }
+ }
+ }
+ else {
+ ++szVal;
+ }
+ }
+ else {
+ /* necessary to be able to store */
+ /* at least mx digits. */
+ /* szVal==NULL ==> allocate zero value. */
+ vp = (Real *) VpMemAlloc(sizeof(Real) + mx * sizeof(BDIGIT));
+ /* xmalloc() alway returns(or throw interruption) */
+ vp->MaxPrec = mx; /* set max precision */
+ VpSetZero(vp,1); /* initialize vp to zero. */
+ return vp;
+ }
+
+ /* Skip all '_' after digit: 2006-6-30 */
+ ni = 0;
+ buf = rb_str_tmp_new(strlen(szVal)+1);
+ psz = RSTRING_PTR(buf);
+ i = 0;
+ ipn = 0;
+ while ((psz[i]=szVal[ipn]) != 0) {
+ if (ISDIGIT(psz[i])) ++ni;
+ if (psz[i] == '_') {
+ if (ni > 0) { ipn++; continue; }
+ psz[i] = 0;
+ break;
+ }
+ ++i;
+ ++ipn;
+ }
+ /* Skip trailing spaces */
+ while (--i > 0) {
+ if (ISSPACE(psz[i])) psz[i] = 0;
+ else break;
+ }
+ szVal = psz;
+
+ /* Check on Inf & NaN */
+ if (StrCmp(szVal, SZ_PINF) == 0 ||
+ StrCmp(szVal, SZ_INF) == 0 ) {
+ vp = (Real *) VpMemAlloc(sizeof(Real) + sizeof(BDIGIT));
+ vp->MaxPrec = 1; /* set max precision */
+ VpSetPosInf(vp);
+ return vp;
+ }
+ if (StrCmp(szVal, SZ_NINF) == 0) {
+ vp = (Real *) VpMemAlloc(sizeof(Real) + sizeof(BDIGIT));
+ vp->MaxPrec = 1; /* set max precision */
+ VpSetNegInf(vp);
+ return vp;
+ }
+ if (StrCmp(szVal, SZ_NaN) == 0) {
+ vp = (Real *) VpMemAlloc(sizeof(Real) + sizeof(BDIGIT));
+ vp->MaxPrec = 1; /* set max precision */
+ VpSetNaN(vp);
+ return vp;
+ }
+
+ /* check on number szVal[] */
+ ipn = i = 0;
+ if (szVal[i] == '-') { sign=-1; ++i; }
+ else if (szVal[i] == '+') ++i;
+ /* Skip digits */
+ ni = 0; /* digits in mantissa */
+ while ((v = szVal[i]) != 0) {
+ if (!ISDIGIT(v)) break;
+ ++i;
+ ++ni;
+ }
+ nf = 0;
+ ipf = 0;
+ ipe = 0;
+ ne = 0;
+ if (v) {
+ /* other than digit nor \0 */
+ if (szVal[i] == '.') { /* xxx. */
+ ++i;
+ ipf = i;
+ while ((v = szVal[i]) != 0) { /* get fraction part. */
+ if (!ISDIGIT(v)) break;
+ ++i;
+ ++nf;
+ }
+ }
+ ipe = 0; /* Exponent */
+
+ switch (szVal[i]) {
+ case '\0':
+ break;
+ case 'e': case 'E':
+ case 'd': case 'D':
+ ++i;
+ ipe = i;
+ v = szVal[i];
+ if ((v == '-') || (v == '+')) ++i;
+ while ((v=szVal[i]) != 0) {
+ if (!ISDIGIT(v)) break;
+ ++i;
+ ++ne;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ nalloc = (ni + nf + BASE_FIG - 1) / BASE_FIG + 1; /* set effective allocation */
+ /* units for szVal[] */
+ if (mx <= 0) mx = 1;
+ nalloc = Max(nalloc, mx);
+ mx = nalloc;
+ vp = (Real *) VpMemAlloc(sizeof(Real) + mx * sizeof(BDIGIT));
+ /* xmalloc() alway returns(or throw interruption) */
+ vp->MaxPrec = mx; /* set max precision */
+ VpSetZero(vp, sign);
+ VpCtoV(vp, &szVal[ipn], ni, &szVal[ipf], nf, &szVal[ipe], ne);
+ rb_str_resize(buf, 0);
+ return vp;
+}
+
+/*
+ * Assignment(c=a).
+ * [Input]
+ * a ... RHSV
+ * isw ... switch for assignment.
+ * c = a when isw > 0
+ * c = -a when isw < 0
+ * if c->MaxPrec < a->Prec,then round operation
+ * will be performed.
+ * [Output]
+ * c ... LHSV
+ */
+VP_EXPORT size_t
+VpAsgn(Real *c, Real *a, int isw)
+{
+ size_t n;
+ if(VpIsNaN(a)) {
+ VpSetNaN(c);
+ return 0;
+ }
+ if(VpIsInf(a)) {
+ VpSetInf(c,isw*VpGetSign(a));
+ return 0;
+ }
+
+ /* check if the RHS is zero */
+ if(!VpIsZero(a)) {
+ c->exponent = a->exponent; /* store exponent */
+ VpSetSign(c,(isw*VpGetSign(a))); /* set sign */
+ n =(a->Prec < c->MaxPrec) ?(a->Prec) :(c->MaxPrec);
+ c->Prec = n;
+ memcpy(c->frac, a->frac, n * sizeof(BDIGIT));
+ /* Needs round ? */
+ if(isw!=10) {
+ /* Not in ActiveRound */
+ if(c->Prec < a->Prec) {
+ VpInternalRound(c,n,(n>0)?a->frac[n-1]:0,a->frac[n]);
+ } else {
+ VpLimitRound(c,0);
+ }
+ }
+ } else {
+ /* The value of 'a' is zero. */
+ VpSetZero(c,isw*VpGetSign(a));
+ return 1;
+ }
+ return c->Prec*BASE_FIG;
+}
+
+/*
+ * c = a + b when operation = 1 or 2
+ * = a - b when operation = -1 or -2.
+ * Returns number of significant digits of c
+ */
+VP_EXPORT size_t
+VpAddSub(Real *c, Real *a, Real *b, int operation)
+{
+ short sw, isw;
+ Real *a_ptr, *b_ptr;
+ size_t n, na, nb, i;
+ BDIGIT mrv;
+
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ VPrint(stdout, "VpAddSub(enter) a=% \n", a);
+ VPrint(stdout, " b=% \n", b);
+ printf(" operation=%d\n", operation);
+ }
+#endif /* BIGDECIMAL_DEBUG */
+
+ if(!VpIsDefOP(c,a,b,(operation>0)?1:2)) return 0; /* No significant digits */
+
+ /* check if a or b is zero */
+ if(VpIsZero(a)) {
+ /* a is zero,then assign b to c */
+ if(!VpIsZero(b)) {
+ VpAsgn(c, b, operation);
+ } else {
+ /* Both a and b are zero. */
+ if(VpGetSign(a)<0 && operation*VpGetSign(b)<0) {
+ /* -0 -0 */
+ VpSetZero(c,-1);
+ } else {
+ VpSetZero(c,1);
+ }
+ return 1; /* 0: 1 significant digits */
+ }
+ return c->Prec*BASE_FIG;
+ }
+ if(VpIsZero(b)) {
+ /* b is zero,then assign a to c. */
+ VpAsgn(c, a, 1);
+ return c->Prec*BASE_FIG;
+ }
+
+ if(operation < 0) sw = -1;
+ else sw = 1;
+
+ /* compare absolute value. As a result,|a_ptr|>=|b_ptr| */
+ if(a->exponent > b->exponent) {
+ a_ptr = a;
+ b_ptr = b;
+ } /* |a|>|b| */
+ else if(a->exponent < b->exponent) {
+ a_ptr = b;
+ b_ptr = a;
+ } /* |a|<|b| */
+ else {
+ /* Exponent part of a and b is the same,then compare fraction */
+ /* part */
+ na = a->Prec;
+ nb = b->Prec;
+ n = Min(na, nb);
+ for(i=0;i < n; ++i) {
+ if(a->frac[i] > b->frac[i]) {
+ a_ptr = a;
+ b_ptr = b;
+ goto end_if;
+ } else if(a->frac[i] < b->frac[i]) {
+ a_ptr = b;
+ b_ptr = a;
+ goto end_if;
+ }
+ }
+ if(na > nb) {
+ a_ptr = a;
+ b_ptr = b;
+ goto end_if;
+ } else if(na < nb) {
+ a_ptr = b;
+ b_ptr = a;
+ goto end_if;
+ }
+ /* |a| == |b| */
+ if(VpGetSign(a) + sw *VpGetSign(b) == 0) {
+ VpSetZero(c,1); /* abs(a)=abs(b) and operation = '-' */
+ return c->Prec*BASE_FIG;
+ }
+ a_ptr = a;
+ b_ptr = b;
+ }
+
+end_if:
+ isw = VpGetSign(a) + sw *VpGetSign(b);
+ /*
+ * isw = 0 ...( 1)+(-1),( 1)-( 1),(-1)+(1),(-1)-(-1)
+ * = 2 ...( 1)+( 1),( 1)-(-1)
+ * =-2 ...(-1)+(-1),(-1)-( 1)
+ * If isw==0, then c =(Sign a_ptr)(|a_ptr|-|b_ptr|)
+ * else c =(Sign ofisw)(|a_ptr|+|b_ptr|)
+ */
+ if(isw) { /* addition */
+ VpSetSign(c, 1);
+ mrv = VpAddAbs(a_ptr, b_ptr, c);
+ VpSetSign(c, isw / 2);
+ } else { /* subtraction */
+ VpSetSign(c, 1);
+ mrv = VpSubAbs(a_ptr, b_ptr, c);
+ if(a_ptr == a) {
+ VpSetSign(c,VpGetSign(a));
+ } else {
+ VpSetSign(c,VpGetSign(a_ptr) * sw);
+ }
+ }
+ VpInternalRound(c,0,(c->Prec>0)?c->frac[c->Prec-1]:0,mrv);
+
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ VPrint(stdout, "VpAddSub(result) c=% \n", c);
+ VPrint(stdout, " a=% \n", a);
+ VPrint(stdout, " b=% \n", b);
+ printf(" operation=%d\n", operation);
+ }
+#endif /* BIGDECIMAL_DEBUG */
+ return c->Prec*BASE_FIG;
+}
+
+/*
+ * Addition of two variable precisional variables
+ * a and b assuming abs(a)>abs(b).
+ * c = abs(a) + abs(b) ; where |a|>=|b|
+ */
+static BDIGIT
+VpAddAbs(Real *a, Real *b, Real *c)
+{
+ size_t word_shift;
+ size_t ap;
+ size_t bp;
+ size_t cp;
+ size_t a_pos;
+ size_t b_pos, b_pos_with_word_shift;
+ size_t c_pos;
+ BDIGIT av, bv, carry, mrv;
+
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ VPrint(stdout, "VpAddAbs called: a = %\n", a);
+ VPrint(stdout, " b = %\n", b);
+ }
+#endif /* BIGDECIMAL_DEBUG */
+
+ word_shift = VpSetPTR(a, b, c, &ap, &bp, &cp, &av, &bv);
+ a_pos = ap;
+ b_pos = bp;
+ c_pos = cp;
+ if(word_shift==(size_t)-1L) return 0; /* Overflow */
+ if(b_pos == (size_t)-1L) goto Assign_a;
+
+ mrv = av + bv; /* Most right val. Used for round. */
+
+ /* Just assign the last few digits of b to c because a has no */
+ /* corresponding digits to be added. */
+ while(b_pos + word_shift > a_pos) {
+ --c_pos;
+ if(b_pos > 0) {
+ c->frac[c_pos] = b->frac[--b_pos];
+ } else {
+ --word_shift;
+ c->frac[c_pos] = 0;
+ }
+ }
+
+ /* Just assign the last few digits of a to c because b has no */
+ /* corresponding digits to be added. */
+ b_pos_with_word_shift = b_pos + word_shift;
+ while(a_pos > b_pos_with_word_shift) {
+ c->frac[--c_pos] = a->frac[--a_pos];
+ }
+ carry = 0; /* set first carry be zero */
+
+ /* Now perform addition until every digits of b will be */
+ /* exhausted. */
+ while(b_pos > 0) {
+ c->frac[--c_pos] = a->frac[--a_pos] + b->frac[--b_pos] + carry;
+ if(c->frac[c_pos] >= BASE) {
+ c->frac[c_pos] -= BASE;
+ carry = 1;
+ } else {
+ carry = 0;
+ }
+ }
+
+ /* Just assign the first few digits of a with considering */
+ /* the carry obtained so far because b has been exhausted. */
+ while(a_pos > 0) {
+ c->frac[--c_pos] = a->frac[--a_pos] + carry;
+ if(c->frac[c_pos] >= BASE) {
+ c->frac[c_pos] -= BASE;
+ carry = 1;
+ } else {
+ carry = 0;
+ }
+ }
+ if(c_pos) c->frac[c_pos - 1] += carry;
+ goto Exit;
+
+Assign_a:
+ VpAsgn(c, a, 1);
+ mrv = 0;
+
+Exit:
+
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ VPrint(stdout, "VpAddAbs exit: c=% \n", c);
+ }
+#endif /* BIGDECIMAL_DEBUG */
+ return mrv;
+}
+
+/*
+ * c = abs(a) - abs(b)
+ */
+static BDIGIT
+VpSubAbs(Real *a, Real *b, Real *c)
+{
+ size_t word_shift;
+ size_t ap;
+ size_t bp;
+ size_t cp;
+ size_t a_pos;
+ size_t b_pos, b_pos_with_word_shift;
+ size_t c_pos;
+ BDIGIT av, bv, borrow, mrv;
+
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ VPrint(stdout, "VpSubAbs called: a = %\n", a);
+ VPrint(stdout, " b = %\n", b);
+ }
+#endif /* BIGDECIMAL_DEBUG */
+
+ word_shift = VpSetPTR(a, b, c, &ap, &bp, &cp, &av, &bv);
+ a_pos = ap;
+ b_pos = bp;
+ c_pos = cp;
+ if(word_shift==(size_t)-1L) return 0; /* Overflow */
+ if(b_pos == (size_t)-1L) goto Assign_a;
+
+ if(av >= bv) {
+ mrv = av - bv;
+ borrow = 0;
+ } else {
+ mrv = 0;
+ borrow = 1;
+ }
+
+ /* Just assign the values which are the BASE subtracted by */
+ /* each of the last few digits of the b because the a has no */
+ /* corresponding digits to be subtracted. */
+ if(b_pos + word_shift > a_pos) {
+ while(b_pos + word_shift > a_pos) {
+ --c_pos;
+ if(b_pos > 0) {
+ c->frac[c_pos] = BASE - b->frac[--b_pos] - borrow;
+ } else {
+ --word_shift;
+ c->frac[c_pos] = BASE - borrow;
+ }
+ borrow = 1;
+ }
+ }
+ /* Just assign the last few digits of a to c because b has no */
+ /* corresponding digits to subtract. */
+
+ b_pos_with_word_shift = b_pos + word_shift;
+ while(a_pos > b_pos_with_word_shift) {
+ c->frac[--c_pos] = a->frac[--a_pos];
+ }
+
+ /* Now perform subtraction until every digits of b will be */
+ /* exhausted. */
+ while(b_pos > 0) {
+ --c_pos;
+ if(a->frac[--a_pos] < b->frac[--b_pos] + borrow) {
+ c->frac[c_pos] = BASE + a->frac[a_pos] - b->frac[b_pos] - borrow;
+ borrow = 1;
+ } else {
+ c->frac[c_pos] = a->frac[a_pos] - b->frac[b_pos] - borrow;
+ borrow = 0;
+ }
+ }
+
+ /* Just assign the first few digits of a with considering */
+ /* the borrow obtained so far because b has been exhausted. */
+ while(a_pos > 0) {
+ --c_pos;
+ if(a->frac[--a_pos] < borrow) {
+ c->frac[c_pos] = BASE + a->frac[a_pos] - borrow;
+ borrow = 1;
+ } else {
+ c->frac[c_pos] = a->frac[a_pos] - borrow;
+ borrow = 0;
+ }
+ }
+ if(c_pos) c->frac[c_pos - 1] -= borrow;
+ goto Exit;
+
+Assign_a:
+ VpAsgn(c, a, 1);
+ mrv = 0;
+
+Exit:
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ VPrint(stdout, "VpSubAbs exit: c=% \n", c);
+ }
+#endif /* BIGDECIMAL_DEBUG */
+ return mrv;
+}
+
+/*
+ * Note: If(av+bv)>= HALF_BASE,then 1 will be added to the least significant
+ * digit of c(In case of addition).
+ * ------------------------- figure of output -----------------------------------
+ * a = xxxxxxxxxxx
+ * b = xxxxxxxxxx
+ * c =xxxxxxxxxxxxxxx
+ * word_shift = | |
+ * right_word = | | (Total digits in RHSV)
+ * left_word = | | (Total digits in LHSV)
+ * a_pos = |
+ * b_pos = |
+ * c_pos = |
+ */
+static size_t
+VpSetPTR(Real *a, Real *b, Real *c, size_t *a_pos, size_t *b_pos, size_t *c_pos, BDIGIT *av, BDIGIT *bv)
+{
+ size_t left_word, right_word, word_shift;
+ c->frac[0] = 0;
+ *av = *bv = 0;
+ word_shift =((a->exponent) -(b->exponent));
+ left_word = b->Prec + word_shift;
+ right_word = Max((a->Prec),left_word);
+ left_word =(c->MaxPrec) - 1; /* -1 ... prepare for round up */
+ /*
+ * check if 'round' is needed.
+ */
+ if(right_word > left_word) { /* round ? */
+ /*---------------------------------
+ * Actual size of a = xxxxxxAxx
+ * Actual size of b = xxxBxxxxx
+ * Max. size of c = xxxxxx
+ * Round off = |-----|
+ * c_pos = |
+ * right_word = |
+ * a_pos = |
+ */
+ *c_pos = right_word = left_word + 1; /* Set resulting precision */
+ /* be equal to that of c */
+ if((a->Prec) >=(c->MaxPrec)) {
+ /*
+ * a = xxxxxxAxxx
+ * c = xxxxxx
+ * a_pos = |
+ */
+ *a_pos = left_word;
+ *av = a->frac[*a_pos]; /* av is 'A' shown in above. */
+ } else {
+ /*
+ * a = xxxxxxx
+ * c = xxxxxxxxxx
+ * a_pos = |
+ */
+ *a_pos = a->Prec;
+ }
+ if((b->Prec + word_shift) >= c->MaxPrec) {
+ /*
+ * a = xxxxxxxxx
+ * b = xxxxxxxBxxx
+ * c = xxxxxxxxxxx
+ * b_pos = |
+ */
+ if(c->MaxPrec >=(word_shift + 1)) {
+ *b_pos = c->MaxPrec - word_shift - 1;
+ *bv = b->frac[*b_pos];
+ } else {
+ *b_pos = -1L;
+ }
+ } else {
+ /*
+ * a = xxxxxxxxxxxxxxxx
+ * b = xxxxxx
+ * c = xxxxxxxxxxxxx
+ * b_pos = |
+ */
+ *b_pos = b->Prec;
+ }
+ } else { /* The MaxPrec of c - 1 > The Prec of a + b */
+ /*
+ * a = xxxxxxx
+ * b = xxxxxx
+ * c = xxxxxxxxxxx
+ * c_pos = |
+ */
+ *b_pos = b->Prec;
+ *a_pos = a->Prec;
+ *c_pos = right_word + 1;
+ }
+ c->Prec = *c_pos;
+ c->exponent = a->exponent;
+ if(!AddExponent(c,1)) return (size_t)-1L;
+ return word_shift;
+}
+
+/*
+ * Return number og significant digits
+ * c = a * b , Where a = a0a1a2 ... an
+ * b = b0b1b2 ... bm
+ * c = c0c1c2 ... cl
+ * a0 a1 ... an * bm
+ * a0 a1 ... an * bm-1
+ * . . .
+ * . . .
+ * a0 a1 .... an * b0
+ * +_____________________________
+ * c0 c1 c2 ...... cl
+ * nc <---|
+ * MaxAB |--------------------|
+ */
+VP_EXPORT size_t
+VpMult(Real *c, Real *a, Real *b)
+{
+ size_t MxIndA, MxIndB, MxIndAB, MxIndC;
+ size_t ind_c, i, ii, nc;
+ size_t ind_as, ind_ae, ind_bs, ind_be;
+ BDIGIT carry;
+ BDIGIT_DBL s;
+ Real *w;
+
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ VPrint(stdout, "VpMult(Enter): a=% \n", a);
+ VPrint(stdout, " b=% \n", b);
+ }
+#endif /* BIGDECIMAL_DEBUG */
+
+ if(!VpIsDefOP(c,a,b,3)) return 0; /* No significant digit */
+
+ if(VpIsZero(a) || VpIsZero(b)) {
+ /* at least a or b is zero */
+ VpSetZero(c,VpGetSign(a)*VpGetSign(b));
+ return 1; /* 0: 1 significant digit */
+ }
+
+ if(VpIsOne(a)) {
+ VpAsgn(c, b, VpGetSign(a));
+ goto Exit;
+ }
+ if(VpIsOne(b)) {
+ VpAsgn(c, a, VpGetSign(b));
+ goto Exit;
+ }
+ if((b->Prec) >(a->Prec)) {
+ /* Adjust so that digits(a)>digits(b) */
+ w = a;
+ a = b;
+ b = w;
+ }
+ w = NULL;
+ MxIndA = a->Prec - 1;
+ MxIndB = b->Prec - 1;
+ MxIndC = c->MaxPrec - 1;
+ MxIndAB = a->Prec + b->Prec - 1;
+
+ if(MxIndC < MxIndAB) { /* The Max. prec. of c < Prec(a)+Prec(b) */
+ w = c;
+ c = VpAlloc((size_t)((MxIndAB + 1) * BASE_FIG), "#0");
+ MxIndC = MxIndAB;
+ }
+
+ /* set LHSV c info */
+
+ c->exponent = a->exponent; /* set exponent */
+ if(!AddExponent(c,b->exponent)) {
+ if(w) VpFree(c);
+ return 0;
+ }
+ VpSetSign(c,VpGetSign(a)*VpGetSign(b)); /* set sign */
+ carry = 0;
+ nc = ind_c = MxIndAB;
+ memset(c->frac, 0, (nc + 1) * sizeof(BDIGIT)); /* Initialize c */
+ c->Prec = nc + 1; /* set precision */
+ for(nc = 0; nc < MxIndAB; ++nc, --ind_c) {
+ if(nc < MxIndB) { /* The left triangle of the Fig. */
+ ind_as = MxIndA - nc;
+ ind_ae = MxIndA;
+ ind_bs = MxIndB;
+ ind_be = MxIndB - nc;
+ } else if(nc <= MxIndA) { /* The middle rectangular of the Fig. */
+ ind_as = MxIndA - nc;
+ ind_ae = MxIndA -(nc - MxIndB);
+ ind_bs = MxIndB;
+ ind_be = 0;
+ } else if(nc > MxIndA) { /* The right triangle of the Fig. */
+ ind_as = 0;
+ ind_ae = MxIndAB - nc - 1;
+ ind_bs = MxIndB -(nc - MxIndA);
+ ind_be = 0;
+ }
+
+ for(i = ind_as; i <= ind_ae; ++i) {
+ s = (BDIGIT_DBL)a->frac[i] * b->frac[ind_bs--];
+ carry = (BDIGIT)(s / BASE);
+ s -= (BDIGIT_DBL)carry * BASE;
+ c->frac[ind_c] += (BDIGIT)s;
+ if(c->frac[ind_c] >= BASE) {
+ s = c->frac[ind_c] / BASE;
+ carry += (BDIGIT)s;
+ c->frac[ind_c] -= (BDIGIT)(s * BASE);
+ }
+ if(carry) {
+ ii = ind_c;
+ while(ii-- > 0) {
+ c->frac[ii] += carry;
+ if(c->frac[ii] >= BASE) {
+ carry = c->frac[ii] / BASE;
+ c->frac[ii] -= (carry * BASE);
+ } else {
+ break;
+ }
+ }
+ }
+ }
+ }
+ if(w != NULL) { /* free work variable */
+ VpNmlz(c);
+ VpAsgn(w, c, 1);
+ VpFree(c);
+ c = w;
+ } else {
+ VpLimitRound(c,0);
+ }
+
+Exit:
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ VPrint(stdout, "VpMult(c=a*b): c=% \n", c);
+ VPrint(stdout, " a=% \n", a);
+ VPrint(stdout, " b=% \n", b);
+ }
+#endif /*BIGDECIMAL_DEBUG */
+ return c->Prec*BASE_FIG;
+}
+
+/*
+ * c = a / b, remainder = r
+ */
+VP_EXPORT size_t
+VpDivd(Real *c, Real *r, Real *a, Real *b)
+{
+ size_t word_a, word_b, word_c, word_r;
+ size_t i, n, ind_a, ind_b, ind_c, ind_r;
+ size_t nLoop;
+ BDIGIT_DBL q, b1, b1p1, b1b2, b1b2p1, r1r2;
+ BDIGIT borrow, borrow1, borrow2;
+ BDIGIT_DBL qb;
+
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ VPrint(stdout, " VpDivd(c=a/b) a=% \n", a);
+ VPrint(stdout, " b=% \n", b);
+ }
+#endif /*BIGDECIMAL_DEBUG */
+
+ VpSetNaN(r);
+ if(!VpIsDefOP(c,a,b,4)) goto Exit;
+ if(VpIsZero(a)&&VpIsZero(b)) {
+ VpSetNaN(c);
+ return VpException(VP_EXCEPTION_NaN,"(VpDivd) 0/0 not defined(NaN)",0);
+ }
+ if(VpIsZero(b)) {
+ VpSetInf(c,VpGetSign(a)*VpGetSign(b));
+ return VpException(VP_EXCEPTION_ZERODIVIDE,"(VpDivd) Divide by zero",0);
+ }
+ if(VpIsZero(a)) {
+ /* numerator a is zero */
+ VpSetZero(c,VpGetSign(a)*VpGetSign(b));
+ VpSetZero(r,VpGetSign(a)*VpGetSign(b));
+ goto Exit;
+ }
+ if(VpIsOne(b)) {
+ /* divide by one */
+ VpAsgn(c, a, VpGetSign(b));
+ VpSetZero(r,VpGetSign(a));
+ goto Exit;
+ }
+
+ word_a = a->Prec;
+ word_b = b->Prec;
+ word_c = c->MaxPrec;
+ word_r = r->MaxPrec;
+
+ ind_c = 0;
+ ind_r = 1;
+
+ if(word_a >= word_r) goto space_error;
+
+ r->frac[0] = 0;
+ while(ind_r <= word_a) {
+ r->frac[ind_r] = a->frac[ind_r - 1];
+ ++ind_r;
+ }
+
+ while(ind_r < word_r) r->frac[ind_r++] = 0;
+ while(ind_c < word_c) c->frac[ind_c++] = 0;
+
+ /* initial procedure */
+ b1 = b1p1 = b->frac[0];
+ if(b->Prec <= 1) {
+ b1b2p1 = b1b2 = b1p1 * BASE;
+ } else {
+ b1p1 = b1 + 1;
+ b1b2p1 = b1b2 = b1 * BASE + b->frac[1];
+ if(b->Prec > 2) ++b1b2p1;
+ }
+
+ /* */
+ /* loop start */
+ ind_c = word_r - 1;
+ nLoop = Min(word_c,ind_c);
+ ind_c = 1;
+ while(ind_c < nLoop) {
+ if(r->frac[ind_c] == 0) {
+ ++ind_c;
+ continue;
+ }
+ r1r2 = (BDIGIT_DBL)r->frac[ind_c] * BASE + r->frac[ind_c + 1];
+ if(r1r2 == b1b2) {
+ /* The first two word digits is the same */
+ ind_b = 2;
+ ind_a = ind_c + 2;
+ while(ind_b < word_b) {
+ if(r->frac[ind_a] < b->frac[ind_b]) goto div_b1p1;
+ if(r->frac[ind_a] > b->frac[ind_b]) break;
+ ++ind_a;
+ ++ind_b;
+ }
+ /* The first few word digits of r and b is the same and */
+ /* the first different word digit of w is greater than that */
+ /* of b, so quotinet is 1 and just subtract b from r. */
+ borrow = 0; /* quotient=1, then just r-b */
+ ind_b = b->Prec - 1;
+ ind_r = ind_c + ind_b;
+ if(ind_r >= word_r) goto space_error;
+ n = ind_b;
+ for(i = 0; i <= n; ++i) {
+ if(r->frac[ind_r] < b->frac[ind_b] + borrow) {
+ r->frac[ind_r] += (BASE - (b->frac[ind_b] + borrow));
+ borrow = 1;
+ } else {
+ r->frac[ind_r] = r->frac[ind_r] - b->frac[ind_b] - borrow;
+ borrow = 0;
+ }
+ --ind_r;
+ --ind_b;
+ }
+ ++c->frac[ind_c];
+ goto carry;
+ }
+ /* The first two word digits is not the same, */
+ /* then compare magnitude, and divide actually. */
+ if(r1r2 >= b1b2p1) {
+ q = r1r2 / b1b2p1; /* q == (BDIGIT)q */
+ c->frac[ind_c] += (BDIGIT)q;
+ ind_r = b->Prec + ind_c - 1;
+ goto sub_mult;
+ }
+
+div_b1p1:
+ if(ind_c + 1 >= word_c) goto out_side;
+ q = r1r2 / b1p1; /* q == (BDIGIT)q */
+ c->frac[ind_c + 1] += (BDIGIT)q;
+ ind_r = b->Prec + ind_c;
+
+sub_mult:
+ borrow1 = borrow2 = 0;
+ ind_b = word_b - 1;
+ if(ind_r >= word_r) goto space_error;
+ n = ind_b;
+ for(i = 0; i <= n; ++i) {
+ /* now, perform r = r - q * b */
+ qb = q * b->frac[ind_b];
+ if (qb < BASE) borrow1 = 0;
+ else {
+ borrow1 = (BDIGIT)(qb / BASE);
+ qb -= (BDIGIT_DBL)borrow1 * BASE; /* get qb < BASE */
+ }
+ if(r->frac[ind_r] < qb) {
+ r->frac[ind_r] += (BDIGIT)(BASE - qb);
+ borrow2 = borrow2 + borrow1 + 1;
+ } else {
+ r->frac[ind_r] -= (BDIGIT)qb;
+ borrow2 += borrow1;
+ }
+ if(borrow2) {
+ if(r->frac[ind_r - 1] < borrow2) {
+ r->frac[ind_r - 1] += (BASE - borrow2);
+ borrow2 = 1;
+ } else {
+ r->frac[ind_r - 1] -= borrow2;
+ borrow2 = 0;
+ }
+ }
+ --ind_r;
+ --ind_b;
+ }
+
+ r->frac[ind_r] -= borrow2;
+carry:
+ ind_r = ind_c;
+ while(c->frac[ind_r] >= BASE) {
+ c->frac[ind_r] -= BASE;
+ --ind_r;
+ ++c->frac[ind_r];
+ }
+ }
+ /* End of operation, now final arrangement */
+out_side:
+ c->Prec = word_c;
+ c->exponent = a->exponent;
+ if(!AddExponent(c,2)) return 0;
+ if(!AddExponent(c,-(b->exponent))) return 0;
+
+ VpSetSign(c,VpGetSign(a)*VpGetSign(b));
+ VpNmlz(c); /* normalize c */
+ r->Prec = word_r;
+ r->exponent = a->exponent;
+ if(!AddExponent(r,1)) return 0;
+ VpSetSign(r,VpGetSign(a));
+ VpNmlz(r); /* normalize r(remainder) */
+ goto Exit;
+
+space_error:
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ printf(" word_a=%lu\n", word_a);
+ printf(" word_b=%lu\n", word_b);
+ printf(" word_c=%lu\n", word_c);
+ printf(" word_r=%lu\n", word_r);
+ printf(" ind_r =%lu\n", ind_r);
+ }
+#endif /* BIGDECIMAL_DEBUG */
+ rb_bug("ERROR(VpDivd): space for remainder too small.");
+
+Exit:
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ VPrint(stdout, " VpDivd(c=a/b), c=% \n", c);
+ VPrint(stdout, " r=% \n", r);
+ }
+#endif /* BIGDECIMAL_DEBUG */
+ return c->Prec*BASE_FIG;
+}
+
+/*
+ * Input a = 00000xxxxxxxx En(5 preceeding zeros)
+ * Output a = xxxxxxxx En-5
+ */
+static int
+VpNmlz(Real *a)
+{
+ size_t ind_a, i;
+
+ if (!VpIsDef(a)) goto NoVal;
+ if (VpIsZero(a)) goto NoVal;
+
+ ind_a = a->Prec;
+ while (ind_a--) {
+ if (a->frac[ind_a]) {
+ a->Prec = ind_a + 1;
+ i = 0;
+ while (a->frac[i] == 0) ++i; /* skip the first few zeros */
+ if (i) {
+ a->Prec -= i;
+ if (!AddExponent(a, -(SIGNED_VALUE)i)) return 0;
+ memmove(&a->frac[0], &a->frac[i], a->Prec*sizeof(BDIGIT));
+ }
+ return 1;
+ }
+ }
+ /* a is zero(no non-zero digit) */
+ VpSetZero(a, VpGetSign(a));
+ return 0;
+
+NoVal:
+ a->frac[0] = 0;
+ a->Prec = 1;
+ return 0;
+}
+
+/*
+ * VpComp = 0 ... if a=b,
+ * Pos ... a>b,
+ * Neg ... a<b.
+ * 999 ... result undefined(NaN)
+ */
+VP_EXPORT int
+VpComp(Real *a, Real *b)
+{
+ int val;
+ size_t mx, ind;
+ int e;
+ val = 0;
+ if(VpIsNaN(a)||VpIsNaN(b)) return 999;
+ if(!VpIsDef(a)) {
+ if(!VpIsDef(b)) e = a->sign - b->sign;
+ else e = a->sign;
+ if(e>0) return 1;
+ else if(e<0) return -1;
+ else return 0;
+ }
+ if(!VpIsDef(b)) {
+ e = -b->sign;
+ if(e>0) return 1;
+ else return -1;
+ }
+ /* Zero check */
+ if(VpIsZero(a)) {
+ if(VpIsZero(b)) return 0; /* both zero */
+ val = -VpGetSign(b);
+ goto Exit;
+ }
+ if(VpIsZero(b)) {
+ val = VpGetSign(a);
+ goto Exit;
+ }
+
+ /* compare sign */
+ if(VpGetSign(a) > VpGetSign(b)) {
+ val = 1; /* a>b */
+ goto Exit;
+ }
+ if(VpGetSign(a) < VpGetSign(b)) {
+ val = -1; /* a<b */
+ goto Exit;
+ }
+
+ /* a and b have same sign, && signe!=0,then compare exponent */
+ if((a->exponent) >(b->exponent)) {
+ val = VpGetSign(a);
+ goto Exit;
+ }
+ if((a->exponent) <(b->exponent)) {
+ val = -VpGetSign(b);
+ goto Exit;
+ }
+
+ /* a and b have same exponent, then compare significand. */
+ mx =((a->Prec) <(b->Prec)) ?(a->Prec) :(b->Prec);
+ ind = 0;
+ while(ind < mx) {
+ if((a->frac[ind]) >(b->frac[ind])) {
+ val = VpGetSign(a);
+ goto Exit;
+ }
+ if((a->frac[ind]) <(b->frac[ind])) {
+ val = -VpGetSign(b);
+ goto Exit;
+ }
+ ++ind;
+ }
+ if((a->Prec) >(b->Prec)) {
+ val = VpGetSign(a);
+ } else if((a->Prec) <(b->Prec)) {
+ val = -VpGetSign(b);
+ }
+
+Exit:
+ if (val> 1) val = 1;
+ else if(val<-1) val = -1;
+
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ VPrint(stdout, " VpComp a=%\n", a);
+ VPrint(stdout, " b=%\n", b);
+ printf(" ans=%d\n", val);
+ }
+#endif /* BIGDECIMAL_DEBUG */
+ return (int)val;
+}
+
+#ifdef BIGDECIMAL_ENABLE_VPRINT
+/*
+ * cntl_chr ... ASCIIZ Character, print control characters
+ * Available control codes:
+ * % ... VP variable. To print '%', use '%%'.
+ * \n ... new line
+ * \b ... backspace
+ * ... tab
+ * Note: % must must not appear more than once
+ * a ... VP variable to be printed
+ */
+VP_EXPORT int
+VPrint(FILE *fp, const char *cntl_chr, Real *a)
+{
+ size_t i, j, nc, nd, ZeroSup;
+ BDIGIT m, e, nn;
+
+ /* Check if NaN & Inf. */
+ if(VpIsNaN(a)) {
+ fprintf(fp,SZ_NaN);
+ return 8;
+ }
+ if(VpIsPosInf(a)) {
+ fprintf(fp,SZ_INF);
+ return 8;
+ }
+ if(VpIsNegInf(a)) {
+ fprintf(fp,SZ_NINF);
+ return 9;
+ }
+ if(VpIsZero(a)) {
+ fprintf(fp,"0.0");
+ return 3;
+ }
+
+ j = 0;
+ nd = nc = 0; /* nd : number of digits in fraction part(every 10 digits, */
+ /* nd<=10). */
+ /* nc : number of caracters printed */
+ ZeroSup = 1; /* Flag not to print the leading zeros as 0.00xxxxEnn */
+ while(*(cntl_chr + j)) {
+ if((*(cntl_chr + j) == '%') &&(*(cntl_chr + j + 1) != '%')) {
+ nc = 0;
+ if(!VpIsZero(a)) {
+ if(VpGetSign(a) < 0) {
+ fprintf(fp, "-");
+ ++nc;
+ }
+ nc += fprintf(fp, "0.");
+ for(i=0; i < a->Prec; ++i) {
+ m = BASE1;
+ e = a->frac[i];
+ while(m) {
+ nn = e / m;
+ if((!ZeroSup) || nn) {
+ nc += fprintf(fp, "%lu", (unsigned long)nn); /* The leading zero(s) */
+ /* as 0.00xx will not */
+ /* be printed. */
+ ++nd;
+ ZeroSup = 0; /* Set to print succeeding zeros */
+ }
+ if(nd >= 10) { /* print ' ' after every 10 digits */
+ nd = 0;
+ nc += fprintf(fp, " ");
+ }
+ e = e - nn * m;
+ m /= 10;
+ }
+ }
+ nc += fprintf(fp, "E%"PRIdSIZE, VpExponent10(a));
+ } else {
+ nc += fprintf(fp, "0.0");
+ }
+ } else {
+ ++nc;
+ if(*(cntl_chr + j) == '\\') {
+ switch(*(cntl_chr + j + 1)) {
+ case 'n':
+ fprintf(fp, "\n");
+ ++j;
+ break;
+ case 't':
+ fprintf(fp, "\t");
+ ++j;
+ break;
+ case 'b':
+ fprintf(fp, "\n");
+ ++j;
+ break;
+ default:
+ fprintf(fp, "%c", *(cntl_chr + j));
+ break;
+ }
+ } else {
+ fprintf(fp, "%c", *(cntl_chr + j));
+ if(*(cntl_chr + j) == '%') ++j;
+ }
+ }
+ j++;
+ }
+ return (int)nc;
+}
+#endif /* BIGDECIMAL_ENABLE_VPRINT */
+
+static void
+VpFormatSt(char *psz, size_t fFmt)
+{
+ size_t ie, i, nf = 0;
+ char ch;
+
+ if(fFmt<=0) return;
+
+ ie = strlen(psz);
+ for(i = 0; i < ie; ++i) {
+ ch = psz[i];
+ if(!ch) break;
+ if(ISSPACE(ch) || ch=='-' || ch=='+') continue;
+ if(ch == '.') { nf = 0;continue;}
+ if(ch == 'E') break;
+ nf++;
+ if(nf > fFmt) {
+ memmove(psz + i + 1, psz + i, ie - i + 1);
+ ++ie;
+ nf = 0;
+ psz[i] = ' ';
+ }
+ }
+}
+
+VP_EXPORT ssize_t
+VpExponent10(Real *a)
+{
+ ssize_t ex;
+ size_t n;
+
+ if (!VpHasVal(a)) return 0;
+
+ ex = a->exponent * (ssize_t)BASE_FIG;
+ n = BASE1;
+ while ((a->frac[0] / n) == 0) {
+ --ex;
+ n /= 10;
+ }
+ return ex;
+}
+
+VP_EXPORT void
+VpSzMantissa(Real *a,char *psz)
+{
+ size_t i, n, ZeroSup;
+ BDIGIT_DBL m, e, nn;
+
+ if(VpIsNaN(a)) {
+ sprintf(psz,SZ_NaN);
+ return;
+ }
+ if(VpIsPosInf(a)) {
+ sprintf(psz,SZ_INF);
+ return;
+ }
+ if(VpIsNegInf(a)) {
+ sprintf(psz,SZ_NINF);
+ return;
+ }
+
+ ZeroSup = 1; /* Flag not to print the leading zeros as 0.00xxxxEnn */
+ if(!VpIsZero(a)) {
+ if(VpGetSign(a) < 0) *psz++ = '-';
+ n = a->Prec;
+ for (i=0; i < n; ++i) {
+ m = BASE1;
+ e = a->frac[i];
+ while (m) {
+ nn = e / m;
+ if((!ZeroSup) || nn) {
+ sprintf(psz, "%lu", (unsigned long)nn); /* The leading zero(s) */
+ psz += strlen(psz);
+ /* as 0.00xx will be ignored. */
+ ZeroSup = 0; /* Set to print succeeding zeros */
+ }
+ e = e - nn * m;
+ m /= 10;
+ }
+ }
+ *psz = 0;
+ while(psz[-1]=='0') *(--psz) = 0;
+ } else {
+ if(VpIsPosZero(a)) sprintf(psz, "0");
+ else sprintf(psz, "-0");
+ }
+}
+
+VP_EXPORT int
+VpToSpecialString(Real *a,char *psz,int fPlus)
+/* fPlus =0:default, =1: set ' ' before digits , =2: set '+' before digits. */
+{
+ if(VpIsNaN(a)) {
+ sprintf(psz,SZ_NaN);
+ return 1;
+ }
+
+ if(VpIsPosInf(a)) {
+ if(fPlus==1) {
+ *psz++ = ' ';
+ } else if(fPlus==2) {
+ *psz++ = '+';
+ }
+ sprintf(psz,SZ_INF);
+ return 1;
+ }
+ if(VpIsNegInf(a)) {
+ sprintf(psz,SZ_NINF);
+ return 1;
+ }
+ if(VpIsZero(a)) {
+ if(VpIsPosZero(a)) {
+ if(fPlus==1) sprintf(psz, " 0.0");
+ else if(fPlus==2) sprintf(psz, "+0.0");
+ else sprintf(psz, "0.0");
+ } else sprintf(psz, "-0.0");
+ return 1;
+ }
+ return 0;
+}
+
+VP_EXPORT void
+VpToString(Real *a, char *psz, size_t fFmt, int fPlus)
+/* fPlus =0:default, =1: set ' ' before digits , =2:set '+' before digits. */
+{
+ size_t i, n, ZeroSup;
+ BDIGIT shift, m, e, nn;
+ char *pszSav = psz;
+ ssize_t ex;
+
+ if (VpToSpecialString(a, psz, fPlus)) return;
+
+ ZeroSup = 1; /* Flag not to print the leading zeros as 0.00xxxxEnn */
+
+ if (VpGetSign(a) < 0) *psz++ = '-';
+ else if (fPlus == 1) *psz++ = ' ';
+ else if (fPlus == 2) *psz++ = '+';
+
+ *psz++ = '0';
+ *psz++ = '.';
+ n = a->Prec;
+ for(i=0;i < n;++i) {
+ m = BASE1;
+ e = a->frac[i];
+ while(m) {
+ nn = e / m;
+ if((!ZeroSup) || nn) {
+ sprintf(psz, "%lu", (unsigned long)nn); /* The reading zero(s) */
+ psz += strlen(psz);
+ /* as 0.00xx will be ignored. */
+ ZeroSup = 0; /* Set to print succeeding zeros */
+ }
+ e = e - nn * m;
+ m /= 10;
+ }
+ }
+ ex = a->exponent * (ssize_t)BASE_FIG;
+ shift = BASE1;
+ while(a->frac[0] / shift == 0) {
+ --ex;
+ shift /= 10;
+ }
+ while(psz[-1]=='0') *(--psz) = 0;
+ sprintf(psz, "E%"PRIdSIZE, ex);
+ if(fFmt) VpFormatSt(pszSav, fFmt);
+}
+
+VP_EXPORT void
+VpToFString(Real *a, char *psz, size_t fFmt, int fPlus)
+/* fPlus =0:default,=1: set ' ' before digits ,set '+' before digits. */
+{
+ size_t i, n;
+ BDIGIT m, e, nn;
+ char *pszSav = psz;
+ ssize_t ex;
+
+ if(VpToSpecialString(a,psz,fPlus)) return;
+
+ if(VpGetSign(a) < 0) *psz++ = '-';
+ else if(fPlus==1) *psz++ = ' ';
+ else if(fPlus==2) *psz++ = '+';
+
+ n = a->Prec;
+ ex = a->exponent;
+ if(ex<=0) {
+ *psz++ = '0';*psz++ = '.';
+ while(ex<0) {
+ for(i=0;i<BASE_FIG;++i) *psz++ = '0';
+ ++ex;
+ }
+ ex = -1;
+ }
+
+ for(i=0;i < n;++i) {
+ --ex;
+ if(i==0 && ex >= 0) {
+ sprintf(psz, "%lu", (unsigned long)a->frac[i]);
+ psz += strlen(psz);
+ } else {
+ m = BASE1;
+ e = a->frac[i];
+ while(m) {
+ nn = e / m;
+ *psz++ = (char)(nn + '0');
+ e = e - nn * m;
+ m /= 10;
+ }
+ }
+ if(ex == 0) *psz++ = '.';
+ }
+ while(--ex>=0) {
+ m = BASE;
+ while(m/=10) *psz++ = '0';
+ if(ex == 0) *psz++ = '.';
+ }
+ *psz = 0;
+ while(psz[-1]=='0') *(--psz) = 0;
+ if(psz[-1]=='.') sprintf(psz, "0");
+ if(fFmt) VpFormatSt(pszSav, fFmt);
+}
+
+/*
+ * [Output]
+ * a[] ... variable to be assigned the value.
+ * [Input]
+ * int_chr[] ... integer part(may include '+/-').
+ * ni ... number of characters in int_chr[],not including '+/-'.
+ * frac[] ... fraction part.
+ * nf ... number of characters in frac[].
+ * exp_chr[] ... exponent part(including '+/-').
+ * ne ... number of characters in exp_chr[],not including '+/-'.
+ */
+VP_EXPORT int
+VpCtoV(Real *a, const char *int_chr, size_t ni, const char *frac, size_t nf, const char *exp_chr, size_t ne)
+{
+ size_t i, j, ind_a, ma, mi, me;
+ size_t loc;
+ SIGNED_VALUE e, es, eb, ef;
+ int sign, signe, exponent_overflow;
+
+ /* get exponent part */
+ e = 0;
+ ma = a->MaxPrec;
+ mi = ni;
+ me = ne;
+ signe = 1;
+ exponent_overflow = 0;
+ memset(a->frac, 0, ma * sizeof(BDIGIT));
+ if (ne > 0) {
+ i = 0;
+ if (exp_chr[0] == '-') {
+ signe = -1;
+ ++i;
+ ++me;
+ }
+ else if (exp_chr[0] == '+') {
+ ++i;
+ ++me;
+ }
+ while (i < me) {
+ es = e * (SIGNED_VALUE)BASE_FIG;
+ e = e * 10 + exp_chr[i] - '0';
+ if (es > (SIGNED_VALUE)(e*BASE_FIG)) {
+ exponent_overflow = 1;
+ e = es; /* keep sign */
+ break;
+ }
+ ++i;
+ }
+ }
+
+ /* get integer part */
+ i = 0;
+ sign = 1;
+ if(1 /*ni >= 0*/) {
+ if(int_chr[0] == '-') {
+ sign = -1;
+ ++i;
+ ++mi;
+ } else if(int_chr[0] == '+') {
+ ++i;
+ ++mi;
+ }
+ }
+
+ e = signe * e; /* e: The value of exponent part. */
+ e = e + ni; /* set actual exponent size. */
+
+ if (e > 0) signe = 1;
+ else signe = -1;
+
+ /* Adjust the exponent so that it is the multiple of BASE_FIG. */
+ j = 0;
+ ef = 1;
+ while (ef) {
+ if (e >= 0) eb = e;
+ else eb = -e;
+ ef = eb / (SIGNED_VALUE)BASE_FIG;
+ ef = eb - ef * (SIGNED_VALUE)BASE_FIG;
+ if (ef) {
+ ++j; /* Means to add one more preceeding zero */
+ ++e;
+ }
+ }
+
+ eb = e / (SIGNED_VALUE)BASE_FIG;
+
+ if (exponent_overflow) {
+ int zero = 1;
+ for ( ; i < mi && zero; i++) zero = int_chr[i] == '0';
+ for (i = 0; i < nf && zero; i++) zero = frac[i] == '0';
+ if (!zero && signe > 0) {
+ VpSetInf(a, sign);
+ VpException(VP_EXCEPTION_INFINITY, "exponent overflow",0);
+ }
+ else VpSetZero(a, sign);
+ return 1;
+ }
+
+ ind_a = 0;
+ while (i < mi) {
+ a->frac[ind_a] = 0;
+ while ((j < BASE_FIG) && (i < mi)) {
+ a->frac[ind_a] = a->frac[ind_a] * 10 + int_chr[i] - '0';
+ ++j;
+ ++i;
+ }
+ if (i < mi) {
+ ++ind_a;
+ if (ind_a >= ma) goto over_flow;
+ j = 0;
+ }
+ }
+ loc = 1;
+
+ /* get fraction part */
+
+ i = 0;
+ while(i < nf) {
+ while((j < BASE_FIG) && (i < nf)) {
+ a->frac[ind_a] = a->frac[ind_a] * 10 + frac[i] - '0';
+ ++j;
+ ++i;
+ }
+ if(i < nf) {
+ ++ind_a;
+ if(ind_a >= ma) goto over_flow;
+ j = 0;
+ }
+ }
+ goto Final;
+
+over_flow:
+ rb_warn("Conversion from String to BigDecimal overflow (last few digits discarded).");
+
+Final:
+ if (ind_a >= ma) ind_a = ma - 1;
+ while (j < BASE_FIG) {
+ a->frac[ind_a] = a->frac[ind_a] * 10;
+ ++j;
+ }
+ a->Prec = ind_a + 1;
+ a->exponent = eb;
+ VpSetSign(a,sign);
+ VpNmlz(a);
+ return 1;
+}
+
+/*
+ * [Input]
+ * *m ... Real
+ * [Output]
+ * *d ... fraction part of m(d = 0.xxxxxxx). where # of 'x's is fig.
+ * *e ... exponent of m.
+ * DBLE_FIG ... Number of digits in a double variable.
+ *
+ * m -> d*10**e, 0<d<BASE
+ * [Returns]
+ * 0 ... Zero
+ * 1 ... Normal
+ * 2 ... Infinity
+ * -1 ... NaN
+ */
+VP_EXPORT int
+VpVtoD(double *d, SIGNED_VALUE *e, Real *m)
+{
+ size_t ind_m, mm, fig;
+ double div;
+ int f = 1;
+
+ if(VpIsNaN(m)) {
+ *d = VpGetDoubleNaN();
+ *e = 0;
+ f = -1; /* NaN */
+ goto Exit;
+ } else
+ if(VpIsPosZero(m)) {
+ *d = 0.0;
+ *e = 0;
+ f = 0;
+ goto Exit;
+ } else
+ if(VpIsNegZero(m)) {
+ *d = VpGetDoubleNegZero();
+ *e = 0;
+ f = 0;
+ goto Exit;
+ } else
+ if(VpIsPosInf(m)) {
+ *d = VpGetDoublePosInf();
+ *e = 0;
+ f = 2;
+ goto Exit;
+ } else
+ if(VpIsNegInf(m)) {
+ *d = VpGetDoubleNegInf();
+ *e = 0;
+ f = 2;
+ goto Exit;
+ }
+ /* Normal number */
+ fig =(DBLE_FIG + BASE_FIG - 1) / BASE_FIG;
+ ind_m = 0;
+ mm = Min(fig,(m->Prec));
+ *d = 0.0;
+ div = 1.;
+ while(ind_m < mm) {
+ div /= (double)BASE;
+ *d = *d + (double)m->frac[ind_m++] * div;
+ }
+ *e = m->exponent * (SIGNED_VALUE)BASE_FIG;
+ *d *= VpGetSign(m);
+
+Exit:
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ VPrint(stdout, " VpVtoD: m=%\n", m);
+ printf(" d=%e * 10 **%ld\n", *d, *e);
+ printf(" DBLE_FIG = %d\n", DBLE_FIG);
+ }
+#endif /*BIGDECIMAL_DEBUG */
+ return f;
+}
+
+/*
+ * m <- d
+ */
+VP_EXPORT void
+VpDtoV(Real *m, double d)
+{
+ size_t ind_m, mm;
+ SIGNED_VALUE ne;
+ BDIGIT i;
+ double val, val2;
+
+ if(isnan(d)) {
+ VpSetNaN(m);
+ goto Exit;
+ }
+ if(isinf(d)) {
+ if(d>0.0) VpSetPosInf(m);
+ else VpSetNegInf(m);
+ goto Exit;
+ }
+
+ if(d == 0.0) {
+ VpSetZero(m,1);
+ goto Exit;
+ }
+ val =(d > 0.) ? d :(-d);
+ ne = 0;
+ if(val >= 1.0) {
+ while(val >= 1.0) {
+ val /= (double)BASE;
+ ++ne;
+ }
+ } else {
+ val2 = 1.0 /(double)BASE;
+ while(val < val2) {
+ val *= (double)BASE;
+ --ne;
+ }
+ }
+ /* Now val = 0.xxxxx*BASE**ne */
+
+ mm = m->MaxPrec;
+ memset(m->frac, 0, mm * sizeof(BDIGIT));
+ for(ind_m = 0;val > 0.0 && ind_m < mm;ind_m++) {
+ val *= (double)BASE;
+ i = (BDIGIT)val;
+ val -= (double)i;
+ m->frac[ind_m] = i;
+ }
+ if(ind_m >= mm) ind_m = mm - 1;
+ VpSetSign(m, (d > 0.0) ? 1 : -1);
+ m->Prec = ind_m + 1;
+ m->exponent = ne;
+
+ VpInternalRound(m, 0, (m->Prec > 0) ? m->frac[m->Prec-1] : 0,
+ (BDIGIT)(val*(double)BASE));
+
+Exit:
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ printf("VpDtoV d=%30.30e\n", d);
+ VPrint(stdout, " m=%\n", m);
+ }
+#endif /* BIGDECIMAL_DEBUG */
+ return;
+}
+
+/*
+ * m <- ival
+ */
+#if 0 /* unused */
+VP_EXPORT void
+VpItoV(Real *m, SIGNED_VALUE ival)
+{
+ size_t mm, ind_m;
+ size_t val, v1, v2, v;
+ int isign;
+ SIGNED_VALUE ne;
+
+ if(ival == 0) {
+ VpSetZero(m,1);
+ goto Exit;
+ }
+ isign = 1;
+ val = ival;
+ if(ival < 0) {
+ isign = -1;
+ val =(size_t)(-ival);
+ }
+ ne = 0;
+ ind_m = 0;
+ mm = m->MaxPrec;
+ while(ind_m < mm) {
+ m->frac[ind_m] = 0;
+ ++ind_m;
+ }
+ ind_m = 0;
+ while(val > 0) {
+ if(val) {
+ v1 = val;
+ v2 = 1;
+ while(v1 >= BASE) {
+ v1 /= BASE;
+ v2 *= BASE;
+ }
+ val = val - v2 * v1;
+ v = v1;
+ } else {
+ v = 0;
+ }
+ m->frac[ind_m] = v;
+ ++ind_m;
+ ++ne;
+ }
+ m->Prec = ind_m - 1;
+ m->exponent = ne;
+ VpSetSign(m,isign);
+ VpNmlz(m);
+
+Exit:
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ printf(" VpItoV i=%d\n", ival);
+ VPrint(stdout, " m=%\n", m);
+ }
+#endif /* BIGDECIMAL_DEBUG */
+ return;
+}
+#endif
+
+/*
+ * y = SQRT(x), y*y - x =>0
+ */
+VP_EXPORT int
+VpSqrt(Real *y, Real *x)
+{
+ Real *f = NULL;
+ Real *r = NULL;
+ size_t y_prec, f_prec;
+ SIGNED_VALUE n, e;
+ SIGNED_VALUE prec;
+ ssize_t nr;
+ double val;
+
+ /* Zero, NaN or Infinity ? */
+ if(!VpHasVal(x)) {
+ if(VpIsZero(x)||VpGetSign(x)>0) {
+ VpAsgn(y,x,1);
+ goto Exit;
+ }
+ VpSetNaN(y);
+ return VpException(VP_EXCEPTION_OP,"(VpSqrt) SQRT(NaN or negative value)",0);
+ goto Exit;
+ }
+
+ /* Negative ? */
+ if(VpGetSign(x) < 0) {
+ VpSetNaN(y);
+ return VpException(VP_EXCEPTION_OP,"(VpSqrt) SQRT(negative value)",0);
+ }
+
+ /* One ? */
+ if(VpIsOne(x)) {
+ VpSetOne(y);
+ goto Exit;
+ }
+
+ n = (SIGNED_VALUE)y->MaxPrec;
+ if (x->MaxPrec > (size_t)n) n = (ssize_t)x->MaxPrec;
+ /* allocate temporally variables */
+ f = VpAlloc(y->MaxPrec * (BASE_FIG + 2), "#1");
+ r = VpAlloc((n + n) * (BASE_FIG + 2), "#1");
+
+ nr = 0;
+ y_prec = y->MaxPrec;
+ f_prec = f->MaxPrec;
+
+ prec = x->exponent - (ssize_t)y_prec;
+ if (x->exponent > 0)
+ ++prec;
+ else
+ --prec;
+
+ VpVtoD(&val, &e, x); /* val <- x */
+ e /= (SIGNED_VALUE)BASE_FIG;
+ n = e / 2;
+ if (e - n * 2 != 0) {
+ val /= BASE;
+ n = (e + 1) / 2;
+ }
+ VpDtoV(y, sqrt(val)); /* y <- sqrt(val) */
+ y->exponent += n;
+ n = (SIGNED_VALUE)((DBLE_FIG + BASE_FIG - 1) / BASE_FIG);
+ y->MaxPrec = Min((size_t)n , y_prec);
+ f->MaxPrec = y->MaxPrec + 1;
+ n = (SIGNED_VALUE)(y_prec * BASE_FIG);
+ if (n < (SIGNED_VALUE)maxnr) n = (SIGNED_VALUE)maxnr;
+ do {
+ y->MaxPrec *= 2;
+ if (y->MaxPrec > y_prec) y->MaxPrec = y_prec;
+ f->MaxPrec = y->MaxPrec;
+ VpDivd(f, r, x, y); /* f = x/y */
+ VpAddSub(r, f, y, -1); /* r = f - y */
+ VpMult(f, VpPt5, r); /* f = 0.5*r */
+ if(VpIsZero(f)) goto converge;
+ VpAddSub(r, f, y, 1); /* r = y + f */
+ VpAsgn(y, r, 1); /* y = r */
+ if(f->exponent <= prec) goto converge;
+ } while(++nr < n);
+ /* */
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ printf("ERROR(VpSqrt): did not converge within %ld iterations.\n",
+ nr);
+ }
+#endif /* BIGDECIMAL_DEBUG */
+ y->MaxPrec = y_prec;
+
+converge:
+ VpChangeSign(y, 1);
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ VpMult(r, y, y);
+ VpAddSub(f, x, r, -1);
+ printf("VpSqrt: iterations = %"PRIdSIZE"\n", nr);
+ VPrint(stdout, " y =% \n", y);
+ VPrint(stdout, " x =% \n", x);
+ VPrint(stdout, " x-y*y = % \n", f);
+ }
+#endif /* BIGDECIMAL_DEBUG */
+ y->MaxPrec = y_prec;
+
+Exit:
+ VpFree(f);
+ VpFree(r);
+ return 1;
+}
+
+/*
+ *
+ * nf: digit position for operation.
+ *
+ */
+VP_EXPORT int
+VpMidRound(Real *y, unsigned short f, ssize_t nf)
+/*
+ * Round reletively from the decimal point.
+ * f: rounding mode
+ * nf: digit location to round from the the decimal point.
+ */
+{
+ /* fracf: any positive digit under rounding position? */
+ /* fracf_1further: any positive digits under one further than the rounding position? */
+ /* exptoadd: number of digits needed to compensate negative nf */
+ int fracf, fracf_1further;
+ ssize_t n,i,ix,ioffset, exptoadd;
+ BDIGIT v, shifter;
+ BDIGIT div;
+
+ nf += y->exponent * (ssize_t)BASE_FIG;
+ exptoadd=0;
+ if (nf < 0) {
+ /* rounding position too left(large). */
+ if((f!=VP_ROUND_CEIL) && (f!=VP_ROUND_FLOOR)) {
+ VpSetZero(y,VpGetSign(y)); /* truncate everything */
+ return 0;
+ }
+ exptoadd = -nf;
+ nf = 0;
+ }
+
+ ix = nf / (ssize_t)BASE_FIG;
+ if ((size_t)ix >= y->Prec) return 0; /* rounding position too right(small). */
+ v = y->frac[ix];
+
+ ioffset = nf - ix*(ssize_t)BASE_FIG;
+ n = (ssize_t)BASE_FIG - ioffset - 1;
+ for (shifter=1,i=0; i<n; ++i) shifter *= 10;
+
+ /* so the representation used (in y->frac) is an array of BDIGIT, where
+ each BDIGIT contains a value between 0 and BASE-1, consisting of BASE_FIG
+ decimal places.
+
+ (that numbers of decimal places are typed as ssize_t is somewhat confusing)
+
+ nf is now position (in decimal places) of the digit from the start of
+ the array.
+ ix is the position (in BDIGITS) of the BDIGIT containing the decimal digit,
+ from the start of the array.
+ v is the value of this BDIGIT
+ ioffset is the number of extra decimal places along of this decimal digit
+ within v.
+ n is the number of decimal digits remaining within v after this decimal digit
+ shifter is 10**n,
+ v % shifter are the remaining digits within v
+ v % (shifter * 10) are the digit together with the remaining digits within v
+ v / shifter are the digit's predecessors together with the digit
+ div = v / shifter / 10 is just the digit's precessors
+ (v / shifter) - div*10 is just the digit, which is what v ends up being reassigned to.
+ */
+
+ fracf = (v % (shifter * 10) > 0);
+ fracf_1further = ((v % shifter) > 0);
+
+ v /= shifter;
+ div = v / 10;
+ v = v - div*10;
+ /* now v is just the digit required.
+ now fracf is whether the digit or any of the remaining digits within v are non-zero
+ now fracf_1further is whether any of the remaining digits within v are non-zero
+ */
+
+ /* now check all the remaining BDIGITS for zero-ness a whole BDIGIT at a time.
+ if we spot any non-zeroness, that means that we foudn a positive digit under
+ rounding position, and we also found a positive digit under one further than
+ the rounding position, so both searches (to see if any such non-zero digit exists)
+ can stop */
+
+ for (i=ix+1; (size_t)i < y->Prec; i++) {
+ if (y->frac[i] % BASE) {
+ fracf = fracf_1further = 1;
+ break;
+ }
+ }
+
+ /* now fracf = does any positive digit exist under the rounding position?
+ now fracf_1further = does any positive digit exist under one further than the
+ rounding position?
+ now v = the first digit under the rounding position */
+
+ /* drop digits after pointed digit */
+ memset(y->frac+ix+1, 0, (y->Prec - (ix+1)) * sizeof(BDIGIT));
+
+ switch(f) {
+ case VP_ROUND_DOWN: /* Truncate */
+ break;
+ case VP_ROUND_UP: /* Roundup */
+ if (fracf) ++div;
+ break;
+ case VP_ROUND_HALF_UP:
+ if (v>=5) ++div;
+ break;
+ case VP_ROUND_HALF_DOWN:
+ if (v > 5 || (v == 5 && fracf_1further)) ++div;
+ break;
+ case VP_ROUND_CEIL:
+ if (fracf && (VpGetSign(y)>0)) ++div;
+ break;
+ case VP_ROUND_FLOOR:
+ if (fracf && (VpGetSign(y)<0)) ++div;
+ break;
+ case VP_ROUND_HALF_EVEN: /* Banker's rounding */
+ if (v > 5) ++div;
+ else if (v == 5) {
+ if (fracf_1further) {
+ ++div;
+ }
+ else {
+ if (ioffset == 0) {
+ /* v is the first decimal digit of its BDIGIT;
+ need to grab the previous BDIGIT if present
+ to check for evenness of the previous decimal
+ digit (which is same as that of the BDIGIT since
+ base 10 has a factor of 2) */
+ if (ix && (y->frac[ix-1] % 2)) ++div;
+ }
+ else {
+ if (div % 2) ++div;
+ }
+ }
+ }
+ break;
+ }
+ for (i=0; i<=n; ++i) div *= 10;
+ if (div>=BASE) {
+ if(ix) {
+ y->frac[ix] = 0;
+ VpRdup(y,ix);
+ } else {
+ short s = VpGetSign(y);
+ SIGNED_VALUE e = y->exponent;
+ VpSetOne(y);
+ VpSetSign(y, s);
+ y->exponent = e+1;
+ }
+ } else {
+ y->frac[ix] = div;
+ VpNmlz(y);
+ }
+ if (exptoadd > 0) {
+ y->exponent += (SIGNED_VALUE)(exptoadd/BASE_FIG);
+ exptoadd %= (ssize_t)BASE_FIG;
+ for(i=0;i<exptoadd;i++) {
+ y->frac[0] *= 10;
+ if (y->frac[0] >= BASE) {
+ y->frac[0] /= BASE;
+ y->exponent++;
+ }
+ }
+ }
+ return 1;
+}
+
+VP_EXPORT int
+VpLeftRound(Real *y, unsigned short f, ssize_t nf)
+/*
+ * Round from the left hand side of the digits.
+ */
+{
+ BDIGIT v;
+ if (!VpHasVal(y)) return 0; /* Unable to round */
+ v = y->frac[0];
+ nf -= VpExponent(y)*(ssize_t)BASE_FIG;
+ while ((v /= 10) != 0) nf--;
+ nf += (ssize_t)BASE_FIG-1;
+ return VpMidRound(y,f,nf);
+}
+
+VP_EXPORT int
+VpActiveRound(Real *y, Real *x, unsigned short f, ssize_t nf)
+{
+ /* First,assign whole value in truncation mode */
+ if (VpAsgn(y, x, 10) <= 1) return 0; /* Zero,NaN,or Infinity */
+ return VpMidRound(y,f,nf);
+}
+
+static int
+VpLimitRound(Real *c, size_t ixDigit)
+{
+ size_t ix = VpGetPrecLimit();
+ if(!VpNmlz(c)) return -1;
+ if(!ix) return 0;
+ if(!ixDigit) ixDigit = c->Prec-1;
+ if((ix+BASE_FIG-1)/BASE_FIG > ixDigit+1) return 0;
+ return VpLeftRound(c, VpGetRoundMode(), (ssize_t)ix);
+}
+
+/* If I understand correctly, this is only ever used to round off the final decimal
+ digit of precision */
+static void
+VpInternalRound(Real *c, size_t ixDigit, BDIGIT vPrev, BDIGIT v)
+{
+ int f = 0;
+
+ unsigned short const rounding_mode = VpGetRoundMode();
+
+ if (VpLimitRound(c, ixDigit)) return;
+ if (!v) return;
+
+ v /= BASE1;
+ switch (rounding_mode) {
+ case VP_ROUND_DOWN:
+ break;
+ case VP_ROUND_UP:
+ if (v) f = 1;
+ break;
+ case VP_ROUND_HALF_UP:
+ if (v >= 5) f = 1;
+ break;
+ case VP_ROUND_HALF_DOWN:
+ /* this is ok - because this is the last digit of precision,
+ the case where v == 5 and some further digits are nonzero
+ will never occur */
+ if (v >= 6) f = 1;
+ break;
+ case VP_ROUND_CEIL:
+ if (v && (VpGetSign(c) > 0)) f = 1;
+ break;
+ case VP_ROUND_FLOOR:
+ if (v && (VpGetSign(c) < 0)) f = 1;
+ break;
+ case VP_ROUND_HALF_EVEN: /* Banker's rounding */
+ /* as per VP_ROUND_HALF_DOWN, because this is the last digit of precision,
+ there is no case to worry about where v == 5 and some further digits are nonzero */
+ if (v > 5) f = 1;
+ else if (v == 5 && vPrev % 2) f = 1;
+ break;
+ }
+ if (f) {
+ VpRdup(c, ixDigit);
+ VpNmlz(c);
+ }
+}
+
+/*
+ * Rounds up m(plus one to final digit of m).
+ */
+static int
+VpRdup(Real *m, size_t ind_m)
+{
+ BDIGIT carry;
+
+ if (!ind_m) ind_m = m->Prec;
+
+ carry = 1;
+ while (carry > 0 && (ind_m--)) {
+ m->frac[ind_m] += carry;
+ if (m->frac[ind_m] >= BASE) m->frac[ind_m] -= BASE;
+ else carry = 0;
+ }
+ if(carry > 0) { /* Overflow,count exponent and set fraction part be 1 */
+ if (!AddExponent(m, 1)) return 0;
+ m->Prec = m->frac[0] = 1;
+ } else {
+ VpNmlz(m);
+ }
+ return 1;
+}
+
+/*
+ * y = x - fix(x)
+ */
+VP_EXPORT void
+VpFrac(Real *y, Real *x)
+{
+ size_t my, ind_y, ind_x;
+
+ if(!VpHasVal(x)) {
+ VpAsgn(y,x,1);
+ goto Exit;
+ }
+
+ if (x->exponent > 0 && (size_t)x->exponent >= x->Prec) {
+ VpSetZero(y,VpGetSign(x));
+ goto Exit;
+ }
+ else if(x->exponent <= 0) {
+ VpAsgn(y, x, 1);
+ goto Exit;
+ }
+
+ /* satisfy: x->exponent > 0 */
+
+ y->Prec = x->Prec - (size_t)x->exponent;
+ y->Prec = Min(y->Prec, y->MaxPrec);
+ y->exponent = 0;
+ VpSetSign(y,VpGetSign(x));
+ ind_y = 0;
+ my = y->Prec;
+ ind_x = x->exponent;
+ while(ind_y < my) {
+ y->frac[ind_y] = x->frac[ind_x];
+ ++ind_y;
+ ++ind_x;
+ }
+ VpNmlz(y);
+
+Exit:
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ VPrint(stdout, "VpFrac y=%\n", y);
+ VPrint(stdout, " x=%\n", x);
+ }
+#endif /* BIGDECIMAL_DEBUG */
+ return;
+}
+
+/*
+ * y = x ** n
+ */
+VP_EXPORT int
+VpPower(Real *y, Real *x, SIGNED_VALUE n)
+{
+ size_t s, ss;
+ ssize_t sign;
+ Real *w1 = NULL;
+ Real *w2 = NULL;
+
+ if(VpIsZero(x)) {
+ if(n==0) {
+ VpSetOne(y);
+ goto Exit;
+ }
+ sign = VpGetSign(x);
+ if(n<0) {
+ n = -n;
+ if(sign<0) sign = (n%2)?(-1):(1);
+ VpSetInf (y,sign);
+ } else {
+ if(sign<0) sign = (n%2)?(-1):(1);
+ VpSetZero(y,sign);
+ }
+ goto Exit;
+ }
+ if(VpIsNaN(x)) {
+ VpSetNaN(y);
+ goto Exit;
+ }
+ if(VpIsInf(x)) {
+ if(n==0) {
+ VpSetOne(y);
+ goto Exit;
+ }
+ if(n>0) {
+ VpSetInf(y, (n%2==0 || VpIsPosInf(x)) ? 1 : -1);
+ goto Exit;
+ }
+ VpSetZero(y, (n%2==0 || VpIsPosInf(x)) ? 1 : -1);
+ goto Exit;
+ }
+
+ if((x->exponent == 1) &&(x->Prec == 1) &&(x->frac[0] == 1)) {
+ /* abs(x) = 1 */
+ VpSetOne(y);
+ if(VpGetSign(x) > 0) goto Exit;
+ if((n % 2) == 0) goto Exit;
+ VpSetSign(y, -1);
+ goto Exit;
+ }
+
+ if(n > 0) sign = 1;
+ else if(n < 0) {
+ sign = -1;
+ n = -n;
+ } else {
+ VpSetOne(y);
+ goto Exit;
+ }
+
+ /* Allocate working variables */
+
+ w1 = VpAlloc((y->MaxPrec + 2) * BASE_FIG, "#0");
+ w2 = VpAlloc((w1->MaxPrec * 2 + 1) * BASE_FIG, "#0");
+ /* calculation start */
+
+ VpAsgn(y, x, 1);
+ --n;
+ while(n > 0) {
+ VpAsgn(w1, x, 1);
+ s = 1;
+ while (ss = s, (s += s) <= (size_t)n) {
+ VpMult(w2, w1, w1);
+ VpAsgn(w1, w2, 1);
+ }
+ n -= (SIGNED_VALUE)ss;
+ VpMult(w2, y, w1);
+ VpAsgn(y, w2, 1);
+ }
+ if(sign < 0) {
+ VpDivd(w1, w2, VpConstOne, y);
+ VpAsgn(y, w1, 1);
+ }
+
+Exit:
+#ifdef BIGDECIMAL_DEBUG
+ if(gfDebug) {
+ VPrint(stdout, "VpPower y=%\n", y);
+ VPrint(stdout, "VpPower x=%\n", x);
+ printf(" n=%d\n", n);
+ }
+#endif /* BIGDECIMAL_DEBUG */
+ VpFree(w2);
+ VpFree(w1);
+ return 1;
+}
+
+#ifdef BIGDECIMAL_DEBUG
+int
+VpVarCheck(Real * v)
+/*
+ * Checks the validity of the Real variable v.
+ * [Input]
+ * v ... Real *, variable to be checked.
+ * [Returns]
+ * 0 ... correct v.
+ * other ... error
+ */
+{
+ size_t i;
+
+ if(v->MaxPrec <= 0) {
+ printf("ERROR(VpVarCheck): Illegal Max. Precision(=%"PRIuSIZE")\n",
+ v->MaxPrec);
+ return 1;
+ }
+ if((v->Prec <= 0) ||((v->Prec) >(v->MaxPrec))) {
+ printf("ERROR(VpVarCheck): Illegal Precision(=%"PRIuSIZE")\n", v->Prec);
+ printf(" Max. Prec.=%"PRIuSIZE"\n", v->MaxPrec);
+ return 2;
+ }
+ for(i = 0; i < v->Prec; ++i) {
+ if((v->frac[i] >= BASE)) {
+ printf("ERROR(VpVarCheck): Illegal fraction\n");
+ printf(" Frac[%"PRIuSIZE"]=%lu\n", i, v->frac[i]);
+ printf(" Prec. =%"PRIuSIZE"\n", v->Prec);
+ printf(" Exp. =%"PRIdVALUE"\n", v->exponent);
+ printf(" BASE =%lu\n", BASE);
+ return 3;
+ }
+ }
+ return 0;
+}
+#endif /* BIGDECIMAL_DEBUG */