diff options
Diffstat (limited to 'range.c')
| -rw-r--r-- | range.c | 1509 |
1 files changed, 1010 insertions, 499 deletions
@@ -34,6 +34,7 @@ static ID id_beg, id_end, id_excl; #define id_succ idSucc #define id_min idMin #define id_max idMax +#define id_plus '+' static VALUE r_cover_p(VALUE, VALUE, VALUE, VALUE); @@ -46,12 +47,13 @@ static VALUE r_cover_p(VALUE, VALUE, VALUE, VALUE); static void range_init(VALUE range, VALUE beg, VALUE end, VALUE exclude_end) { + // Changing this condition has implications for JITs. If you do, please let maintainers know. if ((!FIXNUM_P(beg) || !FIXNUM_P(end)) && !NIL_P(beg) && !NIL_P(end)) { - VALUE v; + VALUE v; - v = rb_funcall(beg, id_cmp, 1, end); - if (NIL_P(v)) - rb_raise(rb_eArgError, "bad value for range"); + v = rb_funcall(beg, id_cmp, 1, end); + if (NIL_P(v)) + rb_raise(rb_eArgError, "bad value for range"); } RANGE_SET_EXCL(range, exclude_end); @@ -78,7 +80,7 @@ range_modify(VALUE range) rb_check_frozen(range); /* Ranges are immutable, so that they should be initialized only once. */ if (RANGE_EXCL(range) != Qnil) { - rb_name_err_raise("`initialize' called twice", range, ID2SYM(idInitialize)); + rb_name_err_raise("'initialize' called twice", range, ID2SYM(idInitialize)); } } @@ -140,9 +142,9 @@ recursive_equal(VALUE range, VALUE obj, int recur) { if (recur) return Qtrue; /* Subtle! */ if (!rb_equal(RANGE_BEG(range), RANGE_BEG(obj))) - return Qfalse; + return Qfalse; if (!rb_equal(RANGE_END(range), RANGE_END(obj))) - return Qfalse; + return Qfalse; return RBOOL(EXCL(range) == EXCL(obj)); } @@ -152,14 +154,14 @@ recursive_equal(VALUE range, VALUE obj, int recur) * call-seq: * self == other -> true or false * - * Returns +true+ if and only if: + * Returns whether all of the following are true: * * - +other+ is a range. * - <tt>other.begin == self.begin</tt>. * - <tt>other.end == self.end</tt>. * - <tt>other.exclude_end? == self.exclude_end?</tt>. * - * Otherwise returns +false+. + * Examples: * * r = (1..5) * r == (1..5) # => true @@ -183,9 +185,9 @@ static VALUE range_eq(VALUE range, VALUE obj) { if (range == obj) - return Qtrue; + return Qtrue; if (!rb_obj_is_kind_of(obj, rb_cRange)) - return Qfalse; + return Qfalse; return rb_exec_recursive_paired(recursive_equal, range, obj, obj); } @@ -201,7 +203,7 @@ r_less(VALUE a, VALUE b) VALUE r = rb_funcall(a, id_cmp, 1, b); if (NIL_P(r)) - return INT_MAX; + return INT_MAX; return rb_cmpint(r, a, b); } @@ -210,9 +212,9 @@ recursive_eql(VALUE range, VALUE obj, int recur) { if (recur) return Qtrue; /* Subtle! */ if (!rb_eql(RANGE_BEG(range), RANGE_BEG(obj))) - return Qfalse; + return Qfalse; if (!rb_eql(RANGE_END(range), RANGE_END(obj))) - return Qfalse; + return Qfalse; return RBOOL(EXCL(range) == EXCL(obj)); } @@ -224,8 +226,8 @@ recursive_eql(VALUE range, VALUE obj, int recur) * Returns +true+ if and only if: * * - +other+ is a range. - * - <tt>other.begin eql? self.begin</tt>. - * - <tt>other.end eql? self.end</tt>. + * - <tt>other.begin.eql?(self.begin)</tt>. + * - <tt>other.end.eql?(self.end)</tt>. * - <tt>other.exclude_end? == self.exclude_end?</tt>. * * Otherwise returns +false+. @@ -251,9 +253,9 @@ static VALUE range_eql(VALUE range, VALUE obj) { if (range == obj) - return Qtrue; + return Qtrue; if (!rb_obj_is_kind_of(obj, rb_cRange)) - return Qfalse; + return Qfalse; return rb_exec_recursive_paired(recursive_eql, range, obj, obj); } @@ -294,30 +296,33 @@ range_each_func(VALUE range, int (*func)(VALUE, VALUE), VALUE arg) VALUE v = b; if (EXCL(range)) { - while (r_less(v, e) < 0) { - if ((*func)(v, arg)) break; - v = rb_funcallv(v, id_succ, 0, 0); - } + while (r_less(v, e) < 0) { + if ((*func)(v, arg)) break; + v = rb_funcallv(v, id_succ, 0, 0); + } } else { - while ((c = r_less(v, e)) <= 0) { - if ((*func)(v, arg)) break; - if (!c) break; - v = rb_funcallv(v, id_succ, 0, 0); - } + while ((c = r_less(v, e)) <= 0) { + if ((*func)(v, arg)) break; + if (!c) break; + v = rb_funcallv(v, id_succ, 0, 0); + } } } +// NB: Two functions below (step_i_iter, sym_step_i and step_i) are used only to maintain the +// backward-compatible behavior for string and symbol ranges with integer steps. If that branch +// will be removed from range_step, these two can go, too. static bool step_i_iter(VALUE arg) { VALUE *iter = (VALUE *)arg; if (FIXNUM_P(iter[0])) { - iter[0] -= INT2FIX(1) & ~FIXNUM_FLAG; + iter[0] -= INT2FIX(1) & ~FIXNUM_FLAG; } else { - iter[0] = rb_funcall(iter[0], '-', 1, INT2FIX(1)); + iter[0] = rb_funcall(iter[0], '-', 1, INT2FIX(1)); } if (iter[0] != INT2FIX(0)) return false; iter[0] = iter[1]; @@ -328,7 +333,7 @@ static int sym_step_i(VALUE i, VALUE arg) { if (step_i_iter(arg)) { - rb_yield(rb_str_intern(i)); + rb_yield(rb_str_intern(i)); } return 0; } @@ -337,7 +342,7 @@ static int step_i(VALUE i, VALUE arg) { if (step_i_iter(arg)) { - rb_yield(i); + rb_yield(i); } return 0; } @@ -356,7 +361,7 @@ linear_object_p(VALUE obj) switch (BUILTIN_TYPE(obj)) { case T_FLOAT: case T_BIGNUM: - return TRUE; + return TRUE; default: break; } @@ -371,14 +376,14 @@ check_step_domain(VALUE step) VALUE zero = INT2FIX(0); int cmp; if (!rb_obj_is_kind_of(step, rb_cNumeric)) { - step = rb_to_int(step); + step = rb_to_int(step); } cmp = rb_cmpint(rb_funcallv(step, idCmp, 1, &zero), step, zero); if (cmp < 0) { - rb_raise(rb_eArgError, "step can't be negative"); + rb_raise(rb_eArgError, "step can't be negative"); } else if (cmp == 0) { - rb_raise(rb_eArgError, "step can't be 0"); + rb_raise(rb_eArgError, "step can't be 0"); } return step; } @@ -389,151 +394,253 @@ range_step_size(VALUE range, VALUE args, VALUE eobj) VALUE b = RANGE_BEG(range), e = RANGE_END(range); VALUE step = INT2FIX(1); if (args) { - step = check_step_domain(RARRAY_AREF(args, 0)); + step = check_step_domain(RARRAY_AREF(args, 0)); } if (rb_obj_is_kind_of(b, rb_cNumeric) && rb_obj_is_kind_of(e, rb_cNumeric)) { - return ruby_num_interval_step_size(b, e, step, EXCL(range)); + return ruby_num_interval_step_size(b, e, step, EXCL(range)); } return Qnil; } /* * call-seq: - * step(n = 1) {|element| ... } -> self - * step(n = 1) -> enumerator + * step(s = 1) {|element| ... } -> self + * step(s = 1) -> enumerator/arithmetic_sequence * - * Iterates over the elements of +self+. + * Iterates over the elements of range in steps of +s+. The iteration is performed + * by <tt>+</tt> operator: * - * With a block given and no argument, - * calls the block each element of the range; returns +self+: + * (0..6).step(2) { puts _1 } #=> 1..5 + * # Prints: 0, 2, 4, 6 * - * a = [] - * (1..5).step {|element| a.push(element) } # => 1..5 - * a # => [1, 2, 3, 4, 5] - * a = [] - * ('a'..'e').step {|element| a.push(element) } # => "a".."e" - * a # => ["a", "b", "c", "d", "e"] + * # Iterate between two dates in step of 1 day (24 hours) + * (Time.utc(2022, 2, 24)..Time.utc(2022, 3, 1)).step(24*60*60) { puts _1 } + * # Prints: + * # 2022-02-24 00:00:00 UTC + * # 2022-02-25 00:00:00 UTC + * # 2022-02-26 00:00:00 UTC + * # 2022-02-27 00:00:00 UTC + * # 2022-02-28 00:00:00 UTC + * # 2022-03-01 00:00:00 UTC * - * With a block given and a positive integer argument +n+ given, - * calls the block with element +0+, element +n+, element <tt>2n</tt>, and so on: + * If <tt> + step</tt> decreases the value, iteration is still performed when + * step +begin+ is higher than the +end+: * - * a = [] - * (1..5).step(2) {|element| a.push(element) } # => 1..5 - * a # => [1, 3, 5] - * a = [] - * ('a'..'e').step(2) {|element| a.push(element) } # => "a".."e" - * a # => ["a", "c", "e"] + * (0..6).step(-2) { puts _1 } + * # Prints nothing + * + * (6..0).step(-2) { puts _1 } + * # Prints: 6, 4, 2, 0 + * + * (Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step(-24*60*60) { puts _1 } + * # Prints: + * # 2022-03-01 00:00:00 UTC + * # 2022-02-28 00:00:00 UTC + * # 2022-02-27 00:00:00 UTC + * # 2022-02-26 00:00:00 UTC + * # 2022-02-25 00:00:00 UTC + * # 2022-02-24 00:00:00 UTC + * + * When the block is not provided, and range boundaries and step are Numeric, + * the method returns Enumerator::ArithmeticSequence. + * + * (1..5).step(2) # => ((1..5).step(2)) + * (1.0..).step(1.5) #=> ((1.0..).step(1.5)) + * (..3r).step(1/3r) #=> ((..3/1).step((1/3))) + * + * Enumerator::ArithmeticSequence can be further used as a value object for iteration + * or slicing of collections (see Array#[]). There is a convenience method #% with + * behavior similar to +step+ to produce arithmetic sequences more expressively: + * + * # Same as (1..5).step(2) + * (1..5) % 2 # => ((1..5).%(2)) * - * With no block given, returns an enumerator, - * which will be of class Enumerator::ArithmeticSequence if +self+ is numeric; - * otherwise of class Enumerator: + * In a generic case, when the block is not provided, Enumerator is returned: * - * e = (1..5).step(2) # => ((1..5).step(2)) - * e.class # => Enumerator::ArithmeticSequence - * ('a'..'e').step # => #<Enumerator: ...> + * ('a'..).step('b') #=> #<Enumerator: "a"..:step("b")> + * ('a'..).step('b').take(3) #=> ["a", "ab", "abb"] + * + * If +s+ is not provided, it is considered +1+ for ranges with numeric +begin+: + * + * (1..5).step { p _1 } + * # Prints: 1, 2, 3, 4, 5 + * + * For non-Numeric ranges, step absence is an error: + * + * (Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step { p _1 } + * # raises: step is required for non-numeric ranges (ArgumentError) + * + * For backward compatibility reasons, String ranges support the iteration both with + * string step and with integer step. In the latter case, the iteration is performed + * by calculating the next values with String#succ: + * + * ('a'..'e').step(2) { p _1 } + * # Prints: a, c, e + * ('a'..'e').step { p _1 } + * # Default step 1; prints: a, b, c, d, e * - * Related: Range#%. */ static VALUE range_step(int argc, VALUE *argv, VALUE range) { - VALUE b, e, step, tmp; + VALUE b, e, v, step; + int c, dir; b = RANGE_BEG(range); e = RANGE_END(range); - step = (!rb_check_arity(argc, 0, 1) ? INT2FIX(1) : argv[0]); + v = b; + + const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric); + const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric); + // For backward compatibility reasons (conforming to behavior before 3.4), String/Symbol + // supports both old behavior ('a'..).step(1) and new behavior ('a'..).step('a') + // Hence the additional conversion/additional checks. + const VALUE str_b = rb_check_string_type(b); + const VALUE sym_b = SYMBOL_P(b) ? rb_sym2str(b) : Qnil; + + if (rb_check_arity(argc, 0, 1)) + step = argv[0]; + else { + if (b_num_p || !NIL_P(str_b) || !NIL_P(sym_b) || (NIL_P(b) && e_num_p)) + step = INT2FIX(1); + else + rb_raise(rb_eArgError, "step is required for non-numeric ranges"); + } - if (!rb_block_given_p()) { - if (!rb_obj_is_kind_of(step, rb_cNumeric)) { - step = rb_to_int(step); - } - if (rb_equal(step, INT2FIX(0))) { - rb_raise(rb_eArgError, "step can't be 0"); - } + const VALUE step_num_p = rb_obj_is_kind_of(step, rb_cNumeric); - const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric); - const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric); - if ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p)) { + if (step_num_p && b_num_p && rb_equal(step, INT2FIX(0))) { + rb_raise(rb_eArgError, "step can't be 0"); + } + + if (!rb_block_given_p()) { + // This code is allowed to create even beginless ArithmeticSequence, which can be useful, + // e.g., for array slicing: + // ary[(..-1) % 3] + if (step_num_p && ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p))) { return rb_arith_seq_new(range, ID2SYM(rb_frame_this_func()), argc, argv, range_step_size, b, e, step, EXCL(range)); } - RETURN_SIZED_ENUMERATOR(range, argc, argv, range_step_size); + // ...but generic Enumerator from beginless range is useless and probably an error. + if (NIL_P(b)) { + rb_raise(rb_eArgError, "#step for non-numeric beginless ranges is meaningless"); + } + + RETURN_SIZED_ENUMERATOR(range, argc, argv, 0); } - step = check_step_domain(step); - VALUE iter[2] = {INT2FIX(1), step}; + if (NIL_P(b)) { + rb_raise(rb_eArgError, "#step iteration for beginless ranges is meaningless"); + } if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(step)) { - long i = FIX2LONG(b), unit = FIX2LONG(step); - do { - rb_yield(LONG2FIX(i)); - i += unit; /* FIXABLE+FIXABLE never overflow */ - } while (FIXABLE(i)); - b = LONG2NUM(i); - - for (;; b = rb_big_plus(b, step)) - rb_yield(b); - } - else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) { /* fixnums are special */ - long end = FIX2LONG(e); - long i, unit = FIX2LONG(step); - - if (!EXCL(range)) - end += 1; - i = FIX2LONG(b); - while (i < end) { - rb_yield(LONG2NUM(i)); - if (i + unit < i) break; - i += unit; - } - - } - else if (SYMBOL_P(b) && (NIL_P(e) || SYMBOL_P(e))) { /* symbols are special */ - b = rb_sym2str(b); - if (NIL_P(e)) { - rb_str_upto_endless_each(b, sym_step_i, (VALUE)iter); - } - else { - rb_str_upto_each(b, rb_sym2str(e), EXCL(range), sym_step_i, (VALUE)iter); - } - } - else if (ruby_float_step(b, e, step, EXCL(range), TRUE)) { - /* done */ - } - else if (rb_obj_is_kind_of(b, rb_cNumeric) || - !NIL_P(rb_check_to_integer(b, "to_int")) || - !NIL_P(rb_check_to_integer(e, "to_int"))) { - ID op = EXCL(range) ? '<' : idLE; - VALUE v = b; - int i = 0; - - while (NIL_P(e) || RTEST(rb_funcall(v, op, 1, e))) { - rb_yield(v); - i++; - v = rb_funcall(b, '+', 1, rb_funcall(INT2NUM(i), '*', 1, step)); - } + /* perform summation of numbers in C until their reach Fixnum limit */ + long i = FIX2LONG(b), unit = FIX2LONG(step); + do { + rb_yield(LONG2FIX(i)); + i += unit; /* FIXABLE+FIXABLE never overflow */ + } while (FIXABLE(i)); + b = LONG2NUM(i); + + /* then switch to Bignum API */ + for (;; b = rb_big_plus(b, step)) + rb_yield(b); + } + else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) { + /* fixnums are special: summation is performed in C for performance */ + long end = FIX2LONG(e); + long i, unit = FIX2LONG(step); + + if (unit < 0) { + if (!EXCL(range)) + end -= 1; + i = FIX2LONG(b); + while (i > end) { + rb_yield(LONG2NUM(i)); + i += unit; + } + } + else { + if (!EXCL(range)) + end += 1; + i = FIX2LONG(b); + while (i < end) { + rb_yield(LONG2NUM(i)); + i += unit; + } + } } - else { - tmp = rb_check_string_type(b); - - if (!NIL_P(tmp)) { - b = tmp; - if (NIL_P(e)) { - rb_str_upto_endless_each(b, step_i, (VALUE)iter); - } - else { - rb_str_upto_each(b, e, EXCL(range), step_i, (VALUE)iter); - } - } - else { - if (!discrete_object_p(b)) { - rb_raise(rb_eTypeError, "can't iterate from %s", - rb_obj_classname(b)); - } - range_each_func(range, step_i, (VALUE)iter); - } + else if (b_num_p && step_num_p && ruby_float_step(b, e, step, EXCL(range), TRUE)) { + /* done */ + } + else if (!NIL_P(str_b) && FIXNUM_P(step)) { + // backwards compatibility behavior for String only, when no step/Integer step is passed + // See discussion in https://bugs.ruby-lang.org/issues/18368 + + VALUE iter[2] = {INT2FIX(1), step}; + + if (NIL_P(e)) { + rb_str_upto_endless_each(str_b, step_i, (VALUE)iter); + } + else { + rb_str_upto_each(str_b, e, EXCL(range), step_i, (VALUE)iter); + } + } + else if (!NIL_P(sym_b) && FIXNUM_P(step)) { + // same as above: backward compatibility for symbols + + VALUE iter[2] = {INT2FIX(1), step}; + + if (NIL_P(e)) { + rb_str_upto_endless_each(sym_b, sym_step_i, (VALUE)iter); + } + else { + rb_str_upto_each(sym_b, rb_sym2str(e), EXCL(range), sym_step_i, (VALUE)iter); + } + } + else if (NIL_P(e)) { + // endless range + for (;; v = rb_funcall(v, id_plus, 1, step)) + rb_yield(v); + } + else if (b_num_p && step_num_p && r_less(step, INT2FIX(0)) < 0) { + // iterate backwards, for consistency with ArithmeticSequence + if (EXCL(range)) { + for (; r_less(e, v) < 0; v = rb_funcall(v, id_plus, 1, step)) + rb_yield(v); + } + else { + for (; (c = r_less(e, v)) <= 0; v = rb_funcall(v, id_plus, 1, step)) { + rb_yield(v); + if (!c) break; + } + } + + } + else if ((dir = r_less(b, e)) == 0) { + if (!EXCL(range)) { + rb_yield(v); + } + } + else if (dir == r_less(b, rb_funcall(b, id_plus, 1, step))) { + // Direction of the comparison. We use it as a comparison operator in cycle: + // if begin < end, the cycle performs while value < end (iterating forward) + // if begin > end, the cycle performs while value > end (iterating backward with + // a negative step) + // One preliminary addition to check the step moves iteration in the same direction as + // from begin to end; otherwise, the iteration should be empty. + if (EXCL(range)) { + for (; r_less(v, e) == dir; v = rb_funcall(v, id_plus, 1, step)) + rb_yield(v); + } + else { + for (; (c = r_less(v, e)) == dir || c == 0; v = rb_funcall(v, id_plus, 1, step)) { + rb_yield(v); + if (!c) break; + } + } } return range; } @@ -541,29 +648,24 @@ range_step(int argc, VALUE *argv, VALUE range) /* * call-seq: * %(n) {|element| ... } -> self - * %(n) -> enumerator + * %(n) -> enumerator or arithmetic_sequence * - * Iterates over the elements of +self+. + * Same as #step (but doesn't provide default value for +n+). + * The method is convenient for experssive producing of Enumerator::ArithmeticSequence. * - * With a block given, calls the block with selected elements of the range; - * returns +self+: + * array = [0, 1, 2, 3, 4, 5, 6] * - * a = [] - * (1..5).%(2) {|element| a.push(element) } # => 1..5 - * a # => [1, 3, 5] - * a = [] - * ('a'..'e').%(2) {|element| a.push(element) } # => "a".."e" - * a # => ["a", "c", "e"] + * # slice each second element: + * seq = (0..) % 2 #=> ((0..).%(2)) + * array[seq] #=> [0, 2, 4, 6] + * # or just + * array[(0..) % 2] #=> [0, 2, 4, 6] * - * With no block given, returns an enumerator, - * which will be of class Enumerator::ArithmeticSequence if +self+ is numeric; - * otherwise of class Enumerator: + * Note that due to operator precedence in Ruby, parentheses are mandatory around range + * in this case: * - * e = (1..5) % 2 # => ((1..5).%(2)) - * e.class # => Enumerator::ArithmeticSequence - * ('a'..'e') % 2 # => #<Enumerator: ...> - * - * Related: Range#step. + * (0..7) % 2 #=> ((0..7).%(2)) -- as expected + * 0..7 % 2 #=> 0..1 -- parsed as 0..(7 % 2) */ static VALUE range_percent_step(VALUE range, VALUE step) @@ -582,12 +684,12 @@ int64_as_double_to_num(int64_t i) { union int64_double convert; if (i < 0) { - convert.i = -i; - return DBL2NUM(-convert.d); + convert.i = -i; + return DBL2NUM(-convert.d); } else { - convert.i = i; - return DBL2NUM(convert.d); + convert.i = i; + return DBL2NUM(convert.d); } } @@ -603,11 +705,15 @@ double_as_int64(double d) static int is_integer_p(VALUE v) { + if (rb_integer_type_p(v)) { + return true; + } + ID id_integer_p; VALUE is_int; CONST_ID(id_integer_p, "integer?"); is_int = rb_check_funcall(v, id_integer_p, 0, 0); - return RTEST(is_int) && is_int != Qundef; + return RTEST(is_int) && !UNDEF_P(is_int); } static VALUE @@ -618,53 +724,56 @@ bsearch_integer_range(VALUE beg, VALUE end, int excl) #define BSEARCH_CHECK(expr) \ do { \ - VALUE val = (expr); \ - VALUE v = rb_yield(val); \ - if (FIXNUM_P(v)) { \ - if (v == INT2FIX(0)) return val; \ - smaller = (SIGNED_VALUE)v < 0; \ - } \ - else if (v == Qtrue) { \ - satisfied = val; \ - smaller = 1; \ - } \ - else if (!RTEST(v)) { \ - smaller = 0; \ - } \ - else if (rb_obj_is_kind_of(v, rb_cNumeric)) { \ - int cmp = rb_cmpint(rb_funcall(v, id_cmp, 1, INT2FIX(0)), v, INT2FIX(0)); \ - if (!cmp) return val; \ - smaller = cmp < 0; \ - } \ - else { \ - rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE \ - " (must be numeric, true, false or nil)", \ - rb_obj_class(v)); \ - } \ + VALUE val = (expr); \ + VALUE v = rb_yield(val); \ + if (FIXNUM_P(v)) { \ + if (v == INT2FIX(0)) return val; \ + smaller = (SIGNED_VALUE)v < 0; \ + } \ + else if (v == Qtrue) { \ + satisfied = val; \ + smaller = 1; \ + } \ + else if (!RTEST(v)) { \ + smaller = 0; \ + } \ + else if (rb_obj_is_kind_of(v, rb_cNumeric)) { \ + int cmp = rb_cmpint(rb_funcall(v, id_cmp, 1, INT2FIX(0)), v, INT2FIX(0)); \ + if (!cmp) return val; \ + smaller = cmp < 0; \ + } \ + else { \ + rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE \ + " (must be numeric, true, false or nil)", \ + rb_obj_class(v)); \ + } \ } while (0) VALUE low = rb_to_int(beg); VALUE high = rb_to_int(end); - VALUE mid, org_high; + VALUE mid; ID id_div; CONST_ID(id_div, "div"); - if (excl) high = rb_funcall(high, '-', 1, INT2FIX(1)); - org_high = high; + if (!excl) high = rb_funcall(high, '+', 1, INT2FIX(1)); + low = rb_funcall(low, '-', 1, INT2FIX(1)); - while (rb_cmpint(rb_funcall(low, id_cmp, 1, high), low, high) < 0) { - mid = rb_funcall(rb_funcall(high, '+', 1, low), id_div, 1, INT2FIX(2)); - BSEARCH_CHECK(mid); - if (smaller) { - high = mid; - } - else { - low = rb_funcall(mid, '+', 1, INT2FIX(1)); - } - } - if (rb_equal(low, org_high)) { - BSEARCH_CHECK(low); - if (!smaller) return Qnil; + /* + * This loop must continue while low + 1 < high. + * Instead of checking low + 1 < high, check low < mid, where mid = (low + high) / 2. + * This is to avoid the cost of calculating low + 1 on each iteration. + * Note that this condition replacement is valid because Integer#div always rounds + * towards negative infinity. + */ + while (mid = rb_funcall(rb_funcall(high, '+', 1, low), id_div, 1, INT2FIX(2)), + rb_cmpint(rb_funcall(low, id_cmp, 1, mid), low, mid) < 0) { + BSEARCH_CHECK(mid); + if (smaller) { + high = mid; + } + else { + low = mid; + } } return satisfied; } @@ -675,7 +784,7 @@ bsearch_integer_range(VALUE beg, VALUE end, int excl) * * Returns an element from +self+ selected by a binary search. * - * See {Binary Searching}[rdoc-ref:bsearch.rdoc]. + * See {Binary Searching}[rdoc-ref:language/bsearch.rdoc]. * */ @@ -692,84 +801,102 @@ range_bsearch(VALUE range) * by the mantissa. This is true with or without implicit bit. * * Finding the average of two ints needs to be careful about - * potential overflow (since float to long can use 64 bits) - * as well as the fact that -1/2 can be 0 or -1 in C89. + * potential overflow (since float to long can use 64 bits). + * + * The half-open interval (low, high] indicates where the target is located. + * The loop continues until low and high are adjacent. + * + * -1/2 can be either 0 or -1 in C89. However, when low and high are not adjacent, + * the rounding direction of mid = (low + high) / 2 does not affect the result of + * the binary search. * * Note that -0.0 is mapped to the same int as 0.0 as we don't want * (-1...0.0).bsearch to yield -0.0. */ -#define BSEARCH(conv) \ +#define BSEARCH(conv, excl) \ do { \ - RETURN_ENUMERATOR(range, 0, 0); \ - if (EXCL(range)) high--; \ - org_high = high; \ - while (low < high) { \ - mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \ - : (low < -high) ? -((-1 - low - high)/2 + 1) : (low + high) / 2; \ - BSEARCH_CHECK(conv(mid)); \ - if (smaller) { \ - high = mid; \ - } \ - else { \ - low = mid + 1; \ - } \ - } \ - if (low == org_high) { \ - BSEARCH_CHECK(conv(low)); \ - if (!smaller) return Qnil; \ - } \ - return satisfied; \ + RETURN_ENUMERATOR(range, 0, 0); \ + if (!(excl)) high++; \ + low--; \ + while (low + 1 < high) { \ + mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \ + : (low + high) / 2; \ + BSEARCH_CHECK(conv(mid)); \ + if (smaller) { \ + high = mid; \ + } \ + else { \ + low = mid; \ + } \ + } \ + return satisfied; \ } while (0) +#define BSEARCH_FIXNUM(beg, end, excl) \ + do { \ + long low = FIX2LONG(beg); \ + long high = FIX2LONG(end); \ + long mid; \ + BSEARCH(INT2FIX, (excl)); \ + } while (0) beg = RANGE_BEG(range); end = RANGE_END(range); if (FIXNUM_P(beg) && FIXNUM_P(end)) { - long low = FIX2LONG(beg); - long high = FIX2LONG(end); - long mid, org_high; - BSEARCH(INT2FIX); + BSEARCH_FIXNUM(beg, end, EXCL(range)); } #if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T) else if (RB_FLOAT_TYPE_P(beg) || RB_FLOAT_TYPE_P(end)) { - int64_t low = double_as_int64(NIL_P(beg) ? -HUGE_VAL : RFLOAT_VALUE(rb_Float(beg))); - int64_t high = double_as_int64(NIL_P(end) ? HUGE_VAL : RFLOAT_VALUE(rb_Float(end))); - int64_t mid, org_high; - BSEARCH(int64_as_double_to_num); + int64_t low = double_as_int64(NIL_P(beg) ? -HUGE_VAL : RFLOAT_VALUE(rb_Float(beg))); + int64_t high = double_as_int64(NIL_P(end) ? HUGE_VAL : RFLOAT_VALUE(rb_Float(end))); + int64_t mid; + BSEARCH(int64_as_double_to_num, EXCL(range)); } #endif else if (is_integer_p(beg) && is_integer_p(end)) { - RETURN_ENUMERATOR(range, 0, 0); - return bsearch_integer_range(beg, end, EXCL(range)); + RETURN_ENUMERATOR(range, 0, 0); + return bsearch_integer_range(beg, end, EXCL(range)); } else if (is_integer_p(beg) && NIL_P(end)) { - VALUE diff = LONG2FIX(1); - RETURN_ENUMERATOR(range, 0, 0); - while (1) { - VALUE mid = rb_funcall(beg, '+', 1, diff); - BSEARCH_CHECK(mid); - if (smaller) { - return bsearch_integer_range(beg, mid, 0); - } - diff = rb_funcall(diff, '*', 1, LONG2FIX(2)); - } + VALUE diff = LONG2FIX(1); + RETURN_ENUMERATOR(range, 0, 0); + while (1) { + VALUE mid = rb_funcall(beg, '+', 1, diff); + BSEARCH_CHECK(mid); + if (smaller) { + if (FIXNUM_P(beg) && FIXNUM_P(mid)) { + BSEARCH_FIXNUM(beg, mid, false); + } + else { + return bsearch_integer_range(beg, mid, false); + } + } + diff = rb_funcall(diff, '*', 1, LONG2FIX(2)); + beg = mid; + } } else if (NIL_P(beg) && is_integer_p(end)) { - VALUE diff = LONG2FIX(-1); - RETURN_ENUMERATOR(range, 0, 0); - while (1) { - VALUE mid = rb_funcall(end, '+', 1, diff); - BSEARCH_CHECK(mid); - if (!smaller) { - return bsearch_integer_range(mid, end, 0); - } - diff = rb_funcall(diff, '*', 1, LONG2FIX(2)); - } + VALUE diff = LONG2FIX(-1); + RETURN_ENUMERATOR(range, 0, 0); + while (1) { + VALUE mid = rb_funcall(end, '+', 1, diff); + BSEARCH_CHECK(mid); + if (!smaller) { + if (FIXNUM_P(mid) && FIXNUM_P(end)) { + BSEARCH_FIXNUM(mid, end, false); + } + else { + return bsearch_integer_range(mid, end, false); + } + } + diff = rb_funcall(diff, '*', 1, LONG2FIX(2)); + end = mid; + } } else { - rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg)); + rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg)); } return range; } @@ -787,6 +914,10 @@ sym_each_i(VALUE v, VALUE arg) return each_i(rb_str_intern(v), arg); } +#define CANT_ITERATE_FROM(x) \ + rb_raise(rb_eTypeError, "can't iterate from %s", \ + rb_obj_classname(x)) + /* * call-seq: * size -> non_negative_integer or Infinity or nil @@ -798,7 +929,12 @@ sym_each_i(VALUE v, VALUE arg) * (1..4).size # => 4 * (1...4).size # => 3 * (1..).size # => Infinity - * ('a'..'z').size #=> nil + * ('a'..'z').size # => nil + * + * If +self+ is not iterable, raises an exception: + * + * (0.5..2.5).size # TypeError + * (..1).size # TypeError * * Related: Range#count. */ @@ -807,21 +943,59 @@ static VALUE range_size(VALUE range) { VALUE b = RANGE_BEG(range), e = RANGE_END(range); - if (rb_obj_is_kind_of(b, rb_cNumeric)) { + + if (RB_INTEGER_TYPE_P(b)) { if (rb_obj_is_kind_of(e, rb_cNumeric)) { - return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range)); + return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range)); } if (NIL_P(e)) { return DBL2NUM(HUGE_VAL); } } - else if (NIL_P(b)) { - return DBL2NUM(HUGE_VAL); + + if (!discrete_object_p(b)) { + CANT_ITERATE_FROM(b); } return Qnil; } +static VALUE +range_reverse_size(VALUE range) +{ + VALUE b = RANGE_BEG(range), e = RANGE_END(range); + + if (NIL_P(e)) { + CANT_ITERATE_FROM(e); + } + + if (RB_INTEGER_TYPE_P(b)) { + if (rb_obj_is_kind_of(e, rb_cNumeric)) { + return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range)); + } + else { + CANT_ITERATE_FROM(e); + } + } + + if (NIL_P(b)) { + if (RB_INTEGER_TYPE_P(e)) { + return DBL2NUM(HUGE_VAL); + } + else { + CANT_ITERATE_FROM(e); + } + } + + if (!discrete_object_p(b)) { + CANT_ITERATE_FROM(e); + } + + return Qnil; +} + +#undef CANT_ITERATE_FROM + /* * call-seq: * to_a -> array @@ -833,24 +1007,52 @@ range_size(VALUE range) * (1...4).to_a # => [1, 2, 3] * ('a'..'d').to_a # => ["a", "b", "c", "d"] * - * Range#entries is an alias for Range#to_a. */ static VALUE range_to_a(VALUE range) { if (NIL_P(RANGE_END(range))) { - rb_raise(rb_eRangeError, "cannot convert endless range to an array"); + rb_raise(rb_eRangeError, "cannot convert endless range to an array"); } return rb_call_super(0, 0); } +/* + * call-seq: + * to_set -> set + * + * Returns a set containing the elements in +self+, if a finite collection; + * raises an exception otherwise. + * + * (1..4).to_set # => Set[1, 2, 3, 4] + * (1...4).to_set # => Set[1, 2, 3] + * + * (1..).to_set + * # in 'Range#to_set': cannot convert endless range to a set (RangeError) + * + */ +static VALUE +range_to_set(VALUE range) +{ + if (NIL_P(RANGE_END(range))) { + rb_raise(rb_eRangeError, "cannot convert endless range to a set"); + } + return rb_call_super(0, NULL); +} + static VALUE range_enum_size(VALUE range, VALUE args, VALUE eobj) { return range_size(range); } +static VALUE +range_enum_reverse_size(VALUE range, VALUE args, VALUE eobj) +{ + return range_reverse_size(range); +} + RBIMPL_ATTR_NORETURN() static void range_each_bignum_endless(VALUE beg) @@ -918,79 +1120,217 @@ range_each(VALUE range) return range_each_fixnum_loop(beg, end, range); } else if (RB_INTEGER_TYPE_P(beg) && (NIL_P(end) || RB_INTEGER_TYPE_P(end))) { - if (SPECIAL_CONST_P(end) || RBIGNUM_POSITIVE_P(end)) { /* end >= FIXNUM_MIN */ - if (!FIXNUM_P(beg)) { - if (RBIGNUM_NEGATIVE_P(beg)) { - do { - rb_yield(beg); - } while (!FIXNUM_P(beg = rb_big_plus(beg, INT2FIX(1)))); + if (SPECIAL_CONST_P(end) || RBIGNUM_POSITIVE_P(end)) { /* end >= FIXNUM_MIN */ + if (!FIXNUM_P(beg)) { + if (RBIGNUM_NEGATIVE_P(beg)) { + do { + rb_yield(beg); + } while (!FIXNUM_P(beg = rb_big_plus(beg, INT2FIX(1)))); if (NIL_P(end)) range_each_fixnum_endless(beg); if (FIXNUM_P(end)) return range_each_fixnum_loop(beg, end, range); - } - else { + } + else { if (NIL_P(end)) range_each_bignum_endless(beg); - if (FIXNUM_P(end)) return range; - } - } - if (FIXNUM_P(beg)) { - i = FIX2LONG(beg); - do { - rb_yield(LONG2FIX(i)); - } while (POSFIXABLE(++i)); - beg = LONG2NUM(i); - } - ASSUME(!FIXNUM_P(beg)); - ASSUME(!SPECIAL_CONST_P(end)); - } - if (!FIXNUM_P(beg) && RBIGNUM_SIGN(beg) == RBIGNUM_SIGN(end)) { - if (EXCL(range)) { - while (rb_big_cmp(beg, end) == INT2FIX(-1)) { - rb_yield(beg); - beg = rb_big_plus(beg, INT2FIX(1)); - } - } - else { - VALUE c; - while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) { - rb_yield(beg); - if (c == INT2FIX(0)) break; - beg = rb_big_plus(beg, INT2FIX(1)); - } - } - } + if (FIXNUM_P(end)) return range; + } + } + if (FIXNUM_P(beg)) { + i = FIX2LONG(beg); + do { + rb_yield(LONG2FIX(i)); + } while (POSFIXABLE(++i)); + beg = LONG2NUM(i); + } + ASSUME(!FIXNUM_P(beg)); + ASSUME(!SPECIAL_CONST_P(end)); + } + if (!FIXNUM_P(beg) && RBIGNUM_SIGN(beg) == RBIGNUM_SIGN(end)) { + if (EXCL(range)) { + while (rb_big_cmp(beg, end) == INT2FIX(-1)) { + rb_yield(beg); + beg = rb_big_plus(beg, INT2FIX(1)); + } + } + else { + VALUE c; + while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) { + rb_yield(beg); + if (c == INT2FIX(0)) break; + beg = rb_big_plus(beg, INT2FIX(1)); + } + } + } } else if (SYMBOL_P(beg) && (NIL_P(end) || SYMBOL_P(end))) { /* symbols are special */ - beg = rb_sym2str(beg); - if (NIL_P(end)) { - rb_str_upto_endless_each(beg, sym_each_i, 0); - } - else { - rb_str_upto_each(beg, rb_sym2str(end), EXCL(range), sym_each_i, 0); - } + beg = rb_sym2str(beg); + if (NIL_P(end)) { + rb_str_upto_endless_each(beg, sym_each_i, 0); + } + else { + rb_str_upto_each(beg, rb_sym2str(end), EXCL(range), sym_each_i, 0); + } + } + else { + VALUE tmp = rb_check_string_type(beg); + + if (!NIL_P(tmp)) { + if (!NIL_P(end)) { + rb_str_upto_each(tmp, end, EXCL(range), each_i, 0); + } + else { + rb_str_upto_endless_each(tmp, each_i, 0); + } + } + else { + if (!discrete_object_p(beg)) { + rb_raise(rb_eTypeError, "can't iterate from %s", + rb_obj_classname(beg)); + } + if (!NIL_P(end)) + range_each_func(range, each_i, 0); + else + for (;; beg = rb_funcallv(beg, id_succ, 0, 0)) + rb_yield(beg); + } + } + return range; +} + +RBIMPL_ATTR_NORETURN() +static void +range_reverse_each_bignum_beginless(VALUE end) +{ + RUBY_ASSERT(RBIGNUM_NEGATIVE_P(end)); + + for (;; end = rb_big_minus(end, INT2FIX(1))) { + rb_yield(end); + } + UNREACHABLE; +} + +static void +range_reverse_each_bignum(VALUE beg, VALUE end) +{ + RUBY_ASSERT(RBIGNUM_POSITIVE_P(beg) == RBIGNUM_POSITIVE_P(end)); + + VALUE c; + while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) { + rb_yield(end); + if (c == INT2FIX(0)) break; + end = rb_big_minus(end, INT2FIX(1)); + } +} + +static void +range_reverse_each_positive_bignum_section(VALUE beg, VALUE end) +{ + RUBY_ASSERT(!NIL_P(end)); + + if (FIXNUM_P(end) || RBIGNUM_NEGATIVE_P(end)) return; + + if (NIL_P(beg) || FIXNUM_P(beg) || RBIGNUM_NEGATIVE_P(beg)) { + beg = LONG2NUM(FIXNUM_MAX + 1); + } + + range_reverse_each_bignum(beg, end); +} + +static void +range_reverse_each_fixnum_section(VALUE beg, VALUE end) +{ + RUBY_ASSERT(!NIL_P(end)); + + if (!FIXNUM_P(beg)) { + if (!NIL_P(beg) && RBIGNUM_POSITIVE_P(beg)) return; + + beg = LONG2FIX(FIXNUM_MIN); + } + + if (!FIXNUM_P(end)) { + if (RBIGNUM_NEGATIVE_P(end)) return; + + end = LONG2FIX(FIXNUM_MAX); + } + + long b = FIX2LONG(beg); + long e = FIX2LONG(end); + for (long i = e; i >= b; --i) { + rb_yield(LONG2FIX(i)); + } +} + +static void +range_reverse_each_negative_bignum_section(VALUE beg, VALUE end) +{ + RUBY_ASSERT(!NIL_P(end)); + + if (FIXNUM_P(end) || RBIGNUM_POSITIVE_P(end)) { + end = LONG2NUM(FIXNUM_MIN - 1); + } + + if (NIL_P(beg)) { + range_reverse_each_bignum_beginless(end); + } + + if (FIXNUM_P(beg) || RBIGNUM_POSITIVE_P(beg)) return; + + range_reverse_each_bignum(beg, end); +} + +/* + * call-seq: + * reverse_each {|element| ... } -> self + * reverse_each -> an_enumerator + * + * With a block given, passes each element of +self+ to the block in reverse order: + * + * a = [] + * (1..4).reverse_each {|element| a.push(element) } # => 1..4 + * a # => [4, 3, 2, 1] + * + * a = [] + * (1...4).reverse_each {|element| a.push(element) } # => 1...4 + * a # => [3, 2, 1] + * + * With no block given, returns an enumerator. + * + */ + +static VALUE +range_reverse_each(VALUE range) +{ + RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_reverse_size); + + VALUE beg = RANGE_BEG(range); + VALUE end = RANGE_END(range); + int excl = EXCL(range); + + if (NIL_P(end)) { + rb_raise(rb_eTypeError, "can't iterate from %s", + rb_obj_classname(end)); + } + + if (FIXNUM_P(beg) && FIXNUM_P(end)) { + if (excl) { + if (end == LONG2FIX(FIXNUM_MIN)) return range; + + end = rb_int_minus(end, INT2FIX(1)); + } + + range_reverse_each_fixnum_section(beg, end); + } + else if ((NIL_P(beg) || RB_INTEGER_TYPE_P(beg)) && RB_INTEGER_TYPE_P(end)) { + if (excl) { + end = rb_int_minus(end, INT2FIX(1)); + } + range_reverse_each_positive_bignum_section(beg, end); + range_reverse_each_fixnum_section(beg, end); + range_reverse_each_negative_bignum_section(beg, end); } else { - VALUE tmp = rb_check_string_type(beg); - - if (!NIL_P(tmp)) { - if (!NIL_P(end)) { - rb_str_upto_each(tmp, end, EXCL(range), each_i, 0); - } - else { - rb_str_upto_endless_each(tmp, each_i, 0); - } - } - else { - if (!discrete_object_p(beg)) { - rb_raise(rb_eTypeError, "can't iterate from %s", - rb_obj_classname(beg)); - } - if (!NIL_P(end)) - range_each_func(range, each_i, 0); - else - for (;; beg = rb_funcallv(beg, id_succ, 0, 0)) - rb_yield(beg); - } + return rb_call_super(0, NULL); } + return range; } @@ -1041,7 +1381,7 @@ first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, cbarg)) long n = NUM2LONG(ary[0]); if (n <= 0) { - rb_iter_break(); + rb_iter_break(); } rb_ary_push(ary[1], i); n--; @@ -1089,34 +1429,59 @@ range_first(int argc, VALUE *argv, VALUE range) return ary[1]; } +static bool +range_basic_each_p(VALUE range) +{ + return rb_method_basic_definition_p(CLASS_OF(range), idEach); +} + +static bool +integer_end_optimizable(VALUE range) +{ + VALUE b = RANGE_BEG(range); + if (!NIL_P(b) && !RB_INTEGER_TYPE_P(b)) return false; + VALUE e = RANGE_END(range); + if (!RB_INTEGER_TYPE_P(e)) return false; + if (RB_LIKELY(range_basic_each_p(range))) return true; + return false; +} + static VALUE rb_int_range_last(int argc, VALUE *argv, VALUE range) { static const VALUE ONE = INT2FIX(1); - VALUE b, e, len_1, len, nv, ary; + VALUE b, e, len_1 = Qnil, len = Qnil, nv, ary; int x; long n; - assert(argc > 0); + RUBY_ASSERT(argc > 0); b = RANGE_BEG(range); e = RANGE_END(range); - assert(RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e)); + RUBY_ASSERT(NIL_P(b) || RB_INTEGER_TYPE_P(b), "b=%"PRIsVALUE, rb_obj_class(b)); + RUBY_ASSERT(RB_INTEGER_TYPE_P(e), "e=%"PRIsVALUE, rb_obj_class(e)); x = EXCL(range); - len_1 = rb_int_minus(e, b); - if (FIXNUM_ZERO_P(len_1) || rb_num_negative_p(len_1)) { - return rb_ary_new_capa(0); - } - - if (x) { - e = rb_int_minus(e, ONE); - len = len_1; + if (!NIL_P(b)) { + len_1 = rb_int_minus(e, b); + if (x) { + e = rb_int_minus(e, ONE); + len = len_1; + } + else { + len = rb_int_plus(len_1, ONE); + } } else { - len = rb_int_plus(len_1, ONE); + if (x) { + e = rb_int_minus(e, ONE); + } + } + + if (!NIL_P(len) && (FIXNUM_ZERO_P(len) || rb_num_negative_p(len))) { + return rb_ary_new_capa(0); } rb_scan_args(argc, argv, "1", &nv); @@ -1126,7 +1491,7 @@ rb_int_range_last(int argc, VALUE *argv, VALUE range) } nv = LONG2NUM(n); - if (RTEST(rb_int_gt(nv, len))) { + if (!NIL_P(b) && RTEST(rb_int_gt(nv, len))) { nv = len; n = NUM2LONG(nv); } @@ -1180,17 +1545,11 @@ rb_int_range_last(int argc, VALUE *argv, VALUE range) static VALUE range_last(int argc, VALUE *argv, VALUE range) { - VALUE b, e; - if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot get the last element of endless range"); } if (argc == 0) return RANGE_END(range); - - b = RANGE_BEG(range); - e = RANGE_END(range); - if (RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e) && - RB_LIKELY(rb_method_basic_definition_p(rb_cRange, idEach))) { + if (integer_end_optimizable(range)) { return rb_int_range_last(argc, argv, range); } return rb_ary_last(argc, argv, rb_Array(range)); @@ -1205,7 +1564,7 @@ range_last(int argc, VALUE *argv, VALUE range) * min(n) {|a, b| ... } -> array * * Returns the minimum value in +self+, - * using method <tt><=></tt> or a given block for comparison. + * using method <tt>#<=></tt> or a given block for comparison. * * With no argument and no block given, * returns the minimum-valued element of +self+. @@ -1282,27 +1641,26 @@ static VALUE range_min(int argc, VALUE *argv, VALUE range) { if (NIL_P(RANGE_BEG(range))) { - rb_raise(rb_eRangeError, "cannot get the minimum of beginless range"); + rb_raise(rb_eRangeError, "cannot get the minimum of beginless range"); } if (rb_block_given_p()) { if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot get the minimum of endless range with custom comparison method"); } - return rb_call_super(argc, argv); + return rb_call_super(argc, argv); } else if (argc != 0) { - return range_first(argc, argv, range); + return range_first(argc, argv, range); } else { - struct cmp_opt_data cmp_opt = { 0, 0 }; - VALUE b = RANGE_BEG(range); - VALUE e = RANGE_END(range); - int c = NIL_P(e) ? -1 : OPTIMIZED_CMP(b, e, cmp_opt); + VALUE b = RANGE_BEG(range); + VALUE e = RANGE_END(range); + int c = NIL_P(e) ? -1 : OPTIMIZED_CMP(b, e); - if (c > 0 || (c == 0 && EXCL(range))) - return Qnil; - return b; + if (c > 0 || (c == 0 && EXCL(range))) + return Qnil; + return b; } } @@ -1314,7 +1672,7 @@ range_min(int argc, VALUE *argv, VALUE range) * max(n) {|a, b| ... } -> array * * Returns the maximum value in +self+, - * using method <tt><=></tt> or a given block for comparison. + * using method <tt>#<=></tt> or a given block for comparison. * * With no argument and no block given, * returns the maximum-valued element of +self+. @@ -1394,20 +1752,34 @@ range_max(int argc, VALUE *argv, VALUE range) int nm = FIXNUM_P(e) || rb_obj_is_kind_of(e, rb_cNumeric); if (NIL_P(RANGE_END(range))) { - rb_raise(rb_eRangeError, "cannot get the maximum of endless range"); + rb_raise(rb_eRangeError, "cannot get the maximum of endless range"); } VALUE b = RANGE_BEG(range); - if (rb_block_given_p() || (EXCL(range) && !nm) || argc) { + if (rb_block_given_p() || (EXCL(range) && !nm)) { if (NIL_P(b)) { rb_raise(rb_eRangeError, "cannot get the maximum of beginless range with custom comparison method"); } return rb_call_super(argc, argv); } + else if (argc) { + VALUE ary[2]; + ID reverse_each; + CONST_ID(reverse_each, "reverse_each"); + rb_scan_args(argc, argv, "1", &ary[0]); + ary[1] = rb_ary_new2(NUM2LONG(ary[0])); + rb_block_call(range, reverse_each, 0, 0, first_i, (VALUE)ary); + return ary[1]; +#if 0 + if (integer_end_optimizable(range)) { + return rb_int_range_last(argc, argv, range, true); + } + return rb_ary_reverse(rb_ary_last(argc, argv, rb_Array(range))); +#endif + } else { - struct cmp_opt_data cmp_opt = { 0, 0 }; - int c = NIL_P(b) ? -1 : OPTIMIZED_CMP(b, e, cmp_opt); + int c = NIL_P(b) ? -1 : OPTIMIZED_CMP(b, e); if (c > 0) return Qnil; @@ -1416,13 +1788,13 @@ range_max(int argc, VALUE *argv, VALUE range) rb_raise(rb_eTypeError, "cannot exclude non Integer end value"); } if (c == 0) return Qnil; - if (!RB_INTEGER_TYPE_P(b)) { + if (!NIL_P(b) && !RB_INTEGER_TYPE_P(b)) { rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value"); } if (FIXNUM_P(e)) { return LONG2NUM(FIX2LONG(e) - 1); } - return rb_funcall(e, '-', 1, INT2FIX(1)); + return rb_int_minus(e,INT2FIX(1)); } return e; } @@ -1434,10 +1806,10 @@ range_max(int argc, VALUE *argv, VALUE range) * minmax {|a, b| ... } -> [object, object] * * Returns a 2-element array containing the minimum and maximum value in +self+, - * either according to comparison method <tt><=></tt> or a given block. + * either according to comparison method <tt>#<=></tt> or a given block. * * With no block given, returns the minimum and maximum values, - * using <tt><=></tt> for comparison: + * using <tt>#<=></tt> for comparison: * * (1..4).minmax # => [1, 4] * (1...4).minmax # => [1, 3] @@ -1493,22 +1865,22 @@ rb_range_values(VALUE range, VALUE *begp, VALUE *endp, int *exclp) int excl; if (rb_obj_is_kind_of(range, rb_cRange)) { - b = RANGE_BEG(range); - e = RANGE_END(range); - excl = EXCL(range); + b = RANGE_BEG(range); + e = RANGE_END(range); + excl = EXCL(range); } else if (RTEST(rb_obj_is_kind_of(range, rb_cArithSeq))) { return (int)Qfalse; } else { - VALUE x; - b = rb_check_funcall(range, id_beg, 0, 0); - if (b == Qundef) return (int)Qfalse; - e = rb_check_funcall(range, id_end, 0, 0); - if (e == Qundef) return (int)Qfalse; - x = rb_check_funcall(range, rb_intern("exclude_end?"), 0, 0); - if (x == Qundef) return (int)Qfalse; - excl = RTEST(x); + VALUE x; + b = rb_check_funcall(range, id_beg, 0, 0); + if (UNDEF_P(b)) return (int)Qfalse; + e = rb_check_funcall(range, id_end, 0, 0); + if (UNDEF_P(e)) return (int)Qfalse; + x = rb_check_funcall(range, rb_intern("exclude_end?"), 0, 0); + if (UNDEF_P(x)) return (int)Qfalse; + excl = RTEST(x); } *begp = b; *endp = e; @@ -1632,7 +2004,7 @@ inspect_range(VALUE range, VALUE dummy, int recur) VALUE str, str2 = Qundef; if (recur) { - return rb_str_new2(EXCL(range) ? "(... ... ...)" : "(... .. ...)"); + return rb_str_new2(EXCL(range) ? "(... ... ...)" : "(... .. ...)"); } if (!NIL_P(RANGE_BEG(range)) || NIL_P(RANGE_END(range))) { str = rb_str_dup(rb_inspect(RANGE_BEG(range))); @@ -1644,7 +2016,7 @@ inspect_range(VALUE range, VALUE dummy, int recur) if (NIL_P(RANGE_BEG(range)) || !NIL_P(RANGE_END(range))) { str2 = rb_inspect(RANGE_END(range)); } - if (str2 != Qundef) rb_str_append(str, str2); + if (!UNDEF_P(str2)) rb_str_append(str, str2); return str; } @@ -1677,14 +2049,14 @@ range_inspect(VALUE range) return rb_exec_recursive(inspect_range, range, 0); } -static VALUE range_include_internal(VALUE range, VALUE val, int string_use_cover); +static VALUE range_include_internal(VALUE range, VALUE val); +VALUE rb_str_include_range_p(VALUE beg, VALUE end, VALUE val, VALUE exclusive); /* * call-seq: - * self === object -> true or false + * self === other -> true or false * - * Returns +true+ if +object+ is between <tt>self.begin</tt> and <tt>self.end</tt>. - * +false+ otherwise: + * Returns whether +other+ is between <tt>self.begin</tt> and <tt>self.end</tt>: * * (1..4) === 2 # => true * (1..4) === 5 # => false @@ -1721,8 +2093,6 @@ static VALUE range_include_internal(VALUE range, VALUE val, int string_use_cover static VALUE range_eqq(VALUE range, VALUE val) { - VALUE ret = range_include_internal(range, val, 1); - if (ret != Qundef) return ret; return r_cover_p(range, RANGE_BEG(range), RANGE_END(range), val); } @@ -1754,56 +2124,59 @@ range_eqq(VALUE range, VALUE val) * ('a'..'d').cover?('cc') # => true * * Related: Range#cover?. - * - * Range#member? is an alias for Range#include?. */ static VALUE range_include(VALUE range, VALUE val) { - VALUE ret = range_include_internal(range, val, 0); - if (ret != Qundef) return ret; + VALUE ret = range_include_internal(range, val); + if (!UNDEF_P(ret)) return ret; return rb_call_super(1, &val); } +static inline bool +range_integer_edge_p(VALUE beg, VALUE end) +{ + return (!NIL_P(rb_check_to_integer(beg, "to_int")) || + !NIL_P(rb_check_to_integer(end, "to_int"))); +} + +static inline bool +range_string_range_p(VALUE beg, VALUE end) +{ + return RB_TYPE_P(beg, T_STRING) && RB_TYPE_P(end, T_STRING); +} + +static inline VALUE +range_include_fallback(VALUE beg, VALUE end, VALUE val) +{ + if (NIL_P(beg) && NIL_P(end)) { + if (linear_object_p(val)) return Qtrue; + } + + if (NIL_P(beg) || NIL_P(end)) { + rb_raise(rb_eTypeError, "cannot determine inclusion in beginless/endless ranges"); + } + + return Qundef; +} + static VALUE -range_include_internal(VALUE range, VALUE val, int string_use_cover) +range_include_internal(VALUE range, VALUE val) { VALUE beg = RANGE_BEG(range); VALUE end = RANGE_END(range); int nv = FIXNUM_P(beg) || FIXNUM_P(end) || - linear_object_p(beg) || linear_object_p(end); + linear_object_p(beg) || linear_object_p(end); - if (nv || - !NIL_P(rb_check_to_integer(beg, "to_int")) || - !NIL_P(rb_check_to_integer(end, "to_int"))) { - return r_cover_p(range, beg, end, val); + if (nv || range_integer_edge_p(beg, end)) { + return r_cover_p(range, beg, end, val); } - else if (RB_TYPE_P(beg, T_STRING) || RB_TYPE_P(end, T_STRING)) { - if (RB_TYPE_P(beg, T_STRING) && RB_TYPE_P(end, T_STRING)) { - if (string_use_cover) { - return r_cover_p(range, beg, end, val); - } - else { - VALUE rb_str_include_range_p(VALUE beg, VALUE end, VALUE val, VALUE exclusive); - return rb_str_include_range_p(beg, end, val, RANGE_EXCL(range)); - } - } - else if (NIL_P(beg)) { - VALUE r = rb_funcall(val, id_cmp, 1, end); - if (NIL_P(r)) return Qfalse; - if (RANGE_EXCL(range)) { - return RBOOL(rb_cmpint(r, val, end) < 0); - } - return RBOOL(rb_cmpint(r, val, end) <= 0); - } - else if (NIL_P(end)) { - VALUE r = rb_funcall(beg, id_cmp, 1, val); - if (NIL_P(r)) return Qfalse; - return RBOOL(rb_cmpint(r, beg, val) <= 0); - } + else if (range_string_range_p(beg, end)) { + return rb_str_include_range_p(beg, end, val, RANGE_EXCL(range)); } - return Qundef; + + return range_include_fallback(beg, end, val); } static int r_cover_range_p(VALUE range, VALUE beg, VALUE end, VALUE val); @@ -1830,7 +2203,7 @@ static int r_cover_range_p(VALUE range, VALUE beg, VALUE end, VALUE val); * r.cover?(0) # => false * r.cover?(5) # => false * r.cover?('foo') # => false - + * * r = ('a'..'d') * r.cover?('a') # => true * r.cover?('d') # => true @@ -1851,7 +2224,7 @@ static int r_cover_range_p(VALUE range, VALUE beg, VALUE end, VALUE val); * r.cover?(0) # => false * r.cover?(4) # => false * r.cover?('foo') # => false - + * * r = ('a'...'d') * r.cover?('a') # => true * r.cover?('c') # => true @@ -1867,7 +2240,7 @@ static int r_cover_range_p(VALUE range, VALUE beg, VALUE end, VALUE val); * r.cover?(0..4) # => false * r.cover?(1..5) # => false * r.cover?('a'..'d') # => false - + * * r = (1...4) * r.cover?(1..3) # => true * r.cover?(1..4) # => false @@ -1885,51 +2258,51 @@ static int r_cover_range_p(VALUE range, VALUE beg, VALUE end, VALUE val); * Returns +false+ if either: * * - The begin value of +self+ is larger than its end value. - * - An internal call to <tt><=></tt> returns +nil+; + * - An internal call to <tt>#<=></tt> returns +nil+; * that is, the operands are not comparable. * - * Beginless ranges cover all values of the same type before the end, - * excluding the end for exclusive ranges. Beginless ranges cover - * ranges that end before the end of the beginless range, or at the - * end of the beginless range for inclusive ranges. - * - * (..2).cover?(1) # => true - * (..2).cover?(2) # => true - * (..2).cover?(3) # => false - * (...2).cover?(2) # => false - * (..2).cover?("2") # => false - * (..2).cover?(..2) # => true - * (..2).cover?(...2) # => true - * (..2).cover?(.."2") # => false - * (...2).cover?(..2) # => false - * - * Endless ranges cover all values of the same type after the - * beginning. Endless exclusive ranges do not cover endless - * inclusive ranges. - * - * (2..).cover?(1) # => false - * (2..).cover?(3) # => true - * (2...).cover?(3) # => true - * (2..).cover?(2) # => true - * (2..).cover?("2") # => false - * (2..).cover?(2..) # => true - * (2..).cover?(2...) # => true - * (2..).cover?("2"..) # => false - * (2...).cover?(2..) # => false - * (2...).cover?(3...) # => true - * (2...).cover?(3..) # => false - * (3..).cover?(2..) # => false - * - * Ranges that are both beginless and endless cover all values and - * ranges, and return true for all arguments, with the exception that - * beginless and endless exclusive ranges do not cover endless - * inclusive ranges. - * - * (nil...).cover?(Object.new) # => true - * (nil...).cover?(nil...) # => true - * (nil..).cover?(nil...) # => true - * (nil...).cover?(nil..) # => false - * (nil...).cover?(1..) # => false + * Beginless ranges cover all values of the same type before the end, + * excluding the end for exclusive ranges. Beginless ranges cover + * ranges that end before the end of the beginless range, or at the + * end of the beginless range for inclusive ranges. + * + * (..2).cover?(1) # => true + * (..2).cover?(2) # => true + * (..2).cover?(3) # => false + * (...2).cover?(2) # => false + * (..2).cover?("2") # => false + * (..2).cover?(..2) # => true + * (..2).cover?(...2) # => true + * (..2).cover?(.."2") # => false + * (...2).cover?(..2) # => false + * + * Endless ranges cover all values of the same type after the + * beginning. Endless exclusive ranges do not cover endless + * inclusive ranges. + * + * (2..).cover?(1) # => false + * (2..).cover?(3) # => true + * (2...).cover?(3) # => true + * (2..).cover?(2) # => true + * (2..).cover?("2") # => false + * (2..).cover?(2..) # => true + * (2..).cover?(2...) # => true + * (2..).cover?("2"..) # => false + * (2...).cover?(2..) # => false + * (2...).cover?(3...) # => true + * (2...).cover?(3..) # => false + * (3..).cover?(2..) # => false + * + * Ranges that are both beginless and endless cover all values and + * ranges, and return true for all arguments, with the exception that + * beginless and endless exclusive ranges do not cover endless + * inclusive ranges. + * + * (nil...).cover?(Object.new) # => true + * (nil...).cover?(nil...) # => true + * (nil..).cover?(nil...) # => true + * (nil...).cover?(nil..) # => false + * (nil...).cover?(1..) # => false * * Related: Range#include?. * @@ -2000,9 +2373,9 @@ static VALUE r_cover_p(VALUE range, VALUE beg, VALUE end, VALUE val) { if (NIL_P(beg) || r_less(beg, val) <= 0) { - int excl = EXCL(range); - if (NIL_P(end) || r_less(val, end) <= -excl) - return Qtrue; + int excl = EXCL(range); + if (NIL_P(end) || r_less(val, end) <= -excl) + return Qtrue; } return Qfalse; } @@ -2032,7 +2405,7 @@ range_loader(VALUE range, VALUE obj) end = rb_ivar_get(obj, id_end); excl = rb_ivar_get(obj, id_excl); if (!NIL_P(excl)) { - range_init(range, beg, end, RBOOL(RTEST(excl))); + range_init(range, beg, end, RBOOL(RTEST(excl))); } return range; } @@ -2089,17 +2462,137 @@ range_count(int argc, VALUE *argv, VALUE range) * Infinity. Just let it loop. */ return rb_call_super(argc, argv); } - else if (NIL_P(RANGE_END(range))) { + + VALUE beg = RANGE_BEG(range), end = RANGE_END(range); + + if (NIL_P(beg) || NIL_P(end)) { /* We are confident that the answer is Infinity. */ return DBL2NUM(HUGE_VAL); } - else if (NIL_P(RANGE_BEG(range))) { - /* We are confident that the answer is Infinity. */ - return DBL2NUM(HUGE_VAL); + + if (is_integer_p(beg)) { + VALUE size = range_size(range); + if (!NIL_P(size)) { + return size; + } } - else { - return rb_call_super(argc, argv); + + return rb_call_super(argc, argv); +} + +static bool +empty_region_p(VALUE beg, VALUE end, int excl) +{ + if (NIL_P(beg)) return false; + if (NIL_P(end)) return false; + int less = r_less(beg, end); + /* empty range */ + if (less > 0) return true; + if (excl && less == 0) return true; + return false; +} + +/* + * call-seq: + * overlap?(range) -> true or false + * + * Returns +true+ if +range+ overlaps with +self+, +false+ otherwise: + * + * (0..2).overlap?(1..3) #=> true + * (0..2).overlap?(3..4) #=> false + * (0..).overlap?(..0) #=> true + * + * With non-range argument, raises TypeError. + * + * (1..3).overlap?(1) # TypeError + * + * Returns +false+ if an internal call to <tt>#<=></tt> returns +nil+; + * that is, the operands are not comparable. + * + * (1..3).overlap?('a'..'d') # => false + * + * Returns +false+ if +self+ or +range+ is empty. "Empty range" means + * that its begin value is larger than, or equal for an exclusive + * range, its end value. + * + * (4..1).overlap?(2..3) # => false + * (4..1).overlap?(..3) # => false + * (4..1).overlap?(2..) # => false + * (2...2).overlap?(1..2) # => false + * + * (1..4).overlap?(3..2) # => false + * (..4).overlap?(3..2) # => false + * (1..).overlap?(3..2) # => false + * (1..2).overlap?(2...2) # => false + * + * Returns +false+ if the begin value one of +self+ and +range+ is + * larger than, or equal if the other is an exclusive range, the end + * value of the other: + * + * (4..5).overlap?(2..3) # => false + * (4..5).overlap?(2...4) # => false + * + * (1..2).overlap?(3..4) # => false + * (1...3).overlap?(3..4) # => false + * + * Returns +false+ if the end value one of +self+ and +range+ is + * larger than, or equal for an exclusive range, the end value of the + * other: + * + * (4..5).overlap?(2..3) # => false + * (4..5).overlap?(2...4) # => false + * + * (1..2).overlap?(3..4) # => false + * (1...3).overlap?(3..4) # => false + * + * Note that the method wouldn't make any assumptions about the beginless + * range being actually empty, even if its upper bound is the minimum + * possible value of its type, so all this would return +true+: + * + * (...-Float::INFINITY).overlap?(...-Float::INFINITY) # => true + * (..."").overlap?(..."") # => true + * (...[]).overlap?(...[]) # => true + * + * Even if those ranges are effectively empty (no number can be smaller than + * <tt>-Float::INFINITY</tt>), they are still considered overlapping + * with themselves. + * + * Related: Range#cover?. + */ + +static VALUE +range_overlap(VALUE range, VALUE other) +{ + if (!rb_obj_is_kind_of(other, rb_cRange)) { + rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (expected Range)", + rb_class_name(rb_obj_class(other))); } + + VALUE self_beg = RANGE_BEG(range); + VALUE self_end = RANGE_END(range); + int self_excl = EXCL(range); + VALUE other_beg = RANGE_BEG(other); + VALUE other_end = RANGE_END(other); + int other_excl = EXCL(other); + + if (empty_region_p(self_beg, other_end, other_excl)) return Qfalse; + if (empty_region_p(other_beg, self_end, self_excl)) return Qfalse; + + if (!NIL_P(self_beg) && !NIL_P(other_beg)) { + VALUE cmp = rb_funcall(self_beg, id_cmp, 1, other_beg); + if (NIL_P(cmp)) return Qfalse; + /* if both begin values are equal, no more comparisons needed */ + if (rb_cmpint(cmp, self_beg, other_beg) == 0) return Qtrue; + } + else if (NIL_P(self_beg) && !NIL_P(self_end) && NIL_P(other_beg) && !NIL_P(other_end)) { + VALUE cmp = rb_funcall(self_end, id_cmp, 1, other_end); + return RBOOL(!NIL_P(cmp)); + } + + if (empty_region_p(self_beg, self_end, self_excl)) return Qfalse; + if (empty_region_p(other_beg, other_end, other_excl)) return Qfalse; + + return Qtrue; } /* A \Range object represents a collection of values @@ -2116,7 +2609,7 @@ range_count(int argc, VALUE *argv, VALUE range) * (1...4).to_a # => [1, 2, 3] * ('a'...'d').to_a # => ["a", "b", "c"] * - * A range may be created using method Range.new: + * - Method Range.new: * * # Ranges that by default include the given end value. * Range.new(1, 4).to_a # => [1, 2, 3, 4] @@ -2144,10 +2637,14 @@ range_count(int argc, VALUE *argv, VALUE range) * A beginless range may be used to slice an array: * * a = [1, 2, 3, 4] - * r = (..2) # => nil...2 - * a[r] # => [1, 2] + * # Include the third array element in the slice + * r = (..2) # => nil..2 + * a[r] # => [1, 2, 3] + * # Exclude the third array element from the slice + * r = (...2) # => nil...2 + * a[r] # => [1, 2] * - * \Method +each+ for a beginless range raises an exception. + * Method +each+ for a beginless range raises an exception. * * == Endless Ranges * @@ -2177,7 +2674,7 @@ range_count(int argc, VALUE *argv, VALUE range) * r = (2..) # => 2.. * a[r] # => [3, 4] * - * \Method +each+ for an endless range calls the given block indefinitely: + * Method +each+ for an endless range calls the given block indefinitely: * * a = [] * r = (1..) @@ -2187,19 +2684,19 @@ range_count(int argc, VALUE *argv, VALUE range) * end * a # => [2, 4, 6, 8, 10] * - * A range can be both beginless and endless. For literal beginless, endless + * A range can be both beginless and endless. For literal beginless, endless * ranges, at least the beginning or end of the range must be given as an * explicit nil value. It is recommended to use an explicit nil beginning and - * implicit nil end, since that is what Ruby uses for Range#inspect: + * end, since that is what Ruby uses for Range#inspect: * - * (nil..) # => (nil..) - * (..nil) # => (nil..) - * (nil..nil) # => (nil..) + * (nil..) # => (nil..nil) + * (..nil) # => (nil..nil) + * (nil..nil) # => (nil..nil) * * == Ranges and Other Classes * * An object may be put into a range if its class implements - * instance method <tt><=></tt>. + * instance method <tt>#<=></tt>. * Ruby core classes that do so include Array, Complex, File::Stat, * Float, Integer, Kernel, Module, Numeric, Rational, String, Symbol, and Time. * @@ -2231,15 +2728,15 @@ range_count(int argc, VALUE *argv, VALUE range) * == Ranges and User-Defined Classes * * A user-defined class that is to be used in a range - * must implement instance <tt><=></tt>; + * must implement instance method <tt>#<=></tt>; * see Integer#<=>. * To make iteration available, it must also implement * instance method +succ+; see Integer#succ. * - * The class below implements both <tt><=></tt> and +succ+, + * The class below implements both <tt>#<=></tt> and +succ+, * and so can be used both to construct ranges and to iterate over them. * Note that the Comparable module is included - * so the <tt>==</tt> method is defined in terms of <tt><=></tt>. + * so the <tt>==</tt> method is defined in terms of <tt>#<=></tt>. * * # Represent a string of 'X' characters. * class Xs @@ -2269,7 +2766,7 @@ range_count(int argc, VALUE *argv, VALUE range) * * == What's Here * - * First, what's elsewhere. \Class \Range: + * First, what's elsewhere. Class \Range: * * - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here]. * - Includes {module Enumerable}[rdoc-ref:Enumerable@What-27s+Here], @@ -2282,6 +2779,7 @@ range_count(int argc, VALUE *argv, VALUE range) * - {Comparing}[rdoc-ref:Range@Methods+for+Comparing] * - {Iterating}[rdoc-ref:Range@Methods+for+Iterating] * - {Converting}[rdoc-ref:Range@Methods+for+Converting] + * - {Methods for Working with JSON}[rdoc-ref:Range@Methods+for+Working+with+JSON] * * === Methods for Creating a \Range * @@ -2316,7 +2814,7 @@ range_count(int argc, VALUE *argv, VALUE range) * - #%: Requires argument +n+; calls the block with each +n+-th element of +self+. * - #each: Calls the block with each element of +self+. * - #step: Takes optional argument +n+ (defaults to 1); - calls the block with each +n+-th element of +self+. + * calls the block with each +n+-th element of +self+. * * === Methods for Converting * @@ -2324,6 +2822,16 @@ range_count(int argc, VALUE *argv, VALUE range) * - #to_a (aliased as #entries): Returns elements of +self+ in an array. * - #to_s: Returns a string representation of +self+ (uses #to_s). * + * === Methods for Working with \JSON + * + * - ::json_create: Returns a new \Range object constructed from the given object. + * - #as_json: Returns a 2-element hash representing +self+. + * - #to_json: Returns a \JSON string representing +self+. + * + * To make these methods available: + * + * require 'json/add/range' + * */ void @@ -2348,6 +2856,7 @@ Init_Range(void) rb_define_method(rb_cRange, "each", range_each, 0); rb_define_method(rb_cRange, "step", range_step, -1); rb_define_method(rb_cRange, "%", range_percent_step, 1); + rb_define_method(rb_cRange, "reverse_each", range_reverse_each, 0); rb_define_method(rb_cRange, "bsearch", range_bsearch, 0); rb_define_method(rb_cRange, "begin", range_begin, 0); rb_define_method(rb_cRange, "end", range_end, 0); @@ -2358,6 +2867,7 @@ Init_Range(void) rb_define_method(rb_cRange, "minmax", range_minmax, 0); rb_define_method(rb_cRange, "size", range_size, 0); rb_define_method(rb_cRange, "to_a", range_to_a, 0); + rb_define_method(rb_cRange, "to_set", range_to_set, 0); rb_define_method(rb_cRange, "entries", range_to_a, 0); rb_define_method(rb_cRange, "to_s", range_to_s, 0); rb_define_method(rb_cRange, "inspect", range_inspect, 0); @@ -2368,4 +2878,5 @@ Init_Range(void) rb_define_method(rb_cRange, "include?", range_include, 1); rb_define_method(rb_cRange, "cover?", range_cover, 1); rb_define_method(rb_cRange, "count", range_count, -1); + rb_define_method(rb_cRange, "overlap?", range_overlap, 1); } |
