diff options
Diffstat (limited to 'rational.c')
| -rw-r--r-- | rational.c | 2830 |
1 files changed, 2830 insertions, 0 deletions
diff --git a/rational.c b/rational.c new file mode 100644 index 0000000000..51078f81ad --- /dev/null +++ b/rational.c @@ -0,0 +1,2830 @@ +/* + rational.c: Coded by Tadayoshi Funaba 2008-2012 + + This implementation is based on Keiju Ishitsuka's Rational library + which is written in ruby. +*/ + +#include "ruby/internal/config.h" + +#include <ctype.h> +#include <float.h> +#include <math.h> + +#ifdef HAVE_IEEEFP_H +#include <ieeefp.h> +#endif + +#if !defined(USE_GMP) +#if defined(HAVE_LIBGMP) && defined(HAVE_GMP_H) +# define USE_GMP 1 +#else +# define USE_GMP 0 +#endif +#endif + +#include "id.h" +#include "internal.h" +#include "internal/array.h" +#include "internal/complex.h" +#include "internal/gc.h" +#include "internal/numeric.h" +#include "internal/object.h" +#include "internal/rational.h" +#include "ruby_assert.h" + +#if USE_GMP +RBIMPL_WARNING_PUSH() +# ifdef _MSC_VER +RBIMPL_WARNING_IGNORED(4146) /* for mpn_neg() */ +# endif +# include <gmp.h> +RBIMPL_WARNING_POP() +#endif + +#define ZERO INT2FIX(0) +#define ONE INT2FIX(1) +#define TWO INT2FIX(2) + +#define GMP_GCD_DIGITS 1 + +#define INT_ZERO_P(x) (FIXNUM_P(x) ? FIXNUM_ZERO_P(x) : rb_bigzero_p(x)) + +VALUE rb_cRational; + +static ID id_abs, id_integer_p, + id_i_num, id_i_den; + +#define id_idiv idDiv +#define id_to_i idTo_i + +#define f_inspect rb_inspect +#define f_to_s rb_obj_as_string + +static VALUE nurat_to_f(VALUE self); +static VALUE float_to_r(VALUE self); + +inline static VALUE +f_add(VALUE x, VALUE y) +{ + if (FIXNUM_ZERO_P(y)) + return x; + if (FIXNUM_ZERO_P(x)) + return y; + if (RB_INTEGER_TYPE_P(x)) + return rb_int_plus(x, y); + return rb_funcall(x, '+', 1, y); +} + +inline static VALUE +f_div(VALUE x, VALUE y) +{ + if (y == ONE) + return x; + if (RB_INTEGER_TYPE_P(x)) + return rb_int_div(x, y); + return rb_funcall(x, '/', 1, y); +} + +inline static int +f_lt_p(VALUE x, VALUE y) +{ + if (FIXNUM_P(x) && FIXNUM_P(y)) + return (SIGNED_VALUE)x < (SIGNED_VALUE)y; + if (RB_INTEGER_TYPE_P(x)) { + VALUE r = rb_int_cmp(x, y); + if (!NIL_P(r)) return rb_int_negative_p(r); + } + return RTEST(rb_funcall(x, '<', 1, y)); +} + +#ifndef NDEBUG +/* f_mod is used only in f_gcd defined when NDEBUG is not defined */ +inline static VALUE +f_mod(VALUE x, VALUE y) +{ + if (RB_INTEGER_TYPE_P(x)) + return rb_int_modulo(x, y); + return rb_funcall(x, '%', 1, y); +} +#endif + +inline static VALUE +f_mul(VALUE x, VALUE y) +{ + if (FIXNUM_ZERO_P(y) && RB_INTEGER_TYPE_P(x)) + return ZERO; + if (y == ONE) return x; + if (FIXNUM_ZERO_P(x) && RB_INTEGER_TYPE_P(y)) + return ZERO; + if (x == ONE) return y; + else if (RB_INTEGER_TYPE_P(x)) + return rb_int_mul(x, y); + return rb_funcall(x, '*', 1, y); +} + +inline static VALUE +f_sub(VALUE x, VALUE y) +{ + if (FIXNUM_P(y) && FIXNUM_ZERO_P(y)) + return x; + return rb_funcall(x, '-', 1, y); +} + +inline static VALUE +f_abs(VALUE x) +{ + if (RB_INTEGER_TYPE_P(x)) + return rb_int_abs(x); + return rb_funcall(x, id_abs, 0); +} + + +inline static int +f_integer_p(VALUE x) +{ + return RB_INTEGER_TYPE_P(x); +} + +inline static VALUE +f_to_i(VALUE x) +{ + if (RB_TYPE_P(x, T_STRING)) + return rb_str_to_inum(x, 10, 0); + return rb_funcall(x, id_to_i, 0); +} + +inline static int +f_eqeq_p(VALUE x, VALUE y) +{ + if (FIXNUM_P(x) && FIXNUM_P(y)) + return x == y; + if (RB_INTEGER_TYPE_P(x)) + return RTEST(rb_int_equal(x, y)); + return (int)rb_equal(x, y); +} + +inline static VALUE +f_idiv(VALUE x, VALUE y) +{ + if (RB_INTEGER_TYPE_P(x)) + return rb_int_idiv(x, y); + return rb_funcall(x, id_idiv, 1, y); +} + +#define f_expt10(x) rb_int_pow(INT2FIX(10), x) + +inline static int +f_zero_p(VALUE x) +{ + if (RB_INTEGER_TYPE_P(x)) { + return FIXNUM_ZERO_P(x); + } + else if (RB_TYPE_P(x, T_RATIONAL)) { + VALUE num = RRATIONAL(x)->num; + + return FIXNUM_ZERO_P(num); + } + return (int)rb_equal(x, ZERO); +} + +#define f_nonzero_p(x) (!f_zero_p(x)) + +inline static int +f_one_p(VALUE x) +{ + if (RB_INTEGER_TYPE_P(x)) { + return x == LONG2FIX(1); + } + else if (RB_TYPE_P(x, T_RATIONAL)) { + VALUE num = RRATIONAL(x)->num; + VALUE den = RRATIONAL(x)->den; + + return num == LONG2FIX(1) && den == LONG2FIX(1); + } + return (int)rb_equal(x, ONE); +} + +inline static int +f_minus_one_p(VALUE x) +{ + if (RB_INTEGER_TYPE_P(x)) { + return x == LONG2FIX(-1); + } + else if (RB_BIGNUM_TYPE_P(x)) { + return Qfalse; + } + else if (RB_TYPE_P(x, T_RATIONAL)) { + VALUE num = RRATIONAL(x)->num; + VALUE den = RRATIONAL(x)->den; + + return num == LONG2FIX(-1) && den == LONG2FIX(1); + } + return (int)rb_equal(x, INT2FIX(-1)); +} + +inline static int +f_kind_of_p(VALUE x, VALUE c) +{ + return (int)rb_obj_is_kind_of(x, c); +} + +inline static int +k_numeric_p(VALUE x) +{ + return f_kind_of_p(x, rb_cNumeric); +} + +inline static int +k_integer_p(VALUE x) +{ + return RB_INTEGER_TYPE_P(x); +} + +inline static int +k_float_p(VALUE x) +{ + return RB_FLOAT_TYPE_P(x); +} + +inline static int +k_rational_p(VALUE x) +{ + return RB_TYPE_P(x, T_RATIONAL); +} + +#define k_exact_p(x) (!k_float_p(x)) +#define k_inexact_p(x) k_float_p(x) + +#define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x)) +#define k_exact_one_p(x) (k_exact_p(x) && f_one_p(x)) + +#if USE_GMP +VALUE +rb_gcd_gmp(VALUE x, VALUE y) +{ + const size_t nails = (sizeof(BDIGIT)-SIZEOF_BDIGIT)*CHAR_BIT; + mpz_t mx, my, mz; + size_t count; + VALUE z; + long zn; + + mpz_init(mx); + mpz_init(my); + mpz_init(mz); + mpz_import(mx, BIGNUM_LEN(x), -1, sizeof(BDIGIT), 0, nails, BIGNUM_DIGITS(x)); + mpz_import(my, BIGNUM_LEN(y), -1, sizeof(BDIGIT), 0, nails, BIGNUM_DIGITS(y)); + + mpz_gcd(mz, mx, my); + + mpz_clear(mx); + mpz_clear(my); + + zn = (mpz_sizeinbase(mz, 16) + SIZEOF_BDIGIT*2 - 1) / (SIZEOF_BDIGIT*2); + z = rb_big_new(zn, 1); + mpz_export(BIGNUM_DIGITS(z), &count, -1, sizeof(BDIGIT), 0, nails, mz); + + mpz_clear(mz); + + return rb_big_norm(z); +} +#endif + +#ifndef NDEBUG +#define f_gcd f_gcd_orig +#endif + +inline static long +i_gcd(long x, long y) +{ + unsigned long u, v, t; + int shift; + + if (x < 0) + x = -x; + if (y < 0) + y = -y; + + if (x == 0) + return y; + if (y == 0) + return x; + + u = (unsigned long)x; + v = (unsigned long)y; + for (shift = 0; ((u | v) & 1) == 0; ++shift) { + u >>= 1; + v >>= 1; + } + + while ((u & 1) == 0) + u >>= 1; + + do { + while ((v & 1) == 0) + v >>= 1; + + if (u > v) { + t = v; + v = u; + u = t; + } + v = v - u; + } while (v != 0); + + return (long)(u << shift); +} + +inline static VALUE +f_gcd_normal(VALUE x, VALUE y) +{ + VALUE z; + + if (FIXNUM_P(x) && FIXNUM_P(y)) + return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y))); + + if (INT_NEGATIVE_P(x)) + x = rb_int_uminus(x); + if (INT_NEGATIVE_P(y)) + y = rb_int_uminus(y); + + if (INT_ZERO_P(x)) + return y; + if (INT_ZERO_P(y)) + return x; + + for (;;) { + if (FIXNUM_P(x)) { + if (FIXNUM_ZERO_P(x)) + return y; + if (FIXNUM_P(y)) + return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y))); + } + z = x; + x = rb_int_modulo(y, x); + y = z; + } + /* NOTREACHED */ +} + +VALUE +rb_gcd_normal(VALUE x, VALUE y) +{ + return f_gcd_normal(x, y); +} + +inline static VALUE +f_gcd(VALUE x, VALUE y) +{ +#if USE_GMP + if (RB_BIGNUM_TYPE_P(x) && RB_BIGNUM_TYPE_P(y)) { + size_t xn = BIGNUM_LEN(x); + size_t yn = BIGNUM_LEN(y); + if (GMP_GCD_DIGITS <= xn || GMP_GCD_DIGITS <= yn) + return rb_gcd_gmp(x, y); + } +#endif + return f_gcd_normal(x, y); +} + +#ifndef NDEBUG +#undef f_gcd + +inline static VALUE +f_gcd(VALUE x, VALUE y) +{ + VALUE r = f_gcd_orig(x, y); + if (f_nonzero_p(r)) { + RUBY_ASSERT(f_zero_p(f_mod(x, r))); + RUBY_ASSERT(f_zero_p(f_mod(y, r))); + } + return r; +} +#endif + +inline static VALUE +f_lcm(VALUE x, VALUE y) +{ + if (INT_ZERO_P(x) || INT_ZERO_P(y)) + return ZERO; + return f_abs(f_mul(f_div(x, f_gcd(x, y)), y)); +} + +#define get_dat1(x) \ + struct RRational *dat = RRATIONAL(x) + +#define get_dat2(x,y) \ + struct RRational *adat = RRATIONAL(x), *bdat = RRATIONAL(y) + +inline static VALUE +nurat_s_new_internal(VALUE klass, VALUE num, VALUE den) +{ + NEWOBJ_OF(obj, struct RRational, klass, T_RATIONAL | (RGENGC_WB_PROTECTED_RATIONAL ? FL_WB_PROTECTED : 0), + sizeof(struct RRational), 0); + + RATIONAL_SET_NUM((VALUE)obj, num); + RATIONAL_SET_DEN((VALUE)obj, den); + OBJ_FREEZE((VALUE)obj); + + return (VALUE)obj; +} + +static VALUE +nurat_s_alloc(VALUE klass) +{ + return nurat_s_new_internal(klass, ZERO, ONE); +} + +inline static VALUE +f_rational_new_bang1(VALUE klass, VALUE x) +{ + return nurat_s_new_internal(klass, x, ONE); +} + +inline static void +nurat_int_check(VALUE num) +{ + if (!RB_INTEGER_TYPE_P(num)) { + if (!k_numeric_p(num) || !f_integer_p(num)) + rb_raise(rb_eTypeError, "not an integer"); + } +} + +inline static VALUE +nurat_int_value(VALUE num) +{ + nurat_int_check(num); + if (!k_integer_p(num)) + num = f_to_i(num); + return num; +} + +static void +nurat_canonicalize(VALUE *num, VALUE *den) +{ + RUBY_ASSERT(num); RUBY_ASSERT(RB_INTEGER_TYPE_P(*num)); + RUBY_ASSERT(den); RUBY_ASSERT(RB_INTEGER_TYPE_P(*den)); + if (INT_NEGATIVE_P(*den)) { + *num = rb_int_uminus(*num); + *den = rb_int_uminus(*den); + } + else if (INT_ZERO_P(*den)) { + rb_num_zerodiv(); + } +} + +static void +nurat_reduce(VALUE *x, VALUE *y) +{ + VALUE gcd; + if (*x == ONE || *y == ONE) return; + gcd = f_gcd(*x, *y); + *x = f_idiv(*x, gcd); + *y = f_idiv(*y, gcd); +} + +inline static VALUE +nurat_s_canonicalize_internal(VALUE klass, VALUE num, VALUE den) +{ + nurat_canonicalize(&num, &den); + nurat_reduce(&num, &den); + + return nurat_s_new_internal(klass, num, den); +} + +inline static VALUE +nurat_s_canonicalize_internal_no_reduce(VALUE klass, VALUE num, VALUE den) +{ + nurat_canonicalize(&num, &den); + + return nurat_s_new_internal(klass, num, den); +} + +inline static VALUE +f_rational_new2(VALUE klass, VALUE x, VALUE y) +{ + RUBY_ASSERT(!k_rational_p(x)); + RUBY_ASSERT(!k_rational_p(y)); + return nurat_s_canonicalize_internal(klass, x, y); +} + +inline static VALUE +f_rational_new_no_reduce2(VALUE klass, VALUE x, VALUE y) +{ + RUBY_ASSERT(!k_rational_p(x)); + RUBY_ASSERT(!k_rational_p(y)); + return nurat_s_canonicalize_internal_no_reduce(klass, x, y); +} + +static VALUE nurat_convert(VALUE klass, VALUE numv, VALUE denv, int raise); +static VALUE nurat_s_convert(int argc, VALUE *argv, VALUE klass); + +/* + * call-seq: + * Rational(x, y, exception: true) -> rational or nil + * Rational(arg, exception: true) -> rational or nil + * + * Returns +x/y+ or +arg+ as a Rational. + * + * Rational(2, 3) #=> (2/3) + * Rational(5) #=> (5/1) + * Rational(0.5) #=> (1/2) + * Rational(0.3) #=> (5404319552844595/18014398509481984) + * + * Rational("2/3") #=> (2/3) + * Rational("0.3") #=> (3/10) + * + * Rational("10 cents") #=> ArgumentError + * Rational(nil) #=> TypeError + * Rational(1, nil) #=> TypeError + * + * Rational("10 cents", exception: false) #=> nil + * + * Syntax of the string form: + * + * string form = extra spaces , rational , extra spaces ; + * rational = [ sign ] , unsigned rational ; + * unsigned rational = numerator | numerator , "/" , denominator ; + * numerator = integer part | fractional part | integer part , fractional part ; + * denominator = digits ; + * integer part = digits ; + * fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ; + * sign = "-" | "+" ; + * digits = digit , { digit | "_" , digit } ; + * digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ; + * extra spaces = ? \s* ? ; + * + * See also String#to_r. + */ +static VALUE +nurat_f_rational(int argc, VALUE *argv, VALUE klass) +{ + VALUE a1, a2, opts = Qnil; + int raise = TRUE; + + if (rb_scan_args(argc, argv, "11:", &a1, &a2, &opts) == 1) { + a2 = Qundef; + } + if (!NIL_P(opts)) { + raise = rb_opts_exception_p(opts, raise); + } + return nurat_convert(rb_cRational, a1, a2, raise); +} + +/* + * call-seq: + * rat.numerator -> integer + * + * Returns the numerator. + * + * Rational(7).numerator #=> 7 + * Rational(7, 1).numerator #=> 7 + * Rational(9, -4).numerator #=> -9 + * Rational(-2, -10).numerator #=> 1 + */ +static VALUE +nurat_numerator(VALUE self) +{ + get_dat1(self); + return dat->num; +} + +/* + * call-seq: + * rat.denominator -> integer + * + * Returns the denominator (always positive). + * + * Rational(7).denominator #=> 1 + * Rational(7, 1).denominator #=> 1 + * Rational(9, -4).denominator #=> 4 + * Rational(-2, -10).denominator #=> 5 + */ +static VALUE +nurat_denominator(VALUE self) +{ + get_dat1(self); + return dat->den; +} + +/* + * call-seq: + * -self -> rational + * + * Returns +self+, negated: + * + * -(1/3r) # => (-1/3) + * -(-1/3r) # => (1/3) + * + */ +VALUE +rb_rational_uminus(VALUE self) +{ + const int unused = (RUBY_ASSERT(RB_TYPE_P(self, T_RATIONAL)), 0); + get_dat1(self); + (void)unused; + return f_rational_new2(CLASS_OF(self), rb_int_uminus(dat->num), dat->den); +} + +#ifndef NDEBUG +#define f_imul f_imul_orig +#endif + +inline static VALUE +f_imul(long a, long b) +{ + VALUE r; + + if (a == 0 || b == 0) + return ZERO; + else if (a == 1) + return LONG2NUM(b); + else if (b == 1) + return LONG2NUM(a); + + if (MUL_OVERFLOW_LONG_P(a, b)) + r = rb_big_mul(rb_int2big(a), rb_int2big(b)); + else + r = LONG2NUM(a * b); + return r; +} + +#ifndef NDEBUG +#undef f_imul + +inline static VALUE +f_imul(long x, long y) +{ + VALUE r = f_imul_orig(x, y); + RUBY_ASSERT(f_eqeq_p(r, f_mul(LONG2NUM(x), LONG2NUM(y)))); + return r; +} +#endif + +inline static VALUE +f_addsub(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k) +{ + VALUE num, den; + + if (FIXNUM_P(anum) && FIXNUM_P(aden) && + FIXNUM_P(bnum) && FIXNUM_P(bden)) { + long an = FIX2LONG(anum); + long ad = FIX2LONG(aden); + long bn = FIX2LONG(bnum); + long bd = FIX2LONG(bden); + long ig = i_gcd(ad, bd); + + VALUE g = LONG2NUM(ig); + VALUE a = f_imul(an, bd / ig); + VALUE b = f_imul(bn, ad / ig); + VALUE c; + + if (k == '+') + c = rb_int_plus(a, b); + else + c = rb_int_minus(a, b); + + b = rb_int_idiv(aden, g); + g = f_gcd(c, g); + num = rb_int_idiv(c, g); + a = rb_int_idiv(bden, g); + den = rb_int_mul(a, b); + } + else if (RB_INTEGER_TYPE_P(anum) && RB_INTEGER_TYPE_P(aden) && + RB_INTEGER_TYPE_P(bnum) && RB_INTEGER_TYPE_P(bden)) { + VALUE g = f_gcd(aden, bden); + VALUE a = rb_int_mul(anum, rb_int_idiv(bden, g)); + VALUE b = rb_int_mul(bnum, rb_int_idiv(aden, g)); + VALUE c; + + if (k == '+') + c = rb_int_plus(a, b); + else + c = rb_int_minus(a, b); + + b = rb_int_idiv(aden, g); + g = f_gcd(c, g); + num = rb_int_idiv(c, g); + a = rb_int_idiv(bden, g); + den = rb_int_mul(a, b); + } + else { + double a = NUM2DBL(anum) / NUM2DBL(aden); + double b = NUM2DBL(bnum) / NUM2DBL(bden); + double c = k == '+' ? a + b : a - b; + return DBL2NUM(c); + } + return f_rational_new_no_reduce2(CLASS_OF(self), num, den); +} + +static double nurat_to_double(VALUE self); +/* + * call-seq: + * self + other -> numeric + * + * Returns the sum of +self+ and +other+: + * + * Rational(2, 3) + 0 # => (2/3) + * Rational(2, 3) + 1 # => (5/3) + * Rational(2, 3) + -1 # => (-1/3) + * + * Rational(2, 3) + Complex(1, 0) # => ((5/3)+0i) + * + * Rational(2, 3) + Rational(1, 1) # => (5/3) + * Rational(2, 3) + Rational(3, 2) # => (13/6) + * Rational(2, 3) + Rational(3.0, 2.0) # => (13/6) + * Rational(2, 3) + Rational(3.1, 2.1) # => (30399297484750849/14186338826217063) + * + * For a computation involving Floats, the result may be inexact (see Float#+): + * + * Rational(2, 3) + 1.0 # => 1.6666666666666665 + * Rational(2, 3) + Complex(1.0, 0.0) # => (1.6666666666666665+0.0i) + * + */ +VALUE +rb_rational_plus(VALUE self, VALUE other) +{ + if (RB_INTEGER_TYPE_P(other)) { + { + get_dat1(self); + + return f_rational_new_no_reduce2(CLASS_OF(self), + rb_int_plus(dat->num, rb_int_mul(other, dat->den)), + dat->den); + } + } + else if (RB_FLOAT_TYPE_P(other)) { + return DBL2NUM(nurat_to_double(self) + RFLOAT_VALUE(other)); + } + else if (RB_TYPE_P(other, T_RATIONAL)) { + { + get_dat2(self, other); + + return f_addsub(self, + adat->num, adat->den, + bdat->num, bdat->den, '+'); + } + } + else { + return rb_num_coerce_bin(self, other, '+'); + } +} + +/* + * call-seq: + * self - other -> numeric + * + * Returns the difference of +self+ and +other+: + * + * Rational(2, 3) - Rational(2, 3) #=> (0/1) + * Rational(900) - Rational(1) #=> (899/1) + * Rational(-2, 9) - Rational(-9, 2) #=> (77/18) + * Rational(9, 8) - 4 #=> (-23/8) + * Rational(20, 9) - 9.8 #=> -7.577777777777778 + */ +VALUE +rb_rational_minus(VALUE self, VALUE other) +{ + if (RB_INTEGER_TYPE_P(other)) { + { + get_dat1(self); + + return f_rational_new_no_reduce2(CLASS_OF(self), + rb_int_minus(dat->num, rb_int_mul(other, dat->den)), + dat->den); + } + } + else if (RB_FLOAT_TYPE_P(other)) { + return DBL2NUM(nurat_to_double(self) - RFLOAT_VALUE(other)); + } + else if (RB_TYPE_P(other, T_RATIONAL)) { + { + get_dat2(self, other); + + return f_addsub(self, + adat->num, adat->den, + bdat->num, bdat->den, '-'); + } + } + else { + return rb_num_coerce_bin(self, other, '-'); + } +} + +inline static VALUE +f_muldiv(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k) +{ + VALUE num, den; + + RUBY_ASSERT(RB_TYPE_P(self, T_RATIONAL)); + + /* Integer#** can return Rational with Float right now */ + if (RB_FLOAT_TYPE_P(anum) || RB_FLOAT_TYPE_P(aden) || + RB_FLOAT_TYPE_P(bnum) || RB_FLOAT_TYPE_P(bden)) { + double an = NUM2DBL(anum), ad = NUM2DBL(aden); + double bn = NUM2DBL(bnum), bd = NUM2DBL(bden); + double x = (an * bn) / (ad * bd); + return DBL2NUM(x); + } + + RUBY_ASSERT(RB_INTEGER_TYPE_P(anum)); + RUBY_ASSERT(RB_INTEGER_TYPE_P(aden)); + RUBY_ASSERT(RB_INTEGER_TYPE_P(bnum)); + RUBY_ASSERT(RB_INTEGER_TYPE_P(bden)); + + if (k == '/') { + VALUE t; + + if (INT_NEGATIVE_P(bnum)) { + anum = rb_int_uminus(anum); + bnum = rb_int_uminus(bnum); + } + t = bnum; + bnum = bden; + bden = t; + } + + if (FIXNUM_P(anum) && FIXNUM_P(aden) && + FIXNUM_P(bnum) && FIXNUM_P(bden)) { + long an = FIX2LONG(anum); + long ad = FIX2LONG(aden); + long bn = FIX2LONG(bnum); + long bd = FIX2LONG(bden); + long g1 = i_gcd(an, bd); + long g2 = i_gcd(ad, bn); + + num = f_imul(an / g1, bn / g2); + den = f_imul(ad / g2, bd / g1); + } + else { + VALUE g1 = f_gcd(anum, bden); + VALUE g2 = f_gcd(aden, bnum); + + num = rb_int_mul(rb_int_idiv(anum, g1), rb_int_idiv(bnum, g2)); + den = rb_int_mul(rb_int_idiv(aden, g2), rb_int_idiv(bden, g1)); + } + return f_rational_new_no_reduce2(CLASS_OF(self), num, den); +} + +/* + * call-seq: + * self * other -> numeric + * + * Returns the numeric product of +self+ and +other+: + * + * Rational(9, 8) * 4 #=> (9/2) + * Rational(20, 9) * 9.8 #=> 21.77777777777778 + * Rational(9, 8) * Complex(1, 2) # => ((9/8)+(9/4)*i) + * Rational(2, 3) * Rational(2, 3) #=> (4/9) + * Rational(900) * Rational(1) #=> (900/1) + * Rational(-2, 9) * Rational(-9, 2) #=> (1/1) + * + */ +VALUE +rb_rational_mul(VALUE self, VALUE other) +{ + if (RB_INTEGER_TYPE_P(other)) { + { + get_dat1(self); + + return f_muldiv(self, + dat->num, dat->den, + other, ONE, '*'); + } + } + else if (RB_FLOAT_TYPE_P(other)) { + return DBL2NUM(nurat_to_double(self) * RFLOAT_VALUE(other)); + } + else if (RB_TYPE_P(other, T_RATIONAL)) { + { + get_dat2(self, other); + + return f_muldiv(self, + adat->num, adat->den, + bdat->num, bdat->den, '*'); + } + } + else { + return rb_num_coerce_bin(self, other, '*'); + } +} + +/* + * call-seq: + * self / other -> numeric + * + * Returns the quotient of +self+ and +other+: + * + * Rational(2, 3) / Rational(2, 3) #=> (1/1) + * Rational(900) / Rational(1) #=> (900/1) + * Rational(-2, 9) / Rational(-9, 2) #=> (4/81) + * Rational(9, 8) / 4 #=> (9/32) + * Rational(20, 9) / 9.8 #=> 0.22675736961451246 + */ +VALUE +rb_rational_div(VALUE self, VALUE other) +{ + if (RB_INTEGER_TYPE_P(other)) { + if (f_zero_p(other)) + rb_num_zerodiv(); + { + get_dat1(self); + + return f_muldiv(self, + dat->num, dat->den, + other, ONE, '/'); + } + } + else if (RB_FLOAT_TYPE_P(other)) { + VALUE v = nurat_to_f(self); + return rb_flo_div_flo(v, other); + } + else if (RB_TYPE_P(other, T_RATIONAL)) { + if (f_zero_p(other)) + rb_num_zerodiv(); + { + get_dat2(self, other); + + if (f_one_p(self)) + return f_rational_new_no_reduce2(CLASS_OF(self), + bdat->den, bdat->num); + + return f_muldiv(self, + adat->num, adat->den, + bdat->num, bdat->den, '/'); + } + } + else { + return rb_num_coerce_bin(self, other, '/'); + } +} + +/* + * call-seq: + * rat.fdiv(numeric) -> float + * + * Performs division and returns the value as a Float. + * + * Rational(2, 3).fdiv(1) #=> 0.6666666666666666 + * Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333 + * Rational(2).fdiv(3) #=> 0.6666666666666666 + */ +static VALUE +nurat_fdiv(VALUE self, VALUE other) +{ + VALUE div; + if (f_zero_p(other)) + return rb_rational_div(self, rb_float_new(0.0)); + if (FIXNUM_P(other) && other == LONG2FIX(1)) + return nurat_to_f(self); + div = rb_rational_div(self, other); + if (RB_TYPE_P(div, T_RATIONAL)) + return nurat_to_f(div); + if (RB_FLOAT_TYPE_P(div)) + return div; + return rb_funcall(div, idTo_f, 0); +} + +/* + * call-seq: + * self ** exponent -> numeric + * + * Returns +self+ raised to the power +exponent+: + * + * Rational(2) ** Rational(3) #=> (8/1) + * Rational(10) ** -2 #=> (1/100) + * Rational(10) ** -2.0 #=> 0.01 + * Rational(-4) ** Rational(1, 2) #=> (0.0+2.0i) + * Rational(1, 2) ** 0 #=> (1/1) + * Rational(1, 2) ** 0.0 #=> 1.0 + */ +VALUE +rb_rational_pow(VALUE self, VALUE other) +{ + if (k_numeric_p(other) && k_exact_zero_p(other)) + return f_rational_new_bang1(CLASS_OF(self), ONE); + + if (k_rational_p(other)) { + get_dat1(other); + + if (f_one_p(dat->den)) + other = dat->num; /* c14n */ + } + + /* Deal with special cases of 0**n and 1**n */ + if (k_numeric_p(other) && k_exact_p(other)) { + get_dat1(self); + if (f_one_p(dat->den)) { + if (f_one_p(dat->num)) { + return f_rational_new_bang1(CLASS_OF(self), ONE); + } + else if (f_minus_one_p(dat->num) && RB_INTEGER_TYPE_P(other)) { + return f_rational_new_bang1(CLASS_OF(self), INT2FIX(rb_int_odd_p(other) ? -1 : 1)); + } + else if (INT_ZERO_P(dat->num)) { + if (rb_num_negative_p(other)) { + rb_num_zerodiv(); + } + else { + return f_rational_new_bang1(CLASS_OF(self), ZERO); + } + } + } + } + + /* General case */ + if (FIXNUM_P(other)) { + { + VALUE num, den; + + get_dat1(self); + + if (INT_POSITIVE_P(other)) { + num = rb_int_pow(dat->num, other); + den = rb_int_pow(dat->den, other); + } + else if (INT_NEGATIVE_P(other)) { + num = rb_int_pow(dat->den, rb_int_uminus(other)); + den = rb_int_pow(dat->num, rb_int_uminus(other)); + } + else { + num = ONE; + den = ONE; + } + if (RB_FLOAT_TYPE_P(num)) { /* infinity due to overflow */ + if (RB_FLOAT_TYPE_P(den)) + return DBL2NUM(nan("")); + return num; + } + if (RB_FLOAT_TYPE_P(den)) { /* infinity due to overflow */ + num = ZERO; + den = ONE; + } + return f_rational_new2(CLASS_OF(self), num, den); + } + } + else if (RB_BIGNUM_TYPE_P(other)) { + rb_raise(rb_eArgError, "exponent is too large"); + } + else if (RB_FLOAT_TYPE_P(other) || RB_TYPE_P(other, T_RATIONAL)) { + return rb_float_pow(nurat_to_f(self), other); + } + else { + return rb_num_coerce_bin(self, other, idPow); + } +} +#define nurat_expt rb_rational_pow + +/* + * call-seq: + * self <=> other -> -1, 0, 1, or nil + * + * Compares +self+ and +other+. + * + * Returns: + * + * - +-1+, if +self+ is less than +other+. + * - +0+, if the two values are the same. + * - +1+, if +self+ is greater than +other+. + * - +nil+, if the two values are incomparable. + * + * Examples: + * + * Rational(2, 3) <=> Rational(4, 3) # => -1 + * Rational(2, 1) <=> Rational(2, 1) # => 0 + * Rational(2, 1) <=> 2 # => 0 + * Rational(2, 1) <=> 2.0 # => 0 + * Rational(2, 1) <=> Complex(2, 0) # => 0 + * Rational(4, 3) <=> Rational(2, 3) # => 1 + * Rational(4, 3) <=> :foo # => nil + * + * \Class \Rational includes module Comparable, + * each of whose methods uses Rational#<=> for comparison. + * + */ +VALUE +rb_rational_cmp(VALUE self, VALUE other) +{ + switch (TYPE(other)) { + case T_FIXNUM: + case T_BIGNUM: + { + get_dat1(self); + + if (dat->den == LONG2FIX(1)) + return rb_int_cmp(dat->num, other); /* c14n */ + other = f_rational_new_bang1(CLASS_OF(self), other); + /* FALLTHROUGH */ + } + + case T_RATIONAL: + { + VALUE num1, num2; + + get_dat2(self, other); + + if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) && + FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) { + num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den)); + num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den)); + } + else { + num1 = rb_int_mul(adat->num, bdat->den); + num2 = rb_int_mul(bdat->num, adat->den); + } + return rb_int_cmp(rb_int_minus(num1, num2), ZERO); + } + + case T_FLOAT: + return rb_dbl_cmp(nurat_to_double(self), RFLOAT_VALUE(other)); + + default: + return rb_num_coerce_cmp(self, other, idCmp); + } +} + +/* + * call-seq: + * self == other -> true or false + * + * Returns whether +self+ and +other+ are numerically equal: + * + * Rational(2, 3) == Rational(2, 3) #=> true + * Rational(5) == 5 #=> true + * Rational(0) == 0.0 #=> true + * Rational('1/3') == 0.33 #=> false + * Rational('1/2') == '1/2' #=> false + */ +static VALUE +nurat_eqeq_p(VALUE self, VALUE other) +{ + if (RB_INTEGER_TYPE_P(other)) { + get_dat1(self); + + if (RB_INTEGER_TYPE_P(dat->num) && RB_INTEGER_TYPE_P(dat->den)) { + if (INT_ZERO_P(dat->num) && INT_ZERO_P(other)) + return Qtrue; + + if (!FIXNUM_P(dat->den)) + return Qfalse; + if (FIX2LONG(dat->den) != 1) + return Qfalse; + return rb_int_equal(dat->num, other); + } + else { + const double d = nurat_to_double(self); + return RBOOL(FIXNUM_ZERO_P(rb_dbl_cmp(d, NUM2DBL(other)))); + } + } + else if (RB_FLOAT_TYPE_P(other)) { + const double d = nurat_to_double(self); + return RBOOL(FIXNUM_ZERO_P(rb_dbl_cmp(d, RFLOAT_VALUE(other)))); + } + else if (RB_TYPE_P(other, T_RATIONAL)) { + { + get_dat2(self, other); + + if (INT_ZERO_P(adat->num) && INT_ZERO_P(bdat->num)) + return Qtrue; + + return RBOOL(rb_int_equal(adat->num, bdat->num) && + rb_int_equal(adat->den, bdat->den)); + } + } + else { + return rb_equal(other, self); + } +} + +/* :nodoc: */ +static VALUE +nurat_coerce(VALUE self, VALUE other) +{ + if (RB_INTEGER_TYPE_P(other)) { + return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self); + } + else if (RB_FLOAT_TYPE_P(other)) { + return rb_assoc_new(other, nurat_to_f(self)); + } + else if (RB_TYPE_P(other, T_RATIONAL)) { + return rb_assoc_new(other, self); + } + else if (RB_TYPE_P(other, T_COMPLEX)) { + if (!k_exact_zero_p(RCOMPLEX(other)->imag)) + return rb_assoc_new(other, rb_Complex(self, INT2FIX(0))); + other = RCOMPLEX(other)->real; + if (RB_FLOAT_TYPE_P(other)) { + other = float_to_r(other); + RBASIC_SET_CLASS(other, CLASS_OF(self)); + } + else { + other = f_rational_new_bang1(CLASS_OF(self), other); + } + return rb_assoc_new(other, self); + } + + rb_raise(rb_eTypeError, "%s can't be coerced into %s", + rb_obj_classname(other), rb_obj_classname(self)); + return Qnil; +} + +/* + * call-seq: + * rat.positive? -> true or false + * + * Returns +true+ if +rat+ is greater than 0. + */ +static VALUE +nurat_positive_p(VALUE self) +{ + get_dat1(self); + return RBOOL(INT_POSITIVE_P(dat->num)); +} + +/* + * call-seq: + * rat.negative? -> true or false + * + * Returns +true+ if +rat+ is less than 0. + */ +static VALUE +nurat_negative_p(VALUE self) +{ + get_dat1(self); + return RBOOL(INT_NEGATIVE_P(dat->num)); +} + +/* + * call-seq: + * rat.abs -> rational + * rat.magnitude -> rational + * + * Returns the absolute value of +rat+. + * + * (1/2r).abs #=> (1/2) + * (-1/2r).abs #=> (1/2) + * + */ + +VALUE +rb_rational_abs(VALUE self) +{ + get_dat1(self); + if (INT_NEGATIVE_P(dat->num)) { + VALUE num = rb_int_abs(dat->num); + return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den); + } + return self; +} + +static VALUE +nurat_floor(VALUE self) +{ + get_dat1(self); + return rb_int_idiv(dat->num, dat->den); +} + +static VALUE +nurat_ceil(VALUE self) +{ + get_dat1(self); + return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den)); +} + +/* + * call-seq: + * rat.to_i -> integer + * + * Returns the truncated value as an integer. + * + * Equivalent to Rational#truncate. + * + * Rational(2, 3).to_i #=> 0 + * Rational(3).to_i #=> 3 + * Rational(300.6).to_i #=> 300 + * Rational(98, 71).to_i #=> 1 + * Rational(-31, 2).to_i #=> -15 + */ +static VALUE +nurat_truncate(VALUE self) +{ + get_dat1(self); + if (INT_NEGATIVE_P(dat->num)) + return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den)); + return rb_int_idiv(dat->num, dat->den); +} + +static VALUE +nurat_round_half_up(VALUE self) +{ + VALUE num, den, neg; + + get_dat1(self); + + num = dat->num; + den = dat->den; + neg = INT_NEGATIVE_P(num); + + if (neg) + num = rb_int_uminus(num); + + num = rb_int_plus(rb_int_mul(num, TWO), den); + den = rb_int_mul(den, TWO); + num = rb_int_idiv(num, den); + + if (neg) + num = rb_int_uminus(num); + + return num; +} + +static VALUE +nurat_round_half_down(VALUE self) +{ + VALUE num, den, neg; + + get_dat1(self); + + num = dat->num; + den = dat->den; + neg = INT_NEGATIVE_P(num); + + if (neg) + num = rb_int_uminus(num); + + num = rb_int_plus(rb_int_mul(num, TWO), den); + num = rb_int_minus(num, ONE); + den = rb_int_mul(den, TWO); + num = rb_int_idiv(num, den); + + if (neg) + num = rb_int_uminus(num); + + return num; +} + +static VALUE +nurat_round_half_even(VALUE self) +{ + VALUE num, den, neg, qr; + + get_dat1(self); + + num = dat->num; + den = dat->den; + neg = INT_NEGATIVE_P(num); + + if (neg) + num = rb_int_uminus(num); + + num = rb_int_plus(rb_int_mul(num, TWO), den); + den = rb_int_mul(den, TWO); + qr = rb_int_divmod(num, den); + num = RARRAY_AREF(qr, 0); + if (INT_ZERO_P(RARRAY_AREF(qr, 1))) + num = rb_int_and(num, LONG2FIX(((int)~1))); + + if (neg) + num = rb_int_uminus(num); + + return num; +} + +static VALUE +f_round_common(int argc, VALUE *argv, VALUE self, VALUE (*func)(VALUE)) +{ + VALUE n, b, s; + + if (rb_check_arity(argc, 0, 1) == 0) + return (*func)(self); + + n = argv[0]; + + if (!k_integer_p(n)) + rb_raise(rb_eTypeError, "not an integer"); + + b = f_expt10(n); + s = rb_rational_mul(self, b); + + if (k_float_p(s)) { + if (INT_NEGATIVE_P(n)) + return ZERO; + return self; + } + + if (!k_rational_p(s)) { + s = f_rational_new_bang1(CLASS_OF(self), s); + } + + s = (*func)(s); + + s = rb_rational_div(f_rational_new_bang1(CLASS_OF(self), s), b); + + if (RB_TYPE_P(s, T_RATIONAL) && FIX2INT(rb_int_cmp(n, ONE)) < 0) + s = nurat_truncate(s); + + return s; +} + +VALUE +rb_rational_floor(VALUE self, int ndigits) +{ + if (ndigits == 0) { + return nurat_floor(self); + } + else { + VALUE n = INT2NUM(ndigits); + return f_round_common(1, &n, self, nurat_floor); + } +} + +/* + * call-seq: + * rat.floor([ndigits]) -> integer or rational + * + * Returns the largest number less than or equal to +rat+ with + * a precision of +ndigits+ decimal digits (default: 0). + * + * When the precision is negative, the returned value is an integer + * with at least <code>ndigits.abs</code> trailing zeros. + * + * Returns a rational when +ndigits+ is positive, + * otherwise returns an integer. + * + * Rational(3).floor #=> 3 + * Rational(2, 3).floor #=> 0 + * Rational(-3, 2).floor #=> -2 + * + * # decimal - 1 2 3 . 4 5 6 + * # ^ ^ ^ ^ ^ ^ + * # precision -3 -2 -1 0 +1 +2 + * + * Rational('-123.456').floor(+1).to_f #=> -123.5 + * Rational('-123.456').floor(-1) #=> -130 + */ +static VALUE +nurat_floor_n(int argc, VALUE *argv, VALUE self) +{ + return f_round_common(argc, argv, self, nurat_floor); +} + +/* + * call-seq: + * rat.ceil([ndigits]) -> integer or rational + * + * Returns the smallest number greater than or equal to +rat+ with + * a precision of +ndigits+ decimal digits (default: 0). + * + * When the precision is negative, the returned value is an integer + * with at least <code>ndigits.abs</code> trailing zeros. + * + * Returns a rational when +ndigits+ is positive, + * otherwise returns an integer. + * + * Rational(3).ceil #=> 3 + * Rational(2, 3).ceil #=> 1 + * Rational(-3, 2).ceil #=> -1 + * + * # decimal - 1 2 3 . 4 5 6 + * # ^ ^ ^ ^ ^ ^ + * # precision -3 -2 -1 0 +1 +2 + * + * Rational('-123.456').ceil(+1).to_f #=> -123.4 + * Rational('-123.456').ceil(-1) #=> -120 + */ +static VALUE +nurat_ceil_n(int argc, VALUE *argv, VALUE self) +{ + return f_round_common(argc, argv, self, nurat_ceil); +} + +/* + * call-seq: + * rat.truncate([ndigits]) -> integer or rational + * + * Returns +rat+ truncated (toward zero) to + * a precision of +ndigits+ decimal digits (default: 0). + * + * When the precision is negative, the returned value is an integer + * with at least <code>ndigits.abs</code> trailing zeros. + * + * Returns a rational when +ndigits+ is positive, + * otherwise returns an integer. + * + * Rational(3).truncate #=> 3 + * Rational(2, 3).truncate #=> 0 + * Rational(-3, 2).truncate #=> -1 + * + * # decimal - 1 2 3 . 4 5 6 + * # ^ ^ ^ ^ ^ ^ + * # precision -3 -2 -1 0 +1 +2 + * + * Rational('-123.456').truncate(+1).to_f #=> -123.4 + * Rational('-123.456').truncate(-1) #=> -120 + */ +static VALUE +nurat_truncate_n(int argc, VALUE *argv, VALUE self) +{ + return f_round_common(argc, argv, self, nurat_truncate); +} + +/* + * call-seq: + * rat.round([ndigits] [, half: mode]) -> integer or rational + * + * Returns +rat+ rounded to the nearest value with + * a precision of +ndigits+ decimal digits (default: 0). + * + * When the precision is negative, the returned value is an integer + * with at least <code>ndigits.abs</code> trailing zeros. + * + * Returns a rational when +ndigits+ is positive, + * otherwise returns an integer. + * + * Rational(3).round #=> 3 + * Rational(2, 3).round #=> 1 + * Rational(-3, 2).round #=> -2 + * + * # decimal - 1 2 3 . 4 5 6 + * # ^ ^ ^ ^ ^ ^ + * # precision -3 -2 -1 0 +1 +2 + * + * Rational('-123.456').round(+1).to_f #=> -123.5 + * Rational('-123.456').round(-1) #=> -120 + * + * The optional +half+ keyword argument is available + * similar to Float#round. + * + * Rational(25, 100).round(1, half: :up) #=> (3/10) + * Rational(25, 100).round(1, half: :down) #=> (1/5) + * Rational(25, 100).round(1, half: :even) #=> (1/5) + * Rational(35, 100).round(1, half: :up) #=> (2/5) + * Rational(35, 100).round(1, half: :down) #=> (3/10) + * Rational(35, 100).round(1, half: :even) #=> (2/5) + * Rational(-25, 100).round(1, half: :up) #=> (-3/10) + * Rational(-25, 100).round(1, half: :down) #=> (-1/5) + * Rational(-25, 100).round(1, half: :even) #=> (-1/5) + */ +static VALUE +nurat_round_n(int argc, VALUE *argv, VALUE self) +{ + VALUE opt; + enum ruby_num_rounding_mode mode = ( + argc = rb_scan_args(argc, argv, "*:", NULL, &opt), + rb_num_get_rounding_option(opt)); + VALUE (*round_func)(VALUE) = ROUND_FUNC(mode, nurat_round); + return f_round_common(argc, argv, self, round_func); +} + +VALUE +rb_flo_round_by_rational(int argc, VALUE *argv, VALUE num) +{ + return nurat_to_f(nurat_round_n(argc, argv, float_to_r(num))); +} + +static double +nurat_to_double(VALUE self) +{ + get_dat1(self); + if (!RB_INTEGER_TYPE_P(dat->num) || !RB_INTEGER_TYPE_P(dat->den)) { + return NUM2DBL(dat->num) / NUM2DBL(dat->den); + } + return rb_int_fdiv_double(dat->num, dat->den); +} + +/* + * call-seq: + * rat.to_f -> float + * + * Returns the value as a Float. + * + * Rational(2).to_f #=> 2.0 + * Rational(9, 4).to_f #=> 2.25 + * Rational(-3, 4).to_f #=> -0.75 + * Rational(20, 3).to_f #=> 6.666666666666667 + */ +static VALUE +nurat_to_f(VALUE self) +{ + return DBL2NUM(nurat_to_double(self)); +} + +/* + * call-seq: + * rat.to_r -> self + * + * Returns self. + * + * Rational(2).to_r #=> (2/1) + * Rational(-8, 6).to_r #=> (-4/3) + */ +static VALUE +nurat_to_r(VALUE self) +{ + return self; +} + +#define id_ceil rb_intern("ceil") +static VALUE +f_ceil(VALUE x) +{ + if (RB_INTEGER_TYPE_P(x)) + return x; + if (RB_FLOAT_TYPE_P(x)) + return rb_float_ceil(x, 0); + + return rb_funcall(x, id_ceil, 0); +} + +#define id_quo idQuo +static VALUE +f_quo(VALUE x, VALUE y) +{ + if (RB_INTEGER_TYPE_P(x)) + return rb_int_div(x, y); + if (RB_FLOAT_TYPE_P(x)) + return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y)); + + return rb_funcallv(x, id_quo, 1, &y); +} + +#define f_reciprocal(x) f_quo(ONE, (x)) + +/* + The algorithm here is the method described in CLISP. Bruno Haible has + graciously given permission to use this algorithm. He says, "You can use + it, if you present the following explanation of the algorithm." + + Algorithm (recursively presented): + If x is a rational number, return x. + If x = 0.0, return 0. + If x < 0.0, return (- (rationalize (- x))). + If x > 0.0: + Call (integer-decode-float x). It returns a m,e,s=1 (mantissa, + exponent, sign). + If m = 0 or e >= 0: return x = m*2^e. + Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e + with smallest possible numerator and denominator. + Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e. + But in this case the result will be x itself anyway, regardless of + the choice of a. Therefore we can simply ignore this case. + Note 2: At first, we need to consider the closed interval [a,b]. + but since a and b have the denominator 2^(|e|+1) whereas x itself + has a denominator <= 2^|e|, we can restrict the search to the open + interval (a,b). + So, for given a and b (0 < a < b) we are searching a rational number + y with a <= y <= b. + Recursive algorithm fraction_between(a,b): + c := (ceiling a) + if c < b + then return c ; because a <= c < b, c integer + else + ; a is not integer (otherwise we would have had c = a < b) + k := c-1 ; k = floor(a), k < a < b <= k+1 + return y = k + 1/fraction_between(1/(b-k), 1/(a-k)) + ; note 1 <= 1/(b-k) < 1/(a-k) + + You can see that we are actually computing a continued fraction expansion. + + Algorithm (iterative): + If x is rational, return x. + Call (integer-decode-float x). It returns a m,e,s (mantissa, + exponent, sign). + If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.) + Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1) + (positive and already in lowest terms because the denominator is a + power of two and the numerator is odd). + Start a continued fraction expansion + p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0. + Loop + c := (ceiling a) + if c >= b + then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)), + goto Loop + finally partial_quotient(c). + Here partial_quotient(c) denotes the iteration + i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2]. + At the end, return s * (p[i]/q[i]). + This rational number is already in lowest terms because + p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i. +*/ + +static void +nurat_rationalize_internal(VALUE a, VALUE b, VALUE *p, VALUE *q) +{ + VALUE c, k, t, p0, p1, p2, q0, q1, q2; + + p0 = ZERO; + p1 = ONE; + q0 = ONE; + q1 = ZERO; + + while (1) { + c = f_ceil(a); + if (f_lt_p(c, b)) + break; + k = f_sub(c, ONE); + p2 = f_add(f_mul(k, p1), p0); + q2 = f_add(f_mul(k, q1), q0); + t = f_reciprocal(f_sub(b, k)); + b = f_reciprocal(f_sub(a, k)); + a = t; + p0 = p1; + q0 = q1; + p1 = p2; + q1 = q2; + } + *p = f_add(f_mul(c, p1), p0); + *q = f_add(f_mul(c, q1), q0); +} + +/* + * call-seq: + * rat.rationalize -> self + * rat.rationalize(eps) -> rational + * + * Returns a simpler approximation of the value if the optional + * argument +eps+ is given (rat-|eps| <= result <= rat+|eps|), + * self otherwise. + * + * r = Rational(5033165, 16777216) + * r.rationalize #=> (5033165/16777216) + * r.rationalize(Rational('0.01')) #=> (3/10) + * r.rationalize(Rational('0.1')) #=> (1/3) + */ +static VALUE +nurat_rationalize(int argc, VALUE *argv, VALUE self) +{ + VALUE e, a, b, p, q; + VALUE rat = self; + get_dat1(self); + + if (rb_check_arity(argc, 0, 1) == 0) + return self; + + e = f_abs(argv[0]); + + if (INT_NEGATIVE_P(dat->num)) { + rat = f_rational_new2(RBASIC_CLASS(self), rb_int_uminus(dat->num), dat->den); + } + + a = FIXNUM_ZERO_P(e) ? rat : rb_rational_minus(rat, e); + b = FIXNUM_ZERO_P(e) ? rat : rb_rational_plus(rat, e); + + if (f_eqeq_p(a, b)) + return self; + + nurat_rationalize_internal(a, b, &p, &q); + if (rat != self) { + RATIONAL_SET_NUM(rat, rb_int_uminus(p)); + RATIONAL_SET_DEN(rat, q); + return rat; + } + return f_rational_new2(CLASS_OF(self), p, q); +} + +/* :nodoc: */ +st_index_t +rb_rational_hash(VALUE self) +{ + st_index_t v, h[2]; + VALUE n; + + get_dat1(self); + n = rb_hash(dat->num); + h[0] = NUM2LONG(n); + n = rb_hash(dat->den); + h[1] = NUM2LONG(n); + v = rb_memhash(h, sizeof(h)); + return v; +} + +static VALUE +nurat_hash(VALUE self) +{ + return ST2FIX(rb_rational_hash(self)); +} + + +static VALUE +f_format(VALUE self, VALUE (*func)(VALUE)) +{ + VALUE s; + get_dat1(self); + + s = (*func)(dat->num); + rb_str_cat2(s, "/"); + rb_str_concat(s, (*func)(dat->den)); + + return s; +} + +/* + * call-seq: + * rat.to_s -> string + * + * Returns the value as a string. + * + * Rational(2).to_s #=> "2/1" + * Rational(-8, 6).to_s #=> "-4/3" + * Rational('1/2').to_s #=> "1/2" + */ +static VALUE +nurat_to_s(VALUE self) +{ + return f_format(self, f_to_s); +} + +/* + * call-seq: + * rat.inspect -> string + * + * Returns the value as a string for inspection. + * + * Rational(2).inspect #=> "(2/1)" + * Rational(-8, 6).inspect #=> "(-4/3)" + * Rational('1/2').inspect #=> "(1/2)" + */ +static VALUE +nurat_inspect(VALUE self) +{ + VALUE s; + + s = rb_usascii_str_new2("("); + rb_str_concat(s, f_format(self, f_inspect)); + rb_str_cat2(s, ")"); + + return s; +} + +/* :nodoc: */ +static VALUE +nurat_dumper(VALUE self) +{ + return self; +} + +/* :nodoc: */ +static VALUE +nurat_loader(VALUE self, VALUE a) +{ + VALUE num, den; + + get_dat1(self); + num = rb_ivar_get(a, id_i_num); + den = rb_ivar_get(a, id_i_den); + nurat_int_check(num); + nurat_int_check(den); + nurat_canonicalize(&num, &den); + RATIONAL_SET_NUM((VALUE)dat, num); + RATIONAL_SET_DEN((VALUE)dat, den); + OBJ_FREEZE(self); + + return self; +} + +/* :nodoc: */ +static VALUE +nurat_marshal_dump(VALUE self) +{ + VALUE a; + get_dat1(self); + + a = rb_assoc_new(dat->num, dat->den); + rb_copy_generic_ivar(a, self); + return a; +} + +/* :nodoc: */ +static VALUE +nurat_marshal_load(VALUE self, VALUE a) +{ + VALUE num, den; + + rb_check_frozen(self); + + Check_Type(a, T_ARRAY); + if (RARRAY_LEN(a) != 2) + rb_raise(rb_eArgError, "marshaled rational must have an array whose length is 2 but %ld", RARRAY_LEN(a)); + + num = RARRAY_AREF(a, 0); + den = RARRAY_AREF(a, 1); + nurat_int_check(num); + nurat_int_check(den); + nurat_canonicalize(&num, &den); + rb_ivar_set(self, id_i_num, num); + rb_ivar_set(self, id_i_den, den); + + return self; +} + +VALUE +rb_rational_reciprocal(VALUE x) +{ + get_dat1(x); + return nurat_convert(CLASS_OF(x), dat->den, dat->num, FALSE); +} + +/* + * call-seq: + * int.gcd(other_int) -> integer + * + * Returns the greatest common divisor of the two integers. + * The result is always positive. 0.gcd(x) and x.gcd(0) return x.abs. + * + * 36.gcd(60) #=> 12 + * 2.gcd(2) #=> 2 + * 3.gcd(-7) #=> 1 + * ((1<<31)-1).gcd((1<<61)-1) #=> 1 + */ +VALUE +rb_gcd(VALUE self, VALUE other) +{ + other = nurat_int_value(other); + return f_gcd(self, other); +} + +/* + * call-seq: + * int.lcm(other_int) -> integer + * + * Returns the least common multiple of the two integers. + * The result is always positive. 0.lcm(x) and x.lcm(0) return zero. + * + * 36.lcm(60) #=> 180 + * 2.lcm(2) #=> 2 + * 3.lcm(-7) #=> 21 + * ((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297 + */ +VALUE +rb_lcm(VALUE self, VALUE other) +{ + other = nurat_int_value(other); + return f_lcm(self, other); +} + +/* + * call-seq: + * int.gcdlcm(other_int) -> array + * + * Returns an array with the greatest common divisor and + * the least common multiple of the two integers, [gcd, lcm]. + * + * 36.gcdlcm(60) #=> [12, 180] + * 2.gcdlcm(2) #=> [2, 2] + * 3.gcdlcm(-7) #=> [1, 21] + * ((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297] + */ +VALUE +rb_gcdlcm(VALUE self, VALUE other) +{ + other = nurat_int_value(other); + return rb_assoc_new(f_gcd(self, other), f_lcm(self, other)); +} + +VALUE +rb_rational_raw(VALUE x, VALUE y) +{ + if (! RB_INTEGER_TYPE_P(x)) + x = rb_to_int(x); + if (! RB_INTEGER_TYPE_P(y)) + y = rb_to_int(y); + if (INT_NEGATIVE_P(y)) { + x = rb_int_uminus(x); + y = rb_int_uminus(y); + } + return nurat_s_new_internal(rb_cRational, x, y); +} + +VALUE +rb_rational_new(VALUE x, VALUE y) +{ + return nurat_s_canonicalize_internal(rb_cRational, x, y); +} + +VALUE +rb_Rational(VALUE x, VALUE y) +{ + VALUE a[2]; + a[0] = x; + a[1] = y; + return nurat_s_convert(2, a, rb_cRational); +} + +VALUE +rb_rational_num(VALUE rat) +{ + return nurat_numerator(rat); +} + +VALUE +rb_rational_den(VALUE rat) +{ + return nurat_denominator(rat); +} + +#define id_numerator rb_intern("numerator") +#define f_numerator(x) rb_funcall((x), id_numerator, 0) + +#define id_denominator rb_intern("denominator") +#define f_denominator(x) rb_funcall((x), id_denominator, 0) + +#define id_to_r idTo_r +#define f_to_r(x) rb_funcall((x), id_to_r, 0) + +/* + * call-seq: + * num.numerator -> integer + * + * Returns the numerator. + */ +static VALUE +numeric_numerator(VALUE self) +{ + return f_numerator(f_to_r(self)); +} + +/* + * call-seq: + * num.denominator -> integer + * + * Returns the denominator (always positive). + */ +static VALUE +numeric_denominator(VALUE self) +{ + return f_denominator(f_to_r(self)); +} + + +/* + * call-seq: + * num.quo(int_or_rat) -> rat + * num.quo(flo) -> flo + * + * Returns the most exact division (rational for integers, float for floats). + */ + +VALUE +rb_numeric_quo(VALUE x, VALUE y) +{ + if (RB_TYPE_P(x, T_COMPLEX)) { + return rb_complex_div(x, y); + } + + if (RB_FLOAT_TYPE_P(y)) { + return rb_funcallv(x, idFdiv, 1, &y); + } + + x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r"); + return rb_rational_div(x, y); +} + +VALUE +rb_rational_canonicalize(VALUE x) +{ + if (RB_TYPE_P(x, T_RATIONAL)) { + get_dat1(x); + if (f_one_p(dat->den)) return dat->num; + } + return x; +} + +/* + * call-seq: + * flo.numerator -> integer + * + * Returns the numerator. The result is machine dependent. + * + * n = 0.3.numerator #=> 5404319552844595 + * d = 0.3.denominator #=> 18014398509481984 + * n.fdiv(d) #=> 0.3 + * + * See also Float#denominator. + */ +VALUE +rb_float_numerator(VALUE self) +{ + double d = RFLOAT_VALUE(self); + VALUE r; + if (!isfinite(d)) + return self; + r = float_to_r(self); + return nurat_numerator(r); +} + +/* + * call-seq: + * flo.denominator -> integer + * + * Returns the denominator (always positive). The result is machine + * dependent. + * + * See also Float#numerator. + */ +VALUE +rb_float_denominator(VALUE self) +{ + double d = RFLOAT_VALUE(self); + VALUE r; + if (!isfinite(d)) + return INT2FIX(1); + r = float_to_r(self); + return nurat_denominator(r); +} + +/* + * call-seq: + * int.to_r -> rational + * + * Returns the value as a rational. + * + * 1.to_r #=> (1/1) + * (1<<64).to_r #=> (18446744073709551616/1) + */ +static VALUE +integer_to_r(VALUE self) +{ + return rb_rational_new1(self); +} + +/* + * call-seq: + * int.rationalize([eps]) -> rational + * + * Returns the value as a rational. The optional argument +eps+ is + * always ignored. + */ +static VALUE +integer_rationalize(int argc, VALUE *argv, VALUE self) +{ + rb_check_arity(argc, 0, 1); + return integer_to_r(self); +} + +static void +float_decode_internal(VALUE self, VALUE *rf, int *n) +{ + double f; + + f = frexp(RFLOAT_VALUE(self), n); + f = ldexp(f, DBL_MANT_DIG); + *n -= DBL_MANT_DIG; + *rf = rb_dbl2big(f); +} + +/* + * call-seq: + * flt.to_r -> rational + * + * Returns the value as a rational. + * + * 2.0.to_r #=> (2/1) + * 2.5.to_r #=> (5/2) + * -0.75.to_r #=> (-3/4) + * 0.0.to_r #=> (0/1) + * 0.3.to_r #=> (5404319552844595/18014398509481984) + * + * NOTE: 0.3.to_r isn't the same as "0.3".to_r. The latter is + * equivalent to "3/10".to_r, but the former isn't so. + * + * 0.3.to_r == 3/10r #=> false + * "0.3".to_r == 3/10r #=> true + * + * See also Float#rationalize. + */ +static VALUE +float_to_r(VALUE self) +{ + VALUE f; + int n; + + float_decode_internal(self, &f, &n); +#if FLT_RADIX == 2 + if (n == 0) + return rb_rational_new1(f); + if (n > 0) + return rb_rational_new1(rb_int_lshift(f, INT2FIX(n))); + n = -n; + return rb_rational_new2(f, rb_int_lshift(ONE, INT2FIX(n))); +#else + f = rb_int_mul(f, rb_int_pow(INT2FIX(FLT_RADIX), n)); + if (RB_TYPE_P(f, T_RATIONAL)) + return f; + return rb_rational_new1(f); +#endif +} + +VALUE +rb_flt_rationalize_with_prec(VALUE flt, VALUE prec) +{ + VALUE e, a, b, p, q; + + e = f_abs(prec); + a = f_sub(flt, e); + b = f_add(flt, e); + + if (f_eqeq_p(a, b)) + return float_to_r(flt); + + nurat_rationalize_internal(a, b, &p, &q); + return rb_rational_new2(p, q); +} + +VALUE +rb_flt_rationalize(VALUE flt) +{ + VALUE a, b, f, p, q, den; + int n; + + float_decode_internal(flt, &f, &n); + if (INT_ZERO_P(f) || n >= 0) + return rb_rational_new1(rb_int_lshift(f, INT2FIX(n))); + + { + VALUE radix_times_f; + + radix_times_f = rb_int_mul(INT2FIX(FLT_RADIX), f); +#if FLT_RADIX == 2 && 0 + den = rb_int_lshift(ONE, INT2FIX(1-n)); +#else + den = rb_int_positive_pow(FLT_RADIX, 1-n); +#endif + + a = rb_int_minus(radix_times_f, INT2FIX(FLT_RADIX - 1)); + b = rb_int_plus(radix_times_f, INT2FIX(FLT_RADIX - 1)); + } + + if (f_eqeq_p(a, b)) + return float_to_r(flt); + + a = rb_rational_new2(a, den); + b = rb_rational_new2(b, den); + nurat_rationalize_internal(a, b, &p, &q); + return rb_rational_new2(p, q); +} + +/* + * call-seq: + * flt.rationalize([eps]) -> rational + * + * Returns a simpler approximation of the value (flt-|eps| <= result + * <= flt+|eps|). If the optional argument +eps+ is not given, + * it will be chosen automatically. + * + * 0.3.rationalize #=> (3/10) + * 1.333.rationalize #=> (1333/1000) + * 1.333.rationalize(0.01) #=> (4/3) + * + * See also Float#to_r. + */ +static VALUE +float_rationalize(int argc, VALUE *argv, VALUE self) +{ + double d = RFLOAT_VALUE(self); + VALUE rat; + int neg = d < 0.0; + if (neg) self = DBL2NUM(-d); + + if (rb_check_arity(argc, 0, 1)) { + rat = rb_flt_rationalize_with_prec(self, argv[0]); + } + else { + rat = rb_flt_rationalize(self); + } + if (neg) RATIONAL_SET_NUM(rat, rb_int_uminus(RRATIONAL(rat)->num)); + return rat; +} + +inline static int +issign(int c) +{ + return (c == '-' || c == '+'); +} + +static int +read_sign(const char **s, const char *const e) +{ + int sign = '?'; + + if (*s < e && issign(**s)) { + sign = **s; + (*s)++; + } + return sign; +} + +inline static int +islettere(int c) +{ + return (c == 'e' || c == 'E'); +} + +static VALUE +negate_num(VALUE num) +{ + if (FIXNUM_P(num)) { + return rb_int_uminus(num); + } + else { + BIGNUM_NEGATE(num); + return rb_big_norm(num); + } +} + +static int +read_num(const char **s, const char *const end, VALUE *num, VALUE *nexp) +{ + VALUE fp = ONE, exp, fn = ZERO, n = ZERO; + int expsign = 0, ok = 0; + char *e; + + *nexp = ZERO; + *num = ZERO; + if (*s < end && **s != '.') { + n = rb_int_parse_cstr(*s, end-*s, &e, NULL, + 10, RB_INT_PARSE_UNDERSCORE); + if (NIL_P(n)) + return 0; + *s = e; + *num = n; + ok = 1; + } + + if (*s < end && **s == '.') { + size_t count = 0; + + (*s)++; + fp = rb_int_parse_cstr(*s, end-*s, &e, &count, + 10, RB_INT_PARSE_UNDERSCORE); + if (NIL_P(fp)) + return 1; + *s = e; + { + VALUE l = f_expt10(*nexp = SIZET2NUM(count)); + n = n == ZERO ? fp : rb_int_plus(rb_int_mul(*num, l), fp); + *num = n; + fn = SIZET2NUM(count); + } + ok = 1; + } + + if (ok && *s + 1 < end && islettere(**s)) { + (*s)++; + expsign = read_sign(s, end); + exp = rb_int_parse_cstr(*s, end-*s, &e, NULL, + 10, RB_INT_PARSE_UNDERSCORE); + if (NIL_P(exp)) + return 1; + *s = e; + if (exp != ZERO) { + if (expsign == '-') { + if (fn != ZERO) exp = rb_int_plus(exp, fn); + } + else { + if (fn != ZERO) exp = rb_int_minus(exp, fn); + exp = negate_num(exp); + } + *nexp = exp; + } + } + + return ok; +} + +inline static const char * +skip_ws(const char *s, const char *e) +{ + while (s < e && isspace((unsigned char)*s)) + ++s; + return s; +} + +static VALUE +parse_rat(const char *s, const char *const e, int strict, int raise) +{ + int sign; + VALUE num, den, nexp, dexp; + + s = skip_ws(s, e); + sign = read_sign(&s, e); + + if (!read_num(&s, e, &num, &nexp)) { + if (strict) return Qnil; + return nurat_s_alloc(rb_cRational); + } + den = ONE; + if (s < e && *s == '/') { + s++; + if (!read_num(&s, e, &den, &dexp)) { + if (strict) return Qnil; + den = ONE; + } + else if (den == ZERO) { + if (!raise) return Qnil; + rb_num_zerodiv(); + } + else if (strict && skip_ws(s, e) != e) { + return Qnil; + } + else { + nexp = rb_int_minus(nexp, dexp); + nurat_reduce(&num, &den); + } + } + else if (strict && skip_ws(s, e) != e) { + return Qnil; + } + + if (nexp != ZERO) { + if (INT_NEGATIVE_P(nexp)) { + VALUE mul; + if (FIXNUM_P(nexp)) { + mul = f_expt10(LONG2NUM(-FIX2LONG(nexp))); + if (! RB_FLOAT_TYPE_P(mul)) { + num = rb_int_mul(num, mul); + goto reduce; + } + } + return sign == '-' ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL); + } + else { + VALUE div; + if (FIXNUM_P(nexp)) { + div = f_expt10(nexp); + if (! RB_FLOAT_TYPE_P(div)) { + den = rb_int_mul(den, div); + goto reduce; + } + } + return sign == '-' ? DBL2NUM(-0.0) : DBL2NUM(+0.0); + } + reduce: + nurat_reduce(&num, &den); + } + + if (sign == '-') { + num = negate_num(num); + } + + return rb_rational_raw(num, den); +} + +static VALUE +string_to_r_strict(VALUE self, int raise) +{ + VALUE num; + + rb_must_asciicompat(self); + + num = parse_rat(RSTRING_PTR(self), RSTRING_END(self), 1, raise); + if (NIL_P(num)) { + if (!raise) return Qnil; + rb_raise(rb_eArgError, "invalid value for convert(): %+"PRIsVALUE, + self); + } + + if (RB_FLOAT_TYPE_P(num) && !FLOAT_ZERO_P(num)) { + if (!raise) return Qnil; + rb_raise(rb_eFloatDomainError, "Infinity"); + } + return num; +} + +/* + * call-seq: + * str.to_r -> rational + * + * Returns the result of interpreting leading characters in +self+ as a rational value: + * + * '123'.to_r # => (123/1) # Integer literal. + * '300/2'.to_r # => (150/1) # Rational literal. + * '-9.2'.to_r # => (-46/5) # Float literal. + * '-9.2e2'.to_r # => (-920/1) # Float literal. + * + * Ignores leading and trailing whitespace, and trailing non-numeric characters: + * + * ' 2 '.to_r # => (2/1) + * '21-Jun-09'.to_r # => (21/1) + * + * Returns \Rational zero if there are no leading numeric characters. + * + * 'BWV 1079'.to_r # => (0/1) + * + * NOTE: <tt>'0.3'.to_r</tt> is equivalent to <tt>3/10r</tt>, + * but is different from <tt>0.3.to_r</tt>: + * + * '0.3'.to_r # => (3/10) + * 3/10r # => (3/10) + * 0.3.to_r # => (5404319552844595/18014398509481984) + * + * Related: see {Converting to Non-String}[rdoc-ref:String@Converting+to+Non--5CString]. + */ +static VALUE +string_to_r(VALUE self) +{ + VALUE num; + + rb_must_asciicompat(self); + + num = parse_rat(RSTRING_PTR(self), RSTRING_END(self), 0, TRUE); + + if (RB_FLOAT_TYPE_P(num) && !FLOAT_ZERO_P(num)) + rb_raise(rb_eFloatDomainError, "Infinity"); + return num; +} + +VALUE +rb_cstr_to_rat(const char *s, int strict) /* for complex's internal */ +{ + VALUE num; + + num = parse_rat(s, s + strlen(s), strict, TRUE); + + if (RB_FLOAT_TYPE_P(num) && !FLOAT_ZERO_P(num)) + rb_raise(rb_eFloatDomainError, "Infinity"); + return num; +} + +static VALUE +to_rational(VALUE val) +{ + return rb_convert_type_with_id(val, T_RATIONAL, "Rational", idTo_r); +} + +static VALUE +nurat_convert(VALUE klass, VALUE numv, VALUE denv, int raise) +{ + VALUE a1 = numv, a2 = denv; + int state; + + RUBY_ASSERT(!UNDEF_P(a1)); + + if (NIL_P(a1) || NIL_P(a2)) { + if (!raise) return Qnil; + rb_raise(rb_eTypeError, "can't convert nil into Rational"); + } + + if (RB_TYPE_P(a1, T_COMPLEX)) { + if (k_exact_zero_p(RCOMPLEX(a1)->imag)) + a1 = RCOMPLEX(a1)->real; + } + + if (RB_TYPE_P(a2, T_COMPLEX)) { + if (k_exact_zero_p(RCOMPLEX(a2)->imag)) + a2 = RCOMPLEX(a2)->real; + } + + if (RB_INTEGER_TYPE_P(a1)) { + // nothing to do + } + else if (RB_FLOAT_TYPE_P(a1)) { + a1 = float_to_r(a1); + } + else if (RB_TYPE_P(a1, T_RATIONAL)) { + // nothing to do + } + else if (RB_TYPE_P(a1, T_STRING)) { + a1 = string_to_r_strict(a1, raise); + if (!raise && NIL_P(a1)) return Qnil; + } + else if (!rb_respond_to(a1, idTo_r)) { + VALUE tmp = rb_protect(rb_check_to_int, a1, NULL); + rb_set_errinfo(Qnil); + if (!NIL_P(tmp)) { + a1 = tmp; + } + } + + if (RB_INTEGER_TYPE_P(a2)) { + // nothing to do + } + else if (RB_FLOAT_TYPE_P(a2)) { + a2 = float_to_r(a2); + } + else if (RB_TYPE_P(a2, T_RATIONAL)) { + // nothing to do + } + else if (RB_TYPE_P(a2, T_STRING)) { + a2 = string_to_r_strict(a2, raise); + if (!raise && NIL_P(a2)) return Qnil; + } + else if (!UNDEF_P(a2) && !rb_respond_to(a2, idTo_r)) { + VALUE tmp = rb_protect(rb_check_to_int, a2, NULL); + rb_set_errinfo(Qnil); + if (!NIL_P(tmp)) { + a2 = tmp; + } + } + + if (RB_TYPE_P(a1, T_RATIONAL)) { + if (UNDEF_P(a2) || (k_exact_one_p(a2))) + return a1; + } + + if (UNDEF_P(a2)) { + if (!RB_INTEGER_TYPE_P(a1)) { + if (!raise) { + VALUE result = rb_protect(to_rational, a1, NULL); + rb_set_errinfo(Qnil); + return result; + } + return to_rational(a1); + } + } + else { + if (!k_numeric_p(a1)) { + if (!raise) { + a1 = rb_protect(to_rational, a1, &state); + if (state) { + rb_set_errinfo(Qnil); + return Qnil; + } + } + else { + a1 = rb_check_convert_type_with_id(a1, T_RATIONAL, "Rational", idTo_r); + } + } + if (!k_numeric_p(a2)) { + if (!raise) { + a2 = rb_protect(to_rational, a2, &state); + if (state) { + rb_set_errinfo(Qnil); + return Qnil; + } + } + else { + a2 = rb_check_convert_type_with_id(a2, T_RATIONAL, "Rational", idTo_r); + } + } + if ((k_numeric_p(a1) && k_numeric_p(a2)) && + (!f_integer_p(a1) || !f_integer_p(a2))) { + VALUE tmp = rb_protect(to_rational, a1, &state); + if (!state) { + a1 = tmp; + } + else { + rb_set_errinfo(Qnil); + } + return f_div(a1, a2); + } + } + + a1 = nurat_int_value(a1); + + if (UNDEF_P(a2)) { + a2 = ONE; + } + else if (!k_integer_p(a2) && !raise) { + return Qnil; + } + else { + a2 = nurat_int_value(a2); + } + + + return nurat_s_canonicalize_internal(klass, a1, a2); +} + +static VALUE +nurat_s_convert(int argc, VALUE *argv, VALUE klass) +{ + VALUE a1, a2; + + if (rb_scan_args(argc, argv, "11", &a1, &a2) == 1) { + a2 = Qundef; + } + + return nurat_convert(klass, a1, a2, TRUE); +} + +/* + * A rational number can be represented as a pair of integer numbers: + * a/b (b>0), where a is the numerator and b is the denominator. + * Integer a equals rational a/1 mathematically. + * + * You can create a \Rational object explicitly with: + * + * - A {rational literal}[rdoc-ref:syntax/literals.rdoc@Rational+Literals]. + * + * You can convert certain objects to Rationals with: + * + * - Method #Rational. + * + * Examples + * + * Rational(1) #=> (1/1) + * Rational(2, 3) #=> (2/3) + * Rational(4, -6) #=> (-2/3) # Reduced. + * 3.to_r #=> (3/1) + * 2/3r #=> (2/3) + * + * You can also create rational objects from floating-point numbers or + * strings. + * + * Rational(0.3) #=> (5404319552844595/18014398509481984) + * Rational('0.3') #=> (3/10) + * Rational('2/3') #=> (2/3) + * + * 0.3.to_r #=> (5404319552844595/18014398509481984) + * '0.3'.to_r #=> (3/10) + * '2/3'.to_r #=> (2/3) + * 0.3.rationalize #=> (3/10) + * + * A rational object is an exact number, which helps you to write + * programs without any rounding errors. + * + * 10.times.inject(0) {|t| t + 0.1 } #=> 0.9999999999999999 + * 10.times.inject(0) {|t| t + Rational('0.1') } #=> (1/1) + * + * However, when an expression includes an inexact component (numerical value + * or operation), it will produce an inexact result. + * + * Rational(10) / 3 #=> (10/3) + * Rational(10) / 3.0 #=> 3.3333333333333335 + * + * Rational(-8) ** Rational(1, 3) + * #=> (1.0000000000000002+1.7320508075688772i) + */ +void +Init_Rational(void) +{ + VALUE compat; + id_abs = rb_intern_const("abs"); + id_integer_p = rb_intern_const("integer?"); + id_i_num = rb_intern_const("@numerator"); + id_i_den = rb_intern_const("@denominator"); + + rb_cRational = rb_define_class("Rational", rb_cNumeric); + + rb_define_alloc_func(rb_cRational, nurat_s_alloc); + rb_undef_method(CLASS_OF(rb_cRational), "allocate"); + + rb_undef_method(CLASS_OF(rb_cRational), "new"); + + rb_define_global_function("Rational", nurat_f_rational, -1); + + rb_define_method(rb_cRational, "numerator", nurat_numerator, 0); + rb_define_method(rb_cRational, "denominator", nurat_denominator, 0); + + rb_define_method(rb_cRational, "-@", rb_rational_uminus, 0); + rb_define_method(rb_cRational, "+", rb_rational_plus, 1); + rb_define_method(rb_cRational, "-", rb_rational_minus, 1); + rb_define_method(rb_cRational, "*", rb_rational_mul, 1); + rb_define_method(rb_cRational, "/", rb_rational_div, 1); + rb_define_method(rb_cRational, "quo", rb_rational_div, 1); + rb_define_method(rb_cRational, "fdiv", nurat_fdiv, 1); + rb_define_method(rb_cRational, "**", nurat_expt, 1); + + rb_define_method(rb_cRational, "<=>", rb_rational_cmp, 1); + rb_define_method(rb_cRational, "==", nurat_eqeq_p, 1); + rb_define_method(rb_cRational, "coerce", nurat_coerce, 1); + + rb_define_method(rb_cRational, "positive?", nurat_positive_p, 0); + rb_define_method(rb_cRational, "negative?", nurat_negative_p, 0); + rb_define_method(rb_cRational, "abs", rb_rational_abs, 0); + rb_define_method(rb_cRational, "magnitude", rb_rational_abs, 0); + + rb_define_method(rb_cRational, "floor", nurat_floor_n, -1); + rb_define_method(rb_cRational, "ceil", nurat_ceil_n, -1); + rb_define_method(rb_cRational, "truncate", nurat_truncate_n, -1); + rb_define_method(rb_cRational, "round", nurat_round_n, -1); + + rb_define_method(rb_cRational, "to_i", nurat_truncate, 0); + rb_define_method(rb_cRational, "to_f", nurat_to_f, 0); + rb_define_method(rb_cRational, "to_r", nurat_to_r, 0); + rb_define_method(rb_cRational, "rationalize", nurat_rationalize, -1); + + rb_define_method(rb_cRational, "hash", nurat_hash, 0); + + rb_define_method(rb_cRational, "to_s", nurat_to_s, 0); + rb_define_method(rb_cRational, "inspect", nurat_inspect, 0); + + rb_define_private_method(rb_cRational, "marshal_dump", nurat_marshal_dump, 0); + /* :nodoc: */ + compat = rb_define_class_under(rb_cRational, "compatible", rb_cObject); + rb_define_private_method(compat, "marshal_load", nurat_marshal_load, 1); + rb_marshal_define_compat(rb_cRational, compat, nurat_dumper, nurat_loader); + + rb_define_method(rb_cInteger, "gcd", rb_gcd, 1); + rb_define_method(rb_cInteger, "lcm", rb_lcm, 1); + rb_define_method(rb_cInteger, "gcdlcm", rb_gcdlcm, 1); + + rb_define_method(rb_cNumeric, "numerator", numeric_numerator, 0); + rb_define_method(rb_cNumeric, "denominator", numeric_denominator, 0); + rb_define_method(rb_cNumeric, "quo", rb_numeric_quo, 1); + + rb_define_method(rb_cFloat, "numerator", rb_float_numerator, 0); + rb_define_method(rb_cFloat, "denominator", rb_float_denominator, 0); + + rb_define_method(rb_cInteger, "to_r", integer_to_r, 0); + rb_define_method(rb_cInteger, "rationalize", integer_rationalize, -1); + rb_define_method(rb_cFloat, "to_r", float_to_r, 0); + rb_define_method(rb_cFloat, "rationalize", float_rationalize, -1); + + rb_define_method(rb_cString, "to_r", string_to_r, 0); + + rb_define_private_method(CLASS_OF(rb_cRational), "convert", nurat_s_convert, -1); + + rb_provide("rational.so"); /* for backward compatibility */ +} |
