diff options
Diffstat (limited to 'range.c')
| -rw-r--r-- | range.c | 2995 |
1 files changed, 2264 insertions, 731 deletions
@@ -9,58 +9,60 @@ **********************************************************************/ -#include "ruby/ruby.h" -#include "ruby/encoding.h" -#include "internal.h" -#include "id.h" +#include "ruby/internal/config.h" + +#include <assert.h> +#include <math.h> #ifdef HAVE_FLOAT_H #include <float.h> #endif -#include <math.h> -VALUE rb_cRange; -static ID id_cmp, id_succ, id_beg, id_end, id_excl, id_integer_p, id_div; +#include "id.h" +#include "internal.h" +#include "internal/array.h" +#include "internal/compar.h" +#include "internal/enum.h" +#include "internal/enumerator.h" +#include "internal/error.h" +#include "internal/numeric.h" +#include "internal/range.h" -#define RANGE_BEG(r) (RSTRUCT(r)->as.ary[0]) -#define RANGE_END(r) (RSTRUCT(r)->as.ary[1]) -#define RANGE_EXCL(r) (RSTRUCT(r)->as.ary[2]) +VALUE rb_cRange; +static ID id_beg, id_end, id_excl; +#define id_cmp idCmp +#define id_succ idSucc +#define id_min idMin +#define id_max idMax +#define id_plus '+' -#define EXCL(r) RTEST(RANGE_EXCL(r)) -#define SET_EXCL(r,v) (RSTRUCT(r)->as.ary[2] = (v) ? Qtrue : Qfalse) +static VALUE r_cover_p(VALUE, VALUE, VALUE, VALUE); -static VALUE -range_failed(void) -{ - rb_raise(rb_eArgError, "bad value for range"); - return Qnil; /* dummy */ -} +#define RANGE_SET_BEG(r, v) (RSTRUCT_SET(r, 0, v)) +#define RANGE_SET_END(r, v) (RSTRUCT_SET(r, 1, v)) +#define RANGE_SET_EXCL(r, v) (RSTRUCT_SET(r, 2, v)) -static VALUE -range_check(VALUE *args) -{ - return rb_funcall(args[0], id_cmp, 1, args[1]); -} +#define EXCL(r) RTEST(RANGE_EXCL(r)) static void -range_init(VALUE range, VALUE beg, VALUE end, int exclude_end) +range_init(VALUE range, VALUE beg, VALUE end, VALUE exclude_end) { - VALUE args[2]; + // Changing this condition has implications for JITs. If you do, please let maintainers know. + if ((!FIXNUM_P(beg) || !FIXNUM_P(end)) && !NIL_P(beg) && !NIL_P(end)) { + VALUE v; - args[0] = beg; - args[1] = end; + v = rb_funcall(beg, id_cmp, 1, end); + if (NIL_P(v)) + rb_raise(rb_eArgError, "bad value for range"); + } - if (!FIXNUM_P(beg) || !FIXNUM_P(end)) { - VALUE v; + RANGE_SET_EXCL(range, exclude_end); + RANGE_SET_BEG(range, beg); + RANGE_SET_END(range, end); - v = rb_rescue(range_check, (VALUE)args, range_failed, 0); - if (NIL_P(v)) - range_failed(); + if (CLASS_OF(range) == rb_cRange) { + rb_obj_freeze(range); } - - SET_EXCL(range, exclude_end); - RSTRUCT(range)->as.ary[0] = beg; - RSTRUCT(range)->as.ary[1] = end; } VALUE @@ -68,17 +70,33 @@ rb_range_new(VALUE beg, VALUE end, int exclude_end) { VALUE range = rb_obj_alloc(rb_cRange); - range_init(range, beg, end, exclude_end); + range_init(range, beg, end, RBOOL(exclude_end)); return range; } +static void +range_modify(VALUE range) +{ + rb_check_frozen(range); + /* Ranges are immutable, so that they should be initialized only once. */ + if (RANGE_EXCL(range) != Qnil) { + rb_name_err_raise("'initialize' called twice", range, ID2SYM(idInitialize)); + } +} + /* * call-seq: - * Range.new(begin, end, exclude_end=false) -> rng + * Range.new(begin, end, exclude_end = false) -> new_range + * + * Returns a new range based on the given objects +begin+ and +end+. + * Optional argument +exclude_end+ determines whether object +end+ + * is included as the last object in the range: + * + * Range.new(2, 5).to_a # => [2, 3, 4, 5] + * Range.new(2, 5, true).to_a # => [2, 3, 4] + * Range.new('a', 'd').to_a # => ["a", "b", "c", "d"] + * Range.new('a', 'd', true).to_a # => ["a", "b", "c"] * - * Constructs a range using the given +begin+ and +end+. If the +exclude_end+ - * parameter is omitted or is <code>false</code>, the +rng+ will include - * the end object; otherwise, it will be excluded. */ static VALUE @@ -87,30 +105,36 @@ range_initialize(int argc, VALUE *argv, VALUE range) VALUE beg, end, flags; rb_scan_args(argc, argv, "21", &beg, &end, &flags); - /* Ranges are immutable, so that they should be initialized only once. */ - if (RANGE_EXCL(range) != Qnil) { - rb_name_error(idInitialize, "`initialize' called twice"); - } - range_init(range, beg, end, RTEST(flags)); + range_modify(range); + range_init(range, beg, end, RBOOL(RTEST(flags))); return Qnil; } -#define range_initialize_copy rb_struct_init_copy /* :nodoc: */ +/* :nodoc: */ +static VALUE +range_initialize_copy(VALUE range, VALUE orig) +{ + range_modify(range); + rb_struct_init_copy(range, orig); + return range; +} /* * call-seq: - * rng.exclude_end? -> true or false + * exclude_end? -> true or false * - * Returns <code>true</code> if the range excludes its end value. + * Returns +true+ if +self+ excludes its end value; +false+ otherwise: * - * (1..5).exclude_end? #=> false - * (1...5).exclude_end? #=> true + * Range.new(2, 5).exclude_end? # => false + * Range.new(2, 5, true).exclude_end? # => true + * (2..5).exclude_end? # => false + * (2...5).exclude_end? # => true */ static VALUE range_exclude_end_p(VALUE range) { - return EXCL(range) ? Qtrue : Qfalse; + return RBOOL(EXCL(range)); } static VALUE @@ -118,27 +142,42 @@ recursive_equal(VALUE range, VALUE obj, int recur) { if (recur) return Qtrue; /* Subtle! */ if (!rb_equal(RANGE_BEG(range), RANGE_BEG(obj))) - return Qfalse; + return Qfalse; if (!rb_equal(RANGE_END(range), RANGE_END(obj))) - return Qfalse; + return Qfalse; - if (EXCL(range) != EXCL(obj)) - return Qfalse; - return Qtrue; + return RBOOL(EXCL(range) == EXCL(obj)); } /* * call-seq: - * rng == obj -> true or false + * self == other -> true or false + * + * Returns whether all of the following are true: + * + * - +other+ is a range. + * - <tt>other.begin == self.begin</tt>. + * - <tt>other.end == self.end</tt>. + * - <tt>other.exclude_end? == self.exclude_end?</tt>. * - * Returns <code>true</code> only if +obj+ is a Range, has equivalent - * begin and end items (by comparing them with <code>==</code>), and has - * the same #exclude_end? setting as the range. + * Examples: * - * (0..2) == (0..2) #=> true - * (0..2) == Range.new(0,2) #=> true - * (0..2) == (0...2) #=> false + * r = (1..5) + * r == (1..5) # => true + * r = Range.new(1, 5) + * r == 'foo' # => false + * r == (2..5) # => false + * r == (1..4) # => false + * r == (1...5) # => false + * r == Range.new(1, 5, true) # => false + * + * Note that even with the same argument, the return values of #== and #eql? can differ: + * + * (1..2) == (1..2.0) # => true + * (1..2).eql? (1..2.0) # => false + * + * Related: Range#eql?. * */ @@ -146,116 +185,110 @@ static VALUE range_eq(VALUE range, VALUE obj) { if (range == obj) - return Qtrue; + return Qtrue; if (!rb_obj_is_kind_of(obj, rb_cRange)) - return Qfalse; + return Qfalse; return rb_exec_recursive_paired(recursive_equal, range, obj, obj); } +/* compares _a_ and _b_ and returns: + * < 0: a < b + * = 0: a = b + * > 0: a > b or non-comparable + */ static int -r_lt(VALUE a, VALUE b) -{ - VALUE r = rb_funcall(a, id_cmp, 1, b); - - if (NIL_P(r)) - return (int)Qfalse; - if (rb_cmpint(r, a, b) < 0) - return (int)Qtrue; - return (int)Qfalse; -} - -static int -r_le(VALUE a, VALUE b) +r_less(VALUE a, VALUE b) { - int c; VALUE r = rb_funcall(a, id_cmp, 1, b); if (NIL_P(r)) - return (int)Qfalse; - c = rb_cmpint(r, a, b); - if (c == 0) - return (int)INT2FIX(0); - if (c < 0) - return (int)Qtrue; - return (int)Qfalse; + return INT_MAX; + return rb_cmpint(r, a, b); } - static VALUE recursive_eql(VALUE range, VALUE obj, int recur) { if (recur) return Qtrue; /* Subtle! */ if (!rb_eql(RANGE_BEG(range), RANGE_BEG(obj))) - return Qfalse; + return Qfalse; if (!rb_eql(RANGE_END(range), RANGE_END(obj))) - return Qfalse; + return Qfalse; - if (EXCL(range) != EXCL(obj)) - return Qfalse; - return Qtrue; + return RBOOL(EXCL(range) == EXCL(obj)); } /* * call-seq: - * rng.eql?(obj) -> true or false + * eql?(other) -> true or false + * + * Returns +true+ if and only if: + * + * - +other+ is a range. + * - <tt>other.begin.eql?(self.begin)</tt>. + * - <tt>other.end.eql?(self.end)</tt>. + * - <tt>other.exclude_end? == self.exclude_end?</tt>. * - * Returns <code>true</code> only if +obj+ is a Range, has equivalent - * begin and end items (by comparing them with <code>eql?</code>), - * and has the same #exclude_end? setting as the range. + * Otherwise returns +false+. * - * (0..2).eql?(0..2) #=> true - * (0..2).eql?(Range.new(0,2)) #=> true - * (0..2).eql?(0...2) #=> false + * r = (1..5) + * r.eql?(1..5) # => true + * r = Range.new(1, 5) + * r.eql?('foo') # => false + * r.eql?(2..5) # => false + * r.eql?(1..4) # => false + * r.eql?(1...5) # => false + * r.eql?(Range.new(1, 5, true)) # => false * + * Note that even with the same argument, the return values of #== and #eql? can differ: + * + * (1..2) == (1..2.0) # => true + * (1..2).eql? (1..2.0) # => false + * + * Related: Range#==. */ static VALUE range_eql(VALUE range, VALUE obj) { if (range == obj) - return Qtrue; + return Qtrue; if (!rb_obj_is_kind_of(obj, rb_cRange)) - return Qfalse; + return Qfalse; return rb_exec_recursive_paired(recursive_eql, range, obj, obj); } +/* + * call-seq: + * hash -> integer + * + * Returns the integer hash value for +self+. + * Two range objects +r0+ and +r1+ have the same hash value + * if and only if <tt>r0.eql?(r1)</tt>. + * + * Related: Range#eql?, Object#hash. + */ + static VALUE -recursive_hash(VALUE range, VALUE dummy, int recur) +range_hash(VALUE range) { st_index_t hash = EXCL(range); VALUE v; hash = rb_hash_start(hash); - if (!recur) { - v = rb_hash(RANGE_BEG(range)); - hash = rb_hash_uint(hash, NUM2LONG(v)); - v = rb_hash(RANGE_END(range)); - hash = rb_hash_uint(hash, NUM2LONG(v)); - } + v = rb_hash(RANGE_BEG(range)); + hash = rb_hash_uint(hash, NUM2LONG(v)); + v = rb_hash(RANGE_END(range)); + hash = rb_hash_uint(hash, NUM2LONG(v)); hash = rb_hash_uint(hash, EXCL(range) << 24); hash = rb_hash_end(hash); - return LONG2FIX(hash); -} - -/* - * call-seq: - * rng.hash -> fixnum - * - * Compute a hash-code for this range. Two ranges with equal - * begin and end points (using <code>eql?</code>), and the same - * #exclude_end? value will generate the same hash-code. - */ - -static VALUE -range_hash(VALUE range) -{ - return rb_exec_recursive_outer(recursive_hash, range, 0); + return ST2FIX(hash); } static void -range_each_func(VALUE range, VALUE (*func) (VALUE, void *), void *arg) +range_each_func(VALUE range, int (*func)(VALUE, VALUE), VALUE arg) { int c; VALUE b = RANGE_BEG(range); @@ -263,214 +296,383 @@ range_each_func(VALUE range, VALUE (*func) (VALUE, void *), void *arg) VALUE v = b; if (EXCL(range)) { - while (r_lt(v, e)) { - (*func) (v, arg); - v = rb_funcall(v, id_succ, 0, 0); - } + while (r_less(v, e) < 0) { + if ((*func)(v, arg)) break; + v = rb_funcallv(v, id_succ, 0, 0); + } } else { - while ((c = r_le(v, e)) != Qfalse) { - (*func) (v, arg); - if (c == (int)INT2FIX(0)) - break; - v = rb_funcall(v, id_succ, 0, 0); - } + while ((c = r_less(v, e)) <= 0) { + if ((*func)(v, arg)) break; + if (!c) break; + v = rb_funcallv(v, id_succ, 0, 0); + } } } -static VALUE -sym_step_i(VALUE i, void *arg) +// NB: Two functions below (step_i_iter, sym_step_i and step_i) are used only to maintain the +// backward-compatible behavior for string and symbol ranges with integer steps. If that branch +// will be removed from range_step, these two can go, too. +static bool +step_i_iter(VALUE arg) { - VALUE *iter = arg; + VALUE *iter = (VALUE *)arg; if (FIXNUM_P(iter[0])) { - iter[0] -= INT2FIX(1) & ~FIXNUM_FLAG; + iter[0] -= INT2FIX(1) & ~FIXNUM_FLAG; } else { - iter[0] = rb_funcall(iter[0], '-', 1, INT2FIX(1)); - } - if (iter[0] == INT2FIX(0)) { - rb_yield(rb_str_intern(i)); - iter[0] = iter[1]; + iter[0] = rb_funcall(iter[0], '-', 1, INT2FIX(1)); } - return Qnil; + if (iter[0] != INT2FIX(0)) return false; + iter[0] = iter[1]; + return true; } -static VALUE -step_i(VALUE i, void *arg) +static int +sym_step_i(VALUE i, VALUE arg) { - VALUE *iter = arg; - - if (FIXNUM_P(iter[0])) { - iter[0] -= INT2FIX(1) & ~FIXNUM_FLAG; + if (step_i_iter(arg)) { + rb_yield(rb_str_intern(i)); } - else { - iter[0] = rb_funcall(iter[0], '-', 1, INT2FIX(1)); - } - if (iter[0] == INT2FIX(0)) { - rb_yield(i); - iter[0] = iter[1]; + return 0; +} + +static int +step_i(VALUE i, VALUE arg) +{ + if (step_i_iter(arg)) { + rb_yield(i); } - return Qnil; + return 0; } static int discrete_object_p(VALUE obj) { - if (rb_obj_is_kind_of(obj, rb_cTime)) return FALSE; /* until Time#succ removed */ return rb_respond_to(obj, id_succ); } +static int +linear_object_p(VALUE obj) +{ + if (FIXNUM_P(obj) || FLONUM_P(obj)) return TRUE; + if (SPECIAL_CONST_P(obj)) return FALSE; + switch (BUILTIN_TYPE(obj)) { + case T_FLOAT: + case T_BIGNUM: + return TRUE; + default: + break; + } + if (rb_obj_is_kind_of(obj, rb_cNumeric)) return TRUE; + if (rb_obj_is_kind_of(obj, rb_cTime)) return TRUE; + return FALSE; +} + +static VALUE +check_step_domain(VALUE step) +{ + VALUE zero = INT2FIX(0); + int cmp; + if (!rb_obj_is_kind_of(step, rb_cNumeric)) { + step = rb_to_int(step); + } + cmp = rb_cmpint(rb_funcallv(step, idCmp, 1, &zero), step, zero); + if (cmp < 0) { + rb_raise(rb_eArgError, "step can't be negative"); + } + else if (cmp == 0) { + rb_raise(rb_eArgError, "step can't be 0"); + } + return step; +} + static VALUE -range_step_size(VALUE range, VALUE args) +range_step_size(VALUE range, VALUE args, VALUE eobj) { VALUE b = RANGE_BEG(range), e = RANGE_END(range); VALUE step = INT2FIX(1); if (args) { - step = RARRAY_PTR(args)[0]; - if (!rb_obj_is_kind_of(step, rb_cNumeric)) { - step = rb_to_int(step); - } - } - if (rb_funcall(step, '<', 1, INT2FIX(0))) { - rb_raise(rb_eArgError, "step can't be negative"); - } - else if (!rb_funcall(step, '>', 1, INT2FIX(0))) { - rb_raise(rb_eArgError, "step can't be 0"); + step = check_step_domain(RARRAY_AREF(args, 0)); } if (rb_obj_is_kind_of(b, rb_cNumeric) && rb_obj_is_kind_of(e, rb_cNumeric)) { - return num_interval_step_size(b, e, step, EXCL(range)); + return ruby_num_interval_step_size(b, e, step, EXCL(range)); } return Qnil; } /* * call-seq: - * rng.step(n=1) {| obj | block } -> rng - * rng.step(n=1) -> an_enumerator + * step(s = 1) {|element| ... } -> self + * step(s = 1) -> enumerator/arithmetic_sequence + * + * Iterates over the elements of range in steps of +s+. The iteration is performed + * by <tt>+</tt> operator: + * + * (0..6).step(2) { puts _1 } #=> 1..5 + * # Prints: 0, 2, 4, 6 + * + * # Iterate between two dates in step of 1 day (24 hours) + * (Time.utc(2022, 2, 24)..Time.utc(2022, 3, 1)).step(24*60*60) { puts _1 } + * # Prints: + * # 2022-02-24 00:00:00 UTC + * # 2022-02-25 00:00:00 UTC + * # 2022-02-26 00:00:00 UTC + * # 2022-02-27 00:00:00 UTC + * # 2022-02-28 00:00:00 UTC + * # 2022-03-01 00:00:00 UTC + * + * If <tt> + step</tt> decreases the value, iteration is still performed when + * step +begin+ is higher than the +end+: + * + * (0..6).step(-2) { puts _1 } + * # Prints nothing + * + * (6..0).step(-2) { puts _1 } + * # Prints: 6, 4, 2, 0 * - * Iterates over the range, passing each <code>n</code>th element to the block. - * If begin and end are numeric, +n+ is added for each iteration. - * Otherwise <code>step</code> invokes <code>succ</code> to iterate through - * range elements. + * (Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step(-24*60*60) { puts _1 } + * # Prints: + * # 2022-03-01 00:00:00 UTC + * # 2022-02-28 00:00:00 UTC + * # 2022-02-27 00:00:00 UTC + * # 2022-02-26 00:00:00 UTC + * # 2022-02-25 00:00:00 UTC + * # 2022-02-24 00:00:00 UTC * - * If no block is given, an enumerator is returned instead. + * When the block is not provided, and range boundaries and step are Numeric, + * the method returns Enumerator::ArithmeticSequence. * - * range = Xs.new(1)..Xs.new(10) - * range.step(2) {|x| puts x} - * puts - * range.step(3) {|x| puts x} + * (1..5).step(2) # => ((1..5).step(2)) + * (1.0..).step(1.5) #=> ((1.0..).step(1.5)) + * (..3r).step(1/3r) #=> ((..3/1).step((1/3))) * - * <em>produces:</em> + * Enumerator::ArithmeticSequence can be further used as a value object for iteration + * or slicing of collections (see Array#[]). There is a convenience method #% with + * behavior similar to +step+ to produce arithmetic sequences more expressively: * - * 1 x - * 3 xxx - * 5 xxxxx - * 7 xxxxxxx - * 9 xxxxxxxxx + * # Same as (1..5).step(2) + * (1..5) % 2 # => ((1..5).%(2)) * - * 1 x - * 4 xxxx - * 7 xxxxxxx - * 10 xxxxxxxxxx + * In a generic case, when the block is not provided, Enumerator is returned: + * + * ('a'..).step('b') #=> #<Enumerator: "a"..:step("b")> + * ('a'..).step('b').take(3) #=> ["a", "ab", "abb"] + * + * If +s+ is not provided, it is considered +1+ for ranges with numeric +begin+: + * + * (1..5).step { p _1 } + * # Prints: 1, 2, 3, 4, 5 + * + * For non-Numeric ranges, step absence is an error: + * + * (Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step { p _1 } + * # raises: step is required for non-numeric ranges (ArgumentError) + * + * For backward compatibility reasons, String ranges support the iteration both with + * string step and with integer step. In the latter case, the iteration is performed + * by calculating the next values with String#succ: + * + * ('a'..'e').step(2) { p _1 } + * # Prints: a, c, e + * ('a'..'e').step { p _1 } + * # Default step 1; prints: a, b, c, d, e * - * See Range for the definition of class Xs. */ - - static VALUE range_step(int argc, VALUE *argv, VALUE range) { - VALUE b, e, step, tmp; - - RETURN_SIZED_ENUMERATOR(range, argc, argv, range_step_size); + VALUE b, e, v, step; + int c, dir; b = RANGE_BEG(range); e = RANGE_END(range); - if (argc == 0) { - step = INT2FIX(1); - } + v = b; + + const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric); + const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric); + // For backward compatibility reasons (conforming to behavior before 3.4), String/Symbol + // supports both old behavior ('a'..).step(1) and new behavior ('a'..).step('a') + // Hence the additional conversion/additional checks. + const VALUE str_b = rb_check_string_type(b); + const VALUE sym_b = SYMBOL_P(b) ? rb_sym2str(b) : Qnil; + + if (rb_check_arity(argc, 0, 1)) + step = argv[0]; else { - rb_scan_args(argc, argv, "01", &step); - if (!rb_obj_is_kind_of(step, rb_cNumeric)) { - step = rb_to_int(step); - } - if (rb_funcall(step, '<', 1, INT2FIX(0))) { - rb_raise(rb_eArgError, "step can't be negative"); - } - else if (!rb_funcall(step, '>', 1, INT2FIX(0))) { - rb_raise(rb_eArgError, "step can't be 0"); - } - } - - if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) { /* fixnums are special */ - long end = FIX2LONG(e); - long i, unit = FIX2LONG(step); - - if (!EXCL(range)) - end += 1; - i = FIX2LONG(b); - while (i < end) { - rb_yield(LONG2NUM(i)); - if (i + unit < i) break; - i += unit; - } - - } - else if (SYMBOL_P(b) && SYMBOL_P(e)) { /* symbols are special */ - VALUE args[2], iter[2]; - - args[0] = rb_sym_to_s(e); - args[1] = EXCL(range) ? Qtrue : Qfalse; - iter[0] = INT2FIX(1); - iter[1] = step; - rb_block_call(rb_sym_to_s(b), rb_intern("upto"), 2, args, sym_step_i, (VALUE)iter); - } - else if (ruby_float_step(b, e, step, EXCL(range))) { - /* done */ - } - else if (rb_obj_is_kind_of(b, rb_cNumeric) || - !NIL_P(rb_check_to_integer(b, "to_int")) || - !NIL_P(rb_check_to_integer(e, "to_int"))) { - ID op = EXCL(range) ? '<' : idLE; - VALUE v = b; - int i = 0; - - while (RTEST(rb_funcall(v, op, 1, e))) { - rb_yield(v); - i++; - v = rb_funcall(b, '+', 1, rb_funcall(INT2NUM(i), '*', 1, step)); - } + if (b_num_p || !NIL_P(str_b) || !NIL_P(sym_b) || (NIL_P(b) && e_num_p)) + step = INT2FIX(1); + else + rb_raise(rb_eArgError, "step is required for non-numeric ranges"); } - else { - tmp = rb_check_string_type(b); - - if (!NIL_P(tmp)) { - VALUE args[2], iter[2]; - - b = tmp; - args[0] = e; - args[1] = EXCL(range) ? Qtrue : Qfalse; - iter[0] = INT2FIX(1); - iter[1] = step; - rb_block_call(b, rb_intern("upto"), 2, args, step_i, (VALUE)iter); - } - else { - VALUE args[2]; - - if (!discrete_object_p(b)) { - rb_raise(rb_eTypeError, "can't iterate from %s", - rb_obj_classname(b)); - } - args[0] = INT2FIX(1); - args[1] = step; - range_each_func(range, step_i, args); - } + + const VALUE step_num_p = rb_obj_is_kind_of(step, rb_cNumeric); + + if (step_num_p && b_num_p && rb_equal(step, INT2FIX(0))) { + rb_raise(rb_eArgError, "step can't be 0"); + } + + if (!rb_block_given_p()) { + // This code is allowed to create even beginless ArithmeticSequence, which can be useful, + // e.g., for array slicing: + // ary[(..-1) % 3] + if (step_num_p && ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p))) { + return rb_arith_seq_new(range, ID2SYM(rb_frame_this_func()), argc, argv, + range_step_size, b, e, step, EXCL(range)); + } + + // ...but generic Enumerator from beginless range is useless and probably an error. + if (NIL_P(b)) { + rb_raise(rb_eArgError, "#step for non-numeric beginless ranges is meaningless"); + } + + RETURN_SIZED_ENUMERATOR(range, argc, argv, 0); + } + + if (NIL_P(b)) { + rb_raise(rb_eArgError, "#step iteration for beginless ranges is meaningless"); + } + + if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(step)) { + /* perform summation of numbers in C until their reach Fixnum limit */ + long i = FIX2LONG(b), unit = FIX2LONG(step); + do { + rb_yield(LONG2FIX(i)); + i += unit; /* FIXABLE+FIXABLE never overflow */ + } while (FIXABLE(i)); + b = LONG2NUM(i); + + /* then switch to Bignum API */ + for (;; b = rb_big_plus(b, step)) + rb_yield(b); + } + else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) { + /* fixnums are special: summation is performed in C for performance */ + long end = FIX2LONG(e); + long i, unit = FIX2LONG(step); + + if (unit < 0) { + if (!EXCL(range)) + end -= 1; + i = FIX2LONG(b); + while (i > end) { + rb_yield(LONG2NUM(i)); + i += unit; + } + } + else { + if (!EXCL(range)) + end += 1; + i = FIX2LONG(b); + while (i < end) { + rb_yield(LONG2NUM(i)); + i += unit; + } + } + } + else if (b_num_p && step_num_p && ruby_float_step(b, e, step, EXCL(range), TRUE)) { + /* done */ + } + else if (!NIL_P(str_b) && FIXNUM_P(step)) { + // backwards compatibility behavior for String only, when no step/Integer step is passed + // See discussion in https://bugs.ruby-lang.org/issues/18368 + + VALUE iter[2] = {INT2FIX(1), step}; + + if (NIL_P(e)) { + rb_str_upto_endless_each(str_b, step_i, (VALUE)iter); + } + else { + rb_str_upto_each(str_b, e, EXCL(range), step_i, (VALUE)iter); + } + } + else if (!NIL_P(sym_b) && FIXNUM_P(step)) { + // same as above: backward compatibility for symbols + + VALUE iter[2] = {INT2FIX(1), step}; + + if (NIL_P(e)) { + rb_str_upto_endless_each(sym_b, sym_step_i, (VALUE)iter); + } + else { + rb_str_upto_each(sym_b, rb_sym2str(e), EXCL(range), sym_step_i, (VALUE)iter); + } + } + else if (NIL_P(e)) { + // endless range + for (;; v = rb_funcall(v, id_plus, 1, step)) + rb_yield(v); + } + else if (b_num_p && step_num_p && r_less(step, INT2FIX(0)) < 0) { + // iterate backwards, for consistency with ArithmeticSequence + if (EXCL(range)) { + for (; r_less(e, v) < 0; v = rb_funcall(v, id_plus, 1, step)) + rb_yield(v); + } + else { + for (; (c = r_less(e, v)) <= 0; v = rb_funcall(v, id_plus, 1, step)) { + rb_yield(v); + if (!c) break; + } + } + + } + else if ((dir = r_less(b, e)) == 0) { + if (!EXCL(range)) { + rb_yield(v); + } + } + else if (dir == r_less(b, rb_funcall(b, id_plus, 1, step))) { + // Direction of the comparison. We use it as a comparison operator in cycle: + // if begin < end, the cycle performs while value < end (iterating forward) + // if begin > end, the cycle performs while value > end (iterating backward with + // a negative step) + // One preliminary addition to check the step moves iteration in the same direction as + // from begin to end; otherwise, the iteration should be empty. + if (EXCL(range)) { + for (; r_less(v, e) == dir; v = rb_funcall(v, id_plus, 1, step)) + rb_yield(v); + } + else { + for (; (c = r_less(v, e)) == dir || c == 0; v = rb_funcall(v, id_plus, 1, step)) { + rb_yield(v); + if (!c) break; + } + } } return range; } +/* + * call-seq: + * %(n) {|element| ... } -> self + * %(n) -> enumerator or arithmetic_sequence + * + * Same as #step (but doesn't provide default value for +n+). + * The method is convenient for experssive producing of Enumerator::ArithmeticSequence. + * + * array = [0, 1, 2, 3, 4, 5, 6] + * + * # slice each second element: + * seq = (0..) % 2 #=> ((0..).%(2)) + * array[seq] #=> [0, 2, 4, 6] + * # or just + * array[(0..) % 2] #=> [0, 2, 4, 6] + * + * Note that due to operator precedence in Ruby, parentheses are mandatory around range + * in this case: + * + * (0..7) % 2 #=> ((0..7).%(2)) -- as expected + * 0..7 % 2 #=> 0..1 -- parsed as 0..(7 % 2) + */ +static VALUE +range_percent_step(VALUE range, VALUE step) +{ + return range_step(1, &step, range); +} + #if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T) union int64_double { int64_t i; @@ -482,12 +684,12 @@ int64_as_double_to_num(int64_t i) { union int64_double convert; if (i < 0) { - convert.i = -i; - return DBL2NUM(-convert.d); + convert.i = -i; + return DBL2NUM(-convert.d); } else { - convert.i = i; - return DBL2NUM(convert.d); + convert.i = i; + return DBL2NUM(convert.d); } } @@ -503,67 +705,94 @@ double_as_int64(double d) static int is_integer_p(VALUE v) { - VALUE is_int = rb_check_funcall(v, id_integer_p, 0, 0); - return RTEST(is_int) && is_int != Qundef; + if (rb_integer_type_p(v)) { + return true; + } + + ID id_integer_p; + VALUE is_int; + CONST_ID(id_integer_p, "integer?"); + is_int = rb_check_funcall(v, id_integer_p, 0, 0); + return RTEST(is_int) && !UNDEF_P(is_int); +} + +static VALUE +bsearch_integer_range(VALUE beg, VALUE end, int excl) +{ + VALUE satisfied = Qnil; + int smaller; + +#define BSEARCH_CHECK(expr) \ + do { \ + VALUE val = (expr); \ + VALUE v = rb_yield(val); \ + if (FIXNUM_P(v)) { \ + if (v == INT2FIX(0)) return val; \ + smaller = (SIGNED_VALUE)v < 0; \ + } \ + else if (v == Qtrue) { \ + satisfied = val; \ + smaller = 1; \ + } \ + else if (!RTEST(v)) { \ + smaller = 0; \ + } \ + else if (rb_obj_is_kind_of(v, rb_cNumeric)) { \ + int cmp = rb_cmpint(rb_funcall(v, id_cmp, 1, INT2FIX(0)), v, INT2FIX(0)); \ + if (!cmp) return val; \ + smaller = cmp < 0; \ + } \ + else { \ + rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE \ + " (must be numeric, true, false or nil)", \ + rb_obj_class(v)); \ + } \ + } while (0) + + VALUE low = rb_to_int(beg); + VALUE high = rb_to_int(end); + VALUE mid; + ID id_div; + CONST_ID(id_div, "div"); + + if (!excl) high = rb_funcall(high, '+', 1, INT2FIX(1)); + low = rb_funcall(low, '-', 1, INT2FIX(1)); + + /* + * This loop must continue while low + 1 < high. + * Instead of checking low + 1 < high, check low < mid, where mid = (low + high) / 2. + * This is to avoid the cost of calculating low + 1 on each iteration. + * Note that this condition replacement is valid because Integer#div always rounds + * towards negative infinity. + */ + while (mid = rb_funcall(rb_funcall(high, '+', 1, low), id_div, 1, INT2FIX(2)), + rb_cmpint(rb_funcall(low, id_cmp, 1, mid), low, mid) < 0) { + BSEARCH_CHECK(mid); + if (smaller) { + high = mid; + } + else { + low = mid; + } + } + return satisfied; } /* * call-seq: - * rng.bsearch {|obj| block } -> value - * - * By using binary search, finds a value in range which meets the given - * condition in O(log n) where n is the size of the range. - * - * You can use this method in two use cases: a find-minimum mode and - * a find-any mode. In either case, the elements of the range must be - * monotone (or sorted) with respect to the block. - * - * In find-minimum mode (this is a good choice for typical use case), - * the block must return true or false, and there must be a value x - * so that: - * - * - the block returns false for any value which is less than x, and - * - the block returns true for any value which is greater than or - * equal to i. - * - * If x is within the range, this method returns the value x. - * Otherwise, it returns nil. - * - * ary = [0, 4, 7, 10, 12] - * (0...ary.size).bsearch {|i| ary[i] >= 4 } #=> 1 - * (0...ary.size).bsearch {|i| ary[i] >= 6 } #=> 2 - * (0...ary.size).bsearch {|i| ary[i] >= 8 } #=> 3 - * (0...ary.size).bsearch {|i| ary[i] >= 100 } #=> nil - * - * (0.0...Float::INFINITY).bsearch {|x| Math.log(x) >= 0 } #=> 1.0 - * - * In find-any mode (this behaves like libc's bsearch(3)), the block - * must return a number, and there must be two values x and y (x <= y) - * so that: + * bsearch {|obj| block } -> value * - * - the block returns a positive number for v if v < x, - * - the block returns zero for v if x <= v < y, and - * - the block returns a negative number for v if y <= v. + * Returns an element from +self+ selected by a binary search. * - * This method returns any value which is within the intersection of - * the given range and x...y (if any). If there is no value that - * satisfies the condition, it returns nil. + * See {Binary Searching}[rdoc-ref:language/bsearch.rdoc]. * - * ary = [0, 100, 100, 100, 200] - * (0..4).bsearch {|i| 100 - ary[i] } #=> 1, 2 or 3 - * (0..4).bsearch {|i| 300 - ary[i] } #=> nil - * (0..4).bsearch {|i| 50 - ary[i] } #=> nil - * - * You must not mix the two modes at a time; the block must always - * return either true/false, or always return a number. It is - * undefined which value is actually picked up at each iteration. */ static VALUE range_bsearch(VALUE range) { - VALUE beg, end; - int smaller, satisfied = 0; + VALUE beg, end, satisfied = Qnil; + int smaller; /* Implementation notes: * Floats are handled by mapping them to 64 bits integers. @@ -572,224 +801,549 @@ range_bsearch(VALUE range) * by the mantissa. This is true with or without implicit bit. * * Finding the average of two ints needs to be careful about - * potential overflow (since float to long can use 64 bits) - * as well as the fact that -1/2 can be 0 or -1 in C89. + * potential overflow (since float to long can use 64 bits). + * + * The half-open interval (low, high] indicates where the target is located. + * The loop continues until low and high are adjacent. + * + * -1/2 can be either 0 or -1 in C89. However, when low and high are not adjacent, + * the rounding direction of mid = (low + high) / 2 does not affect the result of + * the binary search. * * Note that -0.0 is mapped to the same int as 0.0 as we don't want * (-1...0.0).bsearch to yield -0.0. */ -#define BSEARCH_CHECK(val) \ +#define BSEARCH(conv, excl) \ do { \ - VALUE v = rb_yield(val); \ - if (FIXNUM_P(v)) { \ - if (FIX2INT(v) == 0) return val; \ - smaller = FIX2INT(v) < 0; \ - } \ - else if (v == Qtrue) { \ - satisfied = 1; \ - smaller = 1; \ - } \ - else if (v == Qfalse || v == Qnil) { \ - smaller = 0; \ - } \ - else if (rb_obj_is_kind_of(v, rb_cNumeric)) { \ - int cmp = rb_cmpint(rb_funcall(v, id_cmp, 1, INT2FIX(0)), v, INT2FIX(0)); \ - if (!cmp) return val; \ - smaller = cmp < 0; \ - } \ - else { \ - rb_raise(rb_eTypeError, "wrong argument type %s" \ - " (must be numeric, true, false or nil)", \ - rb_obj_classname(v)); \ - } \ + RETURN_ENUMERATOR(range, 0, 0); \ + if (!(excl)) high++; \ + low--; \ + while (low + 1 < high) { \ + mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \ + : (low + high) / 2; \ + BSEARCH_CHECK(conv(mid)); \ + if (smaller) { \ + high = mid; \ + } \ + else { \ + low = mid; \ + } \ + } \ + return satisfied; \ } while (0) -#define BSEARCH(conv) \ +#define BSEARCH_FIXNUM(beg, end, excl) \ do { \ - RETURN_ENUMERATOR(range, 0, 0); \ - if (EXCL(range)) high--; \ - org_high = high; \ - while (low < high) { \ - mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \ - : (low < -high) ? -((-1 - low - high)/2 + 1) : (low + high) / 2; \ - BSEARCH_CHECK(conv(mid)); \ - if (smaller) { \ - high = mid; \ - } \ - else { \ - low = mid + 1; \ - } \ - } \ - if (low == org_high) { \ - BSEARCH_CHECK(conv(low)); \ - if (!smaller) return Qnil; \ - } \ - if (!satisfied) return Qnil; \ - return conv(low); \ + long low = FIX2LONG(beg); \ + long high = FIX2LONG(end); \ + long mid; \ + BSEARCH(INT2FIX, (excl)); \ } while (0) - beg = RANGE_BEG(range); end = RANGE_END(range); if (FIXNUM_P(beg) && FIXNUM_P(end)) { - long low = FIX2LONG(beg); - long high = FIX2LONG(end); - long mid, org_high; - BSEARCH(INT2FIX); + BSEARCH_FIXNUM(beg, end, EXCL(range)); } #if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T) - else if (RB_TYPE_P(beg, T_FLOAT) || RB_TYPE_P(end, T_FLOAT)) { - int64_t low = double_as_int64(RFLOAT_VALUE(rb_Float(beg))); - int64_t high = double_as_int64(RFLOAT_VALUE(rb_Float(end))); - int64_t mid, org_high; - BSEARCH(int64_as_double_to_num); + else if (RB_FLOAT_TYPE_P(beg) || RB_FLOAT_TYPE_P(end)) { + int64_t low = double_as_int64(NIL_P(beg) ? -HUGE_VAL : RFLOAT_VALUE(rb_Float(beg))); + int64_t high = double_as_int64(NIL_P(end) ? HUGE_VAL : RFLOAT_VALUE(rb_Float(end))); + int64_t mid; + BSEARCH(int64_as_double_to_num, EXCL(range)); } #endif else if (is_integer_p(beg) && is_integer_p(end)) { - VALUE low = rb_to_int(beg); - VALUE high = rb_to_int(end); - VALUE mid, org_high; - RETURN_ENUMERATOR(range, 0, 0); - if (EXCL(range)) high = rb_funcall(high, '-', 1, INT2FIX(1)); - org_high = high; - - while (rb_cmpint(rb_funcall(low, id_cmp, 1, high), low, high) < 0) { - mid = rb_funcall(rb_funcall(high, '+', 1, low), id_div, 1, INT2FIX(2)); - BSEARCH_CHECK(mid); - if (smaller) { - high = mid; - } - else { - low = rb_funcall(mid, '+', 1, INT2FIX(1)); - } - } - if (rb_equal(low, org_high)) { - BSEARCH_CHECK(low); - if (!smaller) return Qnil; - } - if (!satisfied) return Qnil; - return low; + RETURN_ENUMERATOR(range, 0, 0); + return bsearch_integer_range(beg, end, EXCL(range)); + } + else if (is_integer_p(beg) && NIL_P(end)) { + VALUE diff = LONG2FIX(1); + RETURN_ENUMERATOR(range, 0, 0); + while (1) { + VALUE mid = rb_funcall(beg, '+', 1, diff); + BSEARCH_CHECK(mid); + if (smaller) { + if (FIXNUM_P(beg) && FIXNUM_P(mid)) { + BSEARCH_FIXNUM(beg, mid, false); + } + else { + return bsearch_integer_range(beg, mid, false); + } + } + diff = rb_funcall(diff, '*', 1, LONG2FIX(2)); + beg = mid; + } + } + else if (NIL_P(beg) && is_integer_p(end)) { + VALUE diff = LONG2FIX(-1); + RETURN_ENUMERATOR(range, 0, 0); + while (1) { + VALUE mid = rb_funcall(end, '+', 1, diff); + BSEARCH_CHECK(mid); + if (!smaller) { + if (FIXNUM_P(mid) && FIXNUM_P(end)) { + BSEARCH_FIXNUM(mid, end, false); + } + else { + return bsearch_integer_range(mid, end, false); + } + } + diff = rb_funcall(diff, '*', 1, LONG2FIX(2)); + end = mid; + } } else { - rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg)); + rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg)); } return range; } -static VALUE -each_i(VALUE v, void *arg) +static int +each_i(VALUE v, VALUE arg) { rb_yield(v); - return Qnil; + return 0; } -static VALUE -sym_each_i(VALUE v, void *arg) +static int +sym_each_i(VALUE v, VALUE arg) { - rb_yield(rb_str_intern(v)); - return Qnil; + return each_i(rb_str_intern(v), arg); } +#define CANT_ITERATE_FROM(x) \ + rb_raise(rb_eTypeError, "can't iterate from %s", \ + rb_obj_classname(x)) + /* * call-seq: - * rng.size -> num + * size -> non_negative_integer or Infinity or nil + * + * Returns the count of elements in +self+ + * if both begin and end values are numeric; + * otherwise, returns +nil+: + * + * (1..4).size # => 4 + * (1...4).size # => 3 + * (1..).size # => Infinity + * ('a'..'z').size # => nil + * + * If +self+ is not iterable, raises an exception: * - * Returns the number of elements in the range. Both the begin and the end of - * the Range must be Numeric, otherwise nil is returned. + * (0.5..2.5).size # TypeError + * (..1).size # TypeError * - * (10..20).size #=> 11 - * ('a'..'z').size #=> nil - * (-Float::INFINITY..Float::INFINITY).size #=> Infinity + * Related: Range#count. */ static VALUE range_size(VALUE range) { VALUE b = RANGE_BEG(range), e = RANGE_END(range); - if (rb_obj_is_kind_of(b, rb_cNumeric) && rb_obj_is_kind_of(e, rb_cNumeric)) { - return num_interval_step_size(b, e, INT2FIX(1), EXCL(range)); + + if (RB_INTEGER_TYPE_P(b)) { + if (rb_obj_is_kind_of(e, rb_cNumeric)) { + return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range)); + } + if (NIL_P(e)) { + return DBL2NUM(HUGE_VAL); + } } + + if (!discrete_object_p(b)) { + CANT_ITERATE_FROM(b); + } + return Qnil; } +static VALUE +range_reverse_size(VALUE range) +{ + VALUE b = RANGE_BEG(range), e = RANGE_END(range); + + if (NIL_P(e)) { + CANT_ITERATE_FROM(e); + } + + if (RB_INTEGER_TYPE_P(b)) { + if (rb_obj_is_kind_of(e, rb_cNumeric)) { + return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range)); + } + else { + CANT_ITERATE_FROM(e); + } + } + + if (NIL_P(b)) { + if (RB_INTEGER_TYPE_P(e)) { + return DBL2NUM(HUGE_VAL); + } + else { + CANT_ITERATE_FROM(e); + } + } + + if (!discrete_object_p(b)) { + CANT_ITERATE_FROM(e); + } + + return Qnil; +} + +#undef CANT_ITERATE_FROM + +/* + * call-seq: + * to_a -> array + * + * Returns an array containing the elements in +self+, if a finite collection; + * raises an exception otherwise. + * + * (1..4).to_a # => [1, 2, 3, 4] + * (1...4).to_a # => [1, 2, 3] + * ('a'..'d').to_a # => ["a", "b", "c", "d"] + * + */ + +static VALUE +range_to_a(VALUE range) +{ + if (NIL_P(RANGE_END(range))) { + rb_raise(rb_eRangeError, "cannot convert endless range to an array"); + } + return rb_call_super(0, 0); +} + +/* + * call-seq: + * to_set -> set + * + * Returns a set containing the elements in +self+, if a finite collection; + * raises an exception otherwise. + * + * (1..4).to_set # => Set[1, 2, 3, 4] + * (1...4).to_set # => Set[1, 2, 3] + * + * (1..).to_set + * # in 'Range#to_set': cannot convert endless range to a set (RangeError) + * + */ +static VALUE +range_to_set(VALUE range) +{ + if (NIL_P(RANGE_END(range))) { + rb_raise(rb_eRangeError, "cannot convert endless range to a set"); + } + return rb_call_super(0, NULL); +} + +static VALUE +range_enum_size(VALUE range, VALUE args, VALUE eobj) +{ + return range_size(range); +} + +static VALUE +range_enum_reverse_size(VALUE range, VALUE args, VALUE eobj) +{ + return range_reverse_size(range); +} + +RBIMPL_ATTR_NORETURN() +static void +range_each_bignum_endless(VALUE beg) +{ + for (;; beg = rb_big_plus(beg, INT2FIX(1))) { + rb_yield(beg); + } + UNREACHABLE; +} + +RBIMPL_ATTR_NORETURN() +static void +range_each_fixnum_endless(VALUE beg) +{ + for (long i = FIX2LONG(beg); FIXABLE(i); i++) { + rb_yield(LONG2FIX(i)); + } + + range_each_bignum_endless(LONG2NUM(RUBY_FIXNUM_MAX + 1)); + UNREACHABLE; +} + +static VALUE +range_each_fixnum_loop(VALUE beg, VALUE end, VALUE range) +{ + long lim = FIX2LONG(end) + !EXCL(range); + for (long i = FIX2LONG(beg); i < lim; i++) { + rb_yield(LONG2FIX(i)); + } + return range; +} + /* * call-seq: - * rng.each {| i | block } -> rng - * rng.each -> an_enumerator + * each {|element| ... } -> self + * each -> an_enumerator * - * Iterates over the elements of range, passing each in turn to the - * block. + * With a block given, passes each element of +self+ to the block: * - * The +each+ method can only be used if the begin object of the range - * supports the +succ+ method. A TypeError is raised if the object - * does not have +succ+ method defined (like Float). + * a = [] + * (1..4).each {|element| a.push(element) } # => 1..4 + * a # => [1, 2, 3, 4] * - * If no block is given, an enumerator is returned instead. + * Raises an exception unless <tt>self.first.respond_to?(:succ)</tt>. * - * (10..15).each {|n| print n, ' ' } - * # prints: 10 11 12 13 14 15 + * With no block given, returns an enumerator. * - * (2.5..5).each {|n| print n, ' ' } - * # raises: TypeError: can't iterate from Float */ static VALUE range_each(VALUE range) { VALUE beg, end; + long i; - RETURN_SIZED_ENUMERATOR(range, 0, 0, range_size); + RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size); beg = RANGE_BEG(range); end = RANGE_END(range); - if (FIXNUM_P(beg) && FIXNUM_P(end)) { /* fixnums are special */ - long lim = FIX2LONG(end); - long i; + if (FIXNUM_P(beg) && NIL_P(end)) { + range_each_fixnum_endless(beg); + } + else if (FIXNUM_P(beg) && FIXNUM_P(end)) { /* fixnums are special */ + return range_each_fixnum_loop(beg, end, range); + } + else if (RB_INTEGER_TYPE_P(beg) && (NIL_P(end) || RB_INTEGER_TYPE_P(end))) { + if (SPECIAL_CONST_P(end) || RBIGNUM_POSITIVE_P(end)) { /* end >= FIXNUM_MIN */ + if (!FIXNUM_P(beg)) { + if (RBIGNUM_NEGATIVE_P(beg)) { + do { + rb_yield(beg); + } while (!FIXNUM_P(beg = rb_big_plus(beg, INT2FIX(1)))); + if (NIL_P(end)) range_each_fixnum_endless(beg); + if (FIXNUM_P(end)) return range_each_fixnum_loop(beg, end, range); + } + else { + if (NIL_P(end)) range_each_bignum_endless(beg); + if (FIXNUM_P(end)) return range; + } + } + if (FIXNUM_P(beg)) { + i = FIX2LONG(beg); + do { + rb_yield(LONG2FIX(i)); + } while (POSFIXABLE(++i)); + beg = LONG2NUM(i); + } + ASSUME(!FIXNUM_P(beg)); + ASSUME(!SPECIAL_CONST_P(end)); + } + if (!FIXNUM_P(beg) && RBIGNUM_SIGN(beg) == RBIGNUM_SIGN(end)) { + if (EXCL(range)) { + while (rb_big_cmp(beg, end) == INT2FIX(-1)) { + rb_yield(beg); + beg = rb_big_plus(beg, INT2FIX(1)); + } + } + else { + VALUE c; + while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) { + rb_yield(beg); + if (c == INT2FIX(0)) break; + beg = rb_big_plus(beg, INT2FIX(1)); + } + } + } + } + else if (SYMBOL_P(beg) && (NIL_P(end) || SYMBOL_P(end))) { /* symbols are special */ + beg = rb_sym2str(beg); + if (NIL_P(end)) { + rb_str_upto_endless_each(beg, sym_each_i, 0); + } + else { + rb_str_upto_each(beg, rb_sym2str(end), EXCL(range), sym_each_i, 0); + } + } + else { + VALUE tmp = rb_check_string_type(beg); + + if (!NIL_P(tmp)) { + if (!NIL_P(end)) { + rb_str_upto_each(tmp, end, EXCL(range), each_i, 0); + } + else { + rb_str_upto_endless_each(tmp, each_i, 0); + } + } + else { + if (!discrete_object_p(beg)) { + rb_raise(rb_eTypeError, "can't iterate from %s", + rb_obj_classname(beg)); + } + if (!NIL_P(end)) + range_each_func(range, each_i, 0); + else + for (;; beg = rb_funcallv(beg, id_succ, 0, 0)) + rb_yield(beg); + } + } + return range; +} + +RBIMPL_ATTR_NORETURN() +static void +range_reverse_each_bignum_beginless(VALUE end) +{ + RUBY_ASSERT(RBIGNUM_NEGATIVE_P(end)); - if (!EXCL(range)) - lim += 1; - for (i = FIX2LONG(beg); i < lim; i++) { - rb_yield(LONG2FIX(i)); - } + for (;; end = rb_big_minus(end, INT2FIX(1))) { + rb_yield(end); } - else if (SYMBOL_P(beg) && SYMBOL_P(end)) { /* symbols are special */ - VALUE args[2]; + UNREACHABLE; +} + +static void +range_reverse_each_bignum(VALUE beg, VALUE end) +{ + RUBY_ASSERT(RBIGNUM_POSITIVE_P(beg) == RBIGNUM_POSITIVE_P(end)); + + VALUE c; + while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) { + rb_yield(end); + if (c == INT2FIX(0)) break; + end = rb_big_minus(end, INT2FIX(1)); + } +} + +static void +range_reverse_each_positive_bignum_section(VALUE beg, VALUE end) +{ + RUBY_ASSERT(!NIL_P(end)); + + if (FIXNUM_P(end) || RBIGNUM_NEGATIVE_P(end)) return; + + if (NIL_P(beg) || FIXNUM_P(beg) || RBIGNUM_NEGATIVE_P(beg)) { + beg = LONG2NUM(FIXNUM_MAX + 1); + } + + range_reverse_each_bignum(beg, end); +} + +static void +range_reverse_each_fixnum_section(VALUE beg, VALUE end) +{ + RUBY_ASSERT(!NIL_P(end)); + + if (!FIXNUM_P(beg)) { + if (!NIL_P(beg) && RBIGNUM_POSITIVE_P(beg)) return; + + beg = LONG2FIX(FIXNUM_MIN); + } + + if (!FIXNUM_P(end)) { + if (RBIGNUM_NEGATIVE_P(end)) return; + + end = LONG2FIX(FIXNUM_MAX); + } + + long b = FIX2LONG(beg); + long e = FIX2LONG(end); + for (long i = e; i >= b; --i) { + rb_yield(LONG2FIX(i)); + } +} + +static void +range_reverse_each_negative_bignum_section(VALUE beg, VALUE end) +{ + RUBY_ASSERT(!NIL_P(end)); - args[0] = rb_sym_to_s(end); - args[1] = EXCL(range) ? Qtrue : Qfalse; - rb_block_call(rb_sym_to_s(beg), rb_intern("upto"), 2, args, sym_each_i, 0); + if (FIXNUM_P(end) || RBIGNUM_POSITIVE_P(end)) { + end = LONG2NUM(FIXNUM_MIN - 1); + } + + if (NIL_P(beg)) { + range_reverse_each_bignum_beginless(end); + } + + if (FIXNUM_P(beg) || RBIGNUM_POSITIVE_P(beg)) return; + + range_reverse_each_bignum(beg, end); +} + +/* + * call-seq: + * reverse_each {|element| ... } -> self + * reverse_each -> an_enumerator + * + * With a block given, passes each element of +self+ to the block in reverse order: + * + * a = [] + * (1..4).reverse_each {|element| a.push(element) } # => 1..4 + * a # => [4, 3, 2, 1] + * + * a = [] + * (1...4).reverse_each {|element| a.push(element) } # => 1...4 + * a # => [3, 2, 1] + * + * With no block given, returns an enumerator. + * + */ + +static VALUE +range_reverse_each(VALUE range) +{ + RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_reverse_size); + + VALUE beg = RANGE_BEG(range); + VALUE end = RANGE_END(range); + int excl = EXCL(range); + + if (NIL_P(end)) { + rb_raise(rb_eTypeError, "can't iterate from %s", + rb_obj_classname(end)); + } + + if (FIXNUM_P(beg) && FIXNUM_P(end)) { + if (excl) { + if (end == LONG2FIX(FIXNUM_MIN)) return range; + + end = rb_int_minus(end, INT2FIX(1)); + } + + range_reverse_each_fixnum_section(beg, end); + } + else if ((NIL_P(beg) || RB_INTEGER_TYPE_P(beg)) && RB_INTEGER_TYPE_P(end)) { + if (excl) { + end = rb_int_minus(end, INT2FIX(1)); + } + range_reverse_each_positive_bignum_section(beg, end); + range_reverse_each_fixnum_section(beg, end); + range_reverse_each_negative_bignum_section(beg, end); } else { - VALUE tmp = rb_check_string_type(beg); - - if (!NIL_P(tmp)) { - VALUE args[2]; - - args[0] = end; - args[1] = EXCL(range) ? Qtrue : Qfalse; - rb_block_call(tmp, rb_intern("upto"), 2, args, rb_yield, 0); - } - else { - if (!discrete_object_p(beg)) { - rb_raise(rb_eTypeError, "can't iterate from %s", - rb_obj_classname(beg)); - } - range_each_func(range, each_i, NULL); - } + return rb_call_super(0, NULL); } + return range; } /* * call-seq: - * rng.begin -> obj + * self.begin -> object + * + * Returns the object that defines the beginning of +self+. * - * Returns the object that defines the beginning of the range. + * (1..4).begin # => 1 + * (..2).begin # => nil * - * (1..10).begin #=> 1 + * Related: Range#first, Range#end. */ static VALUE @@ -801,12 +1355,15 @@ range_begin(VALUE range) /* * call-seq: - * rng.end -> obj + * self.end -> object * - * Returns the object that defines the end of the range. + * Returns the object that defines the end of +self+. * - * (1..10).end #=> 10 - * (1...10).end #=> 10 + * (1..4).end # => 4 + * (1...4).end # => 4 + * (1..).end # => nil + * + * Related: Range#begin, Range#last. */ @@ -818,29 +1375,40 @@ range_end(VALUE range) static VALUE -first_i(VALUE i, VALUE *ary) +first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, cbarg)) { + VALUE *ary = (VALUE *)cbarg; long n = NUM2LONG(ary[0]); if (n <= 0) { - rb_iter_break(); + rb_iter_break(); } rb_ary_push(ary[1], i); n--; - ary[0] = INT2NUM(n); + ary[0] = LONG2NUM(n); return Qnil; } /* * call-seq: - * rng.first -> obj - * rng.first(n) -> an_array + * first -> object + * first(n) -> array + * + * With no argument, returns the first element of +self+, if it exists: * - * Returns the first object in the range, or an array of the first +n+ - * elements. + * (1..4).first # => 1 + * ('a'..'d').first # => "a" * - * (10..20).first #=> 10 - * (10..20).first(3) #=> [10, 11, 12] + * With non-negative integer argument +n+ given, + * returns the first +n+ elements in an array: + * + * (1..10).first(3) # => [1, 2, 3] + * (1..10).first(0) # => [] + * (1..4).first(50) # => [1, 2, 3, 4] + * + * Raises an exception if there is no first element: + * + * (..4).first # Raises RangeError */ static VALUE @@ -848,6 +1416,9 @@ range_first(int argc, VALUE *argv, VALUE range) { VALUE n, ary[2]; + if (NIL_P(RANGE_BEG(range))) { + rb_raise(rb_eRangeError, "cannot get the first element of beginless range"); + } if (argc == 0) return RANGE_BEG(range); rb_scan_args(argc, argv, "1", &n); @@ -858,110 +1429,435 @@ range_first(int argc, VALUE *argv, VALUE range) return ary[1]; } +static bool +range_basic_each_p(VALUE range) +{ + return rb_method_basic_definition_p(CLASS_OF(range), idEach); +} + +static bool +integer_end_optimizable(VALUE range) +{ + VALUE b = RANGE_BEG(range); + if (!NIL_P(b) && !RB_INTEGER_TYPE_P(b)) return false; + VALUE e = RANGE_END(range); + if (!RB_INTEGER_TYPE_P(e)) return false; + if (RB_LIKELY(range_basic_each_p(range))) return true; + return false; +} + +static VALUE +rb_int_range_last(int argc, VALUE *argv, VALUE range) +{ + static const VALUE ONE = INT2FIX(1); + + VALUE b, e, len_1 = Qnil, len = Qnil, nv, ary; + int x; + long n; + + RUBY_ASSERT(argc > 0); + + b = RANGE_BEG(range); + e = RANGE_END(range); + RUBY_ASSERT(NIL_P(b) || RB_INTEGER_TYPE_P(b), "b=%"PRIsVALUE, rb_obj_class(b)); + RUBY_ASSERT(RB_INTEGER_TYPE_P(e), "e=%"PRIsVALUE, rb_obj_class(e)); + + x = EXCL(range); + + if (!NIL_P(b)) { + len_1 = rb_int_minus(e, b); + if (x) { + e = rb_int_minus(e, ONE); + len = len_1; + } + else { + len = rb_int_plus(len_1, ONE); + } + } + else { + if (x) { + e = rb_int_minus(e, ONE); + } + } + + if (!NIL_P(len) && (FIXNUM_ZERO_P(len) || rb_num_negative_p(len))) { + return rb_ary_new_capa(0); + } + + rb_scan_args(argc, argv, "1", &nv); + n = NUM2LONG(nv); + if (n < 0) { + rb_raise(rb_eArgError, "negative array size"); + } + + nv = LONG2NUM(n); + if (!NIL_P(b) && RTEST(rb_int_gt(nv, len))) { + nv = len; + n = NUM2LONG(nv); + } + + ary = rb_ary_new_capa(n); + b = rb_int_minus(e, nv); + while (n) { + b = rb_int_plus(b, ONE); + rb_ary_push(ary, b); + --n; + } + + return ary; +} /* * call-seq: - * rng.last -> obj - * rng.last(n) -> an_array + * last -> object + * last(n) -> array * - * Returns the last object in the range, - * or an array of the last +n+ elements. + * With no argument, returns the last element of +self+, if it exists: * - * Note that with no arguments +last+ will return the object that defines - * the end of the range even if #exclude_end? is +true+. + * (1..4).last # => 4 + * ('a'..'d').last # => "d" + * + * Note that +last+ with no argument returns the end element of +self+ + * even if #exclude_end? is +true+: + * + * (1...4).last # => 4 + * ('a'...'d').last # => "d" + * + * With non-negative integer argument +n+ given, + * returns the last +n+ elements in an array: + * + * (1..10).last(3) # => [8, 9, 10] + * (1..10).last(0) # => [] + * (1..4).last(50) # => [1, 2, 3, 4] + * + * Note that +last+ with argument does not return the end element of +self+ + * if #exclude_end? it +true+: + * + * (1...4).last(3) # => [1, 2, 3] + * ('a'...'d').last(3) # => ["a", "b", "c"] + * + * Raises an exception if there is no last element: + * + * (1..).last # Raises RangeError * - * (10..20).last #=> 20 - * (10...20).last #=> 20 - * (10..20).last(3) #=> [18, 19, 20] - * (10...20).last(3) #=> [17, 18, 19] */ static VALUE range_last(int argc, VALUE *argv, VALUE range) { + if (NIL_P(RANGE_END(range))) { + rb_raise(rb_eRangeError, "cannot get the last element of endless range"); + } if (argc == 0) return RANGE_END(range); + if (integer_end_optimizable(range)) { + return rb_int_range_last(argc, argv, range); + } return rb_ary_last(argc, argv, rb_Array(range)); } /* * call-seq: - * rng.min -> obj - * rng.min {| a,b | block } -> obj + * min -> object + * min(n) -> array + * min {|a, b| ... } -> object + * min(n) {|a, b| ... } -> array + * + * Returns the minimum value in +self+, + * using method <tt>#<=></tt> or a given block for comparison. + * + * With no argument and no block given, + * returns the minimum-valued element of +self+. + * + * (1..4).min # => 1 + * ('a'..'d').min # => "a" + * (-4..-1).min # => -4 + * + * With non-negative integer argument +n+ given, and no block given, + * returns the +n+ minimum-valued elements of +self+ in an array: + * + * (1..4).min(2) # => [1, 2] + * ('a'..'d').min(2) # => ["a", "b"] + * (-4..-1).min(2) # => [-4, -3] + * (1..4).min(50) # => [1, 2, 3, 4] + * + * If a block is given, it is called: + * + * - First, with the first two element of +self+. + * - Then, sequentially, with the so-far minimum value and the next element of +self+. + * + * To illustrate: + * + * (1..4).min {|a, b| p [a, b]; a <=> b } # => 1 + * + * Output: + * + * [2, 1] + * [3, 1] + * [4, 1] * - * Returns the minimum value in the range. Returns +nil+ if the begin - * value of the range is larger than the end value. + * With no argument and a block given, + * returns the return value of the last call to the block: * - * Can be given an optional block to override the default comparison - * method <code>a <=> b</code>. + * (1..4).min {|a, b| -(a <=> b) } # => 4 * - * (10..20).min #=> 10 + * With non-negative integer argument +n+ given, and a block given, + * returns the return values of the last +n+ calls to the block in an array: + * + * (1..4).min(2) {|a, b| -(a <=> b) } # => [4, 3] + * (1..4).min(50) {|a, b| -(a <=> b) } # => [4, 3, 2, 1] + * + * Returns an empty array if +n+ is zero: + * + * (1..4).min(0) # => [] + * (1..4).min(0) {|a, b| -(a <=> b) } # => [] + * + * Returns +nil+ or an empty array if: + * + * - The begin value of the range is larger than the end value: + * + * (4..1).min # => nil + * (4..1).min(2) # => [] + * (4..1).min {|a, b| -(a <=> b) } # => nil + * (4..1).min(2) {|a, b| -(a <=> b) } # => [] + * + * - The begin value of an exclusive range is equal to the end value: + * + * (1...1).min # => nil + * (1...1).min(2) # => [] + * (1...1).min {|a, b| -(a <=> b) } # => nil + * (1...1).min(2) {|a, b| -(a <=> b) } # => [] + * + * Raises an exception if either: + * + * - +self+ is a beginless range: <tt>(..4)</tt>. + * - A block is given and +self+ is an endless range. + * + * Related: Range#max, Range#minmax. */ static VALUE -range_min(VALUE range) +range_min(int argc, VALUE *argv, VALUE range) { + if (NIL_P(RANGE_BEG(range))) { + rb_raise(rb_eRangeError, "cannot get the minimum of beginless range"); + } + if (rb_block_given_p()) { - return rb_call_super(0, 0); + if (NIL_P(RANGE_END(range))) { + rb_raise(rb_eRangeError, "cannot get the minimum of endless range with custom comparison method"); + } + return rb_call_super(argc, argv); + } + else if (argc != 0) { + return range_first(argc, argv, range); } else { - VALUE b = RANGE_BEG(range); - VALUE e = RANGE_END(range); - int c = rb_cmpint(rb_funcall(b, id_cmp, 1, e), b, e); + VALUE b = RANGE_BEG(range); + VALUE e = RANGE_END(range); + int c = NIL_P(e) ? -1 : OPTIMIZED_CMP(b, e); - if (c > 0 || (c == 0 && EXCL(range))) - return Qnil; - return b; + if (c > 0 || (c == 0 && EXCL(range))) + return Qnil; + return b; } } /* * call-seq: - * rng.max -> obj - * rng.max {| a,b | block } -> obj + * max -> object + * max(n) -> array + * max {|a, b| ... } -> object + * max(n) {|a, b| ... } -> array + * + * Returns the maximum value in +self+, + * using method <tt>#<=></tt> or a given block for comparison. + * + * With no argument and no block given, + * returns the maximum-valued element of +self+. + * + * (1..4).max # => 4 + * ('a'..'d').max # => "d" + * (-4..-1).max # => -1 + * + * With non-negative integer argument +n+ given, and no block given, + * returns the +n+ maximum-valued elements of +self+ in an array: + * + * (1..4).max(2) # => [4, 3] + * ('a'..'d').max(2) # => ["d", "c"] + * (-4..-1).max(2) # => [-1, -2] + * (1..4).max(50) # => [4, 3, 2, 1] + * + * If a block is given, it is called: + * + * - First, with the first two element of +self+. + * - Then, sequentially, with the so-far maximum value and the next element of +self+. + * + * To illustrate: * - * Returns the maximum value in the range. Returns +nil+ if the begin - * value of the range larger than the end value. + * (1..4).max {|a, b| p [a, b]; a <=> b } # => 4 * - * Can be given an optional block to override the default comparison - * method <code>a <=> b</code>. + * Output: + * + * [2, 1] + * [3, 2] + * [4, 3] + * + * With no argument and a block given, + * returns the return value of the last call to the block: + * + * (1..4).max {|a, b| -(a <=> b) } # => 1 + * + * With non-negative integer argument +n+ given, and a block given, + * returns the return values of the last +n+ calls to the block in an array: + * + * (1..4).max(2) {|a, b| -(a <=> b) } # => [1, 2] + * (1..4).max(50) {|a, b| -(a <=> b) } # => [1, 2, 3, 4] + * + * Returns an empty array if +n+ is zero: + * + * (1..4).max(0) # => [] + * (1..4).max(0) {|a, b| -(a <=> b) } # => [] + * + * Returns +nil+ or an empty array if: + * + * - The begin value of the range is larger than the end value: + * + * (4..1).max # => nil + * (4..1).max(2) # => [] + * (4..1).max {|a, b| -(a <=> b) } # => nil + * (4..1).max(2) {|a, b| -(a <=> b) } # => [] + * + * - The begin value of an exclusive range is equal to the end value: + * + * (1...1).max # => nil + * (1...1).max(2) # => [] + * (1...1).max {|a, b| -(a <=> b) } # => nil + * (1...1).max(2) {|a, b| -(a <=> b) } # => [] + * + * Raises an exception if either: + * + * - +self+ is a endless range: <tt>(1..)</tt>. + * - A block is given and +self+ is a beginless range. + * + * Related: Range#min, Range#minmax. * - * (10..20).max #=> 20 */ static VALUE -range_max(VALUE range) +range_max(int argc, VALUE *argv, VALUE range) { VALUE e = RANGE_END(range); int nm = FIXNUM_P(e) || rb_obj_is_kind_of(e, rb_cNumeric); + if (NIL_P(RANGE_END(range))) { + rb_raise(rb_eRangeError, "cannot get the maximum of endless range"); + } + + VALUE b = RANGE_BEG(range); + if (rb_block_given_p() || (EXCL(range) && !nm)) { - return rb_call_super(0, 0); + if (NIL_P(b)) { + rb_raise(rb_eRangeError, "cannot get the maximum of beginless range with custom comparison method"); + } + return rb_call_super(argc, argv); + } + else if (argc) { + VALUE ary[2]; + ID reverse_each; + CONST_ID(reverse_each, "reverse_each"); + rb_scan_args(argc, argv, "1", &ary[0]); + ary[1] = rb_ary_new2(NUM2LONG(ary[0])); + rb_block_call(range, reverse_each, 0, 0, first_i, (VALUE)ary); + return ary[1]; +#if 0 + if (integer_end_optimizable(range)) { + return rb_int_range_last(argc, argv, range, true); + } + return rb_ary_reverse(rb_ary_last(argc, argv, rb_Array(range))); +#endif } else { - VALUE b = RANGE_BEG(range); - int c = rb_cmpint(rb_funcall(b, id_cmp, 1, e), b, e); - - if (c > 0) - return Qnil; - if (EXCL(range)) { - if (!FIXNUM_P(e) && !rb_obj_is_kind_of(e, rb_cInteger)) { - rb_raise(rb_eTypeError, "cannot exclude non Integer end value"); - } - if (c == 0) return Qnil; - if (!FIXNUM_P(b) && !rb_obj_is_kind_of(b,rb_cInteger)) { - rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value"); - } - if (FIXNUM_P(e)) { - return LONG2NUM(FIX2LONG(e) - 1); - } - return rb_funcall(e, '-', 1, INT2FIX(1)); - } - return e; + int c = NIL_P(b) ? -1 : OPTIMIZED_CMP(b, e); + + if (c > 0) + return Qnil; + if (EXCL(range)) { + if (!RB_INTEGER_TYPE_P(e)) { + rb_raise(rb_eTypeError, "cannot exclude non Integer end value"); + } + if (c == 0) return Qnil; + if (!NIL_P(b) && !RB_INTEGER_TYPE_P(b)) { + rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value"); + } + if (FIXNUM_P(e)) { + return LONG2NUM(FIX2LONG(e) - 1); + } + return rb_int_minus(e,INT2FIX(1)); + } + return e; } } +/* + * call-seq: + * minmax -> [object, object] + * minmax {|a, b| ... } -> [object, object] + * + * Returns a 2-element array containing the minimum and maximum value in +self+, + * either according to comparison method <tt>#<=></tt> or a given block. + * + * With no block given, returns the minimum and maximum values, + * using <tt>#<=></tt> for comparison: + * + * (1..4).minmax # => [1, 4] + * (1...4).minmax # => [1, 3] + * ('a'..'d').minmax # => ["a", "d"] + * (-4..-1).minmax # => [-4, -1] + * + * With a block given, the block must return an integer: + * + * - Negative if +a+ is smaller than +b+. + * - Zero if +a+ and +b+ are equal. + * - Positive if +a+ is larger than +b+. + * + * The block is called <tt>self.size</tt> times to compare elements; + * returns a 2-element Array containing the minimum and maximum values from +self+, + * per the block: + * + * (1..4).minmax {|a, b| -(a <=> b) } # => [4, 1] + * + * Returns <tt>[nil, nil]</tt> if: + * + * - The begin value of the range is larger than the end value: + * + * (4..1).minmax # => [nil, nil] + * (4..1).minmax {|a, b| -(a <=> b) } # => [nil, nil] + * + * - The begin value of an exclusive range is equal to the end value: + * + * (1...1).minmax # => [nil, nil] + * (1...1).minmax {|a, b| -(a <=> b) } # => [nil, nil] + * + * Raises an exception if +self+ is a beginless or an endless range. + * + * Related: Range#min, Range#max. + * + */ + +static VALUE +range_minmax(VALUE range) +{ + if (rb_block_given_p()) { + return rb_call_super(0, NULL); + } + return rb_assoc_new( + rb_funcall(range, id_min, 0), + rb_funcall(range, id_max, 0) + ); +} + int rb_range_values(VALUE range, VALUE *begp, VALUE *endp, int *exclp) { @@ -969,16 +1865,22 @@ rb_range_values(VALUE range, VALUE *begp, VALUE *endp, int *exclp) int excl; if (rb_obj_is_kind_of(range, rb_cRange)) { - b = RANGE_BEG(range); - e = RANGE_END(range); - excl = EXCL(range); + b = RANGE_BEG(range); + e = RANGE_END(range); + excl = EXCL(range); + } + else if (RTEST(rb_obj_is_kind_of(range, rb_cArithSeq))) { + return (int)Qfalse; } else { - if (!rb_respond_to(range, id_beg)) return (int)Qfalse; - if (!rb_respond_to(range, id_end)) return (int)Qfalse; - b = rb_funcall(range, id_beg, 0); - e = rb_funcall(range, id_end, 0); - excl = RTEST(rb_funcall(range, rb_intern("exclude_end?"), 0)); + VALUE x; + b = rb_check_funcall(range, id_beg, 0, 0); + if (UNDEF_P(b)) return (int)Qfalse; + e = rb_check_funcall(range, id_end, 0, 0); + if (UNDEF_P(e)) return (int)Qfalse; + x = rb_check_funcall(range, rb_intern("exclude_end?"), 0, 0); + if (UNDEF_P(x)) return (int)Qfalse; + excl = RTEST(x); } *begp = b; *endp = e; @@ -986,56 +1888,100 @@ rb_range_values(VALUE range, VALUE *begp, VALUE *endp, int *exclp) return (int)Qtrue; } +/* Extract the components of a Range. + * + * You can use +err+ to control the behavior of out-of-range and exception. + * + * When +err+ is 0 or 2, if the begin offset is greater than +len+, + * it is out-of-range. The +RangeError+ is raised only if +err+ is 2, + * in this case. If +err+ is 0, +Qnil+ will be returned. + * + * When +err+ is 1, the begin and end offsets won't be adjusted even if they + * are greater than +len+. It allows +rb_ary_aset+ extends arrays. + * + * If the begin component of the given range is negative and is too-large + * abstract value, the +RangeError+ is raised only +err+ is 1 or 2. + * + * The case of <code>err = 0</code> is used in item accessing methods such as + * +rb_ary_aref+, +rb_ary_slice_bang+, and +rb_str_aref+. + * + * The case of <code>err = 1</code> is used in Array's methods such as + * +rb_ary_aset+ and +rb_ary_fill+. + * + * The case of <code>err = 2</code> is used in +rb_str_aset+. + */ VALUE -rb_range_beg_len(VALUE range, long *begp, long *lenp, long len, int err) +rb_range_component_beg_len(VALUE b, VALUE e, int excl, + long *begp, long *lenp, long len, int err) { - long beg, end, origbeg, origend; - VALUE b, e; - int excl; + long beg, end; - if (!rb_range_values(range, &b, &e, &excl)) - return Qfalse; - beg = NUM2LONG(b); - end = NUM2LONG(e); - origbeg = beg; - origend = end; + beg = NIL_P(b) ? 0 : NUM2LONG(b); + end = NIL_P(e) ? -1 : NUM2LONG(e); + if (NIL_P(e)) excl = 0; if (beg < 0) { - beg += len; - if (beg < 0) - goto out_of_range; + beg += len; + if (beg < 0) + goto out_of_range; } if (end < 0) - end += len; + end += len; if (!excl) - end++; /* include end point */ + end++; /* include end point */ if (err == 0 || err == 2) { - if (beg > len) - goto out_of_range; - if (end > len) - end = len; + if (beg > len) + goto out_of_range; + if (end > len) + end = len; } len = end - beg; if (len < 0) - len = 0; + len = 0; *begp = beg; *lenp = len; return Qtrue; out_of_range: - if (err) { - rb_raise(rb_eRangeError, "%ld..%s%ld out of range", - origbeg, excl ? "." : "", origend); - } return Qnil; } +VALUE +rb_range_beg_len(VALUE range, long *begp, long *lenp, long len, int err) +{ + VALUE b, e; + int excl; + + if (!rb_range_values(range, &b, &e, &excl)) + return Qfalse; + + VALUE res = rb_range_component_beg_len(b, e, excl, begp, lenp, len, err); + if (NIL_P(res) && err) { + rb_raise(rb_eRangeError, "%+"PRIsVALUE" out of range", range); + } + + return res; +} + /* * call-seq: - * rng.to_s -> string + * to_s -> string + * + * Returns a string representation of +self+, + * including <tt>begin.to_s</tt> and <tt>end.to_s</tt>: + * + * (1..4).to_s # => "1..4" + * (1...4).to_s # => "1...4" + * (1..).to_s # => "1.." + * (..4).to_s # => "..4" + * + * Note that returns from #to_s and #inspect may differ: + * + * ('a'..'d').to_s # => "a..d" + * ('a'..'d').inspect # => "\"a\"..\"d\"" + * + * Related: Range#inspect. * - * Convert this range object to a printable form (using #to_s to convert the - * begin and end objects). */ static VALUE @@ -1048,7 +1994,6 @@ range_to_s(VALUE range) str = rb_str_dup(str); rb_str_cat(str, "...", EXCL(range) ? 3 : 2); rb_str_append(str, str2); - OBJ_INFECT(str, str2); return str; } @@ -1056,28 +2001,45 @@ range_to_s(VALUE range) static VALUE inspect_range(VALUE range, VALUE dummy, int recur) { - VALUE str, str2; + VALUE str, str2 = Qundef; if (recur) { - return rb_str_new2(EXCL(range) ? "(... ... ...)" : "(... .. ...)"); + return rb_str_new2(EXCL(range) ? "(... ... ...)" : "(... .. ...)"); + } + if (!NIL_P(RANGE_BEG(range)) || NIL_P(RANGE_END(range))) { + str = rb_str_dup(rb_inspect(RANGE_BEG(range))); + } + else { + str = rb_str_new(0, 0); } - str = rb_inspect(RANGE_BEG(range)); - str2 = rb_inspect(RANGE_END(range)); - str = rb_str_dup(str); rb_str_cat(str, "...", EXCL(range) ? 3 : 2); - rb_str_append(str, str2); - OBJ_INFECT(str, str2); + if (NIL_P(RANGE_BEG(range)) || !NIL_P(RANGE_END(range))) { + str2 = rb_inspect(RANGE_END(range)); + } + if (!UNDEF_P(str2)) rb_str_append(str, str2); return str; } /* * call-seq: - * rng.inspect -> string + * inspect -> string + * + * Returns a string representation of +self+, + * including <tt>begin.inspect</tt> and <tt>end.inspect</tt>: + * + * (1..4).inspect # => "1..4" + * (1...4).inspect # => "1...4" + * (1..).inspect # => "1.." + * (..4).inspect # => "..4" + * + * Note that returns from #to_s and #inspect may differ: + * + * ('a'..'d').to_s # => "a..d" + * ('a'..'d').inspect # => "\"a\"..\"d\"" + * + * Related: Range#to_s. * - * Convert this range object to a printable form (using - * <code>inspect</code> to convert the begin and end - * objects). */ @@ -1087,107 +2049,263 @@ range_inspect(VALUE range) return rb_exec_recursive(inspect_range, range, 0); } +static VALUE range_include_internal(VALUE range, VALUE val); +VALUE rb_str_include_range_p(VALUE beg, VALUE end, VALUE val, VALUE exclusive); + /* * call-seq: - * rng === obj -> true or false + * self === other -> true or false * - * Returns <code>true</code> if +obj+ is an element of the range, - * <code>false</code> otherwise. Conveniently, <code>===</code> is the - * comparison operator used by <code>case</code> statements. + * Returns whether +other+ is between <tt>self.begin</tt> and <tt>self.end</tt>: * - * case 79 - * when 1..50 then print "low\n" - * when 51..75 then print "medium\n" - * when 76..100 then print "high\n" - * end + * (1..4) === 2 # => true + * (1..4) === 5 # => false + * (1..4) === 'a' # => false + * (1..4) === 4 # => true + * (1...4) === 4 # => false + * ('a'..'d') === 'c' # => true + * ('a'..'d') === 'e' # => false + * + * A case statement uses method <tt>===</tt>, and so: * - * <em>produces:</em> + * case 79 + * when (1..50) + * "low" + * when (51..75) + * "medium" + * when (76..100) + * "high" + * end # => "high" + * + * case "2.6.5" + * when ..."2.4" + * "EOL" + * when "2.4"..."2.5" + * "maintenance" + * when "2.5"..."3.0" + * "stable" + * when "3.1".. + * "upcoming" + * end # => "stable" * - * high */ static VALUE range_eqq(VALUE range, VALUE val) { - return rb_funcall(range, rb_intern("include?"), 1, val); + return r_cover_p(range, RANGE_BEG(range), RANGE_END(range), val); } /* * call-seq: - * rng.member?(obj) -> true or false - * rng.include?(obj) -> true or false + * include?(object) -> true or false + * + * Returns +true+ if +object+ is an element of +self+, +false+ otherwise: + * + * (1..4).include?(2) # => true + * (1..4).include?(5) # => false + * (1..4).include?(4) # => true + * (1...4).include?(4) # => false + * ('a'..'d').include?('b') # => true + * ('a'..'d').include?('e') # => false + * ('a'..'d').include?('B') # => false + * ('a'..'d').include?('d') # => true + * ('a'...'d').include?('d') # => false * - * Returns <code>true</code> if +obj+ is an element of - * the range, <code>false</code> otherwise. If begin and end are - * numeric, comparison is done according to the magnitude of the values. + * If begin and end are numeric, #include? behaves like #cover? * - * ("a".."z").include?("g") #=> true - * ("a".."z").include?("A") #=> false - * ("a".."z").include?("cc") #=> false + * (1..3).include?(1.5) # => true + * (1..3).cover?(1.5) # => true + * + * But when not numeric, the two methods may differ: + * + * ('a'..'d').include?('cc') # => false + * ('a'..'d').cover?('cc') # => true + * + * Related: Range#cover?. */ static VALUE range_include(VALUE range, VALUE val) { + VALUE ret = range_include_internal(range, val); + if (!UNDEF_P(ret)) return ret; + return rb_call_super(1, &val); +} + +static inline bool +range_integer_edge_p(VALUE beg, VALUE end) +{ + return (!NIL_P(rb_check_to_integer(beg, "to_int")) || + !NIL_P(rb_check_to_integer(end, "to_int"))); +} + +static inline bool +range_string_range_p(VALUE beg, VALUE end) +{ + return RB_TYPE_P(beg, T_STRING) && RB_TYPE_P(end, T_STRING); +} + +static inline VALUE +range_include_fallback(VALUE beg, VALUE end, VALUE val) +{ + if (NIL_P(beg) && NIL_P(end)) { + if (linear_object_p(val)) return Qtrue; + } + + if (NIL_P(beg) || NIL_P(end)) { + rb_raise(rb_eTypeError, "cannot determine inclusion in beginless/endless ranges"); + } + + return Qundef; +} + +static VALUE +range_include_internal(VALUE range, VALUE val) +{ VALUE beg = RANGE_BEG(range); VALUE end = RANGE_END(range); int nv = FIXNUM_P(beg) || FIXNUM_P(end) || - rb_obj_is_kind_of(beg, rb_cNumeric) || - rb_obj_is_kind_of(end, rb_cNumeric); - - if (nv || - !NIL_P(rb_check_to_integer(beg, "to_int")) || - !NIL_P(rb_check_to_integer(end, "to_int"))) { - if (r_le(beg, val)) { - if (EXCL(range)) { - if (r_lt(val, end)) - return Qtrue; - } - else { - if (r_le(val, end)) - return Qtrue; - } - } - return Qfalse; - } - else if (RB_TYPE_P(beg, T_STRING) && RB_TYPE_P(end, T_STRING) && - RSTRING_LEN(beg) == 1 && RSTRING_LEN(end) == 1) { - if (NIL_P(val)) return Qfalse; - if (RB_TYPE_P(val, T_STRING)) { - if (RSTRING_LEN(val) == 0 || RSTRING_LEN(val) > 1) - return Qfalse; - else { - char b = RSTRING_PTR(beg)[0]; - char e = RSTRING_PTR(end)[0]; - char v = RSTRING_PTR(val)[0]; - - if (ISASCII(b) && ISASCII(e) && ISASCII(v)) { - if (b <= v && v < e) return Qtrue; - if (!EXCL(range) && v == e) return Qtrue; - return Qfalse; - } - } - } - } - /* TODO: ruby_frame->this_func = rb_intern("include?"); */ - return rb_call_super(1, &val); + linear_object_p(beg) || linear_object_p(end); + + if (nv || range_integer_edge_p(beg, end)) { + return r_cover_p(range, beg, end, val); + } + else if (range_string_range_p(beg, end)) { + return rb_str_include_range_p(beg, end, val, RANGE_EXCL(range)); + } + + return range_include_fallback(beg, end, val); } +static int r_cover_range_p(VALUE range, VALUE beg, VALUE end, VALUE val); /* * call-seq: - * rng.cover?(obj) -> true or false - * - * Returns <code>true</code> if +obj+ is between the begin and end of - * the range. + * cover?(object) -> true or false + * cover?(range) -> true or false * - * This tests <code>begin <= obj <= end</code> when #exclude_end? is +false+ - * and <code>begin <= obj < end</code> when #exclude_end? is +true+. + * Returns +true+ if the given argument is within +self+, +false+ otherwise. + * + * With non-range argument +object+, evaluates with <tt><=</tt> and <tt><</tt>. + * + * For range +self+ with included end value (<tt>#exclude_end? == false</tt>), + * evaluates thus: + * + * self.begin <= object <= self.end + * + * Examples: + * + * r = (1..4) + * r.cover?(1) # => true + * r.cover?(4) # => true + * r.cover?(0) # => false + * r.cover?(5) # => false + * r.cover?('foo') # => false + * + * r = ('a'..'d') + * r.cover?('a') # => true + * r.cover?('d') # => true + * r.cover?(' ') # => false + * r.cover?('e') # => false + * r.cover?(0) # => false + * + * For range +r+ with excluded end value (<tt>#exclude_end? == true</tt>), + * evaluates thus: + * + * r.begin <= object < r.end + * + * Examples: + * + * r = (1...4) + * r.cover?(1) # => true + * r.cover?(3) # => true + * r.cover?(0) # => false + * r.cover?(4) # => false + * r.cover?('foo') # => false + * + * r = ('a'...'d') + * r.cover?('a') # => true + * r.cover?('c') # => true + * r.cover?(' ') # => false + * r.cover?('d') # => false + * r.cover?(0) # => false + * + * With range argument +range+, compares the first and last + * elements of +self+ and +range+: + * + * r = (1..4) + * r.cover?(1..4) # => true + * r.cover?(0..4) # => false + * r.cover?(1..5) # => false + * r.cover?('a'..'d') # => false + * + * r = (1...4) + * r.cover?(1..3) # => true + * r.cover?(1..4) # => false + * + * If begin and end are numeric, #cover? behaves like #include? + * + * (1..3).cover?(1.5) # => true + * (1..3).include?(1.5) # => true + * + * But when not numeric, the two methods may differ: + * + * ('a'..'d').cover?('cc') # => true + * ('a'..'d').include?('cc') # => false + * + * Returns +false+ if either: + * + * - The begin value of +self+ is larger than its end value. + * - An internal call to <tt>#<=></tt> returns +nil+; + * that is, the operands are not comparable. + * + * Beginless ranges cover all values of the same type before the end, + * excluding the end for exclusive ranges. Beginless ranges cover + * ranges that end before the end of the beginless range, or at the + * end of the beginless range for inclusive ranges. + * + * (..2).cover?(1) # => true + * (..2).cover?(2) # => true + * (..2).cover?(3) # => false + * (...2).cover?(2) # => false + * (..2).cover?("2") # => false + * (..2).cover?(..2) # => true + * (..2).cover?(...2) # => true + * (..2).cover?(.."2") # => false + * (...2).cover?(..2) # => false + * + * Endless ranges cover all values of the same type after the + * beginning. Endless exclusive ranges do not cover endless + * inclusive ranges. + * + * (2..).cover?(1) # => false + * (2..).cover?(3) # => true + * (2...).cover?(3) # => true + * (2..).cover?(2) # => true + * (2..).cover?("2") # => false + * (2..).cover?(2..) # => true + * (2..).cover?(2...) # => true + * (2..).cover?("2"..) # => false + * (2...).cover?(2..) # => false + * (2...).cover?(3...) # => true + * (2...).cover?(3..) # => false + * (3..).cover?(2..) # => false + * + * Ranges that are both beginless and endless cover all values and + * ranges, and return true for all arguments, with the exception that + * beginless and endless exclusive ranges do not cover endless + * inclusive ranges. + * + * (nil...).cover?(Object.new) # => true + * (nil...).cover?(nil...) # => true + * (nil..).cover?(nil...) # => true + * (nil...).cover?(nil..) # => false + * (nil...).cover?(1..) # => false + * + * Related: Range#include?. * - * ("a".."z").cover?("c") #=> true - * ("a".."z").cover?("5") #=> false - * ("a".."z").cover?("cc") #=> true */ static VALUE @@ -1197,15 +2315,67 @@ range_cover(VALUE range, VALUE val) beg = RANGE_BEG(range); end = RANGE_END(range); - if (r_le(beg, val)) { - if (EXCL(range)) { - if (r_lt(val, end)) - return Qtrue; - } - else { - if (r_le(val, end)) - return Qtrue; - } + + if (rb_obj_is_kind_of(val, rb_cRange)) { + return RBOOL(r_cover_range_p(range, beg, end, val)); + } + return r_cover_p(range, beg, end, val); +} + +static VALUE +r_call_max(VALUE r) +{ + return rb_funcallv(r, rb_intern("max"), 0, 0); +} + +static int +r_cover_range_p(VALUE range, VALUE beg, VALUE end, VALUE val) +{ + VALUE val_beg, val_end, val_max; + int cmp_end; + + val_beg = RANGE_BEG(val); + val_end = RANGE_END(val); + + if (!NIL_P(end) && NIL_P(val_end)) return FALSE; + if (!NIL_P(beg) && NIL_P(val_beg)) return FALSE; + if (!NIL_P(val_beg) && !NIL_P(val_end) && r_less(val_beg, val_end) > (EXCL(val) ? -1 : 0)) return FALSE; + if (!NIL_P(val_beg) && !r_cover_p(range, beg, end, val_beg)) return FALSE; + + + if (!NIL_P(val_end) && !NIL_P(end)) { + VALUE r_cmp_end = rb_funcall(end, id_cmp, 1, val_end); + if (NIL_P(r_cmp_end)) return FALSE; + cmp_end = rb_cmpint(r_cmp_end, end, val_end); + } + else { + cmp_end = r_less(end, val_end); + } + + + if (EXCL(range) == EXCL(val)) { + return cmp_end >= 0; + } + else if (EXCL(range)) { + return cmp_end > 0; + } + else if (cmp_end >= 0) { + return TRUE; + } + + val_max = rb_rescue2(r_call_max, val, 0, Qnil, rb_eTypeError, (VALUE)0); + if (NIL_P(val_max)) return FALSE; + + return r_less(end, val_max) >= 0; +} + +static VALUE +r_cover_p(VALUE range, VALUE beg, VALUE end, VALUE val) +{ + if (NIL_P(beg) || r_less(beg, val) <= 0) { + int excl = EXCL(range); + if (NIL_P(end) || r_less(val, end) <= -excl) + return Qtrue; } return Qfalse; } @@ -1213,10 +2383,7 @@ range_cover(VALUE range, VALUE val) static VALUE range_dumper(VALUE range) { - VALUE v; - NEWOBJ_OF(m, struct RObject, rb_cObject, T_OBJECT); - - v = (VALUE)m; + VALUE v = rb_obj_alloc(rb_cObject); rb_ivar_set(v, id_excl, RANGE_EXCL(range)); rb_ivar_set(v, id_beg, RANGE_BEG(range)); @@ -1227,94 +2394,452 @@ range_dumper(VALUE range) static VALUE range_loader(VALUE range, VALUE obj) { + VALUE beg, end, excl; + if (!RB_TYPE_P(obj, T_OBJECT) || RBASIC(obj)->klass != rb_cObject) { rb_raise(rb_eTypeError, "not a dumped range object"); } - RSTRUCT(range)->as.ary[0] = rb_ivar_get(obj, id_beg); - RSTRUCT(range)->as.ary[1] = rb_ivar_get(obj, id_end); - RSTRUCT(range)->as.ary[2] = rb_ivar_get(obj, id_excl); + range_modify(range); + beg = rb_ivar_get(obj, id_beg); + end = rb_ivar_get(obj, id_end); + excl = rb_ivar_get(obj, id_excl); + if (!NIL_P(excl)) { + range_init(range, beg, end, RBOOL(RTEST(excl))); + } return range; } static VALUE range_alloc(VALUE klass) { - /* rb_struct_alloc_noinit itself should not be used because - * rb_marshal_define_compat uses equality of allocaiton function */ + /* rb_struct_alloc_noinit itself should not be used because + * rb_marshal_define_compat uses equality of allocation function */ return rb_struct_alloc_noinit(klass); } -/* A <code>Range</code> represents an interval---a set of values with a - * beginning and an end. Ranges may be constructed using the - * <em>s</em><code>..</code><em>e</em> and - * <em>s</em><code>...</code><em>e</em> literals, or with - * Range::new. Ranges constructed using <code>..</code> - * run from the beginning to the end inclusively. Those created using - * <code>...</code> exclude the end value. When used as an iterator, - * ranges return each value in the sequence. - * - * (-1..-5).to_a #=> [] - * (-5..-1).to_a #=> [-5, -4, -3, -2, -1] - * ('a'..'e').to_a #=> ["a", "b", "c", "d", "e"] - * ('a'...'e').to_a #=> ["a", "b", "c", "d"] - * - * == Custom Objects in Ranges - * - * Ranges can be constructed using any objects that can be compared - * using the <code><=></code> operator. - * Methods that treat the range as a sequence (#each and methods inherited - * from Enumerable) expect the begin object to implement a - * <code>succ</code> method to return the next object in sequence. - * The #step and #include? methods require the begin - * object to implement <code>succ</code> or to be numeric. - * - * In the <code>Xs</code> class below both <code><=></code> and - * <code>succ</code> are implemented so <code>Xs</code> can be used - * to construct ranges. Note that the Comparable module is included - * so the <code>==</code> method is defined in terms of <code><=></code>. - * - * class Xs # represent a string of 'x's - * include Comparable - * attr :length - * def initialize(n) - * @length = n - * end - * def succ - * Xs.new(@length + 1) - * end - * def <=>(other) - * @length <=> other.length - * end - * def to_s - * sprintf "%2d #{inspect}", @length - * end - * def inspect - * 'x' * @length - * end +/* + * call-seq: + * count -> integer + * count(object) -> integer + * count {|element| ... } -> integer + * + * Returns the count of elements, based on an argument or block criterion, if given. + * + * With no argument and no block given, returns the number of elements: + * + * (1..4).count # => 4 + * (1...4).count # => 3 + * ('a'..'d').count # => 4 + * ('a'...'d').count # => 3 + * (1..).count # => Infinity + * (..4).count # => Infinity + * + * With argument +object+, returns the number of +object+ found in +self+, + * which will usually be zero or one: + * + * (1..4).count(2) # => 1 + * (1..4).count(5) # => 0 + * (1..4).count('a') # => 0 + * + * With a block given, calls the block with each element; + * returns the number of elements for which the block returns a truthy value: + * + * (1..4).count {|element| element < 3 } # => 2 + * + * Related: Range#size. + */ +static VALUE +range_count(int argc, VALUE *argv, VALUE range) +{ + if (argc != 0) { + /* It is odd for instance (1...).count(0) to return Infinity. Just let + * it loop. */ + return rb_call_super(argc, argv); + } + else if (rb_block_given_p()) { + /* Likewise it is odd for instance (1...).count {|x| x == 0 } to return + * Infinity. Just let it loop. */ + return rb_call_super(argc, argv); + } + + VALUE beg = RANGE_BEG(range), end = RANGE_END(range); + + if (NIL_P(beg) || NIL_P(end)) { + /* We are confident that the answer is Infinity. */ + return DBL2NUM(HUGE_VAL); + } + + if (is_integer_p(beg)) { + VALUE size = range_size(range); + if (!NIL_P(size)) { + return size; + } + } + + return rb_call_super(argc, argv); +} + +static bool +empty_region_p(VALUE beg, VALUE end, int excl) +{ + if (NIL_P(beg)) return false; + if (NIL_P(end)) return false; + int less = r_less(beg, end); + /* empty range */ + if (less > 0) return true; + if (excl && less == 0) return true; + return false; +} + +/* + * call-seq: + * overlap?(range) -> true or false + * + * Returns +true+ if +range+ overlaps with +self+, +false+ otherwise: + * + * (0..2).overlap?(1..3) #=> true + * (0..2).overlap?(3..4) #=> false + * (0..).overlap?(..0) #=> true + * + * With non-range argument, raises TypeError. + * + * (1..3).overlap?(1) # TypeError + * + * Returns +false+ if an internal call to <tt>#<=></tt> returns +nil+; + * that is, the operands are not comparable. + * + * (1..3).overlap?('a'..'d') # => false + * + * Returns +false+ if +self+ or +range+ is empty. "Empty range" means + * that its begin value is larger than, or equal for an exclusive + * range, its end value. + * + * (4..1).overlap?(2..3) # => false + * (4..1).overlap?(..3) # => false + * (4..1).overlap?(2..) # => false + * (2...2).overlap?(1..2) # => false + * + * (1..4).overlap?(3..2) # => false + * (..4).overlap?(3..2) # => false + * (1..).overlap?(3..2) # => false + * (1..2).overlap?(2...2) # => false + * + * Returns +false+ if the begin value one of +self+ and +range+ is + * larger than, or equal if the other is an exclusive range, the end + * value of the other: + * + * (4..5).overlap?(2..3) # => false + * (4..5).overlap?(2...4) # => false + * + * (1..2).overlap?(3..4) # => false + * (1...3).overlap?(3..4) # => false + * + * Returns +false+ if the end value one of +self+ and +range+ is + * larger than, or equal for an exclusive range, the end value of the + * other: + * + * (4..5).overlap?(2..3) # => false + * (4..5).overlap?(2...4) # => false + * + * (1..2).overlap?(3..4) # => false + * (1...3).overlap?(3..4) # => false + * + * Note that the method wouldn't make any assumptions about the beginless + * range being actually empty, even if its upper bound is the minimum + * possible value of its type, so all this would return +true+: + * + * (...-Float::INFINITY).overlap?(...-Float::INFINITY) # => true + * (..."").overlap?(..."") # => true + * (...[]).overlap?(...[]) # => true + * + * Even if those ranges are effectively empty (no number can be smaller than + * <tt>-Float::INFINITY</tt>), they are still considered overlapping + * with themselves. + * + * Related: Range#cover?. + */ + +static VALUE +range_overlap(VALUE range, VALUE other) +{ + if (!rb_obj_is_kind_of(other, rb_cRange)) { + rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (expected Range)", + rb_class_name(rb_obj_class(other))); + } + + VALUE self_beg = RANGE_BEG(range); + VALUE self_end = RANGE_END(range); + int self_excl = EXCL(range); + VALUE other_beg = RANGE_BEG(other); + VALUE other_end = RANGE_END(other); + int other_excl = EXCL(other); + + if (empty_region_p(self_beg, other_end, other_excl)) return Qfalse; + if (empty_region_p(other_beg, self_end, self_excl)) return Qfalse; + + if (!NIL_P(self_beg) && !NIL_P(other_beg)) { + VALUE cmp = rb_funcall(self_beg, id_cmp, 1, other_beg); + if (NIL_P(cmp)) return Qfalse; + /* if both begin values are equal, no more comparisons needed */ + if (rb_cmpint(cmp, self_beg, other_beg) == 0) return Qtrue; + } + else if (NIL_P(self_beg) && !NIL_P(self_end) && NIL_P(other_beg) && !NIL_P(other_end)) { + VALUE cmp = rb_funcall(self_end, id_cmp, 1, other_end); + return RBOOL(!NIL_P(cmp)); + } + + if (empty_region_p(self_beg, self_end, self_excl)) return Qfalse; + if (empty_region_p(other_beg, other_end, other_excl)) return Qfalse; + + return Qtrue; +} + +/* A \Range object represents a collection of values + * that are between given begin and end values. + * + * You can create an \Range object explicitly with: + * + * - A {range literal}[rdoc-ref:syntax/literals.rdoc@Range+Literals]: + * + * # Ranges that use '..' to include the given end value. + * (1..4).to_a # => [1, 2, 3, 4] + * ('a'..'d').to_a # => ["a", "b", "c", "d"] + * # Ranges that use '...' to exclude the given end value. + * (1...4).to_a # => [1, 2, 3] + * ('a'...'d').to_a # => ["a", "b", "c"] + * + * - Method Range.new: + * + * # Ranges that by default include the given end value. + * Range.new(1, 4).to_a # => [1, 2, 3, 4] + * Range.new('a', 'd').to_a # => ["a", "b", "c", "d"] + * # Ranges that use third argument +exclude_end+ to exclude the given end value. + * Range.new(1, 4, true).to_a # => [1, 2, 3] + * Range.new('a', 'd', true).to_a # => ["a", "b", "c"] + * + * == Beginless Ranges + * + * A _beginless_ _range_ has a definite end value, but a +nil+ begin value. + * Such a range includes all values up to the end value. + * + * r = (..4) # => nil..4 + * r.begin # => nil + * r.include?(-50) # => true + * r.include?(4) # => true + * + * r = (...4) # => nil...4 + * r.include?(4) # => false + * + * Range.new(nil, 4) # => nil..4 + * Range.new(nil, 4, true) # => nil...4 + * + * A beginless range may be used to slice an array: + * + * a = [1, 2, 3, 4] + * # Include the third array element in the slice + * r = (..2) # => nil..2 + * a[r] # => [1, 2, 3] + * # Exclude the third array element from the slice + * r = (...2) # => nil...2 + * a[r] # => [1, 2] + * + * Method +each+ for a beginless range raises an exception. + * + * == Endless Ranges + * + * An _endless_ _range_ has a definite begin value, but a +nil+ end value. + * Such a range includes all values from the begin value. + * + * r = (1..) # => 1.. + * r.end # => nil + * r.include?(50) # => true + * + * Range.new(1, nil) # => 1.. + * + * The literal for an endless range may be written with either two dots + * or three. + * The range has the same elements, either way. + * But note that the two are not equal: + * + * r0 = (1..) # => 1.. + * r1 = (1...) # => 1... + * r0.begin == r1.begin # => true + * r0.end == r1.end # => true + * r0 == r1 # => false + * + * An endless range may be used to slice an array: + * + * a = [1, 2, 3, 4] + * r = (2..) # => 2.. + * a[r] # => [3, 4] + * + * Method +each+ for an endless range calls the given block indefinitely: + * + * a = [] + * r = (1..) + * r.each do |i| + * a.push(i) if i.even? + * break if i > 10 + * end + * a # => [2, 4, 6, 8, 10] + * + * A range can be both beginless and endless. For literal beginless, endless + * ranges, at least the beginning or end of the range must be given as an + * explicit nil value. It is recommended to use an explicit nil beginning and + * end, since that is what Ruby uses for Range#inspect: + * + * (nil..) # => (nil..nil) + * (..nil) # => (nil..nil) + * (nil..nil) # => (nil..nil) + * + * == Ranges and Other Classes + * + * An object may be put into a range if its class implements + * instance method <tt>#<=></tt>. + * Ruby core classes that do so include Array, Complex, File::Stat, + * Float, Integer, Kernel, Module, Numeric, Rational, String, Symbol, and Time. + * + * Example: + * + * t0 = Time.now # => 2021-09-19 09:22:48.4854986 -0500 + * t1 = Time.now # => 2021-09-19 09:22:56.0365079 -0500 + * t2 = Time.now # => 2021-09-19 09:23:08.5263283 -0500 + * (t0..t2).include?(t1) # => true + * (t0..t1).include?(t2) # => false + * + * A range can be iterated over only if its elements + * implement instance method +succ+. + * Ruby core classes that do so include Integer, String, and Symbol + * (but not the other classes mentioned above). + * + * Iterator methods include: + * + * - In \Range itself: #each, #step, and #% + * - Included from module Enumerable: #each_entry, #each_with_index, + * #each_with_object, #each_slice, #each_cons, and #reverse_each. + * + * Example: + * + * a = [] + * (1..4).each {|i| a.push(i) } + * a # => [1, 2, 3, 4] + * + * == Ranges and User-Defined Classes + * + * A user-defined class that is to be used in a range + * must implement instance method <tt>#<=></tt>; + * see Integer#<=>. + * To make iteration available, it must also implement + * instance method +succ+; see Integer#succ. + * + * The class below implements both <tt>#<=></tt> and +succ+, + * and so can be used both to construct ranges and to iterate over them. + * Note that the Comparable module is included + * so the <tt>==</tt> method is defined in terms of <tt>#<=></tt>. + * + * # Represent a string of 'X' characters. + * class Xs + * include Comparable + * attr_accessor :length + * def initialize(n) + * @length = n + * end + * def succ + * Xs.new(@length + 1) + * end + * def <=>(other) + * @length <=> other.length * end + * def to_s + * sprintf "%2d #{inspect}", @length + * end + * def inspect + * 'X' * @length + * end + * end + * + * r = Xs.new(3)..Xs.new(6) #=> XXX..XXXXXX + * r.to_a #=> [XXX, XXXX, XXXXX, XXXXXX] + * r.include?(Xs.new(5)) #=> true + * r.include?(Xs.new(7)) #=> false + * + * == What's Here + * + * First, what's elsewhere. Class \Range: + * + * - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here]. + * - Includes {module Enumerable}[rdoc-ref:Enumerable@What-27s+Here], + * which provides dozens of additional methods. + * + * Here, class \Range provides methods that are useful for: + * + * - {Creating a Range}[rdoc-ref:Range@Methods+for+Creating+a+Range] + * - {Querying}[rdoc-ref:Range@Methods+for+Querying] + * - {Comparing}[rdoc-ref:Range@Methods+for+Comparing] + * - {Iterating}[rdoc-ref:Range@Methods+for+Iterating] + * - {Converting}[rdoc-ref:Range@Methods+for+Converting] + * - {Methods for Working with JSON}[rdoc-ref:Range@Methods+for+Working+with+JSON] + * + * === Methods for Creating a \Range + * + * - ::new: Returns a new range. + * + * === Methods for Querying * - * An example of using <code>Xs</code> to construct a range: + * - #begin: Returns the begin value given for +self+. + * - #bsearch: Returns an element from +self+ selected by a binary search. + * - #count: Returns a count of elements in +self+. + * - #end: Returns the end value given for +self+. + * - #exclude_end?: Returns whether the end object is excluded. + * - #first: Returns the first elements of +self+. + * - #hash: Returns the integer hash code. + * - #last: Returns the last elements of +self+. + * - #max: Returns the maximum values in +self+. + * - #min: Returns the minimum values in +self+. + * - #minmax: Returns the minimum and maximum values in +self+. + * - #size: Returns the count of elements in +self+. * - * r = Xs.new(3)..Xs.new(6) #=> xxx..xxxxxx - * r.to_a #=> [xxx, xxxx, xxxxx, xxxxxx] - * r.member?(Xs.new(5)) #=> true + * === Methods for Comparing + * + * - #==: Returns whether a given object is equal to +self+ (uses #==). + * - #===: Returns whether the given object is between the begin and end values. + * - #cover?: Returns whether a given object is within +self+. + * - #eql?: Returns whether a given object is equal to +self+ (uses #eql?). + * - #include? (aliased as #member?): Returns whether a given object + * is an element of +self+. + * + * === Methods for Iterating + * + * - #%: Requires argument +n+; calls the block with each +n+-th element of +self+. + * - #each: Calls the block with each element of +self+. + * - #step: Takes optional argument +n+ (defaults to 1); + * calls the block with each +n+-th element of +self+. + * + * === Methods for Converting + * + * - #inspect: Returns a string representation of +self+ (uses #inspect). + * - #to_a (aliased as #entries): Returns elements of +self+ in an array. + * - #to_s: Returns a string representation of +self+ (uses #to_s). + * + * === Methods for Working with \JSON + * + * - ::json_create: Returns a new \Range object constructed from the given object. + * - #as_json: Returns a 2-element hash representing +self+. + * - #to_json: Returns a \JSON string representing +self+. + * + * To make these methods available: + * + * require 'json/add/range' * */ void Init_Range(void) { -#undef rb_intern -#define rb_intern(str) rb_intern_const(str) - - id_cmp = rb_intern("<=>"); - id_succ = rb_intern("succ"); - id_beg = rb_intern("begin"); - id_end = rb_intern("end"); - id_excl = rb_intern("excl"); - id_integer_p = rb_intern("integer?"); - id_div = rb_intern("div"); + id_beg = rb_intern_const("begin"); + id_end = rb_intern_const("end"); + id_excl = rb_intern_const("excl"); rb_cRange = rb_struct_define_without_accessor( "Range", rb_cObject, range_alloc, @@ -1330,14 +2855,20 @@ Init_Range(void) rb_define_method(rb_cRange, "hash", range_hash, 0); rb_define_method(rb_cRange, "each", range_each, 0); rb_define_method(rb_cRange, "step", range_step, -1); + rb_define_method(rb_cRange, "%", range_percent_step, 1); + rb_define_method(rb_cRange, "reverse_each", range_reverse_each, 0); rb_define_method(rb_cRange, "bsearch", range_bsearch, 0); rb_define_method(rb_cRange, "begin", range_begin, 0); rb_define_method(rb_cRange, "end", range_end, 0); rb_define_method(rb_cRange, "first", range_first, -1); rb_define_method(rb_cRange, "last", range_last, -1); - rb_define_method(rb_cRange, "min", range_min, 0); - rb_define_method(rb_cRange, "max", range_max, 0); + rb_define_method(rb_cRange, "min", range_min, -1); + rb_define_method(rb_cRange, "max", range_max, -1); + rb_define_method(rb_cRange, "minmax", range_minmax, 0); rb_define_method(rb_cRange, "size", range_size, 0); + rb_define_method(rb_cRange, "to_a", range_to_a, 0); + rb_define_method(rb_cRange, "to_set", range_to_set, 0); + rb_define_method(rb_cRange, "entries", range_to_a, 0); rb_define_method(rb_cRange, "to_s", range_to_s, 0); rb_define_method(rb_cRange, "inspect", range_inspect, 0); @@ -1346,4 +2877,6 @@ Init_Range(void) rb_define_method(rb_cRange, "member?", range_include, 1); rb_define_method(rb_cRange, "include?", range_include, 1); rb_define_method(rb_cRange, "cover?", range_cover, 1); + rb_define_method(rb_cRange, "count", range_count, -1); + rb_define_method(rb_cRange, "overlap?", range_overlap, 1); } |
