diff options
Diffstat (limited to 'range.c')
| -rw-r--r-- | range.c | 506 |
1 files changed, 355 insertions, 151 deletions
@@ -34,6 +34,7 @@ static ID id_beg, id_end, id_excl; #define id_succ idSucc #define id_min idMin #define id_max idMax +#define id_plus '+' static VALUE r_cover_p(VALUE, VALUE, VALUE, VALUE); @@ -46,6 +47,7 @@ static VALUE r_cover_p(VALUE, VALUE, VALUE, VALUE); static void range_init(VALUE range, VALUE beg, VALUE end, VALUE exclude_end) { + // Changing this condition has implications for JITs. If you do, please let maintainers know. if ((!FIXNUM_P(beg) || !FIXNUM_P(end)) && !NIL_P(beg) && !NIL_P(end)) { VALUE v; @@ -152,14 +154,14 @@ recursive_equal(VALUE range, VALUE obj, int recur) * call-seq: * self == other -> true or false * - * Returns +true+ if and only if: + * Returns whether all of the following are true: * * - +other+ is a range. * - <tt>other.begin == self.begin</tt>. * - <tt>other.end == self.end</tt>. * - <tt>other.exclude_end? == self.exclude_end?</tt>. * - * Otherwise returns +false+. + * Examples: * * r = (1..5) * r == (1..5) # => true @@ -308,6 +310,9 @@ range_each_func(VALUE range, int (*func)(VALUE, VALUE), VALUE arg) } } +// NB: Two functions below (step_i_iter, sym_step_i and step_i) are used only to maintain the +// backward-compatible behavior for string and symbol ranges with integer steps. If that branch +// will be removed from range_step, these two can go, too. static bool step_i_iter(VALUE arg) { @@ -400,72 +405,138 @@ range_step_size(VALUE range, VALUE args, VALUE eobj) /* * call-seq: - * step(n = 1) {|element| ... } -> self - * step(n = 1) -> enumerator + * step(s = 1) {|element| ... } -> self + * step(s = 1) -> enumerator/arithmetic_sequence * - * Iterates over the elements of +self+. + * Iterates over the elements of range in steps of +s+. The iteration is performed + * by <tt>+</tt> operator: * - * With a block given and no argument, - * calls the block each element of the range; returns +self+: + * (0..6).step(2) { puts _1 } #=> 1..5 + * # Prints: 0, 2, 4, 6 * - * a = [] - * (1..5).step {|element| a.push(element) } # => 1..5 - * a # => [1, 2, 3, 4, 5] - * a = [] - * ('a'..'e').step {|element| a.push(element) } # => "a".."e" - * a # => ["a", "b", "c", "d", "e"] + * # Iterate between two dates in step of 1 day (24 hours) + * (Time.utc(2022, 2, 24)..Time.utc(2022, 3, 1)).step(24*60*60) { puts _1 } + * # Prints: + * # 2022-02-24 00:00:00 UTC + * # 2022-02-25 00:00:00 UTC + * # 2022-02-26 00:00:00 UTC + * # 2022-02-27 00:00:00 UTC + * # 2022-02-28 00:00:00 UTC + * # 2022-03-01 00:00:00 UTC * - * With a block given and a positive integer argument +n+ given, - * calls the block with element +0+, element +n+, element <tt>2n</tt>, and so on: + * If <tt> + step</tt> decreases the value, iteration is still performed when + * step +begin+ is higher than the +end+: * - * a = [] - * (1..5).step(2) {|element| a.push(element) } # => 1..5 - * a # => [1, 3, 5] - * a = [] - * ('a'..'e').step(2) {|element| a.push(element) } # => "a".."e" - * a # => ["a", "c", "e"] + * (0..6).step(-2) { puts _1 } + * # Prints nothing + * + * (6..0).step(-2) { puts _1 } + * # Prints: 6, 4, 2, 0 + * + * (Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step(-24*60*60) { puts _1 } + * # Prints: + * # 2022-03-01 00:00:00 UTC + * # 2022-02-28 00:00:00 UTC + * # 2022-02-27 00:00:00 UTC + * # 2022-02-26 00:00:00 UTC + * # 2022-02-25 00:00:00 UTC + * # 2022-02-24 00:00:00 UTC + * + * When the block is not provided, and range boundaries and step are Numeric, + * the method returns Enumerator::ArithmeticSequence. + * + * (1..5).step(2) # => ((1..5).step(2)) + * (1.0..).step(1.5) #=> ((1.0..).step(1.5)) + * (..3r).step(1/3r) #=> ((..3/1).step((1/3))) + * + * Enumerator::ArithmeticSequence can be further used as a value object for iteration + * or slicing of collections (see Array#[]). There is a convenience method #% with + * behavior similar to +step+ to produce arithmetic sequences more expressively: + * + * # Same as (1..5).step(2) + * (1..5) % 2 # => ((1..5).%(2)) + * + * In a generic case, when the block is not provided, Enumerator is returned: + * + * ('a'..).step('b') #=> #<Enumerator: "a"..:step("b")> + * ('a'..).step('b').take(3) #=> ["a", "ab", "abb"] + * + * If +s+ is not provided, it is considered +1+ for ranges with numeric +begin+: + * + * (1..5).step { p _1 } + * # Prints: 1, 2, 3, 4, 5 + * + * For non-Numeric ranges, step absence is an error: * - * With no block given, returns an enumerator, - * which will be of class Enumerator::ArithmeticSequence if +self+ is numeric; - * otherwise of class Enumerator: + * (Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step { p _1 } + * # raises: step is required for non-numeric ranges (ArgumentError) * - * e = (1..5).step(2) # => ((1..5).step(2)) - * e.class # => Enumerator::ArithmeticSequence - * ('a'..'e').step # => #<Enumerator: ...> + * For backward compatibility reasons, String ranges support the iteration both with + * string step and with integer step. In the latter case, the iteration is performed + * by calculating the next values with String#succ: + * + * ('a'..'e').step(2) { p _1 } + * # Prints: a, c, e + * ('a'..'e').step { p _1 } + * # Default step 1; prints: a, b, c, d, e * - * Related: Range#%. */ static VALUE range_step(int argc, VALUE *argv, VALUE range) { - VALUE b, e, step, tmp; + VALUE b, e, v, step; + int c, dir; b = RANGE_BEG(range); e = RANGE_END(range); - step = (!rb_check_arity(argc, 0, 1) ? INT2FIX(1) : argv[0]); + v = b; + + const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric); + const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric); + // For backward compatibility reasons (conforming to behavior before 3.4), String/Symbol + // supports both old behavior ('a'..).step(1) and new behavior ('a'..).step('a') + // Hence the additional conversion/additional checks. + const VALUE str_b = rb_check_string_type(b); + const VALUE sym_b = SYMBOL_P(b) ? rb_sym2str(b) : Qnil; + + if (rb_check_arity(argc, 0, 1)) + step = argv[0]; + else { + if (b_num_p || !NIL_P(str_b) || !NIL_P(sym_b) || (NIL_P(b) && e_num_p)) + step = INT2FIX(1); + else + rb_raise(rb_eArgError, "step is required for non-numeric ranges"); + } - if (!rb_block_given_p()) { - if (!rb_obj_is_kind_of(step, rb_cNumeric)) { - step = rb_to_int(step); - } - if (rb_equal(step, INT2FIX(0))) { - rb_raise(rb_eArgError, "step can't be 0"); - } + const VALUE step_num_p = rb_obj_is_kind_of(step, rb_cNumeric); + + if (step_num_p && b_num_p && rb_equal(step, INT2FIX(0))) { + rb_raise(rb_eArgError, "step can't be 0"); + } - const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric); - const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric); - if ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p)) { + if (!rb_block_given_p()) { + // This code is allowed to create even beginless ArithmeticSequence, which can be useful, + // e.g., for array slicing: + // ary[(..-1) % 3] + if (step_num_p && ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p))) { return rb_arith_seq_new(range, ID2SYM(rb_frame_this_func()), argc, argv, range_step_size, b, e, step, EXCL(range)); } - RETURN_SIZED_ENUMERATOR(range, argc, argv, range_step_size); + // ...but generic Enumerator from beginless range is useless and probably an error. + if (NIL_P(b)) { + rb_raise(rb_eArgError, "#step for non-numeric beginless ranges is meaningless"); + } + + RETURN_SIZED_ENUMERATOR(range, argc, argv, 0); } - step = check_step_domain(step); - VALUE iter[2] = {INT2FIX(1), step}; + if (NIL_P(b)) { + rb_raise(rb_eArgError, "#step iteration for beginless ranges is meaningless"); + } if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(step)) { + /* perform summation of numbers in C until their reach Fixnum limit */ long i = FIX2LONG(b), unit = FIX2LONG(step); do { rb_yield(LONG2FIX(i)); @@ -473,70 +544,102 @@ range_step(int argc, VALUE *argv, VALUE range) } while (FIXABLE(i)); b = LONG2NUM(i); + /* then switch to Bignum API */ for (;; b = rb_big_plus(b, step)) rb_yield(b); } - else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) { /* fixnums are special */ + else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) { + /* fixnums are special: summation is performed in C for performance */ long end = FIX2LONG(e); long i, unit = FIX2LONG(step); - if (!EXCL(range)) - end += 1; - i = FIX2LONG(b); - while (i < end) { - rb_yield(LONG2NUM(i)); - if (i + unit < i) break; - i += unit; + if (unit < 0) { + if (!EXCL(range)) + end -= 1; + i = FIX2LONG(b); + while (i > end) { + rb_yield(LONG2NUM(i)); + i += unit; + } } + else { + if (!EXCL(range)) + end += 1; + i = FIX2LONG(b); + while (i < end) { + rb_yield(LONG2NUM(i)); + i += unit; + } + } + } + else if (b_num_p && step_num_p && ruby_float_step(b, e, step, EXCL(range), TRUE)) { + /* done */ + } + else if (!NIL_P(str_b) && FIXNUM_P(step)) { + // backwards compatibility behavior for String only, when no step/Integer step is passed + // See discussion in https://bugs.ruby-lang.org/issues/18368 + + VALUE iter[2] = {INT2FIX(1), step}; + if (NIL_P(e)) { + rb_str_upto_endless_each(str_b, step_i, (VALUE)iter); + } + else { + rb_str_upto_each(str_b, e, EXCL(range), step_i, (VALUE)iter); + } } - else if (SYMBOL_P(b) && (NIL_P(e) || SYMBOL_P(e))) { /* symbols are special */ - b = rb_sym2str(b); + else if (!NIL_P(sym_b) && FIXNUM_P(step)) { + // same as above: backward compatibility for symbols + + VALUE iter[2] = {INT2FIX(1), step}; + if (NIL_P(e)) { - rb_str_upto_endless_each(b, sym_step_i, (VALUE)iter); + rb_str_upto_endless_each(sym_b, sym_step_i, (VALUE)iter); } else { - rb_str_upto_each(b, rb_sym2str(e), EXCL(range), sym_step_i, (VALUE)iter); + rb_str_upto_each(sym_b, rb_sym2str(e), EXCL(range), sym_step_i, (VALUE)iter); } } - else if (ruby_float_step(b, e, step, EXCL(range), TRUE)) { - /* done */ + else if (NIL_P(e)) { + // endless range + for (;; v = rb_funcall(v, id_plus, 1, step)) + rb_yield(v); } - else if (rb_obj_is_kind_of(b, rb_cNumeric) || - !NIL_P(rb_check_to_integer(b, "to_int")) || - !NIL_P(rb_check_to_integer(e, "to_int"))) { - ID op = EXCL(range) ? '<' : idLE; - VALUE v = b; - int i = 0; + else if (b_num_p && step_num_p && r_less(step, INT2FIX(0)) < 0) { + // iterate backwards, for consistency with ArithmeticSequence + if (EXCL(range)) { + for (; r_less(e, v) < 0; v = rb_funcall(v, id_plus, 1, step)) + rb_yield(v); + } + else { + for (; (c = r_less(e, v)) <= 0; v = rb_funcall(v, id_plus, 1, step)) { + rb_yield(v); + if (!c) break; + } + } - while (NIL_P(e) || RTEST(rb_funcall(v, op, 1, e))) { + } + else if ((dir = r_less(b, e)) == 0) { + if (!EXCL(range)) { rb_yield(v); - i++; - v = rb_funcall(b, '+', 1, rb_funcall(INT2NUM(i), '*', 1, step)); } } - else { - tmp = rb_check_string_type(b); - - if (!NIL_P(tmp)) { - b = tmp; - if (NIL_P(e)) { - rb_str_upto_endless_each(b, step_i, (VALUE)iter); - } - else { - rb_str_upto_each(b, e, EXCL(range), step_i, (VALUE)iter); - } + else if (dir == r_less(b, rb_funcall(b, id_plus, 1, step))) { + // Direction of the comparison. We use it as a comparison operator in cycle: + // if begin < end, the cycle performs while value < end (iterating forward) + // if begin > end, the cycle performs while value > end (iterating backward with + // a negative step) + // One preliminary addition to check the step moves iteration in the same direction as + // from begin to end; otherwise, the iteration should be empty. + if (EXCL(range)) { + for (; r_less(v, e) == dir; v = rb_funcall(v, id_plus, 1, step)) + rb_yield(v); } else { - if (!discrete_object_p(b)) { - rb_raise(rb_eTypeError, "can't iterate from %s", - rb_obj_classname(b)); + for (; (c = r_less(v, e)) == dir || c == 0; v = rb_funcall(v, id_plus, 1, step)) { + rb_yield(v); + if (!c) break; } - if (!NIL_P(e)) - range_each_func(range, step_i, (VALUE)iter); - else - for (;; b = rb_funcallv(b, id_succ, 0, 0)) - step_i(b, (VALUE)iter); } } return range; @@ -545,29 +648,24 @@ range_step(int argc, VALUE *argv, VALUE range) /* * call-seq: * %(n) {|element| ... } -> self - * %(n) -> enumerator + * %(n) -> enumerator or arithmetic_sequence * - * Iterates over the elements of +self+. + * Same as #step (but doesn't provide default value for +n+). + * The method is convenient for experssive producing of Enumerator::ArithmeticSequence. * - * With a block given, calls the block with selected elements of the range; - * returns +self+: - * - * a = [] - * (1..5).%(2) {|element| a.push(element) } # => 1..5 - * a # => [1, 3, 5] - * a = [] - * ('a'..'e').%(2) {|element| a.push(element) } # => "a".."e" - * a # => ["a", "c", "e"] + * array = [0, 1, 2, 3, 4, 5, 6] * - * With no block given, returns an enumerator, - * which will be of class Enumerator::ArithmeticSequence if +self+ is numeric; - * otherwise of class Enumerator: + * # slice each second element: + * seq = (0..) % 2 #=> ((0..).%(2)) + * array[seq] #=> [0, 2, 4, 6] + * # or just + * array[(0..) % 2] #=> [0, 2, 4, 6] * - * e = (1..5) % 2 # => ((1..5).%(2)) - * e.class # => Enumerator::ArithmeticSequence - * ('a'..'e') % 2 # => #<Enumerator: ...> + * Note that due to operator precedence in Ruby, parentheses are mandatory around range + * in this case: * - * Related: Range#step. + * (0..7) % 2 #=> ((0..7).%(2)) -- as expected + * 0..7 % 2 #=> 0..1 -- parsed as 0..(7 % 2) */ static VALUE range_percent_step(VALUE range, VALUE step) @@ -686,7 +784,7 @@ bsearch_integer_range(VALUE beg, VALUE end, int excl) * * Returns an element from +self+ selected by a binary search. * - * See {Binary Searching}[rdoc-ref:bsearch.rdoc]. + * See {Binary Searching}[rdoc-ref:language/bsearch.rdoc]. * */ @@ -816,6 +914,10 @@ sym_each_i(VALUE v, VALUE arg) return each_i(rb_str_intern(v), arg); } +#define CANT_ITERATE_FROM(x) \ + rb_raise(rb_eTypeError, "can't iterate from %s", \ + rb_obj_classname(x)) + /* * call-seq: * size -> non_negative_integer or Infinity or nil @@ -852,13 +954,48 @@ range_size(VALUE range) } if (!discrete_object_p(b)) { - rb_raise(rb_eTypeError, "can't iterate from %s", - rb_obj_classname(b)); + CANT_ITERATE_FROM(b); } return Qnil; } +static VALUE +range_reverse_size(VALUE range) +{ + VALUE b = RANGE_BEG(range), e = RANGE_END(range); + + if (NIL_P(e)) { + CANT_ITERATE_FROM(e); + } + + if (RB_INTEGER_TYPE_P(b)) { + if (rb_obj_is_kind_of(e, rb_cNumeric)) { + return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range)); + } + else { + CANT_ITERATE_FROM(e); + } + } + + if (NIL_P(b)) { + if (RB_INTEGER_TYPE_P(e)) { + return DBL2NUM(HUGE_VAL); + } + else { + CANT_ITERATE_FROM(e); + } + } + + if (!discrete_object_p(b)) { + CANT_ITERATE_FROM(e); + } + + return Qnil; +} + +#undef CANT_ITERATE_FROM + /* * call-seq: * to_a -> array @@ -881,12 +1018,41 @@ range_to_a(VALUE range) return rb_call_super(0, 0); } +/* + * call-seq: + * to_set -> set + * + * Returns a set containing the elements in +self+, if a finite collection; + * raises an exception otherwise. + * + * (1..4).to_set # => Set[1, 2, 3, 4] + * (1...4).to_set # => Set[1, 2, 3] + * + * (1..).to_set + * # in 'Range#to_set': cannot convert endless range to a set (RangeError) + * + */ +static VALUE +range_to_set(VALUE range) +{ + if (NIL_P(RANGE_END(range))) { + rb_raise(rb_eRangeError, "cannot convert endless range to a set"); + } + return rb_call_super(0, NULL); +} + static VALUE range_enum_size(VALUE range, VALUE args, VALUE eobj) { return range_size(range); } +static VALUE +range_enum_reverse_size(VALUE range, VALUE args, VALUE eobj) +{ + return range_reverse_size(range); +} + RBIMPL_ATTR_NORETURN() static void range_each_bignum_endless(VALUE beg) @@ -1133,7 +1299,7 @@ range_reverse_each_negative_bignum_section(VALUE beg, VALUE end) static VALUE range_reverse_each(VALUE range) { - RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size); + RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_reverse_size); VALUE beg = RANGE_BEG(range); VALUE end = RANGE_END(range); @@ -1263,12 +1429,29 @@ range_first(int argc, VALUE *argv, VALUE range) return ary[1]; } +static bool +range_basic_each_p(VALUE range) +{ + return rb_method_basic_definition_p(CLASS_OF(range), idEach); +} + +static bool +integer_end_optimizable(VALUE range) +{ + VALUE b = RANGE_BEG(range); + if (!NIL_P(b) && !RB_INTEGER_TYPE_P(b)) return false; + VALUE e = RANGE_END(range); + if (!RB_INTEGER_TYPE_P(e)) return false; + if (RB_LIKELY(range_basic_each_p(range))) return true; + return false; +} + static VALUE rb_int_range_last(int argc, VALUE *argv, VALUE range) { static const VALUE ONE = INT2FIX(1); - VALUE b, e, len_1, len, nv, ary; + VALUE b, e, len_1 = Qnil, len = Qnil, nv, ary; int x; long n; @@ -1276,20 +1459,28 @@ rb_int_range_last(int argc, VALUE *argv, VALUE range) b = RANGE_BEG(range); e = RANGE_END(range); - RUBY_ASSERT(RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e)); + RUBY_ASSERT(NIL_P(b) || RB_INTEGER_TYPE_P(b), "b=%"PRIsVALUE, rb_obj_class(b)); + RUBY_ASSERT(RB_INTEGER_TYPE_P(e), "e=%"PRIsVALUE, rb_obj_class(e)); x = EXCL(range); - len_1 = rb_int_minus(e, b); - if (x) { - e = rb_int_minus(e, ONE); - len = len_1; + if (!NIL_P(b)) { + len_1 = rb_int_minus(e, b); + if (x) { + e = rb_int_minus(e, ONE); + len = len_1; + } + else { + len = rb_int_plus(len_1, ONE); + } } else { - len = rb_int_plus(len_1, ONE); + if (x) { + e = rb_int_minus(e, ONE); + } } - if (FIXNUM_ZERO_P(len) || rb_num_negative_p(len)) { + if (!NIL_P(len) && (FIXNUM_ZERO_P(len) || rb_num_negative_p(len))) { return rb_ary_new_capa(0); } @@ -1300,7 +1491,7 @@ rb_int_range_last(int argc, VALUE *argv, VALUE range) } nv = LONG2NUM(n); - if (RTEST(rb_int_gt(nv, len))) { + if (!NIL_P(b) && RTEST(rb_int_gt(nv, len))) { nv = len; n = NUM2LONG(nv); } @@ -1354,17 +1545,11 @@ rb_int_range_last(int argc, VALUE *argv, VALUE range) static VALUE range_last(int argc, VALUE *argv, VALUE range) { - VALUE b, e; - if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot get the last element of endless range"); } if (argc == 0) return RANGE_END(range); - - b = RANGE_BEG(range); - e = RANGE_END(range); - if (RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e) && - RB_LIKELY(rb_method_basic_definition_p(rb_cRange, idEach))) { + if (integer_end_optimizable(range)) { return rb_int_range_last(argc, argv, range); } return rb_ary_last(argc, argv, rb_Array(range)); @@ -1379,7 +1564,7 @@ range_last(int argc, VALUE *argv, VALUE range) * min(n) {|a, b| ... } -> array * * Returns the minimum value in +self+, - * using method <tt><=></tt> or a given block for comparison. + * using method <tt>#<=></tt> or a given block for comparison. * * With no argument and no block given, * returns the minimum-valued element of +self+. @@ -1487,7 +1672,7 @@ range_min(int argc, VALUE *argv, VALUE range) * max(n) {|a, b| ... } -> array * * Returns the maximum value in +self+, - * using method <tt><=></tt> or a given block for comparison. + * using method <tt>#<=></tt> or a given block for comparison. * * With no argument and no block given, * returns the maximum-valued element of +self+. @@ -1572,12 +1757,27 @@ range_max(int argc, VALUE *argv, VALUE range) VALUE b = RANGE_BEG(range); - if (rb_block_given_p() || (EXCL(range) && !nm) || argc) { + if (rb_block_given_p() || (EXCL(range) && !nm)) { if (NIL_P(b)) { rb_raise(rb_eRangeError, "cannot get the maximum of beginless range with custom comparison method"); } return rb_call_super(argc, argv); } + else if (argc) { + VALUE ary[2]; + ID reverse_each; + CONST_ID(reverse_each, "reverse_each"); + rb_scan_args(argc, argv, "1", &ary[0]); + ary[1] = rb_ary_new2(NUM2LONG(ary[0])); + rb_block_call(range, reverse_each, 0, 0, first_i, (VALUE)ary); + return ary[1]; +#if 0 + if (integer_end_optimizable(range)) { + return rb_int_range_last(argc, argv, range, true); + } + return rb_ary_reverse(rb_ary_last(argc, argv, rb_Array(range))); +#endif + } else { int c = NIL_P(b) ? -1 : OPTIMIZED_CMP(b, e); @@ -1588,13 +1788,13 @@ range_max(int argc, VALUE *argv, VALUE range) rb_raise(rb_eTypeError, "cannot exclude non Integer end value"); } if (c == 0) return Qnil; - if (!RB_INTEGER_TYPE_P(b)) { + if (!NIL_P(b) && !RB_INTEGER_TYPE_P(b)) { rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value"); } if (FIXNUM_P(e)) { return LONG2NUM(FIX2LONG(e) - 1); } - return rb_funcall(e, '-', 1, INT2FIX(1)); + return rb_int_minus(e,INT2FIX(1)); } return e; } @@ -1606,10 +1806,10 @@ range_max(int argc, VALUE *argv, VALUE range) * minmax {|a, b| ... } -> [object, object] * * Returns a 2-element array containing the minimum and maximum value in +self+, - * either according to comparison method <tt><=></tt> or a given block. + * either according to comparison method <tt>#<=></tt> or a given block. * * With no block given, returns the minimum and maximum values, - * using <tt><=></tt> for comparison: + * using <tt>#<=></tt> for comparison: * * (1..4).minmax # => [1, 4] * (1...4).minmax # => [1, 3] @@ -1854,10 +2054,9 @@ VALUE rb_str_include_range_p(VALUE beg, VALUE end, VALUE val, VALUE exclusive); /* * call-seq: - * self === object -> true or false + * self === other -> true or false * - * Returns +true+ if +object+ is between <tt>self.begin</tt> and <tt>self.end</tt>. - * +false+ otherwise: + * Returns whether +other+ is between <tt>self.begin</tt> and <tt>self.end</tt>: * * (1..4) === 2 # => true * (1..4) === 5 # => false @@ -2059,7 +2258,7 @@ static int r_cover_range_p(VALUE range, VALUE beg, VALUE end, VALUE val); * Returns +false+ if either: * * - The begin value of +self+ is larger than its end value. - * - An internal call to <tt><=></tt> returns +nil+; + * - An internal call to <tt>#<=></tt> returns +nil+; * that is, the operands are not comparable. * * Beginless ranges cover all values of the same type before the end, @@ -2307,7 +2506,7 @@ empty_region_p(VALUE beg, VALUE end, int excl) * * (1..3).overlap?(1) # TypeError * - * Returns +false+ if an internal call to <tt><=></tt> returns +nil+; + * Returns +false+ if an internal call to <tt>#<=></tt> returns +nil+; * that is, the operands are not comparable. * * (1..3).overlap?('a'..'d') # => false @@ -2385,7 +2584,7 @@ range_overlap(VALUE range, VALUE other) /* if both begin values are equal, no more comparisons needed */ if (rb_cmpint(cmp, self_beg, other_beg) == 0) return Qtrue; } - else if (NIL_P(self_beg) && NIL_P(other_beg)) { + else if (NIL_P(self_beg) && !NIL_P(self_end) && NIL_P(other_beg) && !NIL_P(other_end)) { VALUE cmp = rb_funcall(self_end, id_cmp, 1, other_end); return RBOOL(!NIL_P(cmp)); } @@ -2410,7 +2609,7 @@ range_overlap(VALUE range, VALUE other) * (1...4).to_a # => [1, 2, 3] * ('a'...'d').to_a # => ["a", "b", "c"] * - * A range may be created using method Range.new: + * - Method Range.new: * * # Ranges that by default include the given end value. * Range.new(1, 4).to_a # => [1, 2, 3, 4] @@ -2438,10 +2637,14 @@ range_overlap(VALUE range, VALUE other) * A beginless range may be used to slice an array: * * a = [1, 2, 3, 4] - * r = (..2) # => nil...2 - * a[r] # => [1, 2] + * # Include the third array element in the slice + * r = (..2) # => nil..2 + * a[r] # => [1, 2, 3] + * # Exclude the third array element from the slice + * r = (...2) # => nil...2 + * a[r] # => [1, 2] * - * \Method +each+ for a beginless range raises an exception. + * Method +each+ for a beginless range raises an exception. * * == Endless Ranges * @@ -2471,7 +2674,7 @@ range_overlap(VALUE range, VALUE other) * r = (2..) # => 2.. * a[r] # => [3, 4] * - * \Method +each+ for an endless range calls the given block indefinitely: + * Method +each+ for an endless range calls the given block indefinitely: * * a = [] * r = (1..) @@ -2481,19 +2684,19 @@ range_overlap(VALUE range, VALUE other) * end * a # => [2, 4, 6, 8, 10] * - * A range can be both beginless and endless. For literal beginless, endless + * A range can be both beginless and endless. For literal beginless, endless * ranges, at least the beginning or end of the range must be given as an * explicit nil value. It is recommended to use an explicit nil beginning and - * implicit nil end, since that is what Ruby uses for Range#inspect: + * end, since that is what Ruby uses for Range#inspect: * - * (nil..) # => (nil..) - * (..nil) # => (nil..) - * (nil..nil) # => (nil..) + * (nil..) # => (nil..nil) + * (..nil) # => (nil..nil) + * (nil..nil) # => (nil..nil) * * == Ranges and Other Classes * * An object may be put into a range if its class implements - * instance method <tt><=></tt>. + * instance method <tt>#<=></tt>. * Ruby core classes that do so include Array, Complex, File::Stat, * Float, Integer, Kernel, Module, Numeric, Rational, String, Symbol, and Time. * @@ -2525,15 +2728,15 @@ range_overlap(VALUE range, VALUE other) * == Ranges and User-Defined Classes * * A user-defined class that is to be used in a range - * must implement instance <tt><=></tt>; + * must implement instance method <tt>#<=></tt>; * see Integer#<=>. * To make iteration available, it must also implement * instance method +succ+; see Integer#succ. * - * The class below implements both <tt><=></tt> and +succ+, + * The class below implements both <tt>#<=></tt> and +succ+, * and so can be used both to construct ranges and to iterate over them. * Note that the Comparable module is included - * so the <tt>==</tt> method is defined in terms of <tt><=></tt>. + * so the <tt>==</tt> method is defined in terms of <tt>#<=></tt>. * * # Represent a string of 'X' characters. * class Xs @@ -2563,7 +2766,7 @@ range_overlap(VALUE range, VALUE other) * * == What's Here * - * First, what's elsewhere. \Class \Range: + * First, what's elsewhere. Class \Range: * * - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here]. * - Includes {module Enumerable}[rdoc-ref:Enumerable@What-27s+Here], @@ -2664,6 +2867,7 @@ Init_Range(void) rb_define_method(rb_cRange, "minmax", range_minmax, 0); rb_define_method(rb_cRange, "size", range_size, 0); rb_define_method(rb_cRange, "to_a", range_to_a, 0); + rb_define_method(rb_cRange, "to_set", range_to_set, 0); rb_define_method(rb_cRange, "entries", range_to_a, 0); rb_define_method(rb_cRange, "to_s", range_to_s, 0); rb_define_method(rb_cRange, "inspect", range_inspect, 0); |
