summaryrefslogtreecommitdiff
path: root/range.c
diff options
context:
space:
mode:
Diffstat (limited to 'range.c')
-rw-r--r--range.c2995
1 files changed, 2264 insertions, 731 deletions
diff --git a/range.c b/range.c
index cea90140d9..fd08a81de7 100644
--- a/range.c
+++ b/range.c
@@ -9,58 +9,60 @@
**********************************************************************/
-#include "ruby/ruby.h"
-#include "ruby/encoding.h"
-#include "internal.h"
-#include "id.h"
+#include "ruby/internal/config.h"
+
+#include <assert.h>
+#include <math.h>
#ifdef HAVE_FLOAT_H
#include <float.h>
#endif
-#include <math.h>
-VALUE rb_cRange;
-static ID id_cmp, id_succ, id_beg, id_end, id_excl, id_integer_p, id_div;
+#include "id.h"
+#include "internal.h"
+#include "internal/array.h"
+#include "internal/compar.h"
+#include "internal/enum.h"
+#include "internal/enumerator.h"
+#include "internal/error.h"
+#include "internal/numeric.h"
+#include "internal/range.h"
-#define RANGE_BEG(r) (RSTRUCT(r)->as.ary[0])
-#define RANGE_END(r) (RSTRUCT(r)->as.ary[1])
-#define RANGE_EXCL(r) (RSTRUCT(r)->as.ary[2])
+VALUE rb_cRange;
+static ID id_beg, id_end, id_excl;
+#define id_cmp idCmp
+#define id_succ idSucc
+#define id_min idMin
+#define id_max idMax
+#define id_plus '+'
-#define EXCL(r) RTEST(RANGE_EXCL(r))
-#define SET_EXCL(r,v) (RSTRUCT(r)->as.ary[2] = (v) ? Qtrue : Qfalse)
+static VALUE r_cover_p(VALUE, VALUE, VALUE, VALUE);
-static VALUE
-range_failed(void)
-{
- rb_raise(rb_eArgError, "bad value for range");
- return Qnil; /* dummy */
-}
+#define RANGE_SET_BEG(r, v) (RSTRUCT_SET(r, 0, v))
+#define RANGE_SET_END(r, v) (RSTRUCT_SET(r, 1, v))
+#define RANGE_SET_EXCL(r, v) (RSTRUCT_SET(r, 2, v))
-static VALUE
-range_check(VALUE *args)
-{
- return rb_funcall(args[0], id_cmp, 1, args[1]);
-}
+#define EXCL(r) RTEST(RANGE_EXCL(r))
static void
-range_init(VALUE range, VALUE beg, VALUE end, int exclude_end)
+range_init(VALUE range, VALUE beg, VALUE end, VALUE exclude_end)
{
- VALUE args[2];
+ // Changing this condition has implications for JITs. If you do, please let maintainers know.
+ if ((!FIXNUM_P(beg) || !FIXNUM_P(end)) && !NIL_P(beg) && !NIL_P(end)) {
+ VALUE v;
- args[0] = beg;
- args[1] = end;
+ v = rb_funcall(beg, id_cmp, 1, end);
+ if (NIL_P(v))
+ rb_raise(rb_eArgError, "bad value for range");
+ }
- if (!FIXNUM_P(beg) || !FIXNUM_P(end)) {
- VALUE v;
+ RANGE_SET_EXCL(range, exclude_end);
+ RANGE_SET_BEG(range, beg);
+ RANGE_SET_END(range, end);
- v = rb_rescue(range_check, (VALUE)args, range_failed, 0);
- if (NIL_P(v))
- range_failed();
+ if (CLASS_OF(range) == rb_cRange) {
+ rb_obj_freeze(range);
}
-
- SET_EXCL(range, exclude_end);
- RSTRUCT(range)->as.ary[0] = beg;
- RSTRUCT(range)->as.ary[1] = end;
}
VALUE
@@ -68,17 +70,33 @@ rb_range_new(VALUE beg, VALUE end, int exclude_end)
{
VALUE range = rb_obj_alloc(rb_cRange);
- range_init(range, beg, end, exclude_end);
+ range_init(range, beg, end, RBOOL(exclude_end));
return range;
}
+static void
+range_modify(VALUE range)
+{
+ rb_check_frozen(range);
+ /* Ranges are immutable, so that they should be initialized only once. */
+ if (RANGE_EXCL(range) != Qnil) {
+ rb_name_err_raise("'initialize' called twice", range, ID2SYM(idInitialize));
+ }
+}
+
/*
* call-seq:
- * Range.new(begin, end, exclude_end=false) -> rng
+ * Range.new(begin, end, exclude_end = false) -> new_range
+ *
+ * Returns a new range based on the given objects +begin+ and +end+.
+ * Optional argument +exclude_end+ determines whether object +end+
+ * is included as the last object in the range:
+ *
+ * Range.new(2, 5).to_a # => [2, 3, 4, 5]
+ * Range.new(2, 5, true).to_a # => [2, 3, 4]
+ * Range.new('a', 'd').to_a # => ["a", "b", "c", "d"]
+ * Range.new('a', 'd', true).to_a # => ["a", "b", "c"]
*
- * Constructs a range using the given +begin+ and +end+. If the +exclude_end+
- * parameter is omitted or is <code>false</code>, the +rng+ will include
- * the end object; otherwise, it will be excluded.
*/
static VALUE
@@ -87,30 +105,36 @@ range_initialize(int argc, VALUE *argv, VALUE range)
VALUE beg, end, flags;
rb_scan_args(argc, argv, "21", &beg, &end, &flags);
- /* Ranges are immutable, so that they should be initialized only once. */
- if (RANGE_EXCL(range) != Qnil) {
- rb_name_error(idInitialize, "`initialize' called twice");
- }
- range_init(range, beg, end, RTEST(flags));
+ range_modify(range);
+ range_init(range, beg, end, RBOOL(RTEST(flags)));
return Qnil;
}
-#define range_initialize_copy rb_struct_init_copy /* :nodoc: */
+/* :nodoc: */
+static VALUE
+range_initialize_copy(VALUE range, VALUE orig)
+{
+ range_modify(range);
+ rb_struct_init_copy(range, orig);
+ return range;
+}
/*
* call-seq:
- * rng.exclude_end? -> true or false
+ * exclude_end? -> true or false
*
- * Returns <code>true</code> if the range excludes its end value.
+ * Returns +true+ if +self+ excludes its end value; +false+ otherwise:
*
- * (1..5).exclude_end? #=> false
- * (1...5).exclude_end? #=> true
+ * Range.new(2, 5).exclude_end? # => false
+ * Range.new(2, 5, true).exclude_end? # => true
+ * (2..5).exclude_end? # => false
+ * (2...5).exclude_end? # => true
*/
static VALUE
range_exclude_end_p(VALUE range)
{
- return EXCL(range) ? Qtrue : Qfalse;
+ return RBOOL(EXCL(range));
}
static VALUE
@@ -118,27 +142,42 @@ recursive_equal(VALUE range, VALUE obj, int recur)
{
if (recur) return Qtrue; /* Subtle! */
if (!rb_equal(RANGE_BEG(range), RANGE_BEG(obj)))
- return Qfalse;
+ return Qfalse;
if (!rb_equal(RANGE_END(range), RANGE_END(obj)))
- return Qfalse;
+ return Qfalse;
- if (EXCL(range) != EXCL(obj))
- return Qfalse;
- return Qtrue;
+ return RBOOL(EXCL(range) == EXCL(obj));
}
/*
* call-seq:
- * rng == obj -> true or false
+ * self == other -> true or false
+ *
+ * Returns whether all of the following are true:
+ *
+ * - +other+ is a range.
+ * - <tt>other.begin == self.begin</tt>.
+ * - <tt>other.end == self.end</tt>.
+ * - <tt>other.exclude_end? == self.exclude_end?</tt>.
*
- * Returns <code>true</code> only if +obj+ is a Range, has equivalent
- * begin and end items (by comparing them with <code>==</code>), and has
- * the same #exclude_end? setting as the range.
+ * Examples:
*
- * (0..2) == (0..2) #=> true
- * (0..2) == Range.new(0,2) #=> true
- * (0..2) == (0...2) #=> false
+ * r = (1..5)
+ * r == (1..5) # => true
+ * r = Range.new(1, 5)
+ * r == 'foo' # => false
+ * r == (2..5) # => false
+ * r == (1..4) # => false
+ * r == (1...5) # => false
+ * r == Range.new(1, 5, true) # => false
+ *
+ * Note that even with the same argument, the return values of #== and #eql? can differ:
+ *
+ * (1..2) == (1..2.0) # => true
+ * (1..2).eql? (1..2.0) # => false
+ *
+ * Related: Range#eql?.
*
*/
@@ -146,116 +185,110 @@ static VALUE
range_eq(VALUE range, VALUE obj)
{
if (range == obj)
- return Qtrue;
+ return Qtrue;
if (!rb_obj_is_kind_of(obj, rb_cRange))
- return Qfalse;
+ return Qfalse;
return rb_exec_recursive_paired(recursive_equal, range, obj, obj);
}
+/* compares _a_ and _b_ and returns:
+ * < 0: a < b
+ * = 0: a = b
+ * > 0: a > b or non-comparable
+ */
static int
-r_lt(VALUE a, VALUE b)
-{
- VALUE r = rb_funcall(a, id_cmp, 1, b);
-
- if (NIL_P(r))
- return (int)Qfalse;
- if (rb_cmpint(r, a, b) < 0)
- return (int)Qtrue;
- return (int)Qfalse;
-}
-
-static int
-r_le(VALUE a, VALUE b)
+r_less(VALUE a, VALUE b)
{
- int c;
VALUE r = rb_funcall(a, id_cmp, 1, b);
if (NIL_P(r))
- return (int)Qfalse;
- c = rb_cmpint(r, a, b);
- if (c == 0)
- return (int)INT2FIX(0);
- if (c < 0)
- return (int)Qtrue;
- return (int)Qfalse;
+ return INT_MAX;
+ return rb_cmpint(r, a, b);
}
-
static VALUE
recursive_eql(VALUE range, VALUE obj, int recur)
{
if (recur) return Qtrue; /* Subtle! */
if (!rb_eql(RANGE_BEG(range), RANGE_BEG(obj)))
- return Qfalse;
+ return Qfalse;
if (!rb_eql(RANGE_END(range), RANGE_END(obj)))
- return Qfalse;
+ return Qfalse;
- if (EXCL(range) != EXCL(obj))
- return Qfalse;
- return Qtrue;
+ return RBOOL(EXCL(range) == EXCL(obj));
}
/*
* call-seq:
- * rng.eql?(obj) -> true or false
+ * eql?(other) -> true or false
+ *
+ * Returns +true+ if and only if:
+ *
+ * - +other+ is a range.
+ * - <tt>other.begin.eql?(self.begin)</tt>.
+ * - <tt>other.end.eql?(self.end)</tt>.
+ * - <tt>other.exclude_end? == self.exclude_end?</tt>.
*
- * Returns <code>true</code> only if +obj+ is a Range, has equivalent
- * begin and end items (by comparing them with <code>eql?</code>),
- * and has the same #exclude_end? setting as the range.
+ * Otherwise returns +false+.
*
- * (0..2).eql?(0..2) #=> true
- * (0..2).eql?(Range.new(0,2)) #=> true
- * (0..2).eql?(0...2) #=> false
+ * r = (1..5)
+ * r.eql?(1..5) # => true
+ * r = Range.new(1, 5)
+ * r.eql?('foo') # => false
+ * r.eql?(2..5) # => false
+ * r.eql?(1..4) # => false
+ * r.eql?(1...5) # => false
+ * r.eql?(Range.new(1, 5, true)) # => false
*
+ * Note that even with the same argument, the return values of #== and #eql? can differ:
+ *
+ * (1..2) == (1..2.0) # => true
+ * (1..2).eql? (1..2.0) # => false
+ *
+ * Related: Range#==.
*/
static VALUE
range_eql(VALUE range, VALUE obj)
{
if (range == obj)
- return Qtrue;
+ return Qtrue;
if (!rb_obj_is_kind_of(obj, rb_cRange))
- return Qfalse;
+ return Qfalse;
return rb_exec_recursive_paired(recursive_eql, range, obj, obj);
}
+/*
+ * call-seq:
+ * hash -> integer
+ *
+ * Returns the integer hash value for +self+.
+ * Two range objects +r0+ and +r1+ have the same hash value
+ * if and only if <tt>r0.eql?(r1)</tt>.
+ *
+ * Related: Range#eql?, Object#hash.
+ */
+
static VALUE
-recursive_hash(VALUE range, VALUE dummy, int recur)
+range_hash(VALUE range)
{
st_index_t hash = EXCL(range);
VALUE v;
hash = rb_hash_start(hash);
- if (!recur) {
- v = rb_hash(RANGE_BEG(range));
- hash = rb_hash_uint(hash, NUM2LONG(v));
- v = rb_hash(RANGE_END(range));
- hash = rb_hash_uint(hash, NUM2LONG(v));
- }
+ v = rb_hash(RANGE_BEG(range));
+ hash = rb_hash_uint(hash, NUM2LONG(v));
+ v = rb_hash(RANGE_END(range));
+ hash = rb_hash_uint(hash, NUM2LONG(v));
hash = rb_hash_uint(hash, EXCL(range) << 24);
hash = rb_hash_end(hash);
- return LONG2FIX(hash);
-}
-
-/*
- * call-seq:
- * rng.hash -> fixnum
- *
- * Compute a hash-code for this range. Two ranges with equal
- * begin and end points (using <code>eql?</code>), and the same
- * #exclude_end? value will generate the same hash-code.
- */
-
-static VALUE
-range_hash(VALUE range)
-{
- return rb_exec_recursive_outer(recursive_hash, range, 0);
+ return ST2FIX(hash);
}
static void
-range_each_func(VALUE range, VALUE (*func) (VALUE, void *), void *arg)
+range_each_func(VALUE range, int (*func)(VALUE, VALUE), VALUE arg)
{
int c;
VALUE b = RANGE_BEG(range);
@@ -263,214 +296,383 @@ range_each_func(VALUE range, VALUE (*func) (VALUE, void *), void *arg)
VALUE v = b;
if (EXCL(range)) {
- while (r_lt(v, e)) {
- (*func) (v, arg);
- v = rb_funcall(v, id_succ, 0, 0);
- }
+ while (r_less(v, e) < 0) {
+ if ((*func)(v, arg)) break;
+ v = rb_funcallv(v, id_succ, 0, 0);
+ }
}
else {
- while ((c = r_le(v, e)) != Qfalse) {
- (*func) (v, arg);
- if (c == (int)INT2FIX(0))
- break;
- v = rb_funcall(v, id_succ, 0, 0);
- }
+ while ((c = r_less(v, e)) <= 0) {
+ if ((*func)(v, arg)) break;
+ if (!c) break;
+ v = rb_funcallv(v, id_succ, 0, 0);
+ }
}
}
-static VALUE
-sym_step_i(VALUE i, void *arg)
+// NB: Two functions below (step_i_iter, sym_step_i and step_i) are used only to maintain the
+// backward-compatible behavior for string and symbol ranges with integer steps. If that branch
+// will be removed from range_step, these two can go, too.
+static bool
+step_i_iter(VALUE arg)
{
- VALUE *iter = arg;
+ VALUE *iter = (VALUE *)arg;
if (FIXNUM_P(iter[0])) {
- iter[0] -= INT2FIX(1) & ~FIXNUM_FLAG;
+ iter[0] -= INT2FIX(1) & ~FIXNUM_FLAG;
}
else {
- iter[0] = rb_funcall(iter[0], '-', 1, INT2FIX(1));
- }
- if (iter[0] == INT2FIX(0)) {
- rb_yield(rb_str_intern(i));
- iter[0] = iter[1];
+ iter[0] = rb_funcall(iter[0], '-', 1, INT2FIX(1));
}
- return Qnil;
+ if (iter[0] != INT2FIX(0)) return false;
+ iter[0] = iter[1];
+ return true;
}
-static VALUE
-step_i(VALUE i, void *arg)
+static int
+sym_step_i(VALUE i, VALUE arg)
{
- VALUE *iter = arg;
-
- if (FIXNUM_P(iter[0])) {
- iter[0] -= INT2FIX(1) & ~FIXNUM_FLAG;
+ if (step_i_iter(arg)) {
+ rb_yield(rb_str_intern(i));
}
- else {
- iter[0] = rb_funcall(iter[0], '-', 1, INT2FIX(1));
- }
- if (iter[0] == INT2FIX(0)) {
- rb_yield(i);
- iter[0] = iter[1];
+ return 0;
+}
+
+static int
+step_i(VALUE i, VALUE arg)
+{
+ if (step_i_iter(arg)) {
+ rb_yield(i);
}
- return Qnil;
+ return 0;
}
static int
discrete_object_p(VALUE obj)
{
- if (rb_obj_is_kind_of(obj, rb_cTime)) return FALSE; /* until Time#succ removed */
return rb_respond_to(obj, id_succ);
}
+static int
+linear_object_p(VALUE obj)
+{
+ if (FIXNUM_P(obj) || FLONUM_P(obj)) return TRUE;
+ if (SPECIAL_CONST_P(obj)) return FALSE;
+ switch (BUILTIN_TYPE(obj)) {
+ case T_FLOAT:
+ case T_BIGNUM:
+ return TRUE;
+ default:
+ break;
+ }
+ if (rb_obj_is_kind_of(obj, rb_cNumeric)) return TRUE;
+ if (rb_obj_is_kind_of(obj, rb_cTime)) return TRUE;
+ return FALSE;
+}
+
+static VALUE
+check_step_domain(VALUE step)
+{
+ VALUE zero = INT2FIX(0);
+ int cmp;
+ if (!rb_obj_is_kind_of(step, rb_cNumeric)) {
+ step = rb_to_int(step);
+ }
+ cmp = rb_cmpint(rb_funcallv(step, idCmp, 1, &zero), step, zero);
+ if (cmp < 0) {
+ rb_raise(rb_eArgError, "step can't be negative");
+ }
+ else if (cmp == 0) {
+ rb_raise(rb_eArgError, "step can't be 0");
+ }
+ return step;
+}
+
static VALUE
-range_step_size(VALUE range, VALUE args)
+range_step_size(VALUE range, VALUE args, VALUE eobj)
{
VALUE b = RANGE_BEG(range), e = RANGE_END(range);
VALUE step = INT2FIX(1);
if (args) {
- step = RARRAY_PTR(args)[0];
- if (!rb_obj_is_kind_of(step, rb_cNumeric)) {
- step = rb_to_int(step);
- }
- }
- if (rb_funcall(step, '<', 1, INT2FIX(0))) {
- rb_raise(rb_eArgError, "step can't be negative");
- }
- else if (!rb_funcall(step, '>', 1, INT2FIX(0))) {
- rb_raise(rb_eArgError, "step can't be 0");
+ step = check_step_domain(RARRAY_AREF(args, 0));
}
if (rb_obj_is_kind_of(b, rb_cNumeric) && rb_obj_is_kind_of(e, rb_cNumeric)) {
- return num_interval_step_size(b, e, step, EXCL(range));
+ return ruby_num_interval_step_size(b, e, step, EXCL(range));
}
return Qnil;
}
/*
* call-seq:
- * rng.step(n=1) {| obj | block } -> rng
- * rng.step(n=1) -> an_enumerator
+ * step(s = 1) {|element| ... } -> self
+ * step(s = 1) -> enumerator/arithmetic_sequence
+ *
+ * Iterates over the elements of range in steps of +s+. The iteration is performed
+ * by <tt>+</tt> operator:
+ *
+ * (0..6).step(2) { puts _1 } #=> 1..5
+ * # Prints: 0, 2, 4, 6
+ *
+ * # Iterate between two dates in step of 1 day (24 hours)
+ * (Time.utc(2022, 2, 24)..Time.utc(2022, 3, 1)).step(24*60*60) { puts _1 }
+ * # Prints:
+ * # 2022-02-24 00:00:00 UTC
+ * # 2022-02-25 00:00:00 UTC
+ * # 2022-02-26 00:00:00 UTC
+ * # 2022-02-27 00:00:00 UTC
+ * # 2022-02-28 00:00:00 UTC
+ * # 2022-03-01 00:00:00 UTC
+ *
+ * If <tt> + step</tt> decreases the value, iteration is still performed when
+ * step +begin+ is higher than the +end+:
+ *
+ * (0..6).step(-2) { puts _1 }
+ * # Prints nothing
+ *
+ * (6..0).step(-2) { puts _1 }
+ * # Prints: 6, 4, 2, 0
*
- * Iterates over the range, passing each <code>n</code>th element to the block.
- * If begin and end are numeric, +n+ is added for each iteration.
- * Otherwise <code>step</code> invokes <code>succ</code> to iterate through
- * range elements.
+ * (Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step(-24*60*60) { puts _1 }
+ * # Prints:
+ * # 2022-03-01 00:00:00 UTC
+ * # 2022-02-28 00:00:00 UTC
+ * # 2022-02-27 00:00:00 UTC
+ * # 2022-02-26 00:00:00 UTC
+ * # 2022-02-25 00:00:00 UTC
+ * # 2022-02-24 00:00:00 UTC
*
- * If no block is given, an enumerator is returned instead.
+ * When the block is not provided, and range boundaries and step are Numeric,
+ * the method returns Enumerator::ArithmeticSequence.
*
- * range = Xs.new(1)..Xs.new(10)
- * range.step(2) {|x| puts x}
- * puts
- * range.step(3) {|x| puts x}
+ * (1..5).step(2) # => ((1..5).step(2))
+ * (1.0..).step(1.5) #=> ((1.0..).step(1.5))
+ * (..3r).step(1/3r) #=> ((..3/1).step((1/3)))
*
- * <em>produces:</em>
+ * Enumerator::ArithmeticSequence can be further used as a value object for iteration
+ * or slicing of collections (see Array#[]). There is a convenience method #% with
+ * behavior similar to +step+ to produce arithmetic sequences more expressively:
*
- * 1 x
- * 3 xxx
- * 5 xxxxx
- * 7 xxxxxxx
- * 9 xxxxxxxxx
+ * # Same as (1..5).step(2)
+ * (1..5) % 2 # => ((1..5).%(2))
*
- * 1 x
- * 4 xxxx
- * 7 xxxxxxx
- * 10 xxxxxxxxxx
+ * In a generic case, when the block is not provided, Enumerator is returned:
+ *
+ * ('a'..).step('b') #=> #<Enumerator: "a"..:step("b")>
+ * ('a'..).step('b').take(3) #=> ["a", "ab", "abb"]
+ *
+ * If +s+ is not provided, it is considered +1+ for ranges with numeric +begin+:
+ *
+ * (1..5).step { p _1 }
+ * # Prints: 1, 2, 3, 4, 5
+ *
+ * For non-Numeric ranges, step absence is an error:
+ *
+ * (Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step { p _1 }
+ * # raises: step is required for non-numeric ranges (ArgumentError)
+ *
+ * For backward compatibility reasons, String ranges support the iteration both with
+ * string step and with integer step. In the latter case, the iteration is performed
+ * by calculating the next values with String#succ:
+ *
+ * ('a'..'e').step(2) { p _1 }
+ * # Prints: a, c, e
+ * ('a'..'e').step { p _1 }
+ * # Default step 1; prints: a, b, c, d, e
*
- * See Range for the definition of class Xs.
*/
-
-
static VALUE
range_step(int argc, VALUE *argv, VALUE range)
{
- VALUE b, e, step, tmp;
-
- RETURN_SIZED_ENUMERATOR(range, argc, argv, range_step_size);
+ VALUE b, e, v, step;
+ int c, dir;
b = RANGE_BEG(range);
e = RANGE_END(range);
- if (argc == 0) {
- step = INT2FIX(1);
- }
+ v = b;
+
+ const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric);
+ const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric);
+ // For backward compatibility reasons (conforming to behavior before 3.4), String/Symbol
+ // supports both old behavior ('a'..).step(1) and new behavior ('a'..).step('a')
+ // Hence the additional conversion/additional checks.
+ const VALUE str_b = rb_check_string_type(b);
+ const VALUE sym_b = SYMBOL_P(b) ? rb_sym2str(b) : Qnil;
+
+ if (rb_check_arity(argc, 0, 1))
+ step = argv[0];
else {
- rb_scan_args(argc, argv, "01", &step);
- if (!rb_obj_is_kind_of(step, rb_cNumeric)) {
- step = rb_to_int(step);
- }
- if (rb_funcall(step, '<', 1, INT2FIX(0))) {
- rb_raise(rb_eArgError, "step can't be negative");
- }
- else if (!rb_funcall(step, '>', 1, INT2FIX(0))) {
- rb_raise(rb_eArgError, "step can't be 0");
- }
- }
-
- if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) { /* fixnums are special */
- long end = FIX2LONG(e);
- long i, unit = FIX2LONG(step);
-
- if (!EXCL(range))
- end += 1;
- i = FIX2LONG(b);
- while (i < end) {
- rb_yield(LONG2NUM(i));
- if (i + unit < i) break;
- i += unit;
- }
-
- }
- else if (SYMBOL_P(b) && SYMBOL_P(e)) { /* symbols are special */
- VALUE args[2], iter[2];
-
- args[0] = rb_sym_to_s(e);
- args[1] = EXCL(range) ? Qtrue : Qfalse;
- iter[0] = INT2FIX(1);
- iter[1] = step;
- rb_block_call(rb_sym_to_s(b), rb_intern("upto"), 2, args, sym_step_i, (VALUE)iter);
- }
- else if (ruby_float_step(b, e, step, EXCL(range))) {
- /* done */
- }
- else if (rb_obj_is_kind_of(b, rb_cNumeric) ||
- !NIL_P(rb_check_to_integer(b, "to_int")) ||
- !NIL_P(rb_check_to_integer(e, "to_int"))) {
- ID op = EXCL(range) ? '<' : idLE;
- VALUE v = b;
- int i = 0;
-
- while (RTEST(rb_funcall(v, op, 1, e))) {
- rb_yield(v);
- i++;
- v = rb_funcall(b, '+', 1, rb_funcall(INT2NUM(i), '*', 1, step));
- }
+ if (b_num_p || !NIL_P(str_b) || !NIL_P(sym_b) || (NIL_P(b) && e_num_p))
+ step = INT2FIX(1);
+ else
+ rb_raise(rb_eArgError, "step is required for non-numeric ranges");
}
- else {
- tmp = rb_check_string_type(b);
-
- if (!NIL_P(tmp)) {
- VALUE args[2], iter[2];
-
- b = tmp;
- args[0] = e;
- args[1] = EXCL(range) ? Qtrue : Qfalse;
- iter[0] = INT2FIX(1);
- iter[1] = step;
- rb_block_call(b, rb_intern("upto"), 2, args, step_i, (VALUE)iter);
- }
- else {
- VALUE args[2];
-
- if (!discrete_object_p(b)) {
- rb_raise(rb_eTypeError, "can't iterate from %s",
- rb_obj_classname(b));
- }
- args[0] = INT2FIX(1);
- args[1] = step;
- range_each_func(range, step_i, args);
- }
+
+ const VALUE step_num_p = rb_obj_is_kind_of(step, rb_cNumeric);
+
+ if (step_num_p && b_num_p && rb_equal(step, INT2FIX(0))) {
+ rb_raise(rb_eArgError, "step can't be 0");
+ }
+
+ if (!rb_block_given_p()) {
+ // This code is allowed to create even beginless ArithmeticSequence, which can be useful,
+ // e.g., for array slicing:
+ // ary[(..-1) % 3]
+ if (step_num_p && ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p))) {
+ return rb_arith_seq_new(range, ID2SYM(rb_frame_this_func()), argc, argv,
+ range_step_size, b, e, step, EXCL(range));
+ }
+
+ // ...but generic Enumerator from beginless range is useless and probably an error.
+ if (NIL_P(b)) {
+ rb_raise(rb_eArgError, "#step for non-numeric beginless ranges is meaningless");
+ }
+
+ RETURN_SIZED_ENUMERATOR(range, argc, argv, 0);
+ }
+
+ if (NIL_P(b)) {
+ rb_raise(rb_eArgError, "#step iteration for beginless ranges is meaningless");
+ }
+
+ if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(step)) {
+ /* perform summation of numbers in C until their reach Fixnum limit */
+ long i = FIX2LONG(b), unit = FIX2LONG(step);
+ do {
+ rb_yield(LONG2FIX(i));
+ i += unit; /* FIXABLE+FIXABLE never overflow */
+ } while (FIXABLE(i));
+ b = LONG2NUM(i);
+
+ /* then switch to Bignum API */
+ for (;; b = rb_big_plus(b, step))
+ rb_yield(b);
+ }
+ else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) {
+ /* fixnums are special: summation is performed in C for performance */
+ long end = FIX2LONG(e);
+ long i, unit = FIX2LONG(step);
+
+ if (unit < 0) {
+ if (!EXCL(range))
+ end -= 1;
+ i = FIX2LONG(b);
+ while (i > end) {
+ rb_yield(LONG2NUM(i));
+ i += unit;
+ }
+ }
+ else {
+ if (!EXCL(range))
+ end += 1;
+ i = FIX2LONG(b);
+ while (i < end) {
+ rb_yield(LONG2NUM(i));
+ i += unit;
+ }
+ }
+ }
+ else if (b_num_p && step_num_p && ruby_float_step(b, e, step, EXCL(range), TRUE)) {
+ /* done */
+ }
+ else if (!NIL_P(str_b) && FIXNUM_P(step)) {
+ // backwards compatibility behavior for String only, when no step/Integer step is passed
+ // See discussion in https://bugs.ruby-lang.org/issues/18368
+
+ VALUE iter[2] = {INT2FIX(1), step};
+
+ if (NIL_P(e)) {
+ rb_str_upto_endless_each(str_b, step_i, (VALUE)iter);
+ }
+ else {
+ rb_str_upto_each(str_b, e, EXCL(range), step_i, (VALUE)iter);
+ }
+ }
+ else if (!NIL_P(sym_b) && FIXNUM_P(step)) {
+ // same as above: backward compatibility for symbols
+
+ VALUE iter[2] = {INT2FIX(1), step};
+
+ if (NIL_P(e)) {
+ rb_str_upto_endless_each(sym_b, sym_step_i, (VALUE)iter);
+ }
+ else {
+ rb_str_upto_each(sym_b, rb_sym2str(e), EXCL(range), sym_step_i, (VALUE)iter);
+ }
+ }
+ else if (NIL_P(e)) {
+ // endless range
+ for (;; v = rb_funcall(v, id_plus, 1, step))
+ rb_yield(v);
+ }
+ else if (b_num_p && step_num_p && r_less(step, INT2FIX(0)) < 0) {
+ // iterate backwards, for consistency with ArithmeticSequence
+ if (EXCL(range)) {
+ for (; r_less(e, v) < 0; v = rb_funcall(v, id_plus, 1, step))
+ rb_yield(v);
+ }
+ else {
+ for (; (c = r_less(e, v)) <= 0; v = rb_funcall(v, id_plus, 1, step)) {
+ rb_yield(v);
+ if (!c) break;
+ }
+ }
+
+ }
+ else if ((dir = r_less(b, e)) == 0) {
+ if (!EXCL(range)) {
+ rb_yield(v);
+ }
+ }
+ else if (dir == r_less(b, rb_funcall(b, id_plus, 1, step))) {
+ // Direction of the comparison. We use it as a comparison operator in cycle:
+ // if begin < end, the cycle performs while value < end (iterating forward)
+ // if begin > end, the cycle performs while value > end (iterating backward with
+ // a negative step)
+ // One preliminary addition to check the step moves iteration in the same direction as
+ // from begin to end; otherwise, the iteration should be empty.
+ if (EXCL(range)) {
+ for (; r_less(v, e) == dir; v = rb_funcall(v, id_plus, 1, step))
+ rb_yield(v);
+ }
+ else {
+ for (; (c = r_less(v, e)) == dir || c == 0; v = rb_funcall(v, id_plus, 1, step)) {
+ rb_yield(v);
+ if (!c) break;
+ }
+ }
}
return range;
}
+/*
+ * call-seq:
+ * %(n) {|element| ... } -> self
+ * %(n) -> enumerator or arithmetic_sequence
+ *
+ * Same as #step (but doesn't provide default value for +n+).
+ * The method is convenient for experssive producing of Enumerator::ArithmeticSequence.
+ *
+ * array = [0, 1, 2, 3, 4, 5, 6]
+ *
+ * # slice each second element:
+ * seq = (0..) % 2 #=> ((0..).%(2))
+ * array[seq] #=> [0, 2, 4, 6]
+ * # or just
+ * array[(0..) % 2] #=> [0, 2, 4, 6]
+ *
+ * Note that due to operator precedence in Ruby, parentheses are mandatory around range
+ * in this case:
+ *
+ * (0..7) % 2 #=> ((0..7).%(2)) -- as expected
+ * 0..7 % 2 #=> 0..1 -- parsed as 0..(7 % 2)
+ */
+static VALUE
+range_percent_step(VALUE range, VALUE step)
+{
+ return range_step(1, &step, range);
+}
+
#if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T)
union int64_double {
int64_t i;
@@ -482,12 +684,12 @@ int64_as_double_to_num(int64_t i)
{
union int64_double convert;
if (i < 0) {
- convert.i = -i;
- return DBL2NUM(-convert.d);
+ convert.i = -i;
+ return DBL2NUM(-convert.d);
}
else {
- convert.i = i;
- return DBL2NUM(convert.d);
+ convert.i = i;
+ return DBL2NUM(convert.d);
}
}
@@ -503,67 +705,94 @@ double_as_int64(double d)
static int
is_integer_p(VALUE v)
{
- VALUE is_int = rb_check_funcall(v, id_integer_p, 0, 0);
- return RTEST(is_int) && is_int != Qundef;
+ if (rb_integer_type_p(v)) {
+ return true;
+ }
+
+ ID id_integer_p;
+ VALUE is_int;
+ CONST_ID(id_integer_p, "integer?");
+ is_int = rb_check_funcall(v, id_integer_p, 0, 0);
+ return RTEST(is_int) && !UNDEF_P(is_int);
+}
+
+static VALUE
+bsearch_integer_range(VALUE beg, VALUE end, int excl)
+{
+ VALUE satisfied = Qnil;
+ int smaller;
+
+#define BSEARCH_CHECK(expr) \
+ do { \
+ VALUE val = (expr); \
+ VALUE v = rb_yield(val); \
+ if (FIXNUM_P(v)) { \
+ if (v == INT2FIX(0)) return val; \
+ smaller = (SIGNED_VALUE)v < 0; \
+ } \
+ else if (v == Qtrue) { \
+ satisfied = val; \
+ smaller = 1; \
+ } \
+ else if (!RTEST(v)) { \
+ smaller = 0; \
+ } \
+ else if (rb_obj_is_kind_of(v, rb_cNumeric)) { \
+ int cmp = rb_cmpint(rb_funcall(v, id_cmp, 1, INT2FIX(0)), v, INT2FIX(0)); \
+ if (!cmp) return val; \
+ smaller = cmp < 0; \
+ } \
+ else { \
+ rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE \
+ " (must be numeric, true, false or nil)", \
+ rb_obj_class(v)); \
+ } \
+ } while (0)
+
+ VALUE low = rb_to_int(beg);
+ VALUE high = rb_to_int(end);
+ VALUE mid;
+ ID id_div;
+ CONST_ID(id_div, "div");
+
+ if (!excl) high = rb_funcall(high, '+', 1, INT2FIX(1));
+ low = rb_funcall(low, '-', 1, INT2FIX(1));
+
+ /*
+ * This loop must continue while low + 1 < high.
+ * Instead of checking low + 1 < high, check low < mid, where mid = (low + high) / 2.
+ * This is to avoid the cost of calculating low + 1 on each iteration.
+ * Note that this condition replacement is valid because Integer#div always rounds
+ * towards negative infinity.
+ */
+ while (mid = rb_funcall(rb_funcall(high, '+', 1, low), id_div, 1, INT2FIX(2)),
+ rb_cmpint(rb_funcall(low, id_cmp, 1, mid), low, mid) < 0) {
+ BSEARCH_CHECK(mid);
+ if (smaller) {
+ high = mid;
+ }
+ else {
+ low = mid;
+ }
+ }
+ return satisfied;
}
/*
* call-seq:
- * rng.bsearch {|obj| block } -> value
- *
- * By using binary search, finds a value in range which meets the given
- * condition in O(log n) where n is the size of the range.
- *
- * You can use this method in two use cases: a find-minimum mode and
- * a find-any mode. In either case, the elements of the range must be
- * monotone (or sorted) with respect to the block.
- *
- * In find-minimum mode (this is a good choice for typical use case),
- * the block must return true or false, and there must be a value x
- * so that:
- *
- * - the block returns false for any value which is less than x, and
- * - the block returns true for any value which is greater than or
- * equal to i.
- *
- * If x is within the range, this method returns the value x.
- * Otherwise, it returns nil.
- *
- * ary = [0, 4, 7, 10, 12]
- * (0...ary.size).bsearch {|i| ary[i] >= 4 } #=> 1
- * (0...ary.size).bsearch {|i| ary[i] >= 6 } #=> 2
- * (0...ary.size).bsearch {|i| ary[i] >= 8 } #=> 3
- * (0...ary.size).bsearch {|i| ary[i] >= 100 } #=> nil
- *
- * (0.0...Float::INFINITY).bsearch {|x| Math.log(x) >= 0 } #=> 1.0
- *
- * In find-any mode (this behaves like libc's bsearch(3)), the block
- * must return a number, and there must be two values x and y (x <= y)
- * so that:
+ * bsearch {|obj| block } -> value
*
- * - the block returns a positive number for v if v < x,
- * - the block returns zero for v if x <= v < y, and
- * - the block returns a negative number for v if y <= v.
+ * Returns an element from +self+ selected by a binary search.
*
- * This method returns any value which is within the intersection of
- * the given range and x...y (if any). If there is no value that
- * satisfies the condition, it returns nil.
+ * See {Binary Searching}[rdoc-ref:language/bsearch.rdoc].
*
- * ary = [0, 100, 100, 100, 200]
- * (0..4).bsearch {|i| 100 - ary[i] } #=> 1, 2 or 3
- * (0..4).bsearch {|i| 300 - ary[i] } #=> nil
- * (0..4).bsearch {|i| 50 - ary[i] } #=> nil
- *
- * You must not mix the two modes at a time; the block must always
- * return either true/false, or always return a number. It is
- * undefined which value is actually picked up at each iteration.
*/
static VALUE
range_bsearch(VALUE range)
{
- VALUE beg, end;
- int smaller, satisfied = 0;
+ VALUE beg, end, satisfied = Qnil;
+ int smaller;
/* Implementation notes:
* Floats are handled by mapping them to 64 bits integers.
@@ -572,224 +801,549 @@ range_bsearch(VALUE range)
* by the mantissa. This is true with or without implicit bit.
*
* Finding the average of two ints needs to be careful about
- * potential overflow (since float to long can use 64 bits)
- * as well as the fact that -1/2 can be 0 or -1 in C89.
+ * potential overflow (since float to long can use 64 bits).
+ *
+ * The half-open interval (low, high] indicates where the target is located.
+ * The loop continues until low and high are adjacent.
+ *
+ * -1/2 can be either 0 or -1 in C89. However, when low and high are not adjacent,
+ * the rounding direction of mid = (low + high) / 2 does not affect the result of
+ * the binary search.
*
* Note that -0.0 is mapped to the same int as 0.0 as we don't want
* (-1...0.0).bsearch to yield -0.0.
*/
-#define BSEARCH_CHECK(val) \
+#define BSEARCH(conv, excl) \
do { \
- VALUE v = rb_yield(val); \
- if (FIXNUM_P(v)) { \
- if (FIX2INT(v) == 0) return val; \
- smaller = FIX2INT(v) < 0; \
- } \
- else if (v == Qtrue) { \
- satisfied = 1; \
- smaller = 1; \
- } \
- else if (v == Qfalse || v == Qnil) { \
- smaller = 0; \
- } \
- else if (rb_obj_is_kind_of(v, rb_cNumeric)) { \
- int cmp = rb_cmpint(rb_funcall(v, id_cmp, 1, INT2FIX(0)), v, INT2FIX(0)); \
- if (!cmp) return val; \
- smaller = cmp < 0; \
- } \
- else { \
- rb_raise(rb_eTypeError, "wrong argument type %s" \
- " (must be numeric, true, false or nil)", \
- rb_obj_classname(v)); \
- } \
+ RETURN_ENUMERATOR(range, 0, 0); \
+ if (!(excl)) high++; \
+ low--; \
+ while (low + 1 < high) { \
+ mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \
+ : (low + high) / 2; \
+ BSEARCH_CHECK(conv(mid)); \
+ if (smaller) { \
+ high = mid; \
+ } \
+ else { \
+ low = mid; \
+ } \
+ } \
+ return satisfied; \
} while (0)
-#define BSEARCH(conv) \
+#define BSEARCH_FIXNUM(beg, end, excl) \
do { \
- RETURN_ENUMERATOR(range, 0, 0); \
- if (EXCL(range)) high--; \
- org_high = high; \
- while (low < high) { \
- mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \
- : (low < -high) ? -((-1 - low - high)/2 + 1) : (low + high) / 2; \
- BSEARCH_CHECK(conv(mid)); \
- if (smaller) { \
- high = mid; \
- } \
- else { \
- low = mid + 1; \
- } \
- } \
- if (low == org_high) { \
- BSEARCH_CHECK(conv(low)); \
- if (!smaller) return Qnil; \
- } \
- if (!satisfied) return Qnil; \
- return conv(low); \
+ long low = FIX2LONG(beg); \
+ long high = FIX2LONG(end); \
+ long mid; \
+ BSEARCH(INT2FIX, (excl)); \
} while (0)
-
beg = RANGE_BEG(range);
end = RANGE_END(range);
if (FIXNUM_P(beg) && FIXNUM_P(end)) {
- long low = FIX2LONG(beg);
- long high = FIX2LONG(end);
- long mid, org_high;
- BSEARCH(INT2FIX);
+ BSEARCH_FIXNUM(beg, end, EXCL(range));
}
#if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T)
- else if (RB_TYPE_P(beg, T_FLOAT) || RB_TYPE_P(end, T_FLOAT)) {
- int64_t low = double_as_int64(RFLOAT_VALUE(rb_Float(beg)));
- int64_t high = double_as_int64(RFLOAT_VALUE(rb_Float(end)));
- int64_t mid, org_high;
- BSEARCH(int64_as_double_to_num);
+ else if (RB_FLOAT_TYPE_P(beg) || RB_FLOAT_TYPE_P(end)) {
+ int64_t low = double_as_int64(NIL_P(beg) ? -HUGE_VAL : RFLOAT_VALUE(rb_Float(beg)));
+ int64_t high = double_as_int64(NIL_P(end) ? HUGE_VAL : RFLOAT_VALUE(rb_Float(end)));
+ int64_t mid;
+ BSEARCH(int64_as_double_to_num, EXCL(range));
}
#endif
else if (is_integer_p(beg) && is_integer_p(end)) {
- VALUE low = rb_to_int(beg);
- VALUE high = rb_to_int(end);
- VALUE mid, org_high;
- RETURN_ENUMERATOR(range, 0, 0);
- if (EXCL(range)) high = rb_funcall(high, '-', 1, INT2FIX(1));
- org_high = high;
-
- while (rb_cmpint(rb_funcall(low, id_cmp, 1, high), low, high) < 0) {
- mid = rb_funcall(rb_funcall(high, '+', 1, low), id_div, 1, INT2FIX(2));
- BSEARCH_CHECK(mid);
- if (smaller) {
- high = mid;
- }
- else {
- low = rb_funcall(mid, '+', 1, INT2FIX(1));
- }
- }
- if (rb_equal(low, org_high)) {
- BSEARCH_CHECK(low);
- if (!smaller) return Qnil;
- }
- if (!satisfied) return Qnil;
- return low;
+ RETURN_ENUMERATOR(range, 0, 0);
+ return bsearch_integer_range(beg, end, EXCL(range));
+ }
+ else if (is_integer_p(beg) && NIL_P(end)) {
+ VALUE diff = LONG2FIX(1);
+ RETURN_ENUMERATOR(range, 0, 0);
+ while (1) {
+ VALUE mid = rb_funcall(beg, '+', 1, diff);
+ BSEARCH_CHECK(mid);
+ if (smaller) {
+ if (FIXNUM_P(beg) && FIXNUM_P(mid)) {
+ BSEARCH_FIXNUM(beg, mid, false);
+ }
+ else {
+ return bsearch_integer_range(beg, mid, false);
+ }
+ }
+ diff = rb_funcall(diff, '*', 1, LONG2FIX(2));
+ beg = mid;
+ }
+ }
+ else if (NIL_P(beg) && is_integer_p(end)) {
+ VALUE diff = LONG2FIX(-1);
+ RETURN_ENUMERATOR(range, 0, 0);
+ while (1) {
+ VALUE mid = rb_funcall(end, '+', 1, diff);
+ BSEARCH_CHECK(mid);
+ if (!smaller) {
+ if (FIXNUM_P(mid) && FIXNUM_P(end)) {
+ BSEARCH_FIXNUM(mid, end, false);
+ }
+ else {
+ return bsearch_integer_range(mid, end, false);
+ }
+ }
+ diff = rb_funcall(diff, '*', 1, LONG2FIX(2));
+ end = mid;
+ }
}
else {
- rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg));
+ rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg));
}
return range;
}
-static VALUE
-each_i(VALUE v, void *arg)
+static int
+each_i(VALUE v, VALUE arg)
{
rb_yield(v);
- return Qnil;
+ return 0;
}
-static VALUE
-sym_each_i(VALUE v, void *arg)
+static int
+sym_each_i(VALUE v, VALUE arg)
{
- rb_yield(rb_str_intern(v));
- return Qnil;
+ return each_i(rb_str_intern(v), arg);
}
+#define CANT_ITERATE_FROM(x) \
+ rb_raise(rb_eTypeError, "can't iterate from %s", \
+ rb_obj_classname(x))
+
/*
* call-seq:
- * rng.size -> num
+ * size -> non_negative_integer or Infinity or nil
+ *
+ * Returns the count of elements in +self+
+ * if both begin and end values are numeric;
+ * otherwise, returns +nil+:
+ *
+ * (1..4).size # => 4
+ * (1...4).size # => 3
+ * (1..).size # => Infinity
+ * ('a'..'z').size # => nil
+ *
+ * If +self+ is not iterable, raises an exception:
*
- * Returns the number of elements in the range. Both the begin and the end of
- * the Range must be Numeric, otherwise nil is returned.
+ * (0.5..2.5).size # TypeError
+ * (..1).size # TypeError
*
- * (10..20).size #=> 11
- * ('a'..'z').size #=> nil
- * (-Float::INFINITY..Float::INFINITY).size #=> Infinity
+ * Related: Range#count.
*/
static VALUE
range_size(VALUE range)
{
VALUE b = RANGE_BEG(range), e = RANGE_END(range);
- if (rb_obj_is_kind_of(b, rb_cNumeric) && rb_obj_is_kind_of(e, rb_cNumeric)) {
- return num_interval_step_size(b, e, INT2FIX(1), EXCL(range));
+
+ if (RB_INTEGER_TYPE_P(b)) {
+ if (rb_obj_is_kind_of(e, rb_cNumeric)) {
+ return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range));
+ }
+ if (NIL_P(e)) {
+ return DBL2NUM(HUGE_VAL);
+ }
}
+
+ if (!discrete_object_p(b)) {
+ CANT_ITERATE_FROM(b);
+ }
+
return Qnil;
}
+static VALUE
+range_reverse_size(VALUE range)
+{
+ VALUE b = RANGE_BEG(range), e = RANGE_END(range);
+
+ if (NIL_P(e)) {
+ CANT_ITERATE_FROM(e);
+ }
+
+ if (RB_INTEGER_TYPE_P(b)) {
+ if (rb_obj_is_kind_of(e, rb_cNumeric)) {
+ return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range));
+ }
+ else {
+ CANT_ITERATE_FROM(e);
+ }
+ }
+
+ if (NIL_P(b)) {
+ if (RB_INTEGER_TYPE_P(e)) {
+ return DBL2NUM(HUGE_VAL);
+ }
+ else {
+ CANT_ITERATE_FROM(e);
+ }
+ }
+
+ if (!discrete_object_p(b)) {
+ CANT_ITERATE_FROM(e);
+ }
+
+ return Qnil;
+}
+
+#undef CANT_ITERATE_FROM
+
+/*
+ * call-seq:
+ * to_a -> array
+ *
+ * Returns an array containing the elements in +self+, if a finite collection;
+ * raises an exception otherwise.
+ *
+ * (1..4).to_a # => [1, 2, 3, 4]
+ * (1...4).to_a # => [1, 2, 3]
+ * ('a'..'d').to_a # => ["a", "b", "c", "d"]
+ *
+ */
+
+static VALUE
+range_to_a(VALUE range)
+{
+ if (NIL_P(RANGE_END(range))) {
+ rb_raise(rb_eRangeError, "cannot convert endless range to an array");
+ }
+ return rb_call_super(0, 0);
+}
+
+/*
+ * call-seq:
+ * to_set -> set
+ *
+ * Returns a set containing the elements in +self+, if a finite collection;
+ * raises an exception otherwise.
+ *
+ * (1..4).to_set # => Set[1, 2, 3, 4]
+ * (1...4).to_set # => Set[1, 2, 3]
+ *
+ * (1..).to_set
+ * # in 'Range#to_set': cannot convert endless range to a set (RangeError)
+ *
+ */
+static VALUE
+range_to_set(VALUE range)
+{
+ if (NIL_P(RANGE_END(range))) {
+ rb_raise(rb_eRangeError, "cannot convert endless range to a set");
+ }
+ return rb_call_super(0, NULL);
+}
+
+static VALUE
+range_enum_size(VALUE range, VALUE args, VALUE eobj)
+{
+ return range_size(range);
+}
+
+static VALUE
+range_enum_reverse_size(VALUE range, VALUE args, VALUE eobj)
+{
+ return range_reverse_size(range);
+}
+
+RBIMPL_ATTR_NORETURN()
+static void
+range_each_bignum_endless(VALUE beg)
+{
+ for (;; beg = rb_big_plus(beg, INT2FIX(1))) {
+ rb_yield(beg);
+ }
+ UNREACHABLE;
+}
+
+RBIMPL_ATTR_NORETURN()
+static void
+range_each_fixnum_endless(VALUE beg)
+{
+ for (long i = FIX2LONG(beg); FIXABLE(i); i++) {
+ rb_yield(LONG2FIX(i));
+ }
+
+ range_each_bignum_endless(LONG2NUM(RUBY_FIXNUM_MAX + 1));
+ UNREACHABLE;
+}
+
+static VALUE
+range_each_fixnum_loop(VALUE beg, VALUE end, VALUE range)
+{
+ long lim = FIX2LONG(end) + !EXCL(range);
+ for (long i = FIX2LONG(beg); i < lim; i++) {
+ rb_yield(LONG2FIX(i));
+ }
+ return range;
+}
+
/*
* call-seq:
- * rng.each {| i | block } -> rng
- * rng.each -> an_enumerator
+ * each {|element| ... } -> self
+ * each -> an_enumerator
*
- * Iterates over the elements of range, passing each in turn to the
- * block.
+ * With a block given, passes each element of +self+ to the block:
*
- * The +each+ method can only be used if the begin object of the range
- * supports the +succ+ method. A TypeError is raised if the object
- * does not have +succ+ method defined (like Float).
+ * a = []
+ * (1..4).each {|element| a.push(element) } # => 1..4
+ * a # => [1, 2, 3, 4]
*
- * If no block is given, an enumerator is returned instead.
+ * Raises an exception unless <tt>self.first.respond_to?(:succ)</tt>.
*
- * (10..15).each {|n| print n, ' ' }
- * # prints: 10 11 12 13 14 15
+ * With no block given, returns an enumerator.
*
- * (2.5..5).each {|n| print n, ' ' }
- * # raises: TypeError: can't iterate from Float
*/
static VALUE
range_each(VALUE range)
{
VALUE beg, end;
+ long i;
- RETURN_SIZED_ENUMERATOR(range, 0, 0, range_size);
+ RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size);
beg = RANGE_BEG(range);
end = RANGE_END(range);
- if (FIXNUM_P(beg) && FIXNUM_P(end)) { /* fixnums are special */
- long lim = FIX2LONG(end);
- long i;
+ if (FIXNUM_P(beg) && NIL_P(end)) {
+ range_each_fixnum_endless(beg);
+ }
+ else if (FIXNUM_P(beg) && FIXNUM_P(end)) { /* fixnums are special */
+ return range_each_fixnum_loop(beg, end, range);
+ }
+ else if (RB_INTEGER_TYPE_P(beg) && (NIL_P(end) || RB_INTEGER_TYPE_P(end))) {
+ if (SPECIAL_CONST_P(end) || RBIGNUM_POSITIVE_P(end)) { /* end >= FIXNUM_MIN */
+ if (!FIXNUM_P(beg)) {
+ if (RBIGNUM_NEGATIVE_P(beg)) {
+ do {
+ rb_yield(beg);
+ } while (!FIXNUM_P(beg = rb_big_plus(beg, INT2FIX(1))));
+ if (NIL_P(end)) range_each_fixnum_endless(beg);
+ if (FIXNUM_P(end)) return range_each_fixnum_loop(beg, end, range);
+ }
+ else {
+ if (NIL_P(end)) range_each_bignum_endless(beg);
+ if (FIXNUM_P(end)) return range;
+ }
+ }
+ if (FIXNUM_P(beg)) {
+ i = FIX2LONG(beg);
+ do {
+ rb_yield(LONG2FIX(i));
+ } while (POSFIXABLE(++i));
+ beg = LONG2NUM(i);
+ }
+ ASSUME(!FIXNUM_P(beg));
+ ASSUME(!SPECIAL_CONST_P(end));
+ }
+ if (!FIXNUM_P(beg) && RBIGNUM_SIGN(beg) == RBIGNUM_SIGN(end)) {
+ if (EXCL(range)) {
+ while (rb_big_cmp(beg, end) == INT2FIX(-1)) {
+ rb_yield(beg);
+ beg = rb_big_plus(beg, INT2FIX(1));
+ }
+ }
+ else {
+ VALUE c;
+ while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) {
+ rb_yield(beg);
+ if (c == INT2FIX(0)) break;
+ beg = rb_big_plus(beg, INT2FIX(1));
+ }
+ }
+ }
+ }
+ else if (SYMBOL_P(beg) && (NIL_P(end) || SYMBOL_P(end))) { /* symbols are special */
+ beg = rb_sym2str(beg);
+ if (NIL_P(end)) {
+ rb_str_upto_endless_each(beg, sym_each_i, 0);
+ }
+ else {
+ rb_str_upto_each(beg, rb_sym2str(end), EXCL(range), sym_each_i, 0);
+ }
+ }
+ else {
+ VALUE tmp = rb_check_string_type(beg);
+
+ if (!NIL_P(tmp)) {
+ if (!NIL_P(end)) {
+ rb_str_upto_each(tmp, end, EXCL(range), each_i, 0);
+ }
+ else {
+ rb_str_upto_endless_each(tmp, each_i, 0);
+ }
+ }
+ else {
+ if (!discrete_object_p(beg)) {
+ rb_raise(rb_eTypeError, "can't iterate from %s",
+ rb_obj_classname(beg));
+ }
+ if (!NIL_P(end))
+ range_each_func(range, each_i, 0);
+ else
+ for (;; beg = rb_funcallv(beg, id_succ, 0, 0))
+ rb_yield(beg);
+ }
+ }
+ return range;
+}
+
+RBIMPL_ATTR_NORETURN()
+static void
+range_reverse_each_bignum_beginless(VALUE end)
+{
+ RUBY_ASSERT(RBIGNUM_NEGATIVE_P(end));
- if (!EXCL(range))
- lim += 1;
- for (i = FIX2LONG(beg); i < lim; i++) {
- rb_yield(LONG2FIX(i));
- }
+ for (;; end = rb_big_minus(end, INT2FIX(1))) {
+ rb_yield(end);
}
- else if (SYMBOL_P(beg) && SYMBOL_P(end)) { /* symbols are special */
- VALUE args[2];
+ UNREACHABLE;
+}
+
+static void
+range_reverse_each_bignum(VALUE beg, VALUE end)
+{
+ RUBY_ASSERT(RBIGNUM_POSITIVE_P(beg) == RBIGNUM_POSITIVE_P(end));
+
+ VALUE c;
+ while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) {
+ rb_yield(end);
+ if (c == INT2FIX(0)) break;
+ end = rb_big_minus(end, INT2FIX(1));
+ }
+}
+
+static void
+range_reverse_each_positive_bignum_section(VALUE beg, VALUE end)
+{
+ RUBY_ASSERT(!NIL_P(end));
+
+ if (FIXNUM_P(end) || RBIGNUM_NEGATIVE_P(end)) return;
+
+ if (NIL_P(beg) || FIXNUM_P(beg) || RBIGNUM_NEGATIVE_P(beg)) {
+ beg = LONG2NUM(FIXNUM_MAX + 1);
+ }
+
+ range_reverse_each_bignum(beg, end);
+}
+
+static void
+range_reverse_each_fixnum_section(VALUE beg, VALUE end)
+{
+ RUBY_ASSERT(!NIL_P(end));
+
+ if (!FIXNUM_P(beg)) {
+ if (!NIL_P(beg) && RBIGNUM_POSITIVE_P(beg)) return;
+
+ beg = LONG2FIX(FIXNUM_MIN);
+ }
+
+ if (!FIXNUM_P(end)) {
+ if (RBIGNUM_NEGATIVE_P(end)) return;
+
+ end = LONG2FIX(FIXNUM_MAX);
+ }
+
+ long b = FIX2LONG(beg);
+ long e = FIX2LONG(end);
+ for (long i = e; i >= b; --i) {
+ rb_yield(LONG2FIX(i));
+ }
+}
+
+static void
+range_reverse_each_negative_bignum_section(VALUE beg, VALUE end)
+{
+ RUBY_ASSERT(!NIL_P(end));
- args[0] = rb_sym_to_s(end);
- args[1] = EXCL(range) ? Qtrue : Qfalse;
- rb_block_call(rb_sym_to_s(beg), rb_intern("upto"), 2, args, sym_each_i, 0);
+ if (FIXNUM_P(end) || RBIGNUM_POSITIVE_P(end)) {
+ end = LONG2NUM(FIXNUM_MIN - 1);
+ }
+
+ if (NIL_P(beg)) {
+ range_reverse_each_bignum_beginless(end);
+ }
+
+ if (FIXNUM_P(beg) || RBIGNUM_POSITIVE_P(beg)) return;
+
+ range_reverse_each_bignum(beg, end);
+}
+
+/*
+ * call-seq:
+ * reverse_each {|element| ... } -> self
+ * reverse_each -> an_enumerator
+ *
+ * With a block given, passes each element of +self+ to the block in reverse order:
+ *
+ * a = []
+ * (1..4).reverse_each {|element| a.push(element) } # => 1..4
+ * a # => [4, 3, 2, 1]
+ *
+ * a = []
+ * (1...4).reverse_each {|element| a.push(element) } # => 1...4
+ * a # => [3, 2, 1]
+ *
+ * With no block given, returns an enumerator.
+ *
+ */
+
+static VALUE
+range_reverse_each(VALUE range)
+{
+ RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_reverse_size);
+
+ VALUE beg = RANGE_BEG(range);
+ VALUE end = RANGE_END(range);
+ int excl = EXCL(range);
+
+ if (NIL_P(end)) {
+ rb_raise(rb_eTypeError, "can't iterate from %s",
+ rb_obj_classname(end));
+ }
+
+ if (FIXNUM_P(beg) && FIXNUM_P(end)) {
+ if (excl) {
+ if (end == LONG2FIX(FIXNUM_MIN)) return range;
+
+ end = rb_int_minus(end, INT2FIX(1));
+ }
+
+ range_reverse_each_fixnum_section(beg, end);
+ }
+ else if ((NIL_P(beg) || RB_INTEGER_TYPE_P(beg)) && RB_INTEGER_TYPE_P(end)) {
+ if (excl) {
+ end = rb_int_minus(end, INT2FIX(1));
+ }
+ range_reverse_each_positive_bignum_section(beg, end);
+ range_reverse_each_fixnum_section(beg, end);
+ range_reverse_each_negative_bignum_section(beg, end);
}
else {
- VALUE tmp = rb_check_string_type(beg);
-
- if (!NIL_P(tmp)) {
- VALUE args[2];
-
- args[0] = end;
- args[1] = EXCL(range) ? Qtrue : Qfalse;
- rb_block_call(tmp, rb_intern("upto"), 2, args, rb_yield, 0);
- }
- else {
- if (!discrete_object_p(beg)) {
- rb_raise(rb_eTypeError, "can't iterate from %s",
- rb_obj_classname(beg));
- }
- range_each_func(range, each_i, NULL);
- }
+ return rb_call_super(0, NULL);
}
+
return range;
}
/*
* call-seq:
- * rng.begin -> obj
+ * self.begin -> object
+ *
+ * Returns the object that defines the beginning of +self+.
*
- * Returns the object that defines the beginning of the range.
+ * (1..4).begin # => 1
+ * (..2).begin # => nil
*
- * (1..10).begin #=> 1
+ * Related: Range#first, Range#end.
*/
static VALUE
@@ -801,12 +1355,15 @@ range_begin(VALUE range)
/*
* call-seq:
- * rng.end -> obj
+ * self.end -> object
*
- * Returns the object that defines the end of the range.
+ * Returns the object that defines the end of +self+.
*
- * (1..10).end #=> 10
- * (1...10).end #=> 10
+ * (1..4).end # => 4
+ * (1...4).end # => 4
+ * (1..).end # => nil
+ *
+ * Related: Range#begin, Range#last.
*/
@@ -818,29 +1375,40 @@ range_end(VALUE range)
static VALUE
-first_i(VALUE i, VALUE *ary)
+first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, cbarg))
{
+ VALUE *ary = (VALUE *)cbarg;
long n = NUM2LONG(ary[0]);
if (n <= 0) {
- rb_iter_break();
+ rb_iter_break();
}
rb_ary_push(ary[1], i);
n--;
- ary[0] = INT2NUM(n);
+ ary[0] = LONG2NUM(n);
return Qnil;
}
/*
* call-seq:
- * rng.first -> obj
- * rng.first(n) -> an_array
+ * first -> object
+ * first(n) -> array
+ *
+ * With no argument, returns the first element of +self+, if it exists:
*
- * Returns the first object in the range, or an array of the first +n+
- * elements.
+ * (1..4).first # => 1
+ * ('a'..'d').first # => "a"
*
- * (10..20).first #=> 10
- * (10..20).first(3) #=> [10, 11, 12]
+ * With non-negative integer argument +n+ given,
+ * returns the first +n+ elements in an array:
+ *
+ * (1..10).first(3) # => [1, 2, 3]
+ * (1..10).first(0) # => []
+ * (1..4).first(50) # => [1, 2, 3, 4]
+ *
+ * Raises an exception if there is no first element:
+ *
+ * (..4).first # Raises RangeError
*/
static VALUE
@@ -848,6 +1416,9 @@ range_first(int argc, VALUE *argv, VALUE range)
{
VALUE n, ary[2];
+ if (NIL_P(RANGE_BEG(range))) {
+ rb_raise(rb_eRangeError, "cannot get the first element of beginless range");
+ }
if (argc == 0) return RANGE_BEG(range);
rb_scan_args(argc, argv, "1", &n);
@@ -858,110 +1429,435 @@ range_first(int argc, VALUE *argv, VALUE range)
return ary[1];
}
+static bool
+range_basic_each_p(VALUE range)
+{
+ return rb_method_basic_definition_p(CLASS_OF(range), idEach);
+}
+
+static bool
+integer_end_optimizable(VALUE range)
+{
+ VALUE b = RANGE_BEG(range);
+ if (!NIL_P(b) && !RB_INTEGER_TYPE_P(b)) return false;
+ VALUE e = RANGE_END(range);
+ if (!RB_INTEGER_TYPE_P(e)) return false;
+ if (RB_LIKELY(range_basic_each_p(range))) return true;
+ return false;
+}
+
+static VALUE
+rb_int_range_last(int argc, VALUE *argv, VALUE range)
+{
+ static const VALUE ONE = INT2FIX(1);
+
+ VALUE b, e, len_1 = Qnil, len = Qnil, nv, ary;
+ int x;
+ long n;
+
+ RUBY_ASSERT(argc > 0);
+
+ b = RANGE_BEG(range);
+ e = RANGE_END(range);
+ RUBY_ASSERT(NIL_P(b) || RB_INTEGER_TYPE_P(b), "b=%"PRIsVALUE, rb_obj_class(b));
+ RUBY_ASSERT(RB_INTEGER_TYPE_P(e), "e=%"PRIsVALUE, rb_obj_class(e));
+
+ x = EXCL(range);
+
+ if (!NIL_P(b)) {
+ len_1 = rb_int_minus(e, b);
+ if (x) {
+ e = rb_int_minus(e, ONE);
+ len = len_1;
+ }
+ else {
+ len = rb_int_plus(len_1, ONE);
+ }
+ }
+ else {
+ if (x) {
+ e = rb_int_minus(e, ONE);
+ }
+ }
+
+ if (!NIL_P(len) && (FIXNUM_ZERO_P(len) || rb_num_negative_p(len))) {
+ return rb_ary_new_capa(0);
+ }
+
+ rb_scan_args(argc, argv, "1", &nv);
+ n = NUM2LONG(nv);
+ if (n < 0) {
+ rb_raise(rb_eArgError, "negative array size");
+ }
+
+ nv = LONG2NUM(n);
+ if (!NIL_P(b) && RTEST(rb_int_gt(nv, len))) {
+ nv = len;
+ n = NUM2LONG(nv);
+ }
+
+ ary = rb_ary_new_capa(n);
+ b = rb_int_minus(e, nv);
+ while (n) {
+ b = rb_int_plus(b, ONE);
+ rb_ary_push(ary, b);
+ --n;
+ }
+
+ return ary;
+}
/*
* call-seq:
- * rng.last -> obj
- * rng.last(n) -> an_array
+ * last -> object
+ * last(n) -> array
*
- * Returns the last object in the range,
- * or an array of the last +n+ elements.
+ * With no argument, returns the last element of +self+, if it exists:
*
- * Note that with no arguments +last+ will return the object that defines
- * the end of the range even if #exclude_end? is +true+.
+ * (1..4).last # => 4
+ * ('a'..'d').last # => "d"
+ *
+ * Note that +last+ with no argument returns the end element of +self+
+ * even if #exclude_end? is +true+:
+ *
+ * (1...4).last # => 4
+ * ('a'...'d').last # => "d"
+ *
+ * With non-negative integer argument +n+ given,
+ * returns the last +n+ elements in an array:
+ *
+ * (1..10).last(3) # => [8, 9, 10]
+ * (1..10).last(0) # => []
+ * (1..4).last(50) # => [1, 2, 3, 4]
+ *
+ * Note that +last+ with argument does not return the end element of +self+
+ * if #exclude_end? it +true+:
+ *
+ * (1...4).last(3) # => [1, 2, 3]
+ * ('a'...'d').last(3) # => ["a", "b", "c"]
+ *
+ * Raises an exception if there is no last element:
+ *
+ * (1..).last # Raises RangeError
*
- * (10..20).last #=> 20
- * (10...20).last #=> 20
- * (10..20).last(3) #=> [18, 19, 20]
- * (10...20).last(3) #=> [17, 18, 19]
*/
static VALUE
range_last(int argc, VALUE *argv, VALUE range)
{
+ if (NIL_P(RANGE_END(range))) {
+ rb_raise(rb_eRangeError, "cannot get the last element of endless range");
+ }
if (argc == 0) return RANGE_END(range);
+ if (integer_end_optimizable(range)) {
+ return rb_int_range_last(argc, argv, range);
+ }
return rb_ary_last(argc, argv, rb_Array(range));
}
/*
* call-seq:
- * rng.min -> obj
- * rng.min {| a,b | block } -> obj
+ * min -> object
+ * min(n) -> array
+ * min {|a, b| ... } -> object
+ * min(n) {|a, b| ... } -> array
+ *
+ * Returns the minimum value in +self+,
+ * using method <tt>#<=></tt> or a given block for comparison.
+ *
+ * With no argument and no block given,
+ * returns the minimum-valued element of +self+.
+ *
+ * (1..4).min # => 1
+ * ('a'..'d').min # => "a"
+ * (-4..-1).min # => -4
+ *
+ * With non-negative integer argument +n+ given, and no block given,
+ * returns the +n+ minimum-valued elements of +self+ in an array:
+ *
+ * (1..4).min(2) # => [1, 2]
+ * ('a'..'d').min(2) # => ["a", "b"]
+ * (-4..-1).min(2) # => [-4, -3]
+ * (1..4).min(50) # => [1, 2, 3, 4]
+ *
+ * If a block is given, it is called:
+ *
+ * - First, with the first two element of +self+.
+ * - Then, sequentially, with the so-far minimum value and the next element of +self+.
+ *
+ * To illustrate:
+ *
+ * (1..4).min {|a, b| p [a, b]; a <=> b } # => 1
+ *
+ * Output:
+ *
+ * [2, 1]
+ * [3, 1]
+ * [4, 1]
*
- * Returns the minimum value in the range. Returns +nil+ if the begin
- * value of the range is larger than the end value.
+ * With no argument and a block given,
+ * returns the return value of the last call to the block:
*
- * Can be given an optional block to override the default comparison
- * method <code>a <=> b</code>.
+ * (1..4).min {|a, b| -(a <=> b) } # => 4
*
- * (10..20).min #=> 10
+ * With non-negative integer argument +n+ given, and a block given,
+ * returns the return values of the last +n+ calls to the block in an array:
+ *
+ * (1..4).min(2) {|a, b| -(a <=> b) } # => [4, 3]
+ * (1..4).min(50) {|a, b| -(a <=> b) } # => [4, 3, 2, 1]
+ *
+ * Returns an empty array if +n+ is zero:
+ *
+ * (1..4).min(0) # => []
+ * (1..4).min(0) {|a, b| -(a <=> b) } # => []
+ *
+ * Returns +nil+ or an empty array if:
+ *
+ * - The begin value of the range is larger than the end value:
+ *
+ * (4..1).min # => nil
+ * (4..1).min(2) # => []
+ * (4..1).min {|a, b| -(a <=> b) } # => nil
+ * (4..1).min(2) {|a, b| -(a <=> b) } # => []
+ *
+ * - The begin value of an exclusive range is equal to the end value:
+ *
+ * (1...1).min # => nil
+ * (1...1).min(2) # => []
+ * (1...1).min {|a, b| -(a <=> b) } # => nil
+ * (1...1).min(2) {|a, b| -(a <=> b) } # => []
+ *
+ * Raises an exception if either:
+ *
+ * - +self+ is a beginless range: <tt>(..4)</tt>.
+ * - A block is given and +self+ is an endless range.
+ *
+ * Related: Range#max, Range#minmax.
*/
static VALUE
-range_min(VALUE range)
+range_min(int argc, VALUE *argv, VALUE range)
{
+ if (NIL_P(RANGE_BEG(range))) {
+ rb_raise(rb_eRangeError, "cannot get the minimum of beginless range");
+ }
+
if (rb_block_given_p()) {
- return rb_call_super(0, 0);
+ if (NIL_P(RANGE_END(range))) {
+ rb_raise(rb_eRangeError, "cannot get the minimum of endless range with custom comparison method");
+ }
+ return rb_call_super(argc, argv);
+ }
+ else if (argc != 0) {
+ return range_first(argc, argv, range);
}
else {
- VALUE b = RANGE_BEG(range);
- VALUE e = RANGE_END(range);
- int c = rb_cmpint(rb_funcall(b, id_cmp, 1, e), b, e);
+ VALUE b = RANGE_BEG(range);
+ VALUE e = RANGE_END(range);
+ int c = NIL_P(e) ? -1 : OPTIMIZED_CMP(b, e);
- if (c > 0 || (c == 0 && EXCL(range)))
- return Qnil;
- return b;
+ if (c > 0 || (c == 0 && EXCL(range)))
+ return Qnil;
+ return b;
}
}
/*
* call-seq:
- * rng.max -> obj
- * rng.max {| a,b | block } -> obj
+ * max -> object
+ * max(n) -> array
+ * max {|a, b| ... } -> object
+ * max(n) {|a, b| ... } -> array
+ *
+ * Returns the maximum value in +self+,
+ * using method <tt>#<=></tt> or a given block for comparison.
+ *
+ * With no argument and no block given,
+ * returns the maximum-valued element of +self+.
+ *
+ * (1..4).max # => 4
+ * ('a'..'d').max # => "d"
+ * (-4..-1).max # => -1
+ *
+ * With non-negative integer argument +n+ given, and no block given,
+ * returns the +n+ maximum-valued elements of +self+ in an array:
+ *
+ * (1..4).max(2) # => [4, 3]
+ * ('a'..'d').max(2) # => ["d", "c"]
+ * (-4..-1).max(2) # => [-1, -2]
+ * (1..4).max(50) # => [4, 3, 2, 1]
+ *
+ * If a block is given, it is called:
+ *
+ * - First, with the first two element of +self+.
+ * - Then, sequentially, with the so-far maximum value and the next element of +self+.
+ *
+ * To illustrate:
*
- * Returns the maximum value in the range. Returns +nil+ if the begin
- * value of the range larger than the end value.
+ * (1..4).max {|a, b| p [a, b]; a <=> b } # => 4
*
- * Can be given an optional block to override the default comparison
- * method <code>a <=> b</code>.
+ * Output:
+ *
+ * [2, 1]
+ * [3, 2]
+ * [4, 3]
+ *
+ * With no argument and a block given,
+ * returns the return value of the last call to the block:
+ *
+ * (1..4).max {|a, b| -(a <=> b) } # => 1
+ *
+ * With non-negative integer argument +n+ given, and a block given,
+ * returns the return values of the last +n+ calls to the block in an array:
+ *
+ * (1..4).max(2) {|a, b| -(a <=> b) } # => [1, 2]
+ * (1..4).max(50) {|a, b| -(a <=> b) } # => [1, 2, 3, 4]
+ *
+ * Returns an empty array if +n+ is zero:
+ *
+ * (1..4).max(0) # => []
+ * (1..4).max(0) {|a, b| -(a <=> b) } # => []
+ *
+ * Returns +nil+ or an empty array if:
+ *
+ * - The begin value of the range is larger than the end value:
+ *
+ * (4..1).max # => nil
+ * (4..1).max(2) # => []
+ * (4..1).max {|a, b| -(a <=> b) } # => nil
+ * (4..1).max(2) {|a, b| -(a <=> b) } # => []
+ *
+ * - The begin value of an exclusive range is equal to the end value:
+ *
+ * (1...1).max # => nil
+ * (1...1).max(2) # => []
+ * (1...1).max {|a, b| -(a <=> b) } # => nil
+ * (1...1).max(2) {|a, b| -(a <=> b) } # => []
+ *
+ * Raises an exception if either:
+ *
+ * - +self+ is a endless range: <tt>(1..)</tt>.
+ * - A block is given and +self+ is a beginless range.
+ *
+ * Related: Range#min, Range#minmax.
*
- * (10..20).max #=> 20
*/
static VALUE
-range_max(VALUE range)
+range_max(int argc, VALUE *argv, VALUE range)
{
VALUE e = RANGE_END(range);
int nm = FIXNUM_P(e) || rb_obj_is_kind_of(e, rb_cNumeric);
+ if (NIL_P(RANGE_END(range))) {
+ rb_raise(rb_eRangeError, "cannot get the maximum of endless range");
+ }
+
+ VALUE b = RANGE_BEG(range);
+
if (rb_block_given_p() || (EXCL(range) && !nm)) {
- return rb_call_super(0, 0);
+ if (NIL_P(b)) {
+ rb_raise(rb_eRangeError, "cannot get the maximum of beginless range with custom comparison method");
+ }
+ return rb_call_super(argc, argv);
+ }
+ else if (argc) {
+ VALUE ary[2];
+ ID reverse_each;
+ CONST_ID(reverse_each, "reverse_each");
+ rb_scan_args(argc, argv, "1", &ary[0]);
+ ary[1] = rb_ary_new2(NUM2LONG(ary[0]));
+ rb_block_call(range, reverse_each, 0, 0, first_i, (VALUE)ary);
+ return ary[1];
+#if 0
+ if (integer_end_optimizable(range)) {
+ return rb_int_range_last(argc, argv, range, true);
+ }
+ return rb_ary_reverse(rb_ary_last(argc, argv, rb_Array(range)));
+#endif
}
else {
- VALUE b = RANGE_BEG(range);
- int c = rb_cmpint(rb_funcall(b, id_cmp, 1, e), b, e);
-
- if (c > 0)
- return Qnil;
- if (EXCL(range)) {
- if (!FIXNUM_P(e) && !rb_obj_is_kind_of(e, rb_cInteger)) {
- rb_raise(rb_eTypeError, "cannot exclude non Integer end value");
- }
- if (c == 0) return Qnil;
- if (!FIXNUM_P(b) && !rb_obj_is_kind_of(b,rb_cInteger)) {
- rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value");
- }
- if (FIXNUM_P(e)) {
- return LONG2NUM(FIX2LONG(e) - 1);
- }
- return rb_funcall(e, '-', 1, INT2FIX(1));
- }
- return e;
+ int c = NIL_P(b) ? -1 : OPTIMIZED_CMP(b, e);
+
+ if (c > 0)
+ return Qnil;
+ if (EXCL(range)) {
+ if (!RB_INTEGER_TYPE_P(e)) {
+ rb_raise(rb_eTypeError, "cannot exclude non Integer end value");
+ }
+ if (c == 0) return Qnil;
+ if (!NIL_P(b) && !RB_INTEGER_TYPE_P(b)) {
+ rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value");
+ }
+ if (FIXNUM_P(e)) {
+ return LONG2NUM(FIX2LONG(e) - 1);
+ }
+ return rb_int_minus(e,INT2FIX(1));
+ }
+ return e;
}
}
+/*
+ * call-seq:
+ * minmax -> [object, object]
+ * minmax {|a, b| ... } -> [object, object]
+ *
+ * Returns a 2-element array containing the minimum and maximum value in +self+,
+ * either according to comparison method <tt>#<=></tt> or a given block.
+ *
+ * With no block given, returns the minimum and maximum values,
+ * using <tt>#<=></tt> for comparison:
+ *
+ * (1..4).minmax # => [1, 4]
+ * (1...4).minmax # => [1, 3]
+ * ('a'..'d').minmax # => ["a", "d"]
+ * (-4..-1).minmax # => [-4, -1]
+ *
+ * With a block given, the block must return an integer:
+ *
+ * - Negative if +a+ is smaller than +b+.
+ * - Zero if +a+ and +b+ are equal.
+ * - Positive if +a+ is larger than +b+.
+ *
+ * The block is called <tt>self.size</tt> times to compare elements;
+ * returns a 2-element Array containing the minimum and maximum values from +self+,
+ * per the block:
+ *
+ * (1..4).minmax {|a, b| -(a <=> b) } # => [4, 1]
+ *
+ * Returns <tt>[nil, nil]</tt> if:
+ *
+ * - The begin value of the range is larger than the end value:
+ *
+ * (4..1).minmax # => [nil, nil]
+ * (4..1).minmax {|a, b| -(a <=> b) } # => [nil, nil]
+ *
+ * - The begin value of an exclusive range is equal to the end value:
+ *
+ * (1...1).minmax # => [nil, nil]
+ * (1...1).minmax {|a, b| -(a <=> b) } # => [nil, nil]
+ *
+ * Raises an exception if +self+ is a beginless or an endless range.
+ *
+ * Related: Range#min, Range#max.
+ *
+ */
+
+static VALUE
+range_minmax(VALUE range)
+{
+ if (rb_block_given_p()) {
+ return rb_call_super(0, NULL);
+ }
+ return rb_assoc_new(
+ rb_funcall(range, id_min, 0),
+ rb_funcall(range, id_max, 0)
+ );
+}
+
int
rb_range_values(VALUE range, VALUE *begp, VALUE *endp, int *exclp)
{
@@ -969,16 +1865,22 @@ rb_range_values(VALUE range, VALUE *begp, VALUE *endp, int *exclp)
int excl;
if (rb_obj_is_kind_of(range, rb_cRange)) {
- b = RANGE_BEG(range);
- e = RANGE_END(range);
- excl = EXCL(range);
+ b = RANGE_BEG(range);
+ e = RANGE_END(range);
+ excl = EXCL(range);
+ }
+ else if (RTEST(rb_obj_is_kind_of(range, rb_cArithSeq))) {
+ return (int)Qfalse;
}
else {
- if (!rb_respond_to(range, id_beg)) return (int)Qfalse;
- if (!rb_respond_to(range, id_end)) return (int)Qfalse;
- b = rb_funcall(range, id_beg, 0);
- e = rb_funcall(range, id_end, 0);
- excl = RTEST(rb_funcall(range, rb_intern("exclude_end?"), 0));
+ VALUE x;
+ b = rb_check_funcall(range, id_beg, 0, 0);
+ if (UNDEF_P(b)) return (int)Qfalse;
+ e = rb_check_funcall(range, id_end, 0, 0);
+ if (UNDEF_P(e)) return (int)Qfalse;
+ x = rb_check_funcall(range, rb_intern("exclude_end?"), 0, 0);
+ if (UNDEF_P(x)) return (int)Qfalse;
+ excl = RTEST(x);
}
*begp = b;
*endp = e;
@@ -986,56 +1888,100 @@ rb_range_values(VALUE range, VALUE *begp, VALUE *endp, int *exclp)
return (int)Qtrue;
}
+/* Extract the components of a Range.
+ *
+ * You can use +err+ to control the behavior of out-of-range and exception.
+ *
+ * When +err+ is 0 or 2, if the begin offset is greater than +len+,
+ * it is out-of-range. The +RangeError+ is raised only if +err+ is 2,
+ * in this case. If +err+ is 0, +Qnil+ will be returned.
+ *
+ * When +err+ is 1, the begin and end offsets won't be adjusted even if they
+ * are greater than +len+. It allows +rb_ary_aset+ extends arrays.
+ *
+ * If the begin component of the given range is negative and is too-large
+ * abstract value, the +RangeError+ is raised only +err+ is 1 or 2.
+ *
+ * The case of <code>err = 0</code> is used in item accessing methods such as
+ * +rb_ary_aref+, +rb_ary_slice_bang+, and +rb_str_aref+.
+ *
+ * The case of <code>err = 1</code> is used in Array's methods such as
+ * +rb_ary_aset+ and +rb_ary_fill+.
+ *
+ * The case of <code>err = 2</code> is used in +rb_str_aset+.
+ */
VALUE
-rb_range_beg_len(VALUE range, long *begp, long *lenp, long len, int err)
+rb_range_component_beg_len(VALUE b, VALUE e, int excl,
+ long *begp, long *lenp, long len, int err)
{
- long beg, end, origbeg, origend;
- VALUE b, e;
- int excl;
+ long beg, end;
- if (!rb_range_values(range, &b, &e, &excl))
- return Qfalse;
- beg = NUM2LONG(b);
- end = NUM2LONG(e);
- origbeg = beg;
- origend = end;
+ beg = NIL_P(b) ? 0 : NUM2LONG(b);
+ end = NIL_P(e) ? -1 : NUM2LONG(e);
+ if (NIL_P(e)) excl = 0;
if (beg < 0) {
- beg += len;
- if (beg < 0)
- goto out_of_range;
+ beg += len;
+ if (beg < 0)
+ goto out_of_range;
}
if (end < 0)
- end += len;
+ end += len;
if (!excl)
- end++; /* include end point */
+ end++; /* include end point */
if (err == 0 || err == 2) {
- if (beg > len)
- goto out_of_range;
- if (end > len)
- end = len;
+ if (beg > len)
+ goto out_of_range;
+ if (end > len)
+ end = len;
}
len = end - beg;
if (len < 0)
- len = 0;
+ len = 0;
*begp = beg;
*lenp = len;
return Qtrue;
out_of_range:
- if (err) {
- rb_raise(rb_eRangeError, "%ld..%s%ld out of range",
- origbeg, excl ? "." : "", origend);
- }
return Qnil;
}
+VALUE
+rb_range_beg_len(VALUE range, long *begp, long *lenp, long len, int err)
+{
+ VALUE b, e;
+ int excl;
+
+ if (!rb_range_values(range, &b, &e, &excl))
+ return Qfalse;
+
+ VALUE res = rb_range_component_beg_len(b, e, excl, begp, lenp, len, err);
+ if (NIL_P(res) && err) {
+ rb_raise(rb_eRangeError, "%+"PRIsVALUE" out of range", range);
+ }
+
+ return res;
+}
+
/*
* call-seq:
- * rng.to_s -> string
+ * to_s -> string
+ *
+ * Returns a string representation of +self+,
+ * including <tt>begin.to_s</tt> and <tt>end.to_s</tt>:
+ *
+ * (1..4).to_s # => "1..4"
+ * (1...4).to_s # => "1...4"
+ * (1..).to_s # => "1.."
+ * (..4).to_s # => "..4"
+ *
+ * Note that returns from #to_s and #inspect may differ:
+ *
+ * ('a'..'d').to_s # => "a..d"
+ * ('a'..'d').inspect # => "\"a\"..\"d\""
+ *
+ * Related: Range#inspect.
*
- * Convert this range object to a printable form (using #to_s to convert the
- * begin and end objects).
*/
static VALUE
@@ -1048,7 +1994,6 @@ range_to_s(VALUE range)
str = rb_str_dup(str);
rb_str_cat(str, "...", EXCL(range) ? 3 : 2);
rb_str_append(str, str2);
- OBJ_INFECT(str, str2);
return str;
}
@@ -1056,28 +2001,45 @@ range_to_s(VALUE range)
static VALUE
inspect_range(VALUE range, VALUE dummy, int recur)
{
- VALUE str, str2;
+ VALUE str, str2 = Qundef;
if (recur) {
- return rb_str_new2(EXCL(range) ? "(... ... ...)" : "(... .. ...)");
+ return rb_str_new2(EXCL(range) ? "(... ... ...)" : "(... .. ...)");
+ }
+ if (!NIL_P(RANGE_BEG(range)) || NIL_P(RANGE_END(range))) {
+ str = rb_str_dup(rb_inspect(RANGE_BEG(range)));
+ }
+ else {
+ str = rb_str_new(0, 0);
}
- str = rb_inspect(RANGE_BEG(range));
- str2 = rb_inspect(RANGE_END(range));
- str = rb_str_dup(str);
rb_str_cat(str, "...", EXCL(range) ? 3 : 2);
- rb_str_append(str, str2);
- OBJ_INFECT(str, str2);
+ if (NIL_P(RANGE_BEG(range)) || !NIL_P(RANGE_END(range))) {
+ str2 = rb_inspect(RANGE_END(range));
+ }
+ if (!UNDEF_P(str2)) rb_str_append(str, str2);
return str;
}
/*
* call-seq:
- * rng.inspect -> string
+ * inspect -> string
+ *
+ * Returns a string representation of +self+,
+ * including <tt>begin.inspect</tt> and <tt>end.inspect</tt>:
+ *
+ * (1..4).inspect # => "1..4"
+ * (1...4).inspect # => "1...4"
+ * (1..).inspect # => "1.."
+ * (..4).inspect # => "..4"
+ *
+ * Note that returns from #to_s and #inspect may differ:
+ *
+ * ('a'..'d').to_s # => "a..d"
+ * ('a'..'d').inspect # => "\"a\"..\"d\""
+ *
+ * Related: Range#to_s.
*
- * Convert this range object to a printable form (using
- * <code>inspect</code> to convert the begin and end
- * objects).
*/
@@ -1087,107 +2049,263 @@ range_inspect(VALUE range)
return rb_exec_recursive(inspect_range, range, 0);
}
+static VALUE range_include_internal(VALUE range, VALUE val);
+VALUE rb_str_include_range_p(VALUE beg, VALUE end, VALUE val, VALUE exclusive);
+
/*
* call-seq:
- * rng === obj -> true or false
+ * self === other -> true or false
*
- * Returns <code>true</code> if +obj+ is an element of the range,
- * <code>false</code> otherwise. Conveniently, <code>===</code> is the
- * comparison operator used by <code>case</code> statements.
+ * Returns whether +other+ is between <tt>self.begin</tt> and <tt>self.end</tt>:
*
- * case 79
- * when 1..50 then print "low\n"
- * when 51..75 then print "medium\n"
- * when 76..100 then print "high\n"
- * end
+ * (1..4) === 2 # => true
+ * (1..4) === 5 # => false
+ * (1..4) === 'a' # => false
+ * (1..4) === 4 # => true
+ * (1...4) === 4 # => false
+ * ('a'..'d') === 'c' # => true
+ * ('a'..'d') === 'e' # => false
+ *
+ * A case statement uses method <tt>===</tt>, and so:
*
- * <em>produces:</em>
+ * case 79
+ * when (1..50)
+ * "low"
+ * when (51..75)
+ * "medium"
+ * when (76..100)
+ * "high"
+ * end # => "high"
+ *
+ * case "2.6.5"
+ * when ..."2.4"
+ * "EOL"
+ * when "2.4"..."2.5"
+ * "maintenance"
+ * when "2.5"..."3.0"
+ * "stable"
+ * when "3.1"..
+ * "upcoming"
+ * end # => "stable"
*
- * high
*/
static VALUE
range_eqq(VALUE range, VALUE val)
{
- return rb_funcall(range, rb_intern("include?"), 1, val);
+ return r_cover_p(range, RANGE_BEG(range), RANGE_END(range), val);
}
/*
* call-seq:
- * rng.member?(obj) -> true or false
- * rng.include?(obj) -> true or false
+ * include?(object) -> true or false
+ *
+ * Returns +true+ if +object+ is an element of +self+, +false+ otherwise:
+ *
+ * (1..4).include?(2) # => true
+ * (1..4).include?(5) # => false
+ * (1..4).include?(4) # => true
+ * (1...4).include?(4) # => false
+ * ('a'..'d').include?('b') # => true
+ * ('a'..'d').include?('e') # => false
+ * ('a'..'d').include?('B') # => false
+ * ('a'..'d').include?('d') # => true
+ * ('a'...'d').include?('d') # => false
*
- * Returns <code>true</code> if +obj+ is an element of
- * the range, <code>false</code> otherwise. If begin and end are
- * numeric, comparison is done according to the magnitude of the values.
+ * If begin and end are numeric, #include? behaves like #cover?
*
- * ("a".."z").include?("g") #=> true
- * ("a".."z").include?("A") #=> false
- * ("a".."z").include?("cc") #=> false
+ * (1..3).include?(1.5) # => true
+ * (1..3).cover?(1.5) # => true
+ *
+ * But when not numeric, the two methods may differ:
+ *
+ * ('a'..'d').include?('cc') # => false
+ * ('a'..'d').cover?('cc') # => true
+ *
+ * Related: Range#cover?.
*/
static VALUE
range_include(VALUE range, VALUE val)
{
+ VALUE ret = range_include_internal(range, val);
+ if (!UNDEF_P(ret)) return ret;
+ return rb_call_super(1, &val);
+}
+
+static inline bool
+range_integer_edge_p(VALUE beg, VALUE end)
+{
+ return (!NIL_P(rb_check_to_integer(beg, "to_int")) ||
+ !NIL_P(rb_check_to_integer(end, "to_int")));
+}
+
+static inline bool
+range_string_range_p(VALUE beg, VALUE end)
+{
+ return RB_TYPE_P(beg, T_STRING) && RB_TYPE_P(end, T_STRING);
+}
+
+static inline VALUE
+range_include_fallback(VALUE beg, VALUE end, VALUE val)
+{
+ if (NIL_P(beg) && NIL_P(end)) {
+ if (linear_object_p(val)) return Qtrue;
+ }
+
+ if (NIL_P(beg) || NIL_P(end)) {
+ rb_raise(rb_eTypeError, "cannot determine inclusion in beginless/endless ranges");
+ }
+
+ return Qundef;
+}
+
+static VALUE
+range_include_internal(VALUE range, VALUE val)
+{
VALUE beg = RANGE_BEG(range);
VALUE end = RANGE_END(range);
int nv = FIXNUM_P(beg) || FIXNUM_P(end) ||
- rb_obj_is_kind_of(beg, rb_cNumeric) ||
- rb_obj_is_kind_of(end, rb_cNumeric);
-
- if (nv ||
- !NIL_P(rb_check_to_integer(beg, "to_int")) ||
- !NIL_P(rb_check_to_integer(end, "to_int"))) {
- if (r_le(beg, val)) {
- if (EXCL(range)) {
- if (r_lt(val, end))
- return Qtrue;
- }
- else {
- if (r_le(val, end))
- return Qtrue;
- }
- }
- return Qfalse;
- }
- else if (RB_TYPE_P(beg, T_STRING) && RB_TYPE_P(end, T_STRING) &&
- RSTRING_LEN(beg) == 1 && RSTRING_LEN(end) == 1) {
- if (NIL_P(val)) return Qfalse;
- if (RB_TYPE_P(val, T_STRING)) {
- if (RSTRING_LEN(val) == 0 || RSTRING_LEN(val) > 1)
- return Qfalse;
- else {
- char b = RSTRING_PTR(beg)[0];
- char e = RSTRING_PTR(end)[0];
- char v = RSTRING_PTR(val)[0];
-
- if (ISASCII(b) && ISASCII(e) && ISASCII(v)) {
- if (b <= v && v < e) return Qtrue;
- if (!EXCL(range) && v == e) return Qtrue;
- return Qfalse;
- }
- }
- }
- }
- /* TODO: ruby_frame->this_func = rb_intern("include?"); */
- return rb_call_super(1, &val);
+ linear_object_p(beg) || linear_object_p(end);
+
+ if (nv || range_integer_edge_p(beg, end)) {
+ return r_cover_p(range, beg, end, val);
+ }
+ else if (range_string_range_p(beg, end)) {
+ return rb_str_include_range_p(beg, end, val, RANGE_EXCL(range));
+ }
+
+ return range_include_fallback(beg, end, val);
}
+static int r_cover_range_p(VALUE range, VALUE beg, VALUE end, VALUE val);
/*
* call-seq:
- * rng.cover?(obj) -> true or false
- *
- * Returns <code>true</code> if +obj+ is between the begin and end of
- * the range.
+ * cover?(object) -> true or false
+ * cover?(range) -> true or false
*
- * This tests <code>begin <= obj <= end</code> when #exclude_end? is +false+
- * and <code>begin <= obj < end</code> when #exclude_end? is +true+.
+ * Returns +true+ if the given argument is within +self+, +false+ otherwise.
+ *
+ * With non-range argument +object+, evaluates with <tt><=</tt> and <tt><</tt>.
+ *
+ * For range +self+ with included end value (<tt>#exclude_end? == false</tt>),
+ * evaluates thus:
+ *
+ * self.begin <= object <= self.end
+ *
+ * Examples:
+ *
+ * r = (1..4)
+ * r.cover?(1) # => true
+ * r.cover?(4) # => true
+ * r.cover?(0) # => false
+ * r.cover?(5) # => false
+ * r.cover?('foo') # => false
+ *
+ * r = ('a'..'d')
+ * r.cover?('a') # => true
+ * r.cover?('d') # => true
+ * r.cover?(' ') # => false
+ * r.cover?('e') # => false
+ * r.cover?(0) # => false
+ *
+ * For range +r+ with excluded end value (<tt>#exclude_end? == true</tt>),
+ * evaluates thus:
+ *
+ * r.begin <= object < r.end
+ *
+ * Examples:
+ *
+ * r = (1...4)
+ * r.cover?(1) # => true
+ * r.cover?(3) # => true
+ * r.cover?(0) # => false
+ * r.cover?(4) # => false
+ * r.cover?('foo') # => false
+ *
+ * r = ('a'...'d')
+ * r.cover?('a') # => true
+ * r.cover?('c') # => true
+ * r.cover?(' ') # => false
+ * r.cover?('d') # => false
+ * r.cover?(0) # => false
+ *
+ * With range argument +range+, compares the first and last
+ * elements of +self+ and +range+:
+ *
+ * r = (1..4)
+ * r.cover?(1..4) # => true
+ * r.cover?(0..4) # => false
+ * r.cover?(1..5) # => false
+ * r.cover?('a'..'d') # => false
+ *
+ * r = (1...4)
+ * r.cover?(1..3) # => true
+ * r.cover?(1..4) # => false
+ *
+ * If begin and end are numeric, #cover? behaves like #include?
+ *
+ * (1..3).cover?(1.5) # => true
+ * (1..3).include?(1.5) # => true
+ *
+ * But when not numeric, the two methods may differ:
+ *
+ * ('a'..'d').cover?('cc') # => true
+ * ('a'..'d').include?('cc') # => false
+ *
+ * Returns +false+ if either:
+ *
+ * - The begin value of +self+ is larger than its end value.
+ * - An internal call to <tt>#<=></tt> returns +nil+;
+ * that is, the operands are not comparable.
+ *
+ * Beginless ranges cover all values of the same type before the end,
+ * excluding the end for exclusive ranges. Beginless ranges cover
+ * ranges that end before the end of the beginless range, or at the
+ * end of the beginless range for inclusive ranges.
+ *
+ * (..2).cover?(1) # => true
+ * (..2).cover?(2) # => true
+ * (..2).cover?(3) # => false
+ * (...2).cover?(2) # => false
+ * (..2).cover?("2") # => false
+ * (..2).cover?(..2) # => true
+ * (..2).cover?(...2) # => true
+ * (..2).cover?(.."2") # => false
+ * (...2).cover?(..2) # => false
+ *
+ * Endless ranges cover all values of the same type after the
+ * beginning. Endless exclusive ranges do not cover endless
+ * inclusive ranges.
+ *
+ * (2..).cover?(1) # => false
+ * (2..).cover?(3) # => true
+ * (2...).cover?(3) # => true
+ * (2..).cover?(2) # => true
+ * (2..).cover?("2") # => false
+ * (2..).cover?(2..) # => true
+ * (2..).cover?(2...) # => true
+ * (2..).cover?("2"..) # => false
+ * (2...).cover?(2..) # => false
+ * (2...).cover?(3...) # => true
+ * (2...).cover?(3..) # => false
+ * (3..).cover?(2..) # => false
+ *
+ * Ranges that are both beginless and endless cover all values and
+ * ranges, and return true for all arguments, with the exception that
+ * beginless and endless exclusive ranges do not cover endless
+ * inclusive ranges.
+ *
+ * (nil...).cover?(Object.new) # => true
+ * (nil...).cover?(nil...) # => true
+ * (nil..).cover?(nil...) # => true
+ * (nil...).cover?(nil..) # => false
+ * (nil...).cover?(1..) # => false
+ *
+ * Related: Range#include?.
*
- * ("a".."z").cover?("c") #=> true
- * ("a".."z").cover?("5") #=> false
- * ("a".."z").cover?("cc") #=> true
*/
static VALUE
@@ -1197,15 +2315,67 @@ range_cover(VALUE range, VALUE val)
beg = RANGE_BEG(range);
end = RANGE_END(range);
- if (r_le(beg, val)) {
- if (EXCL(range)) {
- if (r_lt(val, end))
- return Qtrue;
- }
- else {
- if (r_le(val, end))
- return Qtrue;
- }
+
+ if (rb_obj_is_kind_of(val, rb_cRange)) {
+ return RBOOL(r_cover_range_p(range, beg, end, val));
+ }
+ return r_cover_p(range, beg, end, val);
+}
+
+static VALUE
+r_call_max(VALUE r)
+{
+ return rb_funcallv(r, rb_intern("max"), 0, 0);
+}
+
+static int
+r_cover_range_p(VALUE range, VALUE beg, VALUE end, VALUE val)
+{
+ VALUE val_beg, val_end, val_max;
+ int cmp_end;
+
+ val_beg = RANGE_BEG(val);
+ val_end = RANGE_END(val);
+
+ if (!NIL_P(end) && NIL_P(val_end)) return FALSE;
+ if (!NIL_P(beg) && NIL_P(val_beg)) return FALSE;
+ if (!NIL_P(val_beg) && !NIL_P(val_end) && r_less(val_beg, val_end) > (EXCL(val) ? -1 : 0)) return FALSE;
+ if (!NIL_P(val_beg) && !r_cover_p(range, beg, end, val_beg)) return FALSE;
+
+
+ if (!NIL_P(val_end) && !NIL_P(end)) {
+ VALUE r_cmp_end = rb_funcall(end, id_cmp, 1, val_end);
+ if (NIL_P(r_cmp_end)) return FALSE;
+ cmp_end = rb_cmpint(r_cmp_end, end, val_end);
+ }
+ else {
+ cmp_end = r_less(end, val_end);
+ }
+
+
+ if (EXCL(range) == EXCL(val)) {
+ return cmp_end >= 0;
+ }
+ else if (EXCL(range)) {
+ return cmp_end > 0;
+ }
+ else if (cmp_end >= 0) {
+ return TRUE;
+ }
+
+ val_max = rb_rescue2(r_call_max, val, 0, Qnil, rb_eTypeError, (VALUE)0);
+ if (NIL_P(val_max)) return FALSE;
+
+ return r_less(end, val_max) >= 0;
+}
+
+static VALUE
+r_cover_p(VALUE range, VALUE beg, VALUE end, VALUE val)
+{
+ if (NIL_P(beg) || r_less(beg, val) <= 0) {
+ int excl = EXCL(range);
+ if (NIL_P(end) || r_less(val, end) <= -excl)
+ return Qtrue;
}
return Qfalse;
}
@@ -1213,10 +2383,7 @@ range_cover(VALUE range, VALUE val)
static VALUE
range_dumper(VALUE range)
{
- VALUE v;
- NEWOBJ_OF(m, struct RObject, rb_cObject, T_OBJECT);
-
- v = (VALUE)m;
+ VALUE v = rb_obj_alloc(rb_cObject);
rb_ivar_set(v, id_excl, RANGE_EXCL(range));
rb_ivar_set(v, id_beg, RANGE_BEG(range));
@@ -1227,94 +2394,452 @@ range_dumper(VALUE range)
static VALUE
range_loader(VALUE range, VALUE obj)
{
+ VALUE beg, end, excl;
+
if (!RB_TYPE_P(obj, T_OBJECT) || RBASIC(obj)->klass != rb_cObject) {
rb_raise(rb_eTypeError, "not a dumped range object");
}
- RSTRUCT(range)->as.ary[0] = rb_ivar_get(obj, id_beg);
- RSTRUCT(range)->as.ary[1] = rb_ivar_get(obj, id_end);
- RSTRUCT(range)->as.ary[2] = rb_ivar_get(obj, id_excl);
+ range_modify(range);
+ beg = rb_ivar_get(obj, id_beg);
+ end = rb_ivar_get(obj, id_end);
+ excl = rb_ivar_get(obj, id_excl);
+ if (!NIL_P(excl)) {
+ range_init(range, beg, end, RBOOL(RTEST(excl)));
+ }
return range;
}
static VALUE
range_alloc(VALUE klass)
{
- /* rb_struct_alloc_noinit itself should not be used because
- * rb_marshal_define_compat uses equality of allocaiton function */
+ /* rb_struct_alloc_noinit itself should not be used because
+ * rb_marshal_define_compat uses equality of allocation function */
return rb_struct_alloc_noinit(klass);
}
-/* A <code>Range</code> represents an interval---a set of values with a
- * beginning and an end. Ranges may be constructed using the
- * <em>s</em><code>..</code><em>e</em> and
- * <em>s</em><code>...</code><em>e</em> literals, or with
- * Range::new. Ranges constructed using <code>..</code>
- * run from the beginning to the end inclusively. Those created using
- * <code>...</code> exclude the end value. When used as an iterator,
- * ranges return each value in the sequence.
- *
- * (-1..-5).to_a #=> []
- * (-5..-1).to_a #=> [-5, -4, -3, -2, -1]
- * ('a'..'e').to_a #=> ["a", "b", "c", "d", "e"]
- * ('a'...'e').to_a #=> ["a", "b", "c", "d"]
- *
- * == Custom Objects in Ranges
- *
- * Ranges can be constructed using any objects that can be compared
- * using the <code><=></code> operator.
- * Methods that treat the range as a sequence (#each and methods inherited
- * from Enumerable) expect the begin object to implement a
- * <code>succ</code> method to return the next object in sequence.
- * The #step and #include? methods require the begin
- * object to implement <code>succ</code> or to be numeric.
- *
- * In the <code>Xs</code> class below both <code><=></code> and
- * <code>succ</code> are implemented so <code>Xs</code> can be used
- * to construct ranges. Note that the Comparable module is included
- * so the <code>==</code> method is defined in terms of <code><=></code>.
- *
- * class Xs # represent a string of 'x's
- * include Comparable
- * attr :length
- * def initialize(n)
- * @length = n
- * end
- * def succ
- * Xs.new(@length + 1)
- * end
- * def <=>(other)
- * @length <=> other.length
- * end
- * def to_s
- * sprintf "%2d #{inspect}", @length
- * end
- * def inspect
- * 'x' * @length
- * end
+/*
+ * call-seq:
+ * count -> integer
+ * count(object) -> integer
+ * count {|element| ... } -> integer
+ *
+ * Returns the count of elements, based on an argument or block criterion, if given.
+ *
+ * With no argument and no block given, returns the number of elements:
+ *
+ * (1..4).count # => 4
+ * (1...4).count # => 3
+ * ('a'..'d').count # => 4
+ * ('a'...'d').count # => 3
+ * (1..).count # => Infinity
+ * (..4).count # => Infinity
+ *
+ * With argument +object+, returns the number of +object+ found in +self+,
+ * which will usually be zero or one:
+ *
+ * (1..4).count(2) # => 1
+ * (1..4).count(5) # => 0
+ * (1..4).count('a') # => 0
+ *
+ * With a block given, calls the block with each element;
+ * returns the number of elements for which the block returns a truthy value:
+ *
+ * (1..4).count {|element| element < 3 } # => 2
+ *
+ * Related: Range#size.
+ */
+static VALUE
+range_count(int argc, VALUE *argv, VALUE range)
+{
+ if (argc != 0) {
+ /* It is odd for instance (1...).count(0) to return Infinity. Just let
+ * it loop. */
+ return rb_call_super(argc, argv);
+ }
+ else if (rb_block_given_p()) {
+ /* Likewise it is odd for instance (1...).count {|x| x == 0 } to return
+ * Infinity. Just let it loop. */
+ return rb_call_super(argc, argv);
+ }
+
+ VALUE beg = RANGE_BEG(range), end = RANGE_END(range);
+
+ if (NIL_P(beg) || NIL_P(end)) {
+ /* We are confident that the answer is Infinity. */
+ return DBL2NUM(HUGE_VAL);
+ }
+
+ if (is_integer_p(beg)) {
+ VALUE size = range_size(range);
+ if (!NIL_P(size)) {
+ return size;
+ }
+ }
+
+ return rb_call_super(argc, argv);
+}
+
+static bool
+empty_region_p(VALUE beg, VALUE end, int excl)
+{
+ if (NIL_P(beg)) return false;
+ if (NIL_P(end)) return false;
+ int less = r_less(beg, end);
+ /* empty range */
+ if (less > 0) return true;
+ if (excl && less == 0) return true;
+ return false;
+}
+
+/*
+ * call-seq:
+ * overlap?(range) -> true or false
+ *
+ * Returns +true+ if +range+ overlaps with +self+, +false+ otherwise:
+ *
+ * (0..2).overlap?(1..3) #=> true
+ * (0..2).overlap?(3..4) #=> false
+ * (0..).overlap?(..0) #=> true
+ *
+ * With non-range argument, raises TypeError.
+ *
+ * (1..3).overlap?(1) # TypeError
+ *
+ * Returns +false+ if an internal call to <tt>#<=></tt> returns +nil+;
+ * that is, the operands are not comparable.
+ *
+ * (1..3).overlap?('a'..'d') # => false
+ *
+ * Returns +false+ if +self+ or +range+ is empty. "Empty range" means
+ * that its begin value is larger than, or equal for an exclusive
+ * range, its end value.
+ *
+ * (4..1).overlap?(2..3) # => false
+ * (4..1).overlap?(..3) # => false
+ * (4..1).overlap?(2..) # => false
+ * (2...2).overlap?(1..2) # => false
+ *
+ * (1..4).overlap?(3..2) # => false
+ * (..4).overlap?(3..2) # => false
+ * (1..).overlap?(3..2) # => false
+ * (1..2).overlap?(2...2) # => false
+ *
+ * Returns +false+ if the begin value one of +self+ and +range+ is
+ * larger than, or equal if the other is an exclusive range, the end
+ * value of the other:
+ *
+ * (4..5).overlap?(2..3) # => false
+ * (4..5).overlap?(2...4) # => false
+ *
+ * (1..2).overlap?(3..4) # => false
+ * (1...3).overlap?(3..4) # => false
+ *
+ * Returns +false+ if the end value one of +self+ and +range+ is
+ * larger than, or equal for an exclusive range, the end value of the
+ * other:
+ *
+ * (4..5).overlap?(2..3) # => false
+ * (4..5).overlap?(2...4) # => false
+ *
+ * (1..2).overlap?(3..4) # => false
+ * (1...3).overlap?(3..4) # => false
+ *
+ * Note that the method wouldn't make any assumptions about the beginless
+ * range being actually empty, even if its upper bound is the minimum
+ * possible value of its type, so all this would return +true+:
+ *
+ * (...-Float::INFINITY).overlap?(...-Float::INFINITY) # => true
+ * (..."").overlap?(..."") # => true
+ * (...[]).overlap?(...[]) # => true
+ *
+ * Even if those ranges are effectively empty (no number can be smaller than
+ * <tt>-Float::INFINITY</tt>), they are still considered overlapping
+ * with themselves.
+ *
+ * Related: Range#cover?.
+ */
+
+static VALUE
+range_overlap(VALUE range, VALUE other)
+{
+ if (!rb_obj_is_kind_of(other, rb_cRange)) {
+ rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (expected Range)",
+ rb_class_name(rb_obj_class(other)));
+ }
+
+ VALUE self_beg = RANGE_BEG(range);
+ VALUE self_end = RANGE_END(range);
+ int self_excl = EXCL(range);
+ VALUE other_beg = RANGE_BEG(other);
+ VALUE other_end = RANGE_END(other);
+ int other_excl = EXCL(other);
+
+ if (empty_region_p(self_beg, other_end, other_excl)) return Qfalse;
+ if (empty_region_p(other_beg, self_end, self_excl)) return Qfalse;
+
+ if (!NIL_P(self_beg) && !NIL_P(other_beg)) {
+ VALUE cmp = rb_funcall(self_beg, id_cmp, 1, other_beg);
+ if (NIL_P(cmp)) return Qfalse;
+ /* if both begin values are equal, no more comparisons needed */
+ if (rb_cmpint(cmp, self_beg, other_beg) == 0) return Qtrue;
+ }
+ else if (NIL_P(self_beg) && !NIL_P(self_end) && NIL_P(other_beg) && !NIL_P(other_end)) {
+ VALUE cmp = rb_funcall(self_end, id_cmp, 1, other_end);
+ return RBOOL(!NIL_P(cmp));
+ }
+
+ if (empty_region_p(self_beg, self_end, self_excl)) return Qfalse;
+ if (empty_region_p(other_beg, other_end, other_excl)) return Qfalse;
+
+ return Qtrue;
+}
+
+/* A \Range object represents a collection of values
+ * that are between given begin and end values.
+ *
+ * You can create an \Range object explicitly with:
+ *
+ * - A {range literal}[rdoc-ref:syntax/literals.rdoc@Range+Literals]:
+ *
+ * # Ranges that use '..' to include the given end value.
+ * (1..4).to_a # => [1, 2, 3, 4]
+ * ('a'..'d').to_a # => ["a", "b", "c", "d"]
+ * # Ranges that use '...' to exclude the given end value.
+ * (1...4).to_a # => [1, 2, 3]
+ * ('a'...'d').to_a # => ["a", "b", "c"]
+ *
+ * - Method Range.new:
+ *
+ * # Ranges that by default include the given end value.
+ * Range.new(1, 4).to_a # => [1, 2, 3, 4]
+ * Range.new('a', 'd').to_a # => ["a", "b", "c", "d"]
+ * # Ranges that use third argument +exclude_end+ to exclude the given end value.
+ * Range.new(1, 4, true).to_a # => [1, 2, 3]
+ * Range.new('a', 'd', true).to_a # => ["a", "b", "c"]
+ *
+ * == Beginless Ranges
+ *
+ * A _beginless_ _range_ has a definite end value, but a +nil+ begin value.
+ * Such a range includes all values up to the end value.
+ *
+ * r = (..4) # => nil..4
+ * r.begin # => nil
+ * r.include?(-50) # => true
+ * r.include?(4) # => true
+ *
+ * r = (...4) # => nil...4
+ * r.include?(4) # => false
+ *
+ * Range.new(nil, 4) # => nil..4
+ * Range.new(nil, 4, true) # => nil...4
+ *
+ * A beginless range may be used to slice an array:
+ *
+ * a = [1, 2, 3, 4]
+ * # Include the third array element in the slice
+ * r = (..2) # => nil..2
+ * a[r] # => [1, 2, 3]
+ * # Exclude the third array element from the slice
+ * r = (...2) # => nil...2
+ * a[r] # => [1, 2]
+ *
+ * Method +each+ for a beginless range raises an exception.
+ *
+ * == Endless Ranges
+ *
+ * An _endless_ _range_ has a definite begin value, but a +nil+ end value.
+ * Such a range includes all values from the begin value.
+ *
+ * r = (1..) # => 1..
+ * r.end # => nil
+ * r.include?(50) # => true
+ *
+ * Range.new(1, nil) # => 1..
+ *
+ * The literal for an endless range may be written with either two dots
+ * or three.
+ * The range has the same elements, either way.
+ * But note that the two are not equal:
+ *
+ * r0 = (1..) # => 1..
+ * r1 = (1...) # => 1...
+ * r0.begin == r1.begin # => true
+ * r0.end == r1.end # => true
+ * r0 == r1 # => false
+ *
+ * An endless range may be used to slice an array:
+ *
+ * a = [1, 2, 3, 4]
+ * r = (2..) # => 2..
+ * a[r] # => [3, 4]
+ *
+ * Method +each+ for an endless range calls the given block indefinitely:
+ *
+ * a = []
+ * r = (1..)
+ * r.each do |i|
+ * a.push(i) if i.even?
+ * break if i > 10
+ * end
+ * a # => [2, 4, 6, 8, 10]
+ *
+ * A range can be both beginless and endless. For literal beginless, endless
+ * ranges, at least the beginning or end of the range must be given as an
+ * explicit nil value. It is recommended to use an explicit nil beginning and
+ * end, since that is what Ruby uses for Range#inspect:
+ *
+ * (nil..) # => (nil..nil)
+ * (..nil) # => (nil..nil)
+ * (nil..nil) # => (nil..nil)
+ *
+ * == Ranges and Other Classes
+ *
+ * An object may be put into a range if its class implements
+ * instance method <tt>#<=></tt>.
+ * Ruby core classes that do so include Array, Complex, File::Stat,
+ * Float, Integer, Kernel, Module, Numeric, Rational, String, Symbol, and Time.
+ *
+ * Example:
+ *
+ * t0 = Time.now # => 2021-09-19 09:22:48.4854986 -0500
+ * t1 = Time.now # => 2021-09-19 09:22:56.0365079 -0500
+ * t2 = Time.now # => 2021-09-19 09:23:08.5263283 -0500
+ * (t0..t2).include?(t1) # => true
+ * (t0..t1).include?(t2) # => false
+ *
+ * A range can be iterated over only if its elements
+ * implement instance method +succ+.
+ * Ruby core classes that do so include Integer, String, and Symbol
+ * (but not the other classes mentioned above).
+ *
+ * Iterator methods include:
+ *
+ * - In \Range itself: #each, #step, and #%
+ * - Included from module Enumerable: #each_entry, #each_with_index,
+ * #each_with_object, #each_slice, #each_cons, and #reverse_each.
+ *
+ * Example:
+ *
+ * a = []
+ * (1..4).each {|i| a.push(i) }
+ * a # => [1, 2, 3, 4]
+ *
+ * == Ranges and User-Defined Classes
+ *
+ * A user-defined class that is to be used in a range
+ * must implement instance method <tt>#<=></tt>;
+ * see Integer#<=>.
+ * To make iteration available, it must also implement
+ * instance method +succ+; see Integer#succ.
+ *
+ * The class below implements both <tt>#<=></tt> and +succ+,
+ * and so can be used both to construct ranges and to iterate over them.
+ * Note that the Comparable module is included
+ * so the <tt>==</tt> method is defined in terms of <tt>#<=></tt>.
+ *
+ * # Represent a string of 'X' characters.
+ * class Xs
+ * include Comparable
+ * attr_accessor :length
+ * def initialize(n)
+ * @length = n
+ * end
+ * def succ
+ * Xs.new(@length + 1)
+ * end
+ * def <=>(other)
+ * @length <=> other.length
* end
+ * def to_s
+ * sprintf "%2d #{inspect}", @length
+ * end
+ * def inspect
+ * 'X' * @length
+ * end
+ * end
+ *
+ * r = Xs.new(3)..Xs.new(6) #=> XXX..XXXXXX
+ * r.to_a #=> [XXX, XXXX, XXXXX, XXXXXX]
+ * r.include?(Xs.new(5)) #=> true
+ * r.include?(Xs.new(7)) #=> false
+ *
+ * == What's Here
+ *
+ * First, what's elsewhere. Class \Range:
+ *
+ * - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here].
+ * - Includes {module Enumerable}[rdoc-ref:Enumerable@What-27s+Here],
+ * which provides dozens of additional methods.
+ *
+ * Here, class \Range provides methods that are useful for:
+ *
+ * - {Creating a Range}[rdoc-ref:Range@Methods+for+Creating+a+Range]
+ * - {Querying}[rdoc-ref:Range@Methods+for+Querying]
+ * - {Comparing}[rdoc-ref:Range@Methods+for+Comparing]
+ * - {Iterating}[rdoc-ref:Range@Methods+for+Iterating]
+ * - {Converting}[rdoc-ref:Range@Methods+for+Converting]
+ * - {Methods for Working with JSON}[rdoc-ref:Range@Methods+for+Working+with+JSON]
+ *
+ * === Methods for Creating a \Range
+ *
+ * - ::new: Returns a new range.
+ *
+ * === Methods for Querying
*
- * An example of using <code>Xs</code> to construct a range:
+ * - #begin: Returns the begin value given for +self+.
+ * - #bsearch: Returns an element from +self+ selected by a binary search.
+ * - #count: Returns a count of elements in +self+.
+ * - #end: Returns the end value given for +self+.
+ * - #exclude_end?: Returns whether the end object is excluded.
+ * - #first: Returns the first elements of +self+.
+ * - #hash: Returns the integer hash code.
+ * - #last: Returns the last elements of +self+.
+ * - #max: Returns the maximum values in +self+.
+ * - #min: Returns the minimum values in +self+.
+ * - #minmax: Returns the minimum and maximum values in +self+.
+ * - #size: Returns the count of elements in +self+.
*
- * r = Xs.new(3)..Xs.new(6) #=> xxx..xxxxxx
- * r.to_a #=> [xxx, xxxx, xxxxx, xxxxxx]
- * r.member?(Xs.new(5)) #=> true
+ * === Methods for Comparing
+ *
+ * - #==: Returns whether a given object is equal to +self+ (uses #==).
+ * - #===: Returns whether the given object is between the begin and end values.
+ * - #cover?: Returns whether a given object is within +self+.
+ * - #eql?: Returns whether a given object is equal to +self+ (uses #eql?).
+ * - #include? (aliased as #member?): Returns whether a given object
+ * is an element of +self+.
+ *
+ * === Methods for Iterating
+ *
+ * - #%: Requires argument +n+; calls the block with each +n+-th element of +self+.
+ * - #each: Calls the block with each element of +self+.
+ * - #step: Takes optional argument +n+ (defaults to 1);
+ * calls the block with each +n+-th element of +self+.
+ *
+ * === Methods for Converting
+ *
+ * - #inspect: Returns a string representation of +self+ (uses #inspect).
+ * - #to_a (aliased as #entries): Returns elements of +self+ in an array.
+ * - #to_s: Returns a string representation of +self+ (uses #to_s).
+ *
+ * === Methods for Working with \JSON
+ *
+ * - ::json_create: Returns a new \Range object constructed from the given object.
+ * - #as_json: Returns a 2-element hash representing +self+.
+ * - #to_json: Returns a \JSON string representing +self+.
+ *
+ * To make these methods available:
+ *
+ * require 'json/add/range'
*
*/
void
Init_Range(void)
{
-#undef rb_intern
-#define rb_intern(str) rb_intern_const(str)
-
- id_cmp = rb_intern("<=>");
- id_succ = rb_intern("succ");
- id_beg = rb_intern("begin");
- id_end = rb_intern("end");
- id_excl = rb_intern("excl");
- id_integer_p = rb_intern("integer?");
- id_div = rb_intern("div");
+ id_beg = rb_intern_const("begin");
+ id_end = rb_intern_const("end");
+ id_excl = rb_intern_const("excl");
rb_cRange = rb_struct_define_without_accessor(
"Range", rb_cObject, range_alloc,
@@ -1330,14 +2855,20 @@ Init_Range(void)
rb_define_method(rb_cRange, "hash", range_hash, 0);
rb_define_method(rb_cRange, "each", range_each, 0);
rb_define_method(rb_cRange, "step", range_step, -1);
+ rb_define_method(rb_cRange, "%", range_percent_step, 1);
+ rb_define_method(rb_cRange, "reverse_each", range_reverse_each, 0);
rb_define_method(rb_cRange, "bsearch", range_bsearch, 0);
rb_define_method(rb_cRange, "begin", range_begin, 0);
rb_define_method(rb_cRange, "end", range_end, 0);
rb_define_method(rb_cRange, "first", range_first, -1);
rb_define_method(rb_cRange, "last", range_last, -1);
- rb_define_method(rb_cRange, "min", range_min, 0);
- rb_define_method(rb_cRange, "max", range_max, 0);
+ rb_define_method(rb_cRange, "min", range_min, -1);
+ rb_define_method(rb_cRange, "max", range_max, -1);
+ rb_define_method(rb_cRange, "minmax", range_minmax, 0);
rb_define_method(rb_cRange, "size", range_size, 0);
+ rb_define_method(rb_cRange, "to_a", range_to_a, 0);
+ rb_define_method(rb_cRange, "to_set", range_to_set, 0);
+ rb_define_method(rb_cRange, "entries", range_to_a, 0);
rb_define_method(rb_cRange, "to_s", range_to_s, 0);
rb_define_method(rb_cRange, "inspect", range_inspect, 0);
@@ -1346,4 +2877,6 @@ Init_Range(void)
rb_define_method(rb_cRange, "member?", range_include, 1);
rb_define_method(rb_cRange, "include?", range_include, 1);
rb_define_method(rb_cRange, "cover?", range_cover, 1);
+ rb_define_method(rb_cRange, "count", range_count, -1);
+ rb_define_method(rb_cRange, "overlap?", range_overlap, 1);
}