summaryrefslogtreecommitdiff
path: root/proc.c
diff options
context:
space:
mode:
Diffstat (limited to 'proc.c')
-rw-r--r--proc.c4728
1 files changed, 4728 insertions, 0 deletions
diff --git a/proc.c b/proc.c
new file mode 100644
index 0000000000..5f23e5fed6
--- /dev/null
+++ b/proc.c
@@ -0,0 +1,4728 @@
+/**********************************************************************
+
+ proc.c - Proc, Binding, Env
+
+ $Author$
+ created at: Wed Jan 17 12:13:14 2007
+
+ Copyright (C) 2004-2007 Koichi Sasada
+
+**********************************************************************/
+
+#include "eval_intern.h"
+#include "internal.h"
+#include "internal/class.h"
+#include "internal/error.h"
+#include "internal/eval.h"
+#include "internal/gc.h"
+#include "internal/hash.h"
+#include "internal/object.h"
+#include "internal/proc.h"
+#include "internal/symbol.h"
+#include "method.h"
+#include "iseq.h"
+#include "vm_core.h"
+#include "ractor_core.h"
+#include "yjit.h"
+
+const rb_cref_t *rb_vm_cref_in_context(VALUE self, VALUE cbase);
+
+struct METHOD {
+ const VALUE recv;
+ const VALUE klass;
+ /* needed for #super_method */
+ const VALUE iclass;
+ /* Different than me->owner only for ZSUPER methods.
+ This is error-prone but unavoidable unless ZSUPER methods are removed. */
+ const VALUE owner;
+ const rb_method_entry_t * const me;
+ /* for bound methods, `me' should be rb_callable_method_entry_t * */
+};
+
+VALUE rb_cUnboundMethod;
+VALUE rb_cMethod;
+VALUE rb_cBinding;
+VALUE rb_cProc;
+
+static rb_block_call_func bmcall;
+static int method_arity(VALUE);
+static int method_min_max_arity(VALUE, int *max);
+static VALUE proc_binding(VALUE self);
+
+/* Proc */
+
+#define IS_METHOD_PROC_IFUNC(ifunc) ((ifunc)->func == bmcall)
+
+static void
+block_mark_and_move(struct rb_block *block)
+{
+ switch (block->type) {
+ case block_type_iseq:
+ case block_type_ifunc:
+ {
+ struct rb_captured_block *captured = &block->as.captured;
+ rb_gc_mark_and_move(&captured->self);
+ rb_gc_mark_and_move(&captured->code.val);
+ if (captured->ep) {
+ rb_gc_mark_and_move((VALUE *)&captured->ep[VM_ENV_DATA_INDEX_ENV]);
+ }
+ }
+ break;
+ case block_type_symbol:
+ rb_gc_mark_and_move(&block->as.symbol);
+ break;
+ case block_type_proc:
+ rb_gc_mark_and_move(&block->as.proc);
+ break;
+ }
+}
+
+static void
+proc_mark_and_move(void *ptr)
+{
+ rb_proc_t *proc = ptr;
+ block_mark_and_move((struct rb_block *)&proc->block);
+}
+
+typedef struct {
+ rb_proc_t basic;
+ VALUE env[VM_ENV_DATA_SIZE + 1]; /* ..., envval */
+} cfunc_proc_t;
+
+static size_t
+proc_memsize(const void *ptr)
+{
+ const rb_proc_t *proc = ptr;
+ if (proc->block.as.captured.ep == ((const cfunc_proc_t *)ptr)->env+1)
+ return sizeof(cfunc_proc_t);
+ return sizeof(rb_proc_t);
+}
+
+static const rb_data_type_t proc_data_type = {
+ "proc",
+ {
+ proc_mark_and_move,
+ RUBY_TYPED_DEFAULT_FREE,
+ proc_memsize,
+ proc_mark_and_move,
+ },
+ 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED
+};
+
+VALUE
+rb_proc_alloc(VALUE klass)
+{
+ rb_proc_t *proc;
+ return TypedData_Make_Struct(klass, rb_proc_t, &proc_data_type, proc);
+}
+
+VALUE
+rb_obj_is_proc(VALUE proc)
+{
+ return RBOOL(rb_typeddata_is_kind_of(proc, &proc_data_type));
+}
+
+/* :nodoc: */
+static VALUE
+proc_clone(VALUE self)
+{
+ VALUE procval = rb_proc_dup(self);
+ return rb_obj_clone_setup(self, procval, Qnil);
+}
+
+/* :nodoc: */
+static VALUE
+proc_dup(VALUE self)
+{
+ VALUE procval = rb_proc_dup(self);
+ return rb_obj_dup_setup(self, procval);
+}
+
+/*
+ * call-seq:
+ * prc.lambda? -> true or false
+ *
+ * Returns +true+ if a Proc object is lambda.
+ * +false+ if non-lambda.
+ *
+ * The lambda-ness affects argument handling and the behavior of +return+ and +break+.
+ *
+ * A Proc object generated by +proc+ ignores extra arguments.
+ *
+ * proc {|a,b| [a,b] }.call(1,2,3) #=> [1,2]
+ *
+ * It provides +nil+ for missing arguments.
+ *
+ * proc {|a,b| [a,b] }.call(1) #=> [1,nil]
+ *
+ * It expands a single array argument.
+ *
+ * proc {|a,b| [a,b] }.call([1,2]) #=> [1,2]
+ *
+ * A Proc object generated by +lambda+ doesn't have such tricks.
+ *
+ * lambda {|a,b| [a,b] }.call(1,2,3) #=> ArgumentError
+ * lambda {|a,b| [a,b] }.call(1) #=> ArgumentError
+ * lambda {|a,b| [a,b] }.call([1,2]) #=> ArgumentError
+ *
+ * Proc#lambda? is a predicate for the tricks.
+ * It returns +true+ if no tricks apply.
+ *
+ * lambda {}.lambda? #=> true
+ * proc {}.lambda? #=> false
+ *
+ * Proc.new is the same as +proc+.
+ *
+ * Proc.new {}.lambda? #=> false
+ *
+ * +lambda+, +proc+ and Proc.new preserve the tricks of
+ * a Proc object given by <code>&</code> argument.
+ *
+ * lambda(&lambda {}).lambda? #=> true
+ * proc(&lambda {}).lambda? #=> true
+ * Proc.new(&lambda {}).lambda? #=> true
+ *
+ * lambda(&proc {}).lambda? #=> false
+ * proc(&proc {}).lambda? #=> false
+ * Proc.new(&proc {}).lambda? #=> false
+ *
+ * A Proc object generated by <code>&</code> argument has the tricks
+ *
+ * def n(&b) b.lambda? end
+ * n {} #=> false
+ *
+ * The <code>&</code> argument preserves the tricks if a Proc object
+ * is given by <code>&</code> argument.
+ *
+ * n(&lambda {}) #=> true
+ * n(&proc {}) #=> false
+ * n(&Proc.new {}) #=> false
+ *
+ * A Proc object converted from a method has no tricks.
+ *
+ * def m() end
+ * method(:m).to_proc.lambda? #=> true
+ *
+ * n(&method(:m)) #=> true
+ * n(&method(:m).to_proc) #=> true
+ *
+ * +define_method+ is treated the same as method definition.
+ * The defined method has no tricks.
+ *
+ * class C
+ * define_method(:d) {}
+ * end
+ * C.new.d(1,2) #=> ArgumentError
+ * C.new.method(:d).to_proc.lambda? #=> true
+ *
+ * +define_method+ always defines a method without the tricks,
+ * even if a non-lambda Proc object is given.
+ * This is the only exception for which the tricks are not preserved.
+ *
+ * class C
+ * define_method(:e, &proc {})
+ * end
+ * C.new.e(1,2) #=> ArgumentError
+ * C.new.method(:e).to_proc.lambda? #=> true
+ *
+ * This exception ensures that methods never have tricks
+ * and makes it easy to have wrappers to define methods that behave as usual.
+ *
+ * class C
+ * def self.def2(name, &body)
+ * define_method(name, &body)
+ * end
+ *
+ * def2(:f) {}
+ * end
+ * C.new.f(1,2) #=> ArgumentError
+ *
+ * The wrapper <i>def2</i> defines a method which has no tricks.
+ *
+ */
+
+VALUE
+rb_proc_lambda_p(VALUE procval)
+{
+ rb_proc_t *proc;
+ GetProcPtr(procval, proc);
+
+ return RBOOL(proc->is_lambda);
+}
+
+/* Binding */
+
+static void
+binding_free(void *ptr)
+{
+ RUBY_FREE_ENTER("binding");
+ ruby_xfree(ptr);
+ RUBY_FREE_LEAVE("binding");
+}
+
+static void
+binding_mark_and_move(void *ptr)
+{
+ rb_binding_t *bind = ptr;
+
+ block_mark_and_move((struct rb_block *)&bind->block);
+ rb_gc_mark_and_move((VALUE *)&bind->pathobj);
+}
+
+static size_t
+binding_memsize(const void *ptr)
+{
+ return sizeof(rb_binding_t);
+}
+
+const rb_data_type_t ruby_binding_data_type = {
+ "binding",
+ {
+ binding_mark_and_move,
+ binding_free,
+ binding_memsize,
+ binding_mark_and_move,
+ },
+ 0, 0, RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_FREE_IMMEDIATELY
+};
+
+VALUE
+rb_binding_alloc(VALUE klass)
+{
+ VALUE obj;
+ rb_binding_t *bind;
+ obj = TypedData_Make_Struct(klass, rb_binding_t, &ruby_binding_data_type, bind);
+#if YJIT_STATS
+ rb_yjit_collect_binding_alloc();
+#endif
+ return obj;
+}
+
+static VALUE
+binding_copy(VALUE self)
+{
+ VALUE bindval = rb_binding_alloc(rb_cBinding);
+ rb_binding_t *src, *dst;
+ GetBindingPtr(self, src);
+ GetBindingPtr(bindval, dst);
+ rb_vm_block_copy(bindval, &dst->block, &src->block);
+ RB_OBJ_WRITE(bindval, &dst->pathobj, src->pathobj);
+ dst->first_lineno = src->first_lineno;
+ return bindval;
+}
+
+/* :nodoc: */
+static VALUE
+binding_dup(VALUE self)
+{
+ return rb_obj_dup_setup(self, binding_copy(self));
+}
+
+/* :nodoc: */
+static VALUE
+binding_clone(VALUE self)
+{
+ return rb_obj_clone_setup(self, binding_copy(self), Qnil);
+}
+
+VALUE
+rb_binding_new(void)
+{
+ rb_execution_context_t *ec = GET_EC();
+ return rb_vm_make_binding(ec, ec->cfp);
+}
+
+/*
+ * call-seq:
+ * binding -> a_binding
+ *
+ * Returns a Binding object, describing the variable and
+ * method bindings at the point of call. This object can be used when
+ * calling Binding#eval to execute the evaluated command in this
+ * environment, or extracting its local variables.
+ *
+ * class User
+ * def initialize(name, position)
+ * @name = name
+ * @position = position
+ * end
+ *
+ * def get_binding
+ * binding
+ * end
+ * end
+ *
+ * user = User.new('Joan', 'manager')
+ * template = '{name: @name, position: @position}'
+ *
+ * # evaluate template in context of the object
+ * eval(template, user.get_binding)
+ * #=> {:name=>"Joan", :position=>"manager"}
+ *
+ * Binding#local_variable_get can be used to access the variables
+ * whose names are reserved Ruby keywords:
+ *
+ * # This is valid parameter declaration, but `if` parameter can't
+ * # be accessed by name, because it is a reserved word.
+ * def validate(field, validation, if: nil)
+ * condition = binding.local_variable_get('if')
+ * return unless condition
+ *
+ * # ...Some implementation ...
+ * end
+ *
+ * validate(:name, :empty?, if: false) # skips validation
+ * validate(:name, :empty?, if: true) # performs validation
+ *
+ */
+
+static VALUE
+rb_f_binding(VALUE self)
+{
+ return rb_binding_new();
+}
+
+/*
+ * call-seq:
+ * binding.eval(string [, filename [,lineno]]) -> obj
+ *
+ * Evaluates the Ruby expression(s) in <em>string</em>, in the
+ * <em>binding</em>'s context. If the optional <em>filename</em> and
+ * <em>lineno</em> parameters are present, they will be used when
+ * reporting syntax errors.
+ *
+ * def get_binding(param)
+ * binding
+ * end
+ * b = get_binding("hello")
+ * b.eval("param") #=> "hello"
+ */
+
+static VALUE
+bind_eval(int argc, VALUE *argv, VALUE bindval)
+{
+ VALUE args[4];
+
+ rb_scan_args(argc, argv, "12", &args[0], &args[2], &args[3]);
+ args[1] = bindval;
+ return rb_f_eval(argc+1, args, Qnil /* self will be searched in eval */);
+}
+
+static const VALUE *
+get_local_variable_ptr(const rb_env_t **envp, ID lid, bool search_outer)
+{
+ const rb_env_t *env = *envp;
+ do {
+ if (!VM_ENV_FLAGS(env->ep, VM_FRAME_FLAG_CFRAME)) {
+ if (VM_ENV_FLAGS(env->ep, VM_ENV_FLAG_ISOLATED)) {
+ return NULL;
+ }
+
+ const rb_iseq_t *iseq = env->iseq;
+
+ VM_ASSERT(rb_obj_is_iseq((VALUE)iseq));
+
+ const unsigned int local_table_size = ISEQ_BODY(iseq)->local_table_size;
+ for (unsigned int i=0; i<local_table_size; i++) {
+ if (ISEQ_BODY(iseq)->local_table[i] == lid) {
+ if (ISEQ_BODY(iseq)->local_iseq == iseq &&
+ ISEQ_BODY(iseq)->param.flags.has_block &&
+ (unsigned int)ISEQ_BODY(iseq)->param.block_start == i) {
+ const VALUE *ep = env->ep;
+ if (!VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM)) {
+ RB_OBJ_WRITE(env, &env->env[i], rb_vm_bh_to_procval(GET_EC(), VM_ENV_BLOCK_HANDLER(ep)));
+ VM_ENV_FLAGS_SET(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM);
+ }
+ }
+
+ *envp = env;
+ unsigned int last_lvar = env->env_size+VM_ENV_INDEX_LAST_LVAR
+ - 1 /* errinfo */;
+ return &env->env[last_lvar - (local_table_size - i)];
+ }
+ }
+ }
+ else {
+ *envp = NULL;
+ return NULL;
+ }
+ } while (search_outer && (env = rb_vm_env_prev_env(env)) != NULL);
+
+ *envp = NULL;
+ return NULL;
+}
+
+/*
+ * check local variable name.
+ * returns ID if it's an already interned symbol, or 0 with setting
+ * local name in String to *namep.
+ */
+static ID
+check_local_id(VALUE bindval, volatile VALUE *pname)
+{
+ ID lid = rb_check_id(pname);
+ VALUE name = *pname;
+
+ if (lid) {
+ if (!rb_is_local_id(lid)) {
+ rb_name_err_raise("wrong local variable name '%1$s' for %2$s",
+ bindval, ID2SYM(lid));
+ }
+ }
+ else {
+ if (!rb_is_local_name(name)) {
+ rb_name_err_raise("wrong local variable name '%1$s' for %2$s",
+ bindval, name);
+ }
+ return 0;
+ }
+ return lid;
+}
+
+/*
+ * call-seq:
+ * binding.local_variables -> Array
+ *
+ * Returns the names of the binding's local variables as symbols.
+ *
+ * def foo
+ * a = 1
+ * 2.times do |n|
+ * binding.local_variables #=> [:a, :n]
+ * end
+ * end
+ *
+ * This method is the short version of the following code:
+ *
+ * binding.eval("local_variables")
+ *
+ */
+static VALUE
+bind_local_variables(VALUE bindval)
+{
+ const rb_binding_t *bind;
+ const rb_env_t *env;
+
+ GetBindingPtr(bindval, bind);
+ env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
+ return rb_vm_env_local_variables(env);
+}
+
+int
+rb_numparam_id_p(ID id)
+{
+ return (tNUMPARAM_1 << ID_SCOPE_SHIFT) <= id && id < ((tNUMPARAM_1 + 9) << ID_SCOPE_SHIFT);
+}
+
+int
+rb_implicit_param_p(ID id)
+{
+ return id == idItImplicit || rb_numparam_id_p(id);
+}
+
+/*
+ * call-seq:
+ * binding.local_variable_get(symbol) -> obj
+ *
+ * Returns the value of the local variable +symbol+.
+ *
+ * def foo
+ * a = 1
+ * binding.local_variable_get(:a) #=> 1
+ * binding.local_variable_get(:b) #=> NameError
+ * end
+ *
+ * This method is the short version of the following code:
+ *
+ * binding.eval("#{symbol}")
+ *
+ */
+static VALUE
+bind_local_variable_get(VALUE bindval, VALUE sym)
+{
+ ID lid = check_local_id(bindval, &sym);
+ const rb_binding_t *bind;
+ const VALUE *ptr;
+ const rb_env_t *env;
+
+ if (!lid) goto undefined;
+ if (rb_numparam_id_p(lid)) {
+ rb_name_err_raise("numbered parameter '%1$s' is not a local variable",
+ bindval, ID2SYM(lid));
+ }
+
+ GetBindingPtr(bindval, bind);
+
+ env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
+ if ((ptr = get_local_variable_ptr(&env, lid, TRUE)) != NULL) {
+ return *ptr;
+ }
+
+ sym = ID2SYM(lid);
+ undefined:
+ rb_name_err_raise("local variable '%1$s' is not defined for %2$s",
+ bindval, sym);
+ UNREACHABLE_RETURN(Qundef);
+}
+
+/*
+ * call-seq:
+ * binding.local_variable_set(symbol, obj) -> obj
+ *
+ * Set local variable named +symbol+ as +obj+.
+ *
+ * def foo
+ * a = 1
+ * bind = binding
+ * bind.local_variable_set(:a, 2) # set existing local variable `a'
+ * bind.local_variable_set(:b, 3) # create new local variable `b'
+ * # `b' exists only in binding
+ *
+ * p bind.local_variable_get(:a) #=> 2
+ * p bind.local_variable_get(:b) #=> 3
+ * p a #=> 2
+ * p b #=> NameError
+ * end
+ *
+ * This method behaves similarly to the following code:
+ *
+ * binding.eval("#{symbol} = #{obj}")
+ *
+ * if +obj+ can be dumped in Ruby code.
+ */
+static VALUE
+bind_local_variable_set(VALUE bindval, VALUE sym, VALUE val)
+{
+ ID lid = check_local_id(bindval, &sym);
+ rb_binding_t *bind;
+ const VALUE *ptr;
+ const rb_env_t *env;
+
+ if (!lid) lid = rb_intern_str(sym);
+ if (rb_numparam_id_p(lid)) {
+ rb_name_err_raise("numbered parameter '%1$s' is not a local variable",
+ bindval, ID2SYM(lid));
+ }
+
+ GetBindingPtr(bindval, bind);
+ env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
+ if ((ptr = get_local_variable_ptr(&env, lid, TRUE)) == NULL) {
+ /* not found. create new env */
+ ptr = rb_binding_add_dynavars(bindval, bind, 1, &lid);
+ env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
+ }
+
+#if YJIT_STATS
+ rb_yjit_collect_binding_set();
+#endif
+
+ RB_OBJ_WRITE(env, ptr, val);
+
+ return val;
+}
+
+/*
+ * call-seq:
+ * binding.local_variable_defined?(symbol) -> obj
+ *
+ * Returns +true+ if a local variable +symbol+ exists.
+ *
+ * def foo
+ * a = 1
+ * binding.local_variable_defined?(:a) #=> true
+ * binding.local_variable_defined?(:b) #=> false
+ * end
+ *
+ * This method is the short version of the following code:
+ *
+ * binding.eval("defined?(#{symbol}) == 'local-variable'")
+ *
+ */
+static VALUE
+bind_local_variable_defined_p(VALUE bindval, VALUE sym)
+{
+ ID lid = check_local_id(bindval, &sym);
+ const rb_binding_t *bind;
+ const rb_env_t *env;
+
+ if (!lid) return Qfalse;
+ if (rb_numparam_id_p(lid)) {
+ rb_name_err_raise("numbered parameter '%1$s' is not a local variable",
+ bindval, ID2SYM(lid));
+ }
+
+ GetBindingPtr(bindval, bind);
+ env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
+ return RBOOL(get_local_variable_ptr(&env, lid, TRUE));
+}
+
+/*
+ * call-seq:
+ * binding.implicit_parameters -> Array
+ *
+ * Returns the names of numbered parameters and "it" parameter
+ * that are defined in the binding.
+ *
+ * def foo
+ * [42].each do
+ * it
+ * binding.implicit_parameters #=> [:it]
+ * end
+ *
+ * { k: 42 }.each do
+ * _2
+ * binding.implicit_parameters #=> [:_1, :_2]
+ * end
+ * end
+ *
+ */
+static VALUE
+bind_implicit_parameters(VALUE bindval)
+{
+ const rb_binding_t *bind;
+ const rb_env_t *env;
+
+ GetBindingPtr(bindval, bind);
+ env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
+
+ if (get_local_variable_ptr(&env, idItImplicit, FALSE)) {
+ return rb_ary_new_from_args(1, ID2SYM(idIt));
+ }
+
+ env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
+ return rb_vm_env_numbered_parameters(env);
+}
+
+/*
+ * call-seq:
+ * binding.implicit_parameter_get(symbol) -> obj
+ *
+ * Returns the value of the numbered parameter or "it" parameter.
+ *
+ * def foo
+ * [42].each do
+ * it
+ * binding.implicit_parameter_get(:it) #=> 42
+ * end
+ *
+ * { k: 42 }.each do
+ * _2
+ * binding.implicit_parameter_get(:_1) #=> :k
+ * binding.implicit_parameter_get(:_2) #=> 42
+ * end
+ * end
+ *
+ */
+static VALUE
+bind_implicit_parameter_get(VALUE bindval, VALUE sym)
+{
+ ID lid = check_local_id(bindval, &sym);
+ const rb_binding_t *bind;
+ const VALUE *ptr;
+ const rb_env_t *env;
+
+ if (lid == idIt) lid = idItImplicit;
+
+ if (!lid || !rb_implicit_param_p(lid)) {
+ rb_name_err_raise("'%1$s' is not an implicit parameter",
+ bindval, sym);
+ }
+
+ GetBindingPtr(bindval, bind);
+
+ env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
+ if ((ptr = get_local_variable_ptr(&env, lid, FALSE)) != NULL) {
+ return *ptr;
+ }
+
+ if (lid == idItImplicit) lid = idIt;
+ rb_name_err_raise("implicit parameter '%1$s' is not defined for %2$s", bindval, ID2SYM(lid));
+ UNREACHABLE_RETURN(Qundef);
+}
+
+/*
+ * call-seq:
+ * binding.implicit_parameter_defined?(symbol) -> obj
+ *
+ * Returns +true+ if the numbered parameter or "it" parameter exists.
+ *
+ * def foo
+ * [42].each do
+ * it
+ * binding.implicit_parameter_defined?(:it) #=> true
+ * binding.implicit_parameter_defined?(:_1) #=> false
+ * end
+ *
+ * { k: 42 }.each do
+ * _2
+ * binding.implicit_parameter_defined?(:_1) #=> true
+ * binding.implicit_parameter_defined?(:_2) #=> true
+ * binding.implicit_parameter_defined?(:_3) #=> false
+ * binding.implicit_parameter_defined?(:it) #=> false
+ * end
+ * end
+ *
+ */
+static VALUE
+bind_implicit_parameter_defined_p(VALUE bindval, VALUE sym)
+{
+ ID lid = check_local_id(bindval, &sym);
+ const rb_binding_t *bind;
+ const rb_env_t *env;
+
+ if (lid == idIt) lid = idItImplicit;
+
+ if (!lid || !rb_implicit_param_p(lid)) {
+ rb_name_err_raise("'%1$s' is not an implicit parameter",
+ bindval, sym);
+ }
+
+ GetBindingPtr(bindval, bind);
+ env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
+ return RBOOL(get_local_variable_ptr(&env, lid, FALSE));
+}
+
+/*
+ * call-seq:
+ * binding.receiver -> object
+ *
+ * Returns the bound receiver of the binding object.
+ */
+static VALUE
+bind_receiver(VALUE bindval)
+{
+ const rb_binding_t *bind;
+ GetBindingPtr(bindval, bind);
+ return vm_block_self(&bind->block);
+}
+
+/*
+ * call-seq:
+ * binding.source_location -> [String, Integer]
+ *
+ * Returns the Ruby source filename and line number of the binding object.
+ */
+static VALUE
+bind_location(VALUE bindval)
+{
+ VALUE loc[2];
+ const rb_binding_t *bind;
+ GetBindingPtr(bindval, bind);
+ loc[0] = pathobj_path(bind->pathobj);
+ loc[1] = INT2FIX(bind->first_lineno);
+
+ return rb_ary_new4(2, loc);
+}
+
+static VALUE
+cfunc_proc_new(VALUE klass, VALUE ifunc)
+{
+ rb_proc_t *proc;
+ cfunc_proc_t *sproc;
+ VALUE procval = TypedData_Make_Struct(klass, cfunc_proc_t, &proc_data_type, sproc);
+ VALUE *ep;
+
+ proc = &sproc->basic;
+ vm_block_type_set(&proc->block, block_type_ifunc);
+
+ *(VALUE **)&proc->block.as.captured.ep = ep = sproc->env + VM_ENV_DATA_SIZE-1;
+ ep[VM_ENV_DATA_INDEX_FLAGS] = VM_FRAME_MAGIC_IFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL | VM_ENV_FLAG_ESCAPED;
+ ep[VM_ENV_DATA_INDEX_ME_CREF] = Qfalse;
+ ep[VM_ENV_DATA_INDEX_SPECVAL] = VM_BLOCK_HANDLER_NONE;
+ ep[VM_ENV_DATA_INDEX_ENV] = Qundef; /* envval */
+
+ /* self? */
+ RB_OBJ_WRITE(procval, &proc->block.as.captured.code.ifunc, ifunc);
+ proc->is_lambda = TRUE;
+ return procval;
+}
+
+VALUE
+rb_func_proc_dup(VALUE src_obj)
+{
+ RUBY_ASSERT(rb_typeddata_is_instance_of(src_obj, &proc_data_type));
+
+ rb_proc_t *src_proc;
+ GetProcPtr(src_obj, src_proc);
+ RUBY_ASSERT(vm_block_type(&src_proc->block) == block_type_ifunc);
+
+ cfunc_proc_t *proc;
+ VALUE proc_obj = TypedData_Make_Struct(rb_obj_class(src_obj), cfunc_proc_t, &proc_data_type, proc);
+
+ memcpy(&proc->basic, src_proc, sizeof(rb_proc_t));
+ RB_OBJ_WRITTEN(proc_obj, Qundef, proc->basic.block.as.captured.self);
+ RB_OBJ_WRITTEN(proc_obj, Qundef, proc->basic.block.as.captured.code.val);
+
+ const VALUE *src_ep = src_proc->block.as.captured.ep;
+ VALUE *ep = *(VALUE **)&proc->basic.block.as.captured.ep = proc->env + VM_ENV_DATA_SIZE - 1;
+ ep[VM_ENV_DATA_INDEX_FLAGS] = src_ep[VM_ENV_DATA_INDEX_FLAGS];
+ ep[VM_ENV_DATA_INDEX_ME_CREF] = src_ep[VM_ENV_DATA_INDEX_ME_CREF];
+ ep[VM_ENV_DATA_INDEX_SPECVAL] = src_ep[VM_ENV_DATA_INDEX_SPECVAL];
+ RB_OBJ_WRITE(proc_obj, &ep[VM_ENV_DATA_INDEX_ENV], src_ep[VM_ENV_DATA_INDEX_ENV]);
+
+ return proc_obj;
+}
+
+static VALUE
+sym_proc_new(VALUE klass, VALUE sym)
+{
+ VALUE procval = rb_proc_alloc(klass);
+ rb_proc_t *proc;
+ GetProcPtr(procval, proc);
+
+ vm_block_type_set(&proc->block, block_type_symbol);
+ proc->is_lambda = TRUE;
+ RB_OBJ_WRITE(procval, &proc->block.as.symbol, sym);
+ return procval;
+}
+
+struct vm_ifunc *
+rb_vm_ifunc_new(rb_block_call_func_t func, const void *data, int min_argc, int max_argc)
+{
+ if (min_argc < UNLIMITED_ARGUMENTS ||
+#if SIZEOF_INT * 2 > SIZEOF_VALUE
+ min_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) ||
+#endif
+ 0) {
+ rb_raise(rb_eRangeError, "minimum argument number out of range: %d",
+ min_argc);
+ }
+ if (max_argc < UNLIMITED_ARGUMENTS ||
+#if SIZEOF_INT * 2 > SIZEOF_VALUE
+ max_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) ||
+#endif
+ 0) {
+ rb_raise(rb_eRangeError, "maximum argument number out of range: %d",
+ max_argc);
+ }
+ rb_execution_context_t *ec = GET_EC();
+
+ struct vm_ifunc *ifunc = IMEMO_NEW(struct vm_ifunc, imemo_ifunc, (VALUE)rb_vm_svar_lep(ec, ec->cfp));
+
+ rb_gc_register_pinning_obj((VALUE)ifunc);
+
+ ifunc->func = func;
+ ifunc->data = data;
+ ifunc->argc.min = min_argc;
+ ifunc->argc.max = max_argc;
+
+ return ifunc;
+}
+
+VALUE
+rb_func_lambda_new(rb_block_call_func_t func, VALUE val, int min_argc, int max_argc)
+{
+ struct vm_ifunc *ifunc = rb_vm_ifunc_new(func, (void *)val, min_argc, max_argc);
+ return cfunc_proc_new(rb_cProc, (VALUE)ifunc);
+}
+
+static const char proc_without_block[] = "tried to create Proc object without a block";
+
+static VALUE
+proc_new(VALUE klass, int8_t is_lambda)
+{
+ VALUE procval;
+ const rb_execution_context_t *ec = GET_EC();
+ rb_control_frame_t *cfp = ec->cfp;
+ VALUE block_handler;
+
+ if ((block_handler = rb_vm_frame_block_handler(cfp)) == VM_BLOCK_HANDLER_NONE) {
+ rb_raise(rb_eArgError, proc_without_block);
+ }
+
+ /* block is in cf */
+ switch (vm_block_handler_type(block_handler)) {
+ case block_handler_type_proc:
+ procval = VM_BH_TO_PROC(block_handler);
+
+ if (RBASIC_CLASS(procval) == klass) {
+ return procval;
+ }
+ else {
+ VALUE newprocval = rb_proc_dup(procval);
+ RBASIC_SET_CLASS(newprocval, klass);
+ return newprocval;
+ }
+ break;
+
+ case block_handler_type_symbol:
+ return (klass != rb_cProc) ?
+ sym_proc_new(klass, VM_BH_TO_SYMBOL(block_handler)) :
+ rb_sym_to_proc(VM_BH_TO_SYMBOL(block_handler));
+ break;
+
+ case block_handler_type_ifunc:
+ case block_handler_type_iseq:
+ return rb_vm_make_proc_lambda(ec, VM_BH_TO_CAPT_BLOCK(block_handler), klass, is_lambda);
+ }
+ VM_UNREACHABLE(proc_new);
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * Proc.new {|...| block } -> a_proc
+ *
+ * Creates a new Proc object, bound to the current context.
+ *
+ * proc = Proc.new { "hello" }
+ * proc.call #=> "hello"
+ *
+ * Raises ArgumentError if called without a block.
+ *
+ * Proc.new #=> ArgumentError
+ */
+
+static VALUE
+rb_proc_s_new(int argc, VALUE *argv, VALUE klass)
+{
+ VALUE block = proc_new(klass, FALSE);
+
+ rb_obj_call_init_kw(block, argc, argv, RB_PASS_CALLED_KEYWORDS);
+ return block;
+}
+
+VALUE
+rb_block_proc(void)
+{
+ return proc_new(rb_cProc, FALSE);
+}
+
+/*
+ * call-seq:
+ * proc { |...| block } -> a_proc
+ *
+ * Equivalent to Proc.new.
+ */
+
+static VALUE
+f_proc(VALUE _)
+{
+ return proc_new(rb_cProc, FALSE);
+}
+
+VALUE
+rb_block_lambda(void)
+{
+ return proc_new(rb_cProc, TRUE);
+}
+
+static void
+f_lambda_filter_non_literal(void)
+{
+ rb_control_frame_t *cfp = GET_EC()->cfp;
+ VALUE block_handler = rb_vm_frame_block_handler(cfp);
+
+ if (block_handler == VM_BLOCK_HANDLER_NONE) {
+ // no block error raised else where
+ return;
+ }
+
+ switch (vm_block_handler_type(block_handler)) {
+ case block_handler_type_iseq:
+ if (RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp)->ep == VM_BH_TO_ISEQ_BLOCK(block_handler)->ep) {
+ return;
+ }
+ break;
+ case block_handler_type_symbol:
+ return;
+ case block_handler_type_proc:
+ if (rb_proc_lambda_p(VM_BH_TO_PROC(block_handler))) {
+ return;
+ }
+ break;
+ case block_handler_type_ifunc:
+ break;
+ }
+
+ rb_raise(rb_eArgError, "the lambda method requires a literal block");
+}
+
+/*
+ * call-seq:
+ * lambda { |...| block } -> a_proc
+ *
+ * Equivalent to Proc.new, except the resulting Proc objects check the
+ * number of parameters passed when called.
+ */
+
+static VALUE
+f_lambda(VALUE _)
+{
+ f_lambda_filter_non_literal();
+ return rb_block_lambda();
+}
+
+/* Document-method: Proc#===
+ *
+ * call-seq:
+ * proc === obj -> result_of_proc
+ *
+ * Invokes the block with +obj+ as the proc's parameter like Proc#call.
+ * This allows a proc object to be the target of a +when+ clause
+ * in a case statement.
+ */
+
+/* CHECKME: are the argument checking semantics correct? */
+
+/*
+ * Document-method: Proc#[]
+ * Document-method: Proc#call
+ * Document-method: Proc#yield
+ *
+ * call-seq:
+ * call(...) -> obj
+ * self[...] -> obj
+ * yield(...) -> obj
+ *
+ * Invokes the block, setting the block's parameters to the arguments
+ * using something close to method calling semantics.
+ * Returns the value of the last expression evaluated in the block.
+ *
+ * a_proc = Proc.new {|scalar, *values| values.map {|value| value*scalar } }
+ * a_proc.call(9, 1, 2, 3) #=> [9, 18, 27]
+ * a_proc[9, 1, 2, 3] #=> [9, 18, 27]
+ * a_proc.(9, 1, 2, 3) #=> [9, 18, 27]
+ * a_proc.yield(9, 1, 2, 3) #=> [9, 18, 27]
+ *
+ * Note that <code>prc.()</code> invokes <code>prc.call()</code> with
+ * the parameters given. It's syntactic sugar to hide "call".
+ *
+ * For procs created using #lambda or <code>->()</code> an error is
+ * generated if the wrong number of parameters are passed to the
+ * proc. For procs created using Proc.new or Kernel.proc, extra
+ * parameters are silently discarded and missing parameters are set
+ * to +nil+.
+ *
+ * a_proc = proc {|a,b| [a,b] }
+ * a_proc.call(1) #=> [1, nil]
+ *
+ * a_proc = lambda {|a,b| [a,b] }
+ * a_proc.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2)
+ *
+ * See also Proc#lambda?.
+ */
+#if 0
+static VALUE
+proc_call(int argc, VALUE *argv, VALUE procval)
+{
+ /* removed */
+}
+#endif
+
+#if SIZEOF_LONG > SIZEOF_INT
+static inline int
+check_argc(long argc)
+{
+ if (argc > INT_MAX || argc < 0) {
+ rb_raise(rb_eArgError, "too many arguments (%lu)",
+ (unsigned long)argc);
+ }
+ return (int)argc;
+}
+#else
+#define check_argc(argc) (argc)
+#endif
+
+VALUE
+rb_proc_call_kw(VALUE self, VALUE args, int kw_splat)
+{
+ VALUE vret;
+ rb_proc_t *proc;
+ int argc = check_argc(RARRAY_LEN(args));
+ const VALUE *argv = RARRAY_CONST_PTR(args);
+ GetProcPtr(self, proc);
+ vret = rb_vm_invoke_proc(GET_EC(), proc, argc, argv,
+ kw_splat, VM_BLOCK_HANDLER_NONE);
+ RB_GC_GUARD(self);
+ RB_GC_GUARD(args);
+ return vret;
+}
+
+VALUE
+rb_proc_call(VALUE self, VALUE args)
+{
+ return rb_proc_call_kw(self, args, RB_NO_KEYWORDS);
+}
+
+static VALUE
+proc_to_block_handler(VALUE procval)
+{
+ return NIL_P(procval) ? VM_BLOCK_HANDLER_NONE : procval;
+}
+
+VALUE
+rb_proc_call_with_block_kw(VALUE self, int argc, const VALUE *argv, VALUE passed_procval, int kw_splat)
+{
+ rb_execution_context_t *ec = GET_EC();
+ VALUE vret;
+ rb_proc_t *proc;
+ GetProcPtr(self, proc);
+ vret = rb_vm_invoke_proc(ec, proc, argc, argv, kw_splat, proc_to_block_handler(passed_procval));
+ RB_GC_GUARD(self);
+ return vret;
+}
+
+VALUE
+rb_proc_call_with_block(VALUE self, int argc, const VALUE *argv, VALUE passed_procval)
+{
+ return rb_proc_call_with_block_kw(self, argc, argv, passed_procval, RB_NO_KEYWORDS);
+}
+
+
+/*
+ * call-seq:
+ * prc.arity -> integer
+ *
+ * Returns the number of mandatory arguments. If the block
+ * is declared to take no arguments, returns 0. If the block is known
+ * to take exactly n arguments, returns n.
+ * If the block has optional arguments, returns -n-1, where n is the
+ * number of mandatory arguments, with the exception for blocks that
+ * are not lambdas and have only a finite number of optional arguments;
+ * in this latter case, returns n.
+ * Keyword arguments will be considered as a single additional argument,
+ * that argument being mandatory if any keyword argument is mandatory.
+ * A #proc with no argument declarations is the same as a block
+ * declaring <code>||</code> as its arguments.
+ *
+ * proc {}.arity #=> 0
+ * proc { || }.arity #=> 0
+ * proc { |a| }.arity #=> 1
+ * proc { |a, b| }.arity #=> 2
+ * proc { |a, b, c| }.arity #=> 3
+ * proc { |*a| }.arity #=> -1
+ * proc { |a, *b| }.arity #=> -2
+ * proc { |a, *b, c| }.arity #=> -3
+ * proc { |x:, y:, z:0| }.arity #=> 1
+ * proc { |*a, x:, y:0| }.arity #=> -2
+ *
+ * proc { |a=0| }.arity #=> 0
+ * lambda { |a=0| }.arity #=> -1
+ * proc { |a=0, b| }.arity #=> 1
+ * lambda { |a=0, b| }.arity #=> -2
+ * proc { |a=0, b=0| }.arity #=> 0
+ * lambda { |a=0, b=0| }.arity #=> -1
+ * proc { |a, b=0| }.arity #=> 1
+ * lambda { |a, b=0| }.arity #=> -2
+ * proc { |(a, b), c=0| }.arity #=> 1
+ * lambda { |(a, b), c=0| }.arity #=> -2
+ * proc { |a, x:0, y:0| }.arity #=> 1
+ * lambda { |a, x:0, y:0| }.arity #=> -2
+ */
+
+static VALUE
+proc_arity(VALUE self)
+{
+ int arity = rb_proc_arity(self);
+ return INT2FIX(arity);
+}
+
+static inline int
+rb_iseq_min_max_arity(const rb_iseq_t *iseq, int *max)
+{
+ *max = ISEQ_BODY(iseq)->param.flags.has_rest == FALSE ?
+ ISEQ_BODY(iseq)->param.lead_num + ISEQ_BODY(iseq)->param.opt_num + ISEQ_BODY(iseq)->param.post_num +
+ (ISEQ_BODY(iseq)->param.flags.has_kw == TRUE || ISEQ_BODY(iseq)->param.flags.has_kwrest == TRUE || ISEQ_BODY(iseq)->param.flags.forwardable == TRUE)
+ : UNLIMITED_ARGUMENTS;
+ return ISEQ_BODY(iseq)->param.lead_num + ISEQ_BODY(iseq)->param.post_num + (ISEQ_BODY(iseq)->param.flags.has_kw && ISEQ_BODY(iseq)->param.keyword->required_num > 0);
+}
+
+static int
+rb_vm_block_min_max_arity(const struct rb_block *block, int *max)
+{
+ again:
+ switch (vm_block_type(block)) {
+ case block_type_iseq:
+ return rb_iseq_min_max_arity(rb_iseq_check(block->as.captured.code.iseq), max);
+ case block_type_proc:
+ block = vm_proc_block(block->as.proc);
+ goto again;
+ case block_type_ifunc:
+ {
+ const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
+ if (IS_METHOD_PROC_IFUNC(ifunc)) {
+ /* e.g. method(:foo).to_proc.arity */
+ return method_min_max_arity((VALUE)ifunc->data, max);
+ }
+ *max = ifunc->argc.max;
+ return ifunc->argc.min;
+ }
+ case block_type_symbol:
+ *max = UNLIMITED_ARGUMENTS;
+ return 1;
+ }
+ *max = UNLIMITED_ARGUMENTS;
+ return 0;
+}
+
+/*
+ * Returns the number of required parameters and stores the maximum
+ * number of parameters in max, or UNLIMITED_ARGUMENTS if no max.
+ * For non-lambda procs, the maximum is the number of non-ignored
+ * parameters even though there is no actual limit to the number of parameters
+ */
+static int
+rb_proc_min_max_arity(VALUE self, int *max)
+{
+ rb_proc_t *proc;
+ GetProcPtr(self, proc);
+ return rb_vm_block_min_max_arity(&proc->block, max);
+}
+
+int
+rb_proc_arity(VALUE self)
+{
+ rb_proc_t *proc;
+ int max, min;
+ GetProcPtr(self, proc);
+ min = rb_vm_block_min_max_arity(&proc->block, &max);
+ return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1;
+}
+
+static void
+block_setup(struct rb_block *block, VALUE block_handler)
+{
+ switch (vm_block_handler_type(block_handler)) {
+ case block_handler_type_iseq:
+ block->type = block_type_iseq;
+ block->as.captured = *VM_BH_TO_ISEQ_BLOCK(block_handler);
+ break;
+ case block_handler_type_ifunc:
+ block->type = block_type_ifunc;
+ block->as.captured = *VM_BH_TO_IFUNC_BLOCK(block_handler);
+ break;
+ case block_handler_type_symbol:
+ block->type = block_type_symbol;
+ block->as.symbol = VM_BH_TO_SYMBOL(block_handler);
+ break;
+ case block_handler_type_proc:
+ block->type = block_type_proc;
+ block->as.proc = VM_BH_TO_PROC(block_handler);
+ }
+}
+
+int
+rb_block_pair_yield_optimizable(void)
+{
+ int min, max;
+ const rb_execution_context_t *ec = GET_EC();
+ rb_control_frame_t *cfp = ec->cfp;
+ VALUE block_handler = rb_vm_frame_block_handler(cfp);
+ struct rb_block block;
+
+ if (block_handler == VM_BLOCK_HANDLER_NONE) {
+ rb_raise(rb_eArgError, "no block given");
+ }
+
+ block_setup(&block, block_handler);
+ min = rb_vm_block_min_max_arity(&block, &max);
+
+ switch (vm_block_type(&block)) {
+ case block_type_symbol:
+ return 0;
+
+ case block_type_proc:
+ {
+ VALUE procval = block_handler;
+ rb_proc_t *proc;
+ GetProcPtr(procval, proc);
+ if (proc->is_lambda) return 0;
+ if (min != max) return 0;
+ return min > 1;
+ }
+
+ case block_type_ifunc:
+ {
+ const struct vm_ifunc *ifunc = block.as.captured.code.ifunc;
+ if (ifunc->flags & IFUNC_YIELD_OPTIMIZABLE) return 1;
+ }
+
+ default:
+ return min > 1;
+ }
+}
+
+int
+rb_block_arity(void)
+{
+ int min, max;
+ const rb_execution_context_t *ec = GET_EC();
+ rb_control_frame_t *cfp = ec->cfp;
+ VALUE block_handler = rb_vm_frame_block_handler(cfp);
+ struct rb_block block;
+
+ if (block_handler == VM_BLOCK_HANDLER_NONE) {
+ rb_raise(rb_eArgError, "no block given");
+ }
+
+ block_setup(&block, block_handler);
+
+ switch (vm_block_type(&block)) {
+ case block_type_symbol:
+ return -1;
+
+ case block_type_proc:
+ return rb_proc_arity(block_handler);
+
+ default:
+ min = rb_vm_block_min_max_arity(&block, &max);
+ return max != UNLIMITED_ARGUMENTS ? min : -min-1;
+ }
+}
+
+int
+rb_block_min_max_arity(int *max)
+{
+ const rb_execution_context_t *ec = GET_EC();
+ rb_control_frame_t *cfp = ec->cfp;
+ VALUE block_handler = rb_vm_frame_block_handler(cfp);
+ struct rb_block block;
+
+ if (block_handler == VM_BLOCK_HANDLER_NONE) {
+ rb_raise(rb_eArgError, "no block given");
+ }
+
+ block_setup(&block, block_handler);
+ return rb_vm_block_min_max_arity(&block, max);
+}
+
+const rb_iseq_t *
+rb_proc_get_iseq(VALUE self, int *is_proc)
+{
+ const rb_proc_t *proc;
+ const struct rb_block *block;
+
+ GetProcPtr(self, proc);
+ block = &proc->block;
+ if (is_proc) *is_proc = !proc->is_lambda;
+
+ switch (vm_block_type(block)) {
+ case block_type_iseq:
+ return rb_iseq_check(block->as.captured.code.iseq);
+ case block_type_proc:
+ return rb_proc_get_iseq(block->as.proc, is_proc);
+ case block_type_ifunc:
+ {
+ const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
+ if (IS_METHOD_PROC_IFUNC(ifunc)) {
+ /* method(:foo).to_proc */
+ if (is_proc) *is_proc = 0;
+ return rb_method_iseq((VALUE)ifunc->data);
+ }
+ else {
+ return NULL;
+ }
+ }
+ case block_type_symbol:
+ return NULL;
+ }
+
+ VM_UNREACHABLE(rb_proc_get_iseq);
+ return NULL;
+}
+
+/* call-seq:
+ * self == other -> true or false
+ * eql?(other) -> true or false
+ *
+ * Returns whether +self+ and +other+ were created from the same code block:
+ *
+ * def return_block(&block)
+ * block
+ * end
+ *
+ * def pass_block_twice(&block)
+ * [return_block(&block), return_block(&block)]
+ * end
+ *
+ * block1, block2 = pass_block_twice { puts 'test' }
+ * # Blocks might be instantiated into Proc's lazily, so they may, or may not,
+ * # be the same object.
+ * # But they are produced from the same code block, so they are equal
+ * block1 == block2
+ * #=> true
+ *
+ * # Another Proc will never be equal, even if the code is the "same"
+ * block1 == proc { puts 'test' }
+ * #=> false
+ *
+ */
+static VALUE
+proc_eq(VALUE self, VALUE other)
+{
+ const rb_proc_t *self_proc, *other_proc;
+ const struct rb_block *self_block, *other_block;
+
+ if (rb_obj_class(self) != rb_obj_class(other)) {
+ return Qfalse;
+ }
+
+ GetProcPtr(self, self_proc);
+ GetProcPtr(other, other_proc);
+
+ if (self_proc->is_from_method != other_proc->is_from_method ||
+ self_proc->is_lambda != other_proc->is_lambda) {
+ return Qfalse;
+ }
+
+ self_block = &self_proc->block;
+ other_block = &other_proc->block;
+
+ if (vm_block_type(self_block) != vm_block_type(other_block)) {
+ return Qfalse;
+ }
+
+ switch (vm_block_type(self_block)) {
+ case block_type_iseq:
+ if (self_block->as.captured.ep != \
+ other_block->as.captured.ep ||
+ self_block->as.captured.code.iseq != \
+ other_block->as.captured.code.iseq) {
+ return Qfalse;
+ }
+ break;
+ case block_type_ifunc:
+ if (self_block->as.captured.code.ifunc != \
+ other_block->as.captured.code.ifunc) {
+ return Qfalse;
+ }
+
+ if (memcmp(
+ ((cfunc_proc_t *)self_proc)->env,
+ ((cfunc_proc_t *)other_proc)->env,
+ sizeof(((cfunc_proc_t *)self_proc)->env))) {
+ return Qfalse;
+ }
+ break;
+ case block_type_proc:
+ if (self_block->as.proc != other_block->as.proc) {
+ return Qfalse;
+ }
+ break;
+ case block_type_symbol:
+ if (self_block->as.symbol != other_block->as.symbol) {
+ return Qfalse;
+ }
+ break;
+ }
+
+ return Qtrue;
+}
+
+static VALUE
+iseq_location(const rb_iseq_t *iseq)
+{
+ VALUE loc[5];
+ int i = 0;
+
+ if (!iseq) return Qnil;
+ rb_iseq_check(iseq);
+ loc[i++] = rb_iseq_path(iseq);
+ const rb_code_location_t *cl = &ISEQ_BODY(iseq)->location.code_location;
+ loc[i++] = RB_INT2NUM(cl->beg_pos.lineno);
+ loc[i++] = RB_INT2NUM(cl->beg_pos.column);
+ loc[i++] = RB_INT2NUM(cl->end_pos.lineno);
+ loc[i++] = RB_INT2NUM(cl->end_pos.column);
+ RUBY_ASSERT_ALWAYS(i == numberof(loc));
+
+ return rb_ary_new_from_values(i, loc);
+}
+
+VALUE
+rb_iseq_location(const rb_iseq_t *iseq)
+{
+ return iseq_location(iseq);
+}
+
+/*
+ * call-seq:
+ * prc.source_location -> [String, Integer, Integer, Integer, Integer]
+ *
+ * Returns the location where the Proc was defined.
+ * The returned Array contains:
+ * (1) the Ruby source filename
+ * (2) the line number where the definition starts
+ * (3) the position where the definition starts, in number of bytes from the start of the line
+ * (4) the line number where the definition ends
+ * (5) the position where the definitions ends, in number of bytes from the start of the line
+ *
+ * This method will return +nil+ if the Proc was not defined in Ruby (i.e. native).
+ */
+
+VALUE
+rb_proc_location(VALUE self)
+{
+ return iseq_location(rb_proc_get_iseq(self, 0));
+}
+
+VALUE
+rb_unnamed_parameters(int arity)
+{
+ VALUE a, param = rb_ary_new2((arity < 0) ? -arity : arity);
+ int n = (arity < 0) ? ~arity : arity;
+ ID req, rest;
+ CONST_ID(req, "req");
+ a = rb_ary_new3(1, ID2SYM(req));
+ OBJ_FREEZE(a);
+ for (; n; --n) {
+ rb_ary_push(param, a);
+ }
+ if (arity < 0) {
+ CONST_ID(rest, "rest");
+ rb_ary_store(param, ~arity, rb_ary_new3(1, ID2SYM(rest)));
+ }
+ return param;
+}
+
+/*
+ * call-seq:
+ * prc.parameters(lambda: nil) -> array
+ *
+ * Returns the parameter information of this proc. If the lambda
+ * keyword is provided and not nil, treats the proc as a lambda if
+ * true and as a non-lambda if false.
+ *
+ * prc = proc{|x, y=42, *other|}
+ * prc.parameters #=> [[:opt, :x], [:opt, :y], [:rest, :other]]
+ * prc = lambda{|x, y=42, *other|}
+ * prc.parameters #=> [[:req, :x], [:opt, :y], [:rest, :other]]
+ * prc = proc{|x, y=42, *other|}
+ * prc.parameters(lambda: true) #=> [[:req, :x], [:opt, :y], [:rest, :other]]
+ * prc = lambda{|x, y=42, *other|}
+ * prc.parameters(lambda: false) #=> [[:opt, :x], [:opt, :y], [:rest, :other]]
+ */
+
+static VALUE
+rb_proc_parameters(int argc, VALUE *argv, VALUE self)
+{
+ static ID keyword_ids[1];
+ VALUE opt, lambda;
+ VALUE kwargs[1];
+ int is_proc ;
+ const rb_iseq_t *iseq;
+
+ iseq = rb_proc_get_iseq(self, &is_proc);
+
+ if (!keyword_ids[0]) {
+ CONST_ID(keyword_ids[0], "lambda");
+ }
+
+ rb_scan_args(argc, argv, "0:", &opt);
+ if (!NIL_P(opt)) {
+ rb_get_kwargs(opt, keyword_ids, 0, 1, kwargs);
+ lambda = kwargs[0];
+ if (!NIL_P(lambda)) {
+ is_proc = !RTEST(lambda);
+ }
+ }
+
+ if (!iseq) {
+ return rb_unnamed_parameters(rb_proc_arity(self));
+ }
+ return rb_iseq_parameters(iseq, is_proc);
+}
+
+st_index_t
+rb_hash_proc(st_index_t hash, VALUE prc)
+{
+ rb_proc_t *proc;
+ GetProcPtr(prc, proc);
+
+ switch (vm_block_type(&proc->block)) {
+ case block_type_iseq:
+ hash = rb_st_hash_uint(hash, (st_index_t)proc->block.as.captured.code.iseq->body);
+ break;
+ case block_type_ifunc:
+ hash = rb_st_hash_uint(hash, (st_index_t)proc->block.as.captured.code.ifunc->func);
+ hash = rb_st_hash_uint(hash, (st_index_t)proc->block.as.captured.code.ifunc->data);
+ break;
+ case block_type_symbol:
+ hash = rb_st_hash_uint(hash, rb_any_hash(proc->block.as.symbol));
+ break;
+ case block_type_proc:
+ hash = rb_st_hash_uint(hash, rb_any_hash(proc->block.as.proc));
+ break;
+ default:
+ rb_bug("rb_hash_proc: unknown block type %d", vm_block_type(&proc->block));
+ }
+
+ /* ifunc procs have their own allocated ep. If an ifunc is duplicated, they
+ * will point to different ep but they should return the same hash code, so
+ * we cannot include the ep in the hash. */
+ if (vm_block_type(&proc->block) != block_type_ifunc) {
+ hash = rb_hash_uint(hash, (st_index_t)proc->block.as.captured.ep);
+ }
+
+ return hash;
+}
+
+static VALUE sym_proc_cache = Qfalse;
+
+/*
+ * call-seq:
+ * to_proc
+ *
+ * Returns a Proc object which calls the method with name of +self+
+ * on the first parameter and passes the remaining parameters to the method.
+ *
+ * proc = :to_s.to_proc # => #<Proc:0x000001afe0e48680(&:to_s) (lambda)>
+ * proc.call(1000) # => "1000"
+ * proc.call(1000, 16) # => "3e8"
+ * (1..3).collect(&:to_s) # => ["1", "2", "3"]
+ *
+ */
+
+VALUE
+rb_sym_to_proc(VALUE sym)
+{
+ enum {SYM_PROC_CACHE_SIZE = 67};
+
+ if (rb_ractor_main_p()) {
+ if (!sym_proc_cache) {
+ sym_proc_cache = rb_ary_hidden_new(SYM_PROC_CACHE_SIZE);
+ rb_ary_store(sym_proc_cache, SYM_PROC_CACHE_SIZE - 1, Qnil);
+ }
+
+ ID id = SYM2ID(sym);
+ long index = (id % SYM_PROC_CACHE_SIZE);
+ VALUE procval = RARRAY_AREF(sym_proc_cache, index);
+ if (RTEST(procval)) {
+ rb_proc_t *proc;
+ GetProcPtr(procval, proc);
+
+ if (proc->block.as.symbol == sym) {
+ return procval;
+ }
+ }
+
+ procval = sym_proc_new(rb_cProc, sym);
+ RARRAY_ASET(sym_proc_cache, index, procval);
+
+ return RB_GC_GUARD(procval);
+ }
+ else {
+ return sym_proc_new(rb_cProc, sym);
+ }
+}
+
+/*
+ * call-seq:
+ * prc.hash -> integer
+ *
+ * Returns a hash value corresponding to proc body.
+ *
+ * See also Object#hash.
+ */
+
+static VALUE
+proc_hash(VALUE self)
+{
+ st_index_t hash;
+ hash = rb_hash_start(0);
+ hash = rb_hash_proc(hash, self);
+ hash = rb_hash_end(hash);
+ return ST2FIX(hash);
+}
+
+VALUE
+rb_block_to_s(VALUE self, const struct rb_block *block, const char *additional_info)
+{
+ VALUE cname = rb_obj_class(self);
+ VALUE str = rb_sprintf("#<%"PRIsVALUE":", cname);
+
+ again:
+ switch (vm_block_type(block)) {
+ case block_type_proc:
+ block = vm_proc_block(block->as.proc);
+ goto again;
+ case block_type_iseq:
+ {
+ const rb_iseq_t *iseq = rb_iseq_check(block->as.captured.code.iseq);
+ rb_str_catf(str, "%p %"PRIsVALUE":%d", (void *)self,
+ rb_iseq_path(iseq),
+ ISEQ_BODY(iseq)->location.first_lineno);
+ }
+ break;
+ case block_type_symbol:
+ rb_str_catf(str, "%p(&%+"PRIsVALUE")", (void *)self, block->as.symbol);
+ break;
+ case block_type_ifunc:
+ rb_str_catf(str, "%p", (void *)block->as.captured.code.ifunc);
+ break;
+ }
+
+ if (additional_info) rb_str_cat_cstr(str, additional_info);
+ rb_str_cat_cstr(str, ">");
+ return str;
+}
+
+/*
+ * call-seq:
+ * prc.to_s -> string
+ *
+ * Returns the unique identifier for this proc, along with
+ * an indication of where the proc was defined.
+ */
+
+static VALUE
+proc_to_s(VALUE self)
+{
+ const rb_proc_t *proc;
+ GetProcPtr(self, proc);
+ return rb_block_to_s(self, &proc->block, proc->is_lambda ? " (lambda)" : NULL);
+}
+
+/*
+ * call-seq:
+ * prc.to_proc -> proc
+ *
+ * Part of the protocol for converting objects to Proc objects.
+ * Instances of class Proc simply return themselves.
+ */
+
+static VALUE
+proc_to_proc(VALUE self)
+{
+ return self;
+}
+
+static void
+bm_mark_and_move(void *ptr)
+{
+ struct METHOD *data = ptr;
+ rb_gc_mark_and_move((VALUE *)&data->recv);
+ rb_gc_mark_and_move((VALUE *)&data->klass);
+ rb_gc_mark_and_move((VALUE *)&data->iclass);
+ rb_gc_mark_and_move((VALUE *)&data->owner);
+ rb_gc_mark_and_move_ptr((rb_method_entry_t **)&data->me);
+}
+
+static const rb_data_type_t method_data_type = {
+ "method",
+ {
+ bm_mark_and_move,
+ RUBY_TYPED_DEFAULT_FREE,
+ NULL, // No external memory to report,
+ bm_mark_and_move,
+ },
+ 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_EMBEDDABLE | RUBY_TYPED_FROZEN_SHAREABLE_NO_REC
+};
+
+VALUE
+rb_obj_is_method(VALUE m)
+{
+ return RBOOL(rb_typeddata_is_kind_of(m, &method_data_type));
+}
+
+static int
+respond_to_missing_p(VALUE klass, VALUE obj, VALUE sym, int scope)
+{
+ /* TODO: merge with obj_respond_to() */
+ ID rmiss = idRespond_to_missing;
+
+ if (UNDEF_P(obj)) return 0;
+ if (rb_method_basic_definition_p(klass, rmiss)) return 0;
+ return RTEST(rb_funcall(obj, rmiss, 2, sym, RBOOL(!scope)));
+}
+
+
+static VALUE
+mnew_missing(VALUE klass, VALUE obj, ID id, VALUE mclass)
+{
+ struct METHOD *data;
+ VALUE method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
+ rb_method_entry_t *me;
+ rb_method_definition_t *def;
+
+ RB_OBJ_WRITE(method, &data->recv, obj);
+ RB_OBJ_WRITE(method, &data->klass, klass);
+ RB_OBJ_WRITE(method, &data->owner, klass);
+
+ def = ZALLOC(rb_method_definition_t);
+ def->type = VM_METHOD_TYPE_MISSING;
+ def->original_id = id;
+
+ me = rb_method_entry_create(id, klass, METHOD_VISI_UNDEF, def);
+
+ RB_OBJ_WRITE(method, &data->me, me);
+
+ return method;
+}
+
+static VALUE
+mnew_missing_by_name(VALUE klass, VALUE obj, VALUE *name, int scope, VALUE mclass)
+{
+ VALUE vid = rb_str_intern(*name);
+ *name = vid;
+ if (!respond_to_missing_p(klass, obj, vid, scope)) return Qfalse;
+ return mnew_missing(klass, obj, SYM2ID(vid), mclass);
+}
+
+static VALUE
+mnew_internal(const rb_method_entry_t *me, VALUE klass, VALUE iclass,
+ VALUE obj, ID id, VALUE mclass, int scope, int error)
+{
+ struct METHOD *data;
+ VALUE method;
+ const rb_method_entry_t *original_me = me;
+ rb_method_visibility_t visi = METHOD_VISI_UNDEF;
+
+ again:
+ if (UNDEFINED_METHOD_ENTRY_P(me)) {
+ if (respond_to_missing_p(klass, obj, ID2SYM(id), scope)) {
+ return mnew_missing(klass, obj, id, mclass);
+ }
+ if (!error) return Qnil;
+ rb_print_undef(klass, id, METHOD_VISI_UNDEF);
+ }
+ if (visi == METHOD_VISI_UNDEF) {
+ visi = METHOD_ENTRY_VISI(me);
+ RUBY_ASSERT(visi != METHOD_VISI_UNDEF); /* !UNDEFINED_METHOD_ENTRY_P(me) */
+ if (scope && (visi != METHOD_VISI_PUBLIC)) {
+ if (!error) return Qnil;
+ rb_print_inaccessible(klass, id, visi);
+ }
+ }
+ if (me->def->type == VM_METHOD_TYPE_ZSUPER) {
+ if (me->defined_class) {
+ VALUE klass = RCLASS_SUPER(RCLASS_ORIGIN(me->defined_class));
+ id = me->def->original_id;
+ me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass);
+ }
+ else {
+ VALUE klass = RCLASS_SUPER(RCLASS_ORIGIN(me->owner));
+ id = me->def->original_id;
+ me = rb_method_entry_without_refinements(klass, id, &iclass);
+ }
+ goto again;
+ }
+
+ method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
+
+ if (UNDEF_P(obj)) {
+ RB_OBJ_WRITE(method, &data->recv, Qundef);
+ RB_OBJ_WRITE(method, &data->klass, Qundef);
+ }
+ else {
+ RB_OBJ_WRITE(method, &data->recv, obj);
+ RB_OBJ_WRITE(method, &data->klass, klass);
+ }
+ RB_OBJ_WRITE(method, &data->iclass, iclass);
+ RB_OBJ_WRITE(method, &data->owner, original_me->owner);
+ RB_OBJ_WRITE(method, &data->me, me);
+
+ return method;
+}
+
+static VALUE
+mnew_from_me(const rb_method_entry_t *me, VALUE klass, VALUE iclass,
+ VALUE obj, ID id, VALUE mclass, int scope)
+{
+ return mnew_internal(me, klass, iclass, obj, id, mclass, scope, TRUE);
+}
+
+static VALUE
+mnew_callable(VALUE klass, VALUE obj, ID id, VALUE mclass, int scope)
+{
+ const rb_method_entry_t *me;
+ VALUE iclass = Qnil;
+
+ ASSUME(!UNDEF_P(obj));
+ me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass);
+ return mnew_from_me(me, klass, iclass, obj, id, mclass, scope);
+}
+
+static VALUE
+mnew_unbound(VALUE klass, ID id, VALUE mclass, int scope)
+{
+ const rb_method_entry_t *me;
+ VALUE iclass = Qnil;
+
+ me = rb_method_entry_with_refinements(klass, id, &iclass);
+ return mnew_from_me(me, klass, iclass, Qundef, id, mclass, scope);
+}
+
+static inline VALUE
+method_entry_defined_class(const rb_method_entry_t *me)
+{
+ VALUE defined_class = me->defined_class;
+ return defined_class ? defined_class : me->owner;
+}
+
+/**********************************************************************
+ *
+ * Document-class: Method
+ *
+ * +Method+ objects are created by Object#method, and are associated
+ * with a particular object (not just with a class). They may be
+ * used to invoke the method within the object, and as a block
+ * associated with an iterator. They may also be unbound from one
+ * object (creating an UnboundMethod) and bound to another.
+ *
+ * class Thing
+ * def square(n)
+ * n*n
+ * end
+ * end
+ * thing = Thing.new
+ * meth = thing.method(:square)
+ *
+ * meth.call(9) #=> 81
+ * [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9]
+ *
+ * [ 1, 2, 3 ].each(&method(:puts)) #=> prints 1, 2, 3
+ *
+ * require 'date'
+ * %w[2017-03-01 2017-03-02].collect(&Date.method(:parse))
+ * #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>]
+ */
+
+/*
+ * call-seq:
+ * self == other -> true or false
+ *
+ * Returns whether +self+ and +other+ are bound to the same
+ * object and refer to the same method definition and the classes
+ * defining the methods are the same class or module.
+ */
+
+static VALUE
+method_eq(VALUE method, VALUE other)
+{
+ struct METHOD *m1, *m2;
+ VALUE klass1, klass2;
+
+ if (!rb_obj_is_method(other))
+ return Qfalse;
+ if (CLASS_OF(method) != CLASS_OF(other))
+ return Qfalse;
+
+ Check_TypedStruct(method, &method_data_type);
+ m1 = (struct METHOD *)RTYPEDDATA_GET_DATA(method);
+ m2 = (struct METHOD *)RTYPEDDATA_GET_DATA(other);
+
+ klass1 = method_entry_defined_class(m1->me);
+ klass2 = method_entry_defined_class(m2->me);
+
+ if (!rb_method_entry_eq(m1->me, m2->me) ||
+ klass1 != klass2 ||
+ m1->klass != m2->klass ||
+ m1->recv != m2->recv) {
+ return Qfalse;
+ }
+
+ return Qtrue;
+}
+
+/*
+ * call-seq:
+ * meth.eql?(other_meth) -> true or false
+ * meth == other_meth -> true or false
+ *
+ * Two unbound method objects are equal if they refer to the same
+ * method definition.
+ *
+ * Array.instance_method(:each_slice) == Enumerable.instance_method(:each_slice)
+ * #=> true
+ *
+ * Array.instance_method(:sum) == Enumerable.instance_method(:sum)
+ * #=> false, Array redefines the method for efficiency
+ */
+#define unbound_method_eq method_eq
+
+/*
+ * call-seq:
+ * meth.hash -> integer
+ *
+ * Returns a hash value corresponding to the method object.
+ *
+ * See also Object#hash.
+ */
+
+static VALUE
+method_hash(VALUE method)
+{
+ struct METHOD *m;
+ st_index_t hash;
+
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, m);
+ hash = rb_hash_start((st_index_t)m->recv);
+ hash = rb_hash_method_entry(hash, m->me);
+ hash = rb_hash_end(hash);
+
+ return ST2FIX(hash);
+}
+
+/*
+ * call-seq:
+ * meth.unbind -> unbound_method
+ *
+ * Dissociates <i>meth</i> from its current receiver. The resulting
+ * UnboundMethod can subsequently be bound to a new object of the
+ * same class (see UnboundMethod).
+ */
+
+static VALUE
+method_unbind(VALUE obj)
+{
+ VALUE method;
+ struct METHOD *orig, *data;
+
+ TypedData_Get_Struct(obj, struct METHOD, &method_data_type, orig);
+ method = TypedData_Make_Struct(rb_cUnboundMethod, struct METHOD,
+ &method_data_type, data);
+ RB_OBJ_WRITE(method, &data->recv, Qundef);
+ RB_OBJ_WRITE(method, &data->klass, Qundef);
+ RB_OBJ_WRITE(method, &data->iclass, orig->iclass);
+ RB_OBJ_WRITE(method, &data->owner, orig->me->owner);
+ RB_OBJ_WRITE(method, &data->me, rb_method_entry_clone(orig->me));
+
+ return method;
+}
+
+/*
+ * call-seq:
+ * meth.receiver -> object
+ *
+ * Returns the bound receiver of the method object.
+ *
+ * (1..3).method(:map).receiver # => 1..3
+ */
+
+static VALUE
+method_receiver(VALUE obj)
+{
+ struct METHOD *data;
+
+ TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
+ return data->recv;
+}
+
+/*
+ * call-seq:
+ * meth.name -> symbol
+ *
+ * Returns the name of the method.
+ */
+
+static VALUE
+method_name(VALUE obj)
+{
+ struct METHOD *data;
+
+ TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
+ return ID2SYM(data->me->called_id);
+}
+
+/*
+ * call-seq:
+ * meth.original_name -> symbol
+ *
+ * Returns the original name of the method.
+ *
+ * class C
+ * def foo; end
+ * alias bar foo
+ * end
+ * C.instance_method(:bar).original_name # => :foo
+ */
+
+static VALUE
+method_original_name(VALUE obj)
+{
+ struct METHOD *data;
+
+ TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
+ return ID2SYM(data->me->def->original_id);
+}
+
+/*
+ * call-seq:
+ * meth.owner -> class_or_module
+ *
+ * Returns the class or module on which this method is defined.
+ * In other words,
+ *
+ * meth.owner.instance_methods(false).include?(meth.name) # => true
+ *
+ * holds as long as the method is not removed/undefined/replaced,
+ * (with private_instance_methods instead of instance_methods if the method
+ * is private).
+ *
+ * See also Method#receiver.
+ *
+ * (1..3).method(:map).owner #=> Enumerable
+ */
+
+static VALUE
+method_owner(VALUE obj)
+{
+ struct METHOD *data;
+ TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
+ return data->owner;
+}
+
+/*
+ * call-seq:
+ * meth.box -> box or nil
+ *
+ * Returns the Ruby::Box where +meth+ is defined in.
+ */
+static VALUE
+method_box(VALUE obj)
+{
+ struct METHOD *data;
+ const rb_box_t *box;
+
+ TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
+ box = data->me->def->box;
+ if (!box) return Qnil;
+ if (box->box_object) return box->box_object;
+ rb_bug("Unexpected box on the method definition: %p", (void*) box);
+ UNREACHABLE_RETURN(Qnil);
+}
+
+void
+rb_method_name_error(VALUE klass, VALUE str)
+{
+#define MSG(s) rb_fstring_lit("undefined method '%1$s' for"s" '%2$s'")
+ VALUE c = klass;
+ VALUE s = Qundef;
+
+ if (RCLASS_SINGLETON_P(c)) {
+ VALUE obj = RCLASS_ATTACHED_OBJECT(klass);
+
+ switch (BUILTIN_TYPE(obj)) {
+ case T_MODULE:
+ case T_CLASS:
+ c = obj;
+ break;
+ default:
+ break;
+ }
+ }
+ else if (RB_TYPE_P(c, T_MODULE)) {
+ s = MSG(" module");
+ }
+ if (UNDEF_P(s)) {
+ s = MSG(" class");
+ }
+ rb_name_err_raise_str(s, c, str);
+#undef MSG
+}
+
+static VALUE
+obj_method(VALUE obj, VALUE vid, int scope)
+{
+ ID id = rb_check_id(&vid);
+ const VALUE klass = CLASS_OF(obj);
+ const VALUE mclass = rb_cMethod;
+
+ if (!id) {
+ VALUE m = mnew_missing_by_name(klass, obj, &vid, scope, mclass);
+ if (m) return m;
+ rb_method_name_error(klass, vid);
+ }
+ return mnew_callable(klass, obj, id, mclass, scope);
+}
+
+/*
+ * call-seq:
+ * obj.method(sym) -> method
+ *
+ * Looks up the named method as a receiver in <i>obj</i>, returning a
+ * +Method+ object (or raising NameError). The +Method+ object acts as a
+ * closure in <i>obj</i>'s object instance, so instance variables and
+ * the value of <code>self</code> remain available.
+ *
+ * class Demo
+ * def initialize(n)
+ * @iv = n
+ * end
+ * def hello()
+ * "Hello, @iv = #{@iv}"
+ * end
+ * end
+ *
+ * k = Demo.new(99)
+ * m = k.method(:hello)
+ * m.call #=> "Hello, @iv = 99"
+ *
+ * l = Demo.new('Fred')
+ * m = l.method("hello")
+ * m.call #=> "Hello, @iv = Fred"
+ *
+ * Note that +Method+ implements <code>to_proc</code> method, which
+ * means it can be used with iterators.
+ *
+ * [ 1, 2, 3 ].each(&method(:puts)) # => prints 3 lines to stdout
+ *
+ * out = File.open('test.txt', 'w')
+ * [ 1, 2, 3 ].each(&out.method(:puts)) # => prints 3 lines to file
+ *
+ * require 'date'
+ * %w[2017-03-01 2017-03-02].collect(&Date.method(:parse))
+ * #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>]
+ */
+
+VALUE
+rb_obj_method(VALUE obj, VALUE vid)
+{
+ return obj_method(obj, vid, FALSE);
+}
+
+/*
+ * call-seq:
+ * obj.public_method(sym) -> method
+ *
+ * Similar to _method_, searches public method only.
+ */
+
+VALUE
+rb_obj_public_method(VALUE obj, VALUE vid)
+{
+ return obj_method(obj, vid, TRUE);
+}
+
+static VALUE
+rb_obj_singleton_method_lookup(VALUE arg)
+{
+ VALUE *args = (VALUE *)arg;
+ return rb_obj_method(args[0], args[1]);
+}
+
+static VALUE
+rb_obj_singleton_method_lookup_fail(VALUE arg1, VALUE arg2)
+{
+ return Qfalse;
+}
+
+/*
+ * call-seq:
+ * obj.singleton_method(sym) -> method
+ *
+ * Similar to _method_, searches singleton method only.
+ *
+ * class Demo
+ * def initialize(n)
+ * @iv = n
+ * end
+ * def hello()
+ * "Hello, @iv = #{@iv}"
+ * end
+ * end
+ *
+ * k = Demo.new(99)
+ * def k.hi
+ * "Hi, @iv = #{@iv}"
+ * end
+ * m = k.singleton_method(:hi)
+ * m.call #=> "Hi, @iv = 99"
+ * m = k.singleton_method(:hello) #=> NameError
+ */
+
+VALUE
+rb_obj_singleton_method(VALUE obj, VALUE vid)
+{
+ VALUE sc = rb_singleton_class_get(obj);
+ VALUE klass;
+ ID id = rb_check_id(&vid);
+
+ if (NIL_P(sc) ||
+ NIL_P(klass = RCLASS_ORIGIN(sc)) ||
+ !NIL_P(rb_special_singleton_class(obj))) {
+ /* goto undef; */
+ }
+ else if (! id) {
+ VALUE m = mnew_missing_by_name(klass, obj, &vid, FALSE, rb_cMethod);
+ if (m) return m;
+ /* else goto undef; */
+ }
+ else {
+ VALUE args[2] = {obj, vid};
+ VALUE ruby_method = rb_rescue(rb_obj_singleton_method_lookup, (VALUE)args, rb_obj_singleton_method_lookup_fail, Qfalse);
+ if (ruby_method) {
+ struct METHOD *method = (struct METHOD *)RTYPEDDATA_GET_DATA(ruby_method);
+ VALUE lookup_class = RBASIC_CLASS(obj);
+ VALUE stop_class = rb_class_superclass(sc);
+ VALUE method_class = method->iclass;
+
+ /* Determine if method is in singleton class, or module included in or prepended to it */
+ do {
+ if (lookup_class == method_class) {
+ return ruby_method;
+ }
+ lookup_class = RCLASS_SUPER(lookup_class);
+ } while (lookup_class && lookup_class != stop_class);
+ }
+ }
+
+ /* undef: */
+ vid = ID2SYM(id);
+ rb_name_err_raise("undefined singleton method '%1$s' for '%2$s'",
+ obj, vid);
+ UNREACHABLE_RETURN(Qundef);
+}
+
+/*
+ * call-seq:
+ * mod.instance_method(symbol) -> unbound_method
+ *
+ * Returns an +UnboundMethod+ representing the given
+ * instance method in _mod_.
+ * See +UnboundMethod+ about how to utilize it
+ *
+ * class Person
+ * def initialize(name)
+ * @name = name
+ * end
+ *
+ * def hi
+ * puts "Hi, I'm #{@name}!"
+ * end
+ * end
+ *
+ * dave = Person.new('Dave')
+ * thomas = Person.new('Thomas')
+ *
+ * hi = Person.instance_method(:hi)
+ * hi.bind_call(dave)
+ * hi.bind_call(thomas)
+ *
+ * <em>produces:</em>
+ *
+ * Hi, I'm Dave!
+ * Hi, I'm Thomas!
+ */
+
+static VALUE
+rb_mod_instance_method(VALUE mod, VALUE vid)
+{
+ ID id = rb_check_id(&vid);
+ if (!id) {
+ rb_method_name_error(mod, vid);
+ }
+ return mnew_unbound(mod, id, rb_cUnboundMethod, FALSE);
+}
+
+/*
+ * call-seq:
+ * mod.public_instance_method(symbol) -> unbound_method
+ *
+ * Similar to _instance_method_, searches public method only.
+ */
+
+static VALUE
+rb_mod_public_instance_method(VALUE mod, VALUE vid)
+{
+ ID id = rb_check_id(&vid);
+ if (!id) {
+ rb_method_name_error(mod, vid);
+ }
+ return mnew_unbound(mod, id, rb_cUnboundMethod, TRUE);
+}
+
+static VALUE
+rb_mod_define_method_with_visibility(int argc, VALUE *argv, VALUE mod, const struct rb_scope_visi_struct* scope_visi)
+{
+ ID id;
+ VALUE body;
+ VALUE name;
+ int is_method = FALSE;
+
+ rb_check_arity(argc, 1, 2);
+ name = argv[0];
+ id = rb_check_id(&name);
+ if (argc == 1) {
+ body = rb_block_lambda();
+ }
+ else {
+ body = argv[1];
+
+ if (rb_obj_is_method(body)) {
+ is_method = TRUE;
+ }
+ else if (rb_obj_is_proc(body)) {
+ is_method = FALSE;
+ }
+ else {
+ rb_raise(rb_eTypeError,
+ "wrong argument type %s (expected Proc/Method/UnboundMethod)",
+ rb_obj_classname(body));
+ }
+ }
+ if (!id) id = rb_to_id(name);
+
+ if (is_method) {
+ struct METHOD *method = (struct METHOD *)RTYPEDDATA_GET_DATA(body);
+ if (method->me->owner != mod && !RB_TYPE_P(method->me->owner, T_MODULE) &&
+ !RTEST(rb_class_inherited_p(mod, method->me->owner))) {
+ if (RCLASS_SINGLETON_P(method->me->owner)) {
+ rb_raise(rb_eTypeError,
+ "can't bind singleton method to a different class");
+ }
+ else {
+ rb_raise(rb_eTypeError,
+ "bind argument must be a subclass of % "PRIsVALUE,
+ method->me->owner);
+ }
+ }
+ rb_method_entry_set(mod, id, method->me, scope_visi->method_visi);
+ if (scope_visi->module_func) {
+ rb_method_entry_set(rb_singleton_class(mod), id, method->me, METHOD_VISI_PUBLIC);
+ }
+ RB_GC_GUARD(body);
+ }
+ else {
+ VALUE procval = rb_proc_dup(body);
+ if (vm_proc_iseq(procval) != NULL) {
+ rb_proc_t *proc;
+ GetProcPtr(procval, proc);
+ proc->is_lambda = TRUE;
+ proc->is_from_method = TRUE;
+ }
+ rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)procval, scope_visi->method_visi);
+ if (scope_visi->module_func) {
+ rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, METHOD_VISI_PUBLIC);
+ }
+ }
+
+ return ID2SYM(id);
+}
+
+/*
+ * call-seq:
+ * define_method(symbol, method) -> symbol
+ * define_method(symbol) { block } -> symbol
+ *
+ * Defines an instance method in the receiver. The _method_
+ * parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
+ * If a block is specified, it is used as the method body.
+ * If a block or the _method_ parameter has parameters,
+ * they're used as method parameters.
+ * This block is evaluated using #instance_eval.
+ *
+ * class A
+ * def fred
+ * puts "In Fred"
+ * end
+ * def create_method(name, &block)
+ * self.class.define_method(name, &block)
+ * end
+ * define_method(:wilma) { puts "Charge it!" }
+ * define_method(:flint) {|name| puts "I'm #{name}!"}
+ * end
+ * class B < A
+ * define_method(:barney, instance_method(:fred))
+ * end
+ * a = B.new
+ * a.barney
+ * a.wilma
+ * a.flint('Dino')
+ * a.create_method(:betty) { p self }
+ * a.betty
+ *
+ * <em>produces:</em>
+ *
+ * In Fred
+ * Charge it!
+ * I'm Dino!
+ * #<B:0x401b39e8>
+ */
+
+static VALUE
+rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
+{
+ const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod);
+ const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE};
+ const rb_scope_visibility_t *scope_visi = &default_scope_visi;
+
+ if (cref) {
+ scope_visi = CREF_SCOPE_VISI(cref);
+ }
+
+ return rb_mod_define_method_with_visibility(argc, argv, mod, scope_visi);
+}
+
+/*
+ * call-seq:
+ * define_singleton_method(symbol, method) -> symbol
+ * define_singleton_method(symbol) { block } -> symbol
+ *
+ * Defines a public singleton method in the receiver. The _method_
+ * parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
+ * If a block is specified, it is used as the method body.
+ * If a block or a method has parameters, they're used as method parameters.
+ *
+ * class A
+ * class << self
+ * def class_name
+ * to_s
+ * end
+ * end
+ * end
+ * A.define_singleton_method(:who_am_i) do
+ * "I am: #{class_name}"
+ * end
+ * A.who_am_i # ==> "I am: A"
+ *
+ * guy = "Bob"
+ * guy.define_singleton_method(:hello) { "#{self}: Hello there!" }
+ * guy.hello #=> "Bob: Hello there!"
+ *
+ * chris = "Chris"
+ * chris.define_singleton_method(:greet) {|greeting| "#{greeting}, I'm Chris!" }
+ * chris.greet("Hi") #=> "Hi, I'm Chris!"
+ */
+
+static VALUE
+rb_obj_define_method(int argc, VALUE *argv, VALUE obj)
+{
+ VALUE klass = rb_singleton_class(obj);
+ const rb_scope_visibility_t scope_visi = {METHOD_VISI_PUBLIC, FALSE};
+
+ return rb_mod_define_method_with_visibility(argc, argv, klass, &scope_visi);
+}
+
+/*
+ * define_method(symbol, method) -> symbol
+ * define_method(symbol) { block } -> symbol
+ *
+ * Defines a global function by _method_ or the block.
+ */
+
+static VALUE
+top_define_method(int argc, VALUE *argv, VALUE obj)
+{
+ return rb_mod_define_method(argc, argv, rb_top_main_class("define_method"));
+}
+
+/*
+ * call-seq:
+ * method.clone -> new_method
+ *
+ * Returns a clone of this method.
+ *
+ * class A
+ * def foo
+ * return "bar"
+ * end
+ * end
+ *
+ * m = A.new.method(:foo)
+ * m.call # => "bar"
+ * n = m.clone.call # => "bar"
+ */
+
+static VALUE
+method_clone(VALUE self)
+{
+ VALUE clone;
+ struct METHOD *orig, *data;
+
+ TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig);
+ clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data);
+ rb_obj_clone_setup(self, clone, Qnil);
+ RB_OBJ_WRITE(clone, &data->recv, orig->recv);
+ RB_OBJ_WRITE(clone, &data->klass, orig->klass);
+ RB_OBJ_WRITE(clone, &data->iclass, orig->iclass);
+ RB_OBJ_WRITE(clone, &data->owner, orig->owner);
+ RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me));
+ return clone;
+}
+
+/* :nodoc: */
+static VALUE
+method_dup(VALUE self)
+{
+ VALUE clone;
+ struct METHOD *orig, *data;
+
+ TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig);
+ clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data);
+ rb_obj_dup_setup(self, clone);
+ RB_OBJ_WRITE(clone, &data->recv, orig->recv);
+ RB_OBJ_WRITE(clone, &data->klass, orig->klass);
+ RB_OBJ_WRITE(clone, &data->iclass, orig->iclass);
+ RB_OBJ_WRITE(clone, &data->owner, orig->owner);
+ RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me));
+ return clone;
+}
+
+/*
+ * call-seq:
+ * call(...) -> obj
+ * self[...] -> obj
+ * self === obj -> result_of_method
+ *
+ * Invokes +self+ with the specified arguments, returning the
+ * method's return value.
+ *
+ * m = 12.method("+")
+ * m.call(3) #=> 15
+ * m.call(20) #=> 32
+ *
+ * Using Method#=== allows a method object to be the target of a +when+ clause
+ * in a case statement.
+ *
+ * require 'prime'
+ *
+ * case 1373
+ * when Prime.method(:prime?)
+ * # ...
+ * end
+ */
+
+static VALUE
+rb_method_call_pass_called_kw(int argc, const VALUE *argv, VALUE method)
+{
+ return rb_method_call_kw(argc, argv, method, RB_PASS_CALLED_KEYWORDS);
+}
+
+VALUE
+rb_method_call_kw(int argc, const VALUE *argv, VALUE method, int kw_splat)
+{
+ VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil;
+ return rb_method_call_with_block_kw(argc, argv, method, procval, kw_splat);
+}
+
+VALUE
+rb_method_call(int argc, const VALUE *argv, VALUE method)
+{
+ VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil;
+ return rb_method_call_with_block(argc, argv, method, procval);
+}
+
+static const rb_callable_method_entry_t *
+method_callable_method_entry(const struct METHOD *data)
+{
+ if (data->me->defined_class == 0) rb_bug("method_callable_method_entry: not callable.");
+ return (const rb_callable_method_entry_t *)data->me;
+}
+
+static inline VALUE
+call_method_data(rb_execution_context_t *ec, const struct METHOD *data,
+ int argc, const VALUE *argv, VALUE passed_procval, int kw_splat)
+{
+ vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval));
+ return rb_vm_call_kw(ec, data->recv, data->me->called_id, argc, argv,
+ method_callable_method_entry(data), kw_splat);
+}
+
+VALUE
+rb_method_call_with_block_kw(int argc, const VALUE *argv, VALUE method, VALUE passed_procval, int kw_splat)
+{
+ const struct METHOD *data;
+ rb_execution_context_t *ec = GET_EC();
+
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
+ if (UNDEF_P(data->recv)) {
+ rb_raise(rb_eTypeError, "can't call unbound method; bind first");
+ }
+ return call_method_data(ec, data, argc, argv, passed_procval, kw_splat);
+}
+
+VALUE
+rb_method_call_with_block(int argc, const VALUE *argv, VALUE method, VALUE passed_procval)
+{
+ return rb_method_call_with_block_kw(argc, argv, method, passed_procval, RB_NO_KEYWORDS);
+}
+
+/**********************************************************************
+ *
+ * Document-class: UnboundMethod
+ *
+ * Ruby supports two forms of objectified methods. Class +Method+ is
+ * used to represent methods that are associated with a particular
+ * object: these method objects are bound to that object. Bound
+ * method objects for an object can be created using Object#method.
+ *
+ * Ruby also supports unbound methods; methods objects that are not
+ * associated with a particular object. These can be created either
+ * by calling Module#instance_method or by calling #unbind on a bound
+ * method object. The result of both of these is an UnboundMethod
+ * object.
+ *
+ * Unbound methods can only be called after they are bound to an
+ * object. That object must be a kind_of? the method's original
+ * class.
+ *
+ * class Square
+ * def area
+ * @side * @side
+ * end
+ * def initialize(side)
+ * @side = side
+ * end
+ * end
+ *
+ * area_un = Square.instance_method(:area)
+ *
+ * s = Square.new(12)
+ * area = area_un.bind(s)
+ * area.call #=> 144
+ *
+ * Unbound methods are a reference to the method at the time it was
+ * objectified: subsequent changes to the underlying class will not
+ * affect the unbound method.
+ *
+ * class Test
+ * def test
+ * :original
+ * end
+ * end
+ * um = Test.instance_method(:test)
+ * class Test
+ * def test
+ * :modified
+ * end
+ * end
+ * t = Test.new
+ * t.test #=> :modified
+ * um.bind(t).call #=> :original
+ *
+ */
+
+static void
+convert_umethod_to_method_components(const struct METHOD *data, VALUE recv, VALUE *methclass_out, VALUE *klass_out, VALUE *iclass_out, const rb_method_entry_t **me_out, const bool clone)
+{
+ VALUE methclass = data->owner;
+ VALUE iclass = data->me->defined_class;
+ VALUE klass = CLASS_OF(recv);
+
+ if (RB_TYPE_P(methclass, T_MODULE)) {
+ VALUE refined_class = rb_refinement_module_get_refined_class(methclass);
+ if (!NIL_P(refined_class)) methclass = refined_class;
+ }
+ if (!RB_TYPE_P(methclass, T_MODULE) && !RTEST(rb_obj_is_kind_of(recv, methclass))) {
+ if (RCLASS_SINGLETON_P(methclass)) {
+ rb_raise(rb_eTypeError,
+ "singleton method called for a different object");
+ }
+ else {
+ rb_raise(rb_eTypeError, "bind argument must be an instance of % "PRIsVALUE,
+ methclass);
+ }
+ }
+
+ const rb_method_entry_t *me;
+ if (clone) {
+ me = rb_method_entry_clone(data->me);
+ }
+ else {
+ me = data->me;
+ }
+
+ if (RB_TYPE_P(me->owner, T_MODULE)) {
+ if (!clone) {
+ // if we didn't previously clone the method entry, then we need to clone it now
+ // because this branch manipulates it in rb_method_entry_complement_defined_class
+ me = rb_method_entry_clone(me);
+ }
+ VALUE ic = rb_class_search_ancestor(klass, me->owner);
+ if (ic) {
+ klass = ic;
+ iclass = ic;
+ }
+ else {
+ klass = rb_include_class_new(methclass, klass);
+ }
+ me = (const rb_method_entry_t *) rb_method_entry_complement_defined_class(me, me->called_id, klass);
+ }
+
+ *methclass_out = methclass;
+ *klass_out = klass;
+ *iclass_out = iclass;
+ *me_out = me;
+}
+
+/*
+ * call-seq:
+ * umeth.bind(obj) -> method
+ *
+ * Bind <i>umeth</i> to <i>obj</i>. If Klass was the class from which
+ * <i>umeth</i> was obtained, <code>obj.kind_of?(Klass)</code> must
+ * be true.
+ *
+ * class A
+ * def test
+ * puts "In test, class = #{self.class}"
+ * end
+ * end
+ * class B < A
+ * end
+ * class C < B
+ * end
+ *
+ *
+ * um = B.instance_method(:test)
+ * bm = um.bind(C.new)
+ * bm.call
+ * bm = um.bind(B.new)
+ * bm.call
+ * bm = um.bind(A.new)
+ * bm.call
+ *
+ * <em>produces:</em>
+ *
+ * In test, class = C
+ * In test, class = B
+ * prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)
+ * from prog.rb:16
+ */
+
+static VALUE
+umethod_bind(VALUE method, VALUE recv)
+{
+ VALUE methclass, klass, iclass;
+ const rb_method_entry_t *me;
+ const struct METHOD *data;
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
+ convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me, true);
+
+ struct METHOD *bound;
+ method = TypedData_Make_Struct(rb_cMethod, struct METHOD, &method_data_type, bound);
+ RB_OBJ_WRITE(method, &bound->recv, recv);
+ RB_OBJ_WRITE(method, &bound->klass, klass);
+ RB_OBJ_WRITE(method, &bound->iclass, iclass);
+ RB_OBJ_WRITE(method, &bound->owner, methclass);
+ RB_OBJ_WRITE(method, &bound->me, me);
+
+ return method;
+}
+
+/*
+ * call-seq:
+ * umeth.bind_call(recv, args, ...) -> obj
+ *
+ * Bind <i>umeth</i> to <i>recv</i> and then invokes the method with the
+ * specified arguments.
+ * This is semantically equivalent to <code>umeth.bind(recv).call(args, ...)</code>.
+ */
+static VALUE
+umethod_bind_call(int argc, VALUE *argv, VALUE method)
+{
+ rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
+ VALUE recv = argv[0];
+ argc--;
+ argv++;
+
+ VALUE passed_procval = rb_block_given_p() ? rb_block_proc() : Qnil;
+ rb_execution_context_t *ec = GET_EC();
+
+ const struct METHOD *data;
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
+
+ const rb_callable_method_entry_t *cme = rb_callable_method_entry(CLASS_OF(recv), data->me->called_id);
+ if (data->me == (const rb_method_entry_t *)cme) {
+ vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval));
+ return rb_vm_call_kw(ec, recv, cme->called_id, argc, argv, cme, RB_PASS_CALLED_KEYWORDS);
+ }
+ else {
+ VALUE methclass, klass, iclass;
+ const rb_method_entry_t *me;
+ convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me, false);
+ struct METHOD bound = { recv, klass, 0, methclass, me };
+
+ return call_method_data(ec, &bound, argc, argv, passed_procval, RB_PASS_CALLED_KEYWORDS);
+ }
+}
+
+/*
+ * Returns the number of required parameters and stores the maximum
+ * number of parameters in max, or UNLIMITED_ARGUMENTS
+ * if there is no maximum.
+ */
+static int
+method_def_min_max_arity(const rb_method_definition_t *def, int *max)
+{
+ again:
+ if (!def) return *max = 0;
+ switch (def->type) {
+ case VM_METHOD_TYPE_CFUNC:
+ if (def->body.cfunc.argc < 0) {
+ *max = UNLIMITED_ARGUMENTS;
+ return 0;
+ }
+ return *max = check_argc(def->body.cfunc.argc);
+ case VM_METHOD_TYPE_ZSUPER:
+ *max = UNLIMITED_ARGUMENTS;
+ return 0;
+ case VM_METHOD_TYPE_ATTRSET:
+ return *max = 1;
+ case VM_METHOD_TYPE_IVAR:
+ return *max = 0;
+ case VM_METHOD_TYPE_ALIAS:
+ def = def->body.alias.original_me->def;
+ goto again;
+ case VM_METHOD_TYPE_BMETHOD:
+ return rb_proc_min_max_arity(def->body.bmethod.proc, max);
+ case VM_METHOD_TYPE_ISEQ:
+ return rb_iseq_min_max_arity(rb_iseq_check(def->body.iseq.iseqptr), max);
+ case VM_METHOD_TYPE_UNDEF:
+ case VM_METHOD_TYPE_NOTIMPLEMENTED:
+ return *max = 0;
+ case VM_METHOD_TYPE_MISSING:
+ *max = UNLIMITED_ARGUMENTS;
+ return 0;
+ case VM_METHOD_TYPE_OPTIMIZED: {
+ switch (def->body.optimized.type) {
+ case OPTIMIZED_METHOD_TYPE_SEND:
+ *max = UNLIMITED_ARGUMENTS;
+ return 0;
+ case OPTIMIZED_METHOD_TYPE_CALL:
+ *max = UNLIMITED_ARGUMENTS;
+ return 0;
+ case OPTIMIZED_METHOD_TYPE_BLOCK_CALL:
+ *max = UNLIMITED_ARGUMENTS;
+ return 0;
+ case OPTIMIZED_METHOD_TYPE_STRUCT_AREF:
+ *max = 0;
+ return 0;
+ case OPTIMIZED_METHOD_TYPE_STRUCT_ASET:
+ *max = 1;
+ return 1;
+ default:
+ break;
+ }
+ break;
+ }
+ case VM_METHOD_TYPE_REFINED:
+ *max = UNLIMITED_ARGUMENTS;
+ return 0;
+ }
+ rb_bug("method_def_min_max_arity: invalid method entry type (%d)", def->type);
+ UNREACHABLE_RETURN(Qnil);
+}
+
+static int
+method_def_arity(const rb_method_definition_t *def)
+{
+ int max, min = method_def_min_max_arity(def, &max);
+ return min == max ? min : -min-1;
+}
+
+int
+rb_method_entry_arity(const rb_method_entry_t *me)
+{
+ return method_def_arity(me->def);
+}
+
+/*
+ * call-seq:
+ * meth.arity -> integer
+ *
+ * Returns an indication of the number of arguments accepted by a
+ * method. Returns a nonnegative integer for methods that take a fixed
+ * number of arguments. For Ruby methods that take a variable number of
+ * arguments, returns -n-1, where n is the number of required arguments.
+ * Keyword arguments will be considered as a single additional argument,
+ * that argument being mandatory if any keyword argument is mandatory.
+ * For methods written in C, returns -1 if the call takes a
+ * variable number of arguments.
+ *
+ * class C
+ * def one; end
+ * def two(a); end
+ * def three(*a); end
+ * def four(a, b); end
+ * def five(a, b, *c); end
+ * def six(a, b, *c, &d); end
+ * def seven(a, b, x:0); end
+ * def eight(x:, y:); end
+ * def nine(x:, y:, **z); end
+ * def ten(*a, x:, y:); end
+ * end
+ * c = C.new
+ * c.method(:one).arity #=> 0
+ * c.method(:two).arity #=> 1
+ * c.method(:three).arity #=> -1
+ * c.method(:four).arity #=> 2
+ * c.method(:five).arity #=> -3
+ * c.method(:six).arity #=> -3
+ * c.method(:seven).arity #=> -3
+ * c.method(:eight).arity #=> 1
+ * c.method(:nine).arity #=> 1
+ * c.method(:ten).arity #=> -2
+ *
+ * "cat".method(:size).arity #=> 0
+ * "cat".method(:replace).arity #=> 1
+ * "cat".method(:squeeze).arity #=> -1
+ * "cat".method(:count).arity #=> -1
+ */
+
+static VALUE
+method_arity_m(VALUE method)
+{
+ int n = method_arity(method);
+ return INT2FIX(n);
+}
+
+static int
+method_arity(VALUE method)
+{
+ struct METHOD *data;
+
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
+ return rb_method_entry_arity(data->me);
+}
+
+static const rb_method_entry_t *
+original_method_entry(VALUE mod, ID id)
+{
+ const rb_method_entry_t *me;
+
+ while ((me = rb_method_entry(mod, id)) != 0) {
+ const rb_method_definition_t *def = me->def;
+ if (def->type != VM_METHOD_TYPE_ZSUPER) break;
+ mod = RCLASS_SUPER(me->owner);
+ id = def->original_id;
+ }
+ return me;
+}
+
+static int
+method_min_max_arity(VALUE method, int *max)
+{
+ const struct METHOD *data;
+
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
+ return method_def_min_max_arity(data->me->def, max);
+}
+
+int
+rb_mod_method_arity(VALUE mod, ID id)
+{
+ const rb_method_entry_t *me = original_method_entry(mod, id);
+ if (!me) return 0; /* should raise? */
+ return rb_method_entry_arity(me);
+}
+
+int
+rb_obj_method_arity(VALUE obj, ID id)
+{
+ return rb_mod_method_arity(CLASS_OF(obj), id);
+}
+
+VALUE
+rb_callable_receiver(VALUE callable)
+{
+ if (rb_obj_is_proc(callable)) {
+ VALUE binding = proc_binding(callable);
+ return rb_funcall(binding, rb_intern("receiver"), 0);
+ }
+ else if (rb_obj_is_method(callable)) {
+ return method_receiver(callable);
+ }
+ else {
+ return Qundef;
+ }
+}
+
+const rb_method_definition_t *
+rb_method_def(VALUE method)
+{
+ const struct METHOD *data;
+
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
+ return data->me->def;
+}
+
+static const rb_iseq_t *
+method_def_iseq(const rb_method_definition_t *def)
+{
+ switch (def->type) {
+ case VM_METHOD_TYPE_ISEQ:
+ return rb_iseq_check(def->body.iseq.iseqptr);
+ case VM_METHOD_TYPE_BMETHOD:
+ return rb_proc_get_iseq(def->body.bmethod.proc, 0);
+ case VM_METHOD_TYPE_ALIAS:
+ return method_def_iseq(def->body.alias.original_me->def);
+ case VM_METHOD_TYPE_CFUNC:
+ case VM_METHOD_TYPE_ATTRSET:
+ case VM_METHOD_TYPE_IVAR:
+ case VM_METHOD_TYPE_ZSUPER:
+ case VM_METHOD_TYPE_UNDEF:
+ case VM_METHOD_TYPE_NOTIMPLEMENTED:
+ case VM_METHOD_TYPE_OPTIMIZED:
+ case VM_METHOD_TYPE_MISSING:
+ case VM_METHOD_TYPE_REFINED:
+ break;
+ }
+ return NULL;
+}
+
+const rb_iseq_t *
+rb_method_iseq(VALUE method)
+{
+ return method_def_iseq(rb_method_def(method));
+}
+
+static const rb_cref_t *
+method_cref(VALUE method)
+{
+ const rb_method_definition_t *def = rb_method_def(method);
+
+ again:
+ switch (def->type) {
+ case VM_METHOD_TYPE_ISEQ:
+ return def->body.iseq.cref;
+ case VM_METHOD_TYPE_ALIAS:
+ def = def->body.alias.original_me->def;
+ goto again;
+ default:
+ return NULL;
+ }
+}
+
+static VALUE
+method_def_location(const rb_method_definition_t *def)
+{
+ if (def->type == VM_METHOD_TYPE_ATTRSET || def->type == VM_METHOD_TYPE_IVAR) {
+ if (!def->body.attr.location)
+ return Qnil;
+ return rb_ary_dup(def->body.attr.location);
+ }
+ return iseq_location(method_def_iseq(def));
+}
+
+VALUE
+rb_method_entry_location(const rb_method_entry_t *me)
+{
+ if (!me) return Qnil;
+ return method_def_location(me->def);
+}
+
+/*
+ * call-seq:
+ * meth.source_location -> [String, Integer, Integer, Integer, Integer]
+ *
+ * Returns the location where the method was defined.
+ * The returned Array contains:
+ * (1) the Ruby source filename
+ * (2) the line number where the definition starts
+ * (3) the position where the definition starts, in number of bytes from the start of the line
+ * (4) the line number where the definition ends
+ * (5) the position where the definitions ends, in number of bytes from the start of the line
+ *
+ * This method will return +nil+ if the method was not defined in Ruby (i.e. native).
+ */
+
+VALUE
+rb_method_location(VALUE method)
+{
+ return method_def_location(rb_method_def(method));
+}
+
+static const rb_method_definition_t *
+vm_proc_method_def(VALUE procval)
+{
+ const rb_proc_t *proc;
+ const struct rb_block *block;
+ const struct vm_ifunc *ifunc;
+
+ GetProcPtr(procval, proc);
+ block = &proc->block;
+
+ if (vm_block_type(block) == block_type_ifunc &&
+ IS_METHOD_PROC_IFUNC(ifunc = block->as.captured.code.ifunc)) {
+ return rb_method_def((VALUE)ifunc->data);
+ }
+ else {
+ return NULL;
+ }
+}
+
+static VALUE
+method_def_parameters(const rb_method_definition_t *def)
+{
+ const rb_iseq_t *iseq;
+ const rb_method_definition_t *bmethod_def;
+
+ switch (def->type) {
+ case VM_METHOD_TYPE_ISEQ:
+ iseq = method_def_iseq(def);
+ return rb_iseq_parameters(iseq, 0);
+ case VM_METHOD_TYPE_BMETHOD:
+ if ((iseq = method_def_iseq(def)) != NULL) {
+ return rb_iseq_parameters(iseq, 0);
+ }
+ else if ((bmethod_def = vm_proc_method_def(def->body.bmethod.proc)) != NULL) {
+ return method_def_parameters(bmethod_def);
+ }
+ break;
+
+ case VM_METHOD_TYPE_ALIAS:
+ return method_def_parameters(def->body.alias.original_me->def);
+
+ case VM_METHOD_TYPE_OPTIMIZED:
+ if (def->body.optimized.type == OPTIMIZED_METHOD_TYPE_STRUCT_ASET) {
+ VALUE param = rb_ary_new_from_args(2, ID2SYM(rb_intern("req")), ID2SYM(rb_intern("_")));
+ return rb_ary_new_from_args(1, param);
+ }
+ break;
+
+ case VM_METHOD_TYPE_CFUNC:
+ case VM_METHOD_TYPE_ATTRSET:
+ case VM_METHOD_TYPE_IVAR:
+ case VM_METHOD_TYPE_ZSUPER:
+ case VM_METHOD_TYPE_UNDEF:
+ case VM_METHOD_TYPE_NOTIMPLEMENTED:
+ case VM_METHOD_TYPE_MISSING:
+ case VM_METHOD_TYPE_REFINED:
+ break;
+ }
+
+ return rb_unnamed_parameters(method_def_arity(def));
+
+}
+
+/*
+ * call-seq:
+ * meth.parameters -> array
+ *
+ * Returns the parameter information of this method.
+ *
+ * def foo(bar); end
+ * method(:foo).parameters #=> [[:req, :bar]]
+ *
+ * def foo(bar, baz, bat, &blk); end
+ * method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:req, :bat], [:block, :blk]]
+ *
+ * def foo(bar, *args); end
+ * method(:foo).parameters #=> [[:req, :bar], [:rest, :args]]
+ *
+ * def foo(bar, baz, *args, &blk); end
+ * method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:rest, :args], [:block, :blk]]
+ */
+
+static VALUE
+rb_method_parameters(VALUE method)
+{
+ return method_def_parameters(rb_method_def(method));
+}
+
+/*
+ * call-seq:
+ * meth.to_s -> string
+ * meth.inspect -> string
+ *
+ * Returns a human-readable description of the underlying method.
+ *
+ * "cat".method(:count).inspect #=> "#<Method: String#count(*)>"
+ * (1..3).method(:map).inspect #=> "#<Method: Range(Enumerable)#map()>"
+ *
+ * In the latter case, the method description includes the "owner" of the
+ * original method (+Enumerable+ module, which is included into +Range+).
+ *
+ * +inspect+ also provides, when possible, method argument names (call
+ * sequence) and source location.
+ *
+ * require 'net/http'
+ * Net::HTTP.method(:get).inspect
+ * #=> "#<Method: Net::HTTP.get(uri_or_host, path=..., port=...) <skip>/lib/ruby/2.7.0/net/http.rb:457>"
+ *
+ * <code>...</code> in argument definition means argument is optional (has
+ * some default value).
+ *
+ * For methods defined in C (language core and extensions), location and
+ * argument names can't be extracted, and only generic information is provided
+ * in form of <code>*</code> (any number of arguments) or <code>_</code> (some
+ * positional argument).
+ *
+ * "cat".method(:count).inspect #=> "#<Method: String#count(*)>"
+ * "cat".method(:+).inspect #=> "#<Method: String#+(_)>""
+
+ */
+
+static VALUE
+method_inspect(VALUE method)
+{
+ struct METHOD *data;
+ VALUE str;
+ const char *sharp = "#";
+ VALUE mklass;
+ VALUE defined_class;
+
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
+ str = rb_sprintf("#<% "PRIsVALUE": ", rb_obj_class(method));
+
+ mklass = data->iclass;
+ if (!mklass) mklass = data->klass;
+
+ if (RB_TYPE_P(mklass, T_ICLASS)) {
+ /* TODO: I'm not sure why mklass is T_ICLASS.
+ * UnboundMethod#bind() can set it as T_ICLASS at convert_umethod_to_method_components()
+ * but not sure it is needed.
+ */
+ mklass = RBASIC_CLASS(mklass);
+ }
+
+ if (data->me->def->type == VM_METHOD_TYPE_ALIAS) {
+ defined_class = data->me->def->body.alias.original_me->owner;
+ }
+ else {
+ defined_class = method_entry_defined_class(data->me);
+ }
+
+ if (RB_TYPE_P(defined_class, T_ICLASS)) {
+ defined_class = RBASIC_CLASS(defined_class);
+ }
+
+ if (UNDEF_P(data->recv)) {
+ // UnboundMethod
+ rb_str_buf_append(str, rb_inspect(defined_class));
+ }
+ else if (RCLASS_SINGLETON_P(mklass)) {
+ VALUE v = RCLASS_ATTACHED_OBJECT(mklass);
+
+ if (UNDEF_P(data->recv)) {
+ rb_str_buf_append(str, rb_inspect(mklass));
+ }
+ else if (data->recv == v) {
+ rb_str_buf_append(str, rb_inspect(v));
+ sharp = ".";
+ }
+ else {
+ rb_str_buf_append(str, rb_inspect(data->recv));
+ rb_str_buf_cat2(str, "(");
+ rb_str_buf_append(str, rb_inspect(v));
+ rb_str_buf_cat2(str, ")");
+ sharp = ".";
+ }
+ }
+ else {
+ mklass = data->klass;
+ if (RCLASS_SINGLETON_P(mklass)) {
+ VALUE v = RCLASS_ATTACHED_OBJECT(mklass);
+ if (!(RB_TYPE_P(v, T_CLASS) || RB_TYPE_P(v, T_MODULE))) {
+ do {
+ mklass = RCLASS_SUPER(mklass);
+ } while (RB_TYPE_P(mklass, T_ICLASS));
+ }
+ }
+ rb_str_buf_append(str, rb_inspect(mklass));
+ if (defined_class != mklass) {
+ rb_str_catf(str, "(% "PRIsVALUE")", defined_class);
+ }
+ }
+ rb_str_buf_cat2(str, sharp);
+ rb_str_append(str, rb_id2str(data->me->called_id));
+ if (data->me->called_id != data->me->def->original_id) {
+ rb_str_catf(str, "(%"PRIsVALUE")",
+ rb_id2str(data->me->def->original_id));
+ }
+ if (data->me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) {
+ rb_str_buf_cat2(str, " (not-implemented)");
+ }
+
+ // parameter information
+ {
+ VALUE params = rb_method_parameters(method);
+ VALUE pair, name, kind;
+ const VALUE req = ID2SYM(rb_intern("req"));
+ const VALUE opt = ID2SYM(rb_intern("opt"));
+ const VALUE keyreq = ID2SYM(rb_intern("keyreq"));
+ const VALUE key = ID2SYM(rb_intern("key"));
+ const VALUE rest = ID2SYM(rb_intern("rest"));
+ const VALUE keyrest = ID2SYM(rb_intern("keyrest"));
+ const VALUE block = ID2SYM(rb_intern("block"));
+ const VALUE nokey = ID2SYM(rb_intern("nokey"));
+ int forwarding = 0;
+
+ rb_str_buf_cat2(str, "(");
+
+ if (RARRAY_LEN(params) == 3 &&
+ RARRAY_AREF(RARRAY_AREF(params, 0), 0) == rest &&
+ RARRAY_AREF(RARRAY_AREF(params, 0), 1) == ID2SYM('*') &&
+ RARRAY_AREF(RARRAY_AREF(params, 1), 0) == keyrest &&
+ RARRAY_AREF(RARRAY_AREF(params, 1), 1) == ID2SYM(idPow) &&
+ RARRAY_AREF(RARRAY_AREF(params, 2), 0) == block &&
+ RARRAY_AREF(RARRAY_AREF(params, 2), 1) == ID2SYM('&')) {
+ forwarding = 1;
+ }
+
+ for (int i = 0; i < RARRAY_LEN(params); i++) {
+ pair = RARRAY_AREF(params, i);
+ kind = RARRAY_AREF(pair, 0);
+ if (RARRAY_LEN(pair) > 1) {
+ name = RARRAY_AREF(pair, 1);
+ }
+ else {
+ // FIXME: can it be reduced to switch/case?
+ if (kind == req || kind == opt) {
+ name = rb_str_new2("_");
+ }
+ else if (kind == rest || kind == keyrest) {
+ name = rb_str_new2("");
+ }
+ else if (kind == block) {
+ name = rb_str_new2("block");
+ }
+ else if (kind == nokey) {
+ name = rb_str_new2("nil");
+ }
+ else {
+ name = Qnil;
+ }
+ }
+
+ if (kind == req) {
+ rb_str_catf(str, "%"PRIsVALUE, name);
+ }
+ else if (kind == opt) {
+ rb_str_catf(str, "%"PRIsVALUE"=...", name);
+ }
+ else if (kind == keyreq) {
+ rb_str_catf(str, "%"PRIsVALUE":", name);
+ }
+ else if (kind == key) {
+ rb_str_catf(str, "%"PRIsVALUE": ...", name);
+ }
+ else if (kind == rest) {
+ if (name == ID2SYM('*')) {
+ rb_str_cat_cstr(str, forwarding ? "..." : "*");
+ }
+ else {
+ rb_str_catf(str, "*%"PRIsVALUE, name);
+ }
+ }
+ else if (kind == keyrest) {
+ if (name != ID2SYM(idPow)) {
+ rb_str_catf(str, "**%"PRIsVALUE, name);
+ }
+ else if (i > 0) {
+ rb_str_set_len(str, RSTRING_LEN(str) - 2);
+ }
+ else {
+ rb_str_cat_cstr(str, "**");
+ }
+ }
+ else if (kind == block) {
+ if (name == ID2SYM('&')) {
+ if (forwarding) {
+ rb_str_set_len(str, RSTRING_LEN(str) - 2);
+ }
+ else {
+ rb_str_cat_cstr(str, "...");
+ }
+ }
+ else {
+ rb_str_catf(str, "&%"PRIsVALUE, name);
+ }
+ }
+ else if (kind == nokey) {
+ rb_str_buf_cat2(str, "**nil");
+ }
+
+ if (i < RARRAY_LEN(params) - 1) {
+ rb_str_buf_cat2(str, ", ");
+ }
+ }
+ rb_str_buf_cat2(str, ")");
+ }
+
+ { // source location
+ VALUE loc = rb_method_location(method);
+ if (!NIL_P(loc)) {
+ rb_str_catf(str, " %"PRIsVALUE":%"PRIsVALUE,
+ RARRAY_AREF(loc, 0), RARRAY_AREF(loc, 1));
+ }
+ }
+
+ rb_str_buf_cat2(str, ">");
+
+ return str;
+}
+
+static VALUE
+bmcall(RB_BLOCK_CALL_FUNC_ARGLIST(args, method))
+{
+ return rb_method_call_with_block_kw(argc, argv, method, blockarg, RB_PASS_CALLED_KEYWORDS);
+}
+
+VALUE
+rb_proc_new(
+ rb_block_call_func_t func,
+ VALUE val)
+{
+ VALUE procval = rb_block_call(rb_mRubyVMFrozenCore, idProc, 0, 0, func, val);
+ return procval;
+}
+
+/*
+ * call-seq:
+ * meth.to_proc -> proc
+ *
+ * Returns a Proc object corresponding to this method.
+ */
+
+static VALUE
+method_to_proc(VALUE method)
+{
+ VALUE procval;
+ rb_proc_t *proc;
+
+ /*
+ * class Method
+ * def to_proc
+ * lambda{|*args|
+ * self.call(*args)
+ * }
+ * end
+ * end
+ */
+ procval = rb_block_call(rb_mRubyVMFrozenCore, idLambda, 0, 0, bmcall, method);
+ GetProcPtr(procval, proc);
+ proc->is_from_method = 1;
+ return procval;
+}
+
+extern VALUE rb_find_defined_class_by_owner(VALUE current_class, VALUE target_owner);
+
+/*
+ * call-seq:
+ * meth.super_method -> method
+ *
+ * Returns a +Method+ of superclass which would be called when super is used
+ * or nil if there is no method on superclass.
+ */
+
+static VALUE
+method_super_method(VALUE method)
+{
+ const struct METHOD *data;
+ VALUE super_class, iclass;
+ ID mid;
+ const rb_method_entry_t *me;
+
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
+ iclass = data->iclass;
+ if (!iclass) return Qnil;
+ if (data->me->def->type == VM_METHOD_TYPE_ALIAS && data->me->defined_class) {
+ super_class = RCLASS_SUPER(rb_find_defined_class_by_owner(data->me->defined_class,
+ data->me->def->body.alias.original_me->owner));
+ mid = data->me->def->body.alias.original_me->def->original_id;
+ }
+ else {
+ super_class = RCLASS_SUPER(RCLASS_ORIGIN(iclass));
+ mid = data->me->def->original_id;
+ }
+ if (!super_class) return Qnil;
+ me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(super_class, mid, &iclass);
+ if (!me) return Qnil;
+ return mnew_internal(me, me->owner, iclass, data->recv, mid, rb_obj_class(method), FALSE, FALSE);
+}
+
+/*
+ * call-seq:
+ * local_jump_error.exit_value -> obj
+ *
+ * Returns the exit value associated with this +LocalJumpError+.
+ */
+static VALUE
+localjump_xvalue(VALUE exc)
+{
+ return rb_iv_get(exc, "@exit_value");
+}
+
+/*
+ * call-seq:
+ * local_jump_error.reason -> symbol
+ *
+ * The reason this block was terminated:
+ * :break, :redo, :retry, :next, :return, or :noreason.
+ */
+
+static VALUE
+localjump_reason(VALUE exc)
+{
+ return rb_iv_get(exc, "@reason");
+}
+
+rb_cref_t *rb_vm_cref_new_toplevel(void); /* vm.c */
+
+static const rb_env_t *
+env_clone(const rb_env_t *env, const rb_cref_t *cref)
+{
+ VALUE *new_ep;
+ VALUE *new_body;
+ const rb_env_t *new_env;
+
+ VM_ASSERT(env->ep > env->env);
+ VM_ASSERT(VM_ENV_ESCAPED_P(env->ep));
+
+ if (cref == NULL) {
+ cref = rb_vm_cref_new_toplevel();
+ }
+
+ new_body = ALLOC_N(VALUE, env->env_size);
+ new_ep = &new_body[env->ep - env->env];
+ new_env = vm_env_new(new_ep, new_body, env->env_size, env->iseq);
+
+ /* The memcpy has to happen after the vm_env_new because it can trigger a
+ * GC compaction which can move the objects in the env. */
+ MEMCPY(new_body, env->env, VALUE, env->env_size);
+ /* VM_ENV_DATA_INDEX_ENV is set in vm_env_new but will get overwritten
+ * by the memcpy above. */
+ new_ep[VM_ENV_DATA_INDEX_ENV] = (VALUE)new_env;
+ RB_OBJ_WRITE(new_env, &new_ep[VM_ENV_DATA_INDEX_ME_CREF], (VALUE)cref);
+ VM_ASSERT(VM_ENV_ESCAPED_P(new_ep));
+ return new_env;
+}
+
+/*
+ * call-seq:
+ * prc.binding -> binding
+ *
+ * Returns the binding associated with <i>prc</i>.
+ *
+ * def fred(param)
+ * proc {}
+ * end
+ *
+ * b = fred(99)
+ * eval("param", b.binding) #=> 99
+ */
+static VALUE
+proc_binding(VALUE self)
+{
+ VALUE bindval, binding_self = Qundef;
+ rb_binding_t *bind;
+ const rb_proc_t *proc;
+ const rb_iseq_t *iseq = NULL;
+ const struct rb_block *block;
+ const rb_env_t *env = NULL;
+
+ GetProcPtr(self, proc);
+ block = &proc->block;
+
+ if (proc->is_isolated) rb_raise(rb_eArgError, "Can't create Binding from isolated Proc");
+
+ again:
+ switch (vm_block_type(block)) {
+ case block_type_iseq:
+ iseq = block->as.captured.code.iseq;
+ binding_self = block->as.captured.self;
+ env = VM_ENV_ENVVAL_PTR(block->as.captured.ep);
+ break;
+ case block_type_proc:
+ GetProcPtr(block->as.proc, proc);
+ block = &proc->block;
+ goto again;
+ case block_type_ifunc:
+ {
+ const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
+ if (IS_METHOD_PROC_IFUNC(ifunc)) {
+ VALUE method = (VALUE)ifunc->data;
+ VALUE name = rb_fstring_lit("<empty_iseq>");
+ rb_iseq_t *empty;
+ binding_self = method_receiver(method);
+ iseq = rb_method_iseq(method);
+ env = VM_ENV_ENVVAL_PTR(block->as.captured.ep);
+ env = env_clone(env, method_cref(method));
+ /* set empty iseq */
+ empty = rb_iseq_new(Qnil, name, name, Qnil, 0, ISEQ_TYPE_TOP);
+ RB_OBJ_WRITE(env, &env->iseq, empty);
+ break;
+ }
+ }
+ /* FALLTHROUGH */
+ case block_type_symbol:
+ rb_raise(rb_eArgError, "Can't create Binding from C level Proc");
+ UNREACHABLE_RETURN(Qnil);
+ }
+
+ bindval = rb_binding_alloc(rb_cBinding);
+ GetBindingPtr(bindval, bind);
+ RB_OBJ_WRITE(bindval, &bind->block.as.captured.self, binding_self);
+ RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, env->iseq);
+ rb_vm_block_ep_update(bindval, &bind->block, env->ep);
+ RB_OBJ_WRITTEN(bindval, Qundef, VM_ENV_ENVVAL(env->ep));
+
+ if (iseq) {
+ rb_iseq_check(iseq);
+ RB_OBJ_WRITE(bindval, &bind->pathobj, ISEQ_BODY(iseq)->location.pathobj);
+ bind->first_lineno = ISEQ_BODY(iseq)->location.first_lineno;
+ }
+ else {
+ RB_OBJ_WRITE(bindval, &bind->pathobj,
+ rb_iseq_pathobj_new(rb_fstring_lit("(binding)"), Qnil));
+ bind->first_lineno = 1;
+ }
+
+ return bindval;
+}
+
+static rb_block_call_func curry;
+
+static VALUE
+make_curry_proc(VALUE proc, VALUE passed, VALUE arity)
+{
+ VALUE args = rb_ary_new3(3, proc, passed, arity);
+ rb_proc_t *procp;
+ int is_lambda;
+
+ GetProcPtr(proc, procp);
+ is_lambda = procp->is_lambda;
+ rb_ary_freeze(passed);
+ rb_ary_freeze(args);
+ proc = rb_proc_new(curry, args);
+ GetProcPtr(proc, procp);
+ procp->is_lambda = is_lambda;
+ return proc;
+}
+
+static VALUE
+curry(RB_BLOCK_CALL_FUNC_ARGLIST(_, args))
+{
+ VALUE proc, passed, arity;
+ proc = RARRAY_AREF(args, 0);
+ passed = RARRAY_AREF(args, 1);
+ arity = RARRAY_AREF(args, 2);
+
+ passed = rb_ary_plus(passed, rb_ary_new4(argc, argv));
+ rb_ary_freeze(passed);
+
+ if (RARRAY_LEN(passed) < FIX2INT(arity)) {
+ if (!NIL_P(blockarg)) {
+ rb_warn("given block not used");
+ }
+ arity = make_curry_proc(proc, passed, arity);
+ return arity;
+ }
+ else {
+ return rb_proc_call_with_block(proc, check_argc(RARRAY_LEN(passed)), RARRAY_CONST_PTR(passed), blockarg);
+ }
+}
+
+ /*
+ * call-seq:
+ * prc.curry -> a_proc
+ * prc.curry(arity) -> a_proc
+ *
+ * Returns a curried proc. If the optional <i>arity</i> argument is given,
+ * it determines the number of arguments.
+ * A curried proc receives some arguments. If a sufficient number of
+ * arguments are supplied, it passes the supplied arguments to the original
+ * proc and returns the result. Otherwise, returns another curried proc that
+ * takes the rest of arguments.
+ *
+ * The optional <i>arity</i> argument should be supplied when currying procs with
+ * variable arguments to determine how many arguments are needed before the proc is
+ * called.
+ *
+ * b = proc {|x, y, z| (x||0) + (y||0) + (z||0) }
+ * p b.curry[1][2][3] #=> 6
+ * p b.curry[1, 2][3, 4] #=> 6
+ * p b.curry(5)[1][2][3][4][5] #=> 6
+ * p b.curry(5)[1, 2][3, 4][5] #=> 6
+ * p b.curry(1)[1] #=> 1
+ *
+ * b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
+ * p b.curry[1][2][3] #=> 6
+ * p b.curry[1, 2][3, 4] #=> 10
+ * p b.curry(5)[1][2][3][4][5] #=> 15
+ * p b.curry(5)[1, 2][3, 4][5] #=> 15
+ * p b.curry(1)[1] #=> 1
+ *
+ * b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) }
+ * p b.curry[1][2][3] #=> 6
+ * p b.curry[1, 2][3, 4] #=> wrong number of arguments (given 4, expected 3)
+ * p b.curry(5) #=> wrong number of arguments (given 5, expected 3)
+ * p b.curry(1) #=> wrong number of arguments (given 1, expected 3)
+ *
+ * b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
+ * p b.curry[1][2][3] #=> 6
+ * p b.curry[1, 2][3, 4] #=> 10
+ * p b.curry(5)[1][2][3][4][5] #=> 15
+ * p b.curry(5)[1, 2][3, 4][5] #=> 15
+ * p b.curry(1) #=> wrong number of arguments (given 1, expected 3)
+ *
+ * b = proc { :foo }
+ * p b.curry[] #=> :foo
+ */
+static VALUE
+proc_curry(int argc, const VALUE *argv, VALUE self)
+{
+ int sarity, max_arity, min_arity = rb_proc_min_max_arity(self, &max_arity);
+ VALUE arity;
+
+ if (rb_check_arity(argc, 0, 1) == 0 || NIL_P(arity = argv[0])) {
+ arity = INT2FIX(min_arity);
+ }
+ else {
+ sarity = FIX2INT(arity);
+ if (rb_proc_lambda_p(self)) {
+ rb_check_arity(sarity, min_arity, max_arity);
+ }
+ }
+
+ return make_curry_proc(self, rb_ary_new(), arity);
+}
+
+/*
+ * call-seq:
+ * meth.curry -> proc
+ * meth.curry(arity) -> proc
+ *
+ * Returns a curried proc based on the method. When the proc is called with a number of
+ * arguments that is lower than the method's arity, then another curried proc is returned.
+ * Only when enough arguments have been supplied to satisfy the method signature, will the
+ * method actually be called.
+ *
+ * The optional <i>arity</i> argument should be supplied when currying methods with
+ * variable arguments to determine how many arguments are needed before the method is
+ * called.
+ *
+ * def foo(a,b,c)
+ * [a, b, c]
+ * end
+ *
+ * proc = self.method(:foo).curry
+ * proc2 = proc.call(1, 2) #=> #<Proc>
+ * proc2.call(3) #=> [1,2,3]
+ *
+ * def vararg(*args)
+ * args
+ * end
+ *
+ * proc = self.method(:vararg).curry(4)
+ * proc2 = proc.call(:x) #=> #<Proc>
+ * proc3 = proc2.call(:y, :z) #=> #<Proc>
+ * proc3.call(:a) #=> [:x, :y, :z, :a]
+ */
+
+static VALUE
+rb_method_curry(int argc, const VALUE *argv, VALUE self)
+{
+ VALUE proc = method_to_proc(self);
+ return proc_curry(argc, argv, proc);
+}
+
+static VALUE
+compose(RB_BLOCK_CALL_FUNC_ARGLIST(_, args))
+{
+ VALUE f, g, fargs;
+ f = RARRAY_AREF(args, 0);
+ g = RARRAY_AREF(args, 1);
+
+ if (rb_obj_is_proc(g))
+ fargs = rb_proc_call_with_block_kw(g, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS);
+ else
+ fargs = rb_funcall_with_block_kw(g, idCall, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS);
+
+ if (rb_obj_is_proc(f))
+ return rb_proc_call(f, rb_ary_new3(1, fargs));
+ else
+ return rb_funcallv(f, idCall, 1, &fargs);
+}
+
+static VALUE
+to_callable(VALUE f)
+{
+ VALUE mesg;
+
+ if (rb_obj_is_proc(f)) return f;
+ if (rb_obj_is_method(f)) return f;
+ if (rb_obj_respond_to(f, idCall, TRUE)) return f;
+ mesg = rb_fstring_lit("callable object is expected");
+ rb_exc_raise(rb_exc_new_str(rb_eTypeError, mesg));
+}
+
+static VALUE rb_proc_compose_to_left(VALUE self, VALUE g);
+static VALUE rb_proc_compose_to_right(VALUE self, VALUE g);
+
+/*
+ * call-seq:
+ * prc << g -> a_proc
+ *
+ * Returns a proc that is the composition of this proc and the given <i>g</i>.
+ * The returned proc takes a variable number of arguments, calls <i>g</i> with them
+ * then calls this proc with the result.
+ *
+ * f = proc {|x| x * x }
+ * g = proc {|x| x + x }
+ * p (f << g).call(2) #=> 16
+ *
+ * See Proc#>> for detailed explanations.
+ */
+static VALUE
+proc_compose_to_left(VALUE self, VALUE g)
+{
+ return rb_proc_compose_to_left(self, to_callable(g));
+}
+
+static VALUE
+rb_proc_compose_to_left(VALUE self, VALUE g)
+{
+ VALUE proc, args, procs[2];
+ rb_proc_t *procp;
+ int is_lambda;
+
+ procs[0] = self;
+ procs[1] = g;
+ args = rb_ary_tmp_new_from_values(0, 2, procs);
+
+ if (rb_obj_is_proc(g)) {
+ GetProcPtr(g, procp);
+ is_lambda = procp->is_lambda;
+ }
+ else {
+ VM_ASSERT(rb_obj_is_method(g) || rb_obj_respond_to(g, idCall, TRUE));
+ is_lambda = 1;
+ }
+
+ proc = rb_proc_new(compose, args);
+ GetProcPtr(proc, procp);
+ procp->is_lambda = is_lambda;
+
+ return proc;
+}
+
+/*
+ * call-seq:
+ * prc >> g -> a_proc
+ *
+ * Returns a proc that is the composition of this proc and the given <i>g</i>.
+ * The returned proc takes a variable number of arguments, calls this proc with them
+ * then calls <i>g</i> with the result.
+ *
+ * f = proc {|x| x * x }
+ * g = proc {|x| x + x }
+ * p (f >> g).call(2) #=> 8
+ *
+ * <i>g</i> could be other Proc, or Method, or any other object responding to
+ * +call+ method:
+ *
+ * class Parser
+ * def self.call(text)
+ * # ...some complicated parsing logic...
+ * end
+ * end
+ *
+ * pipeline = File.method(:read) >> Parser >> proc { |data| puts "data size: #{data.count}" }
+ * pipeline.call('data.json')
+ *
+ * See also Method#>> and Method#<<.
+ */
+static VALUE
+proc_compose_to_right(VALUE self, VALUE g)
+{
+ return rb_proc_compose_to_right(self, to_callable(g));
+}
+
+static VALUE
+rb_proc_compose_to_right(VALUE self, VALUE g)
+{
+ VALUE proc, args, procs[2];
+ rb_proc_t *procp;
+ int is_lambda;
+
+ procs[0] = g;
+ procs[1] = self;
+ args = rb_ary_tmp_new_from_values(0, 2, procs);
+
+ GetProcPtr(self, procp);
+ is_lambda = procp->is_lambda;
+
+ proc = rb_proc_new(compose, args);
+ GetProcPtr(proc, procp);
+ procp->is_lambda = is_lambda;
+
+ return proc;
+}
+
+/*
+ * call-seq:
+ * self << g -> a_proc
+ *
+ * Returns a proc that is the composition of the given +g+ and this method.
+ *
+ * The returned proc takes a variable number of arguments. It first calls +g+
+ * with the arguments, then calls +self+ with the return value of +g+.
+ *
+ * def f(ary) = ary << 'in f'
+ *
+ * f = self.method(:f)
+ * g = proc { |ary| ary << 'in proc' }
+ * (f << g).call([]) # => ["in proc", "in f"]
+ */
+static VALUE
+rb_method_compose_to_left(VALUE self, VALUE g)
+{
+ g = to_callable(g);
+ self = method_to_proc(self);
+ return proc_compose_to_left(self, g);
+}
+
+/*
+ * call-seq:
+ * self >> g -> a_proc
+ *
+ * Returns a proc that is the composition of this method and the given +g+.
+ *
+ * The returned proc takes a variable number of arguments. It first calls +self+
+ * with the arguments, then calls +g+ with the return value of +self+.
+ *
+ * def f(ary) = ary << 'in f'
+ *
+ * f = self.method(:f)
+ * g = proc { |ary| ary << 'in proc' }
+ * (f >> g).call([]) # => ["in f", "in proc"]
+ */
+static VALUE
+rb_method_compose_to_right(VALUE self, VALUE g)
+{
+ g = to_callable(g);
+ self = method_to_proc(self);
+ return proc_compose_to_right(self, g);
+}
+
+/*
+ * call-seq:
+ * proc.ruby2_keywords -> proc
+ *
+ * Marks the proc as passing keywords through a normal argument splat.
+ * This should only be called on procs that accept an argument splat
+ * (<tt>*args</tt>) but not explicit keywords or a keyword splat. It
+ * marks the proc such that if the proc is called with keyword arguments,
+ * the final hash argument is marked with a special flag such that if it
+ * is the final element of a normal argument splat to another method call,
+ * and that method call does not include explicit keywords or a keyword
+ * splat, the final element is interpreted as keywords. In other words,
+ * keywords will be passed through the proc to other methods.
+ *
+ * This should only be used for procs that delegate keywords to another
+ * method, and only for backwards compatibility with Ruby versions before
+ * 2.7.
+ *
+ * This method will probably be removed at some point, as it exists only
+ * for backwards compatibility. As it does not exist in Ruby versions
+ * before 2.7, check that the proc responds to this method before calling
+ * it. Also, be aware that if this method is removed, the behavior of the
+ * proc will change so that it does not pass through keywords.
+ *
+ * module Mod
+ * foo = ->(meth, *args, &block) do
+ * send(:"do_#{meth}", *args, &block)
+ * end
+ * foo.ruby2_keywords if foo.respond_to?(:ruby2_keywords)
+ * end
+ */
+
+static VALUE
+proc_ruby2_keywords(VALUE procval)
+{
+ rb_proc_t *proc;
+ GetProcPtr(procval, proc);
+
+ rb_check_frozen(procval);
+
+ if (proc->is_from_method) {
+ rb_warn("Skipping set of ruby2_keywords flag for proc (proc created from method)");
+ return procval;
+ }
+
+ switch (proc->block.type) {
+ case block_type_iseq:
+ if (ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.has_rest &&
+ !ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.has_post &&
+ !ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.has_kw &&
+ !ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.has_kwrest) {
+ ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.ruby2_keywords = 1;
+ }
+ else {
+ rb_warn("Skipping set of ruby2_keywords flag for proc (proc accepts keywords or post arguments or proc does not accept argument splat)");
+ }
+ break;
+ default:
+ rb_warn("Skipping set of ruby2_keywords flag for proc (proc not defined in Ruby)");
+ break;
+ }
+
+ return procval;
+}
+
+/*
+ * Document-class: LocalJumpError
+ *
+ * Raised when Ruby can't yield as requested.
+ *
+ * A typical scenario is attempting to yield when no block is given:
+ *
+ * def call_block
+ * yield 42
+ * end
+ * call_block
+ *
+ * <em>raises the exception:</em>
+ *
+ * LocalJumpError: no block given (yield)
+ *
+ * A more subtle example:
+ *
+ * def get_me_a_return
+ * Proc.new { return 42 }
+ * end
+ * get_me_a_return.call
+ *
+ * <em>raises the exception:</em>
+ *
+ * LocalJumpError: unexpected return
+ */
+
+/*
+ * Document-class: SystemStackError
+ *
+ * Raised in case of a stack overflow.
+ *
+ * def me_myself_and_i
+ * me_myself_and_i
+ * end
+ * me_myself_and_i
+ *
+ * <em>raises the exception:</em>
+ *
+ * SystemStackError: stack level too deep
+ */
+
+/*
+ * Document-class: Proc
+ *
+ * A +Proc+ object is an encapsulation of a block of code, which can be stored
+ * in a local variable, passed to a method or another Proc, and can be called.
+ * Proc is an essential concept in Ruby and a core of its functional
+ * programming features.
+ *
+ * square = Proc.new {|x| x**2 }
+ *
+ * square.call(3) #=> 9
+ * # shorthands:
+ * square.(3) #=> 9
+ * square[3] #=> 9
+ *
+ * Proc objects are _closures_, meaning they remember and can use the entire
+ * context in which they were created.
+ *
+ * def gen_times(factor)
+ * Proc.new {|n| n*factor } # remembers the value of factor at the moment of creation
+ * end
+ *
+ * times3 = gen_times(3)
+ * times5 = gen_times(5)
+ *
+ * times3.call(12) #=> 36
+ * times5.call(5) #=> 25
+ * times3.call(times5.call(4)) #=> 60
+ *
+ * == Creation
+ *
+ * There are several methods to create a Proc
+ *
+ * * Use the Proc class constructor:
+ *
+ * proc1 = Proc.new {|x| x**2 }
+ *
+ * * Use the Kernel#proc method as a shorthand of Proc.new:
+ *
+ * proc2 = proc {|x| x**2 }
+ *
+ * * Receiving a block of code into proc argument (note the <code>&</code>):
+ *
+ * def make_proc(&block)
+ * block
+ * end
+ *
+ * proc3 = make_proc {|x| x**2 }
+ *
+ * * Construct a proc with lambda semantics using the Kernel#lambda method
+ * (see below for explanations about lambdas):
+ *
+ * lambda1 = lambda {|x| x**2 }
+ *
+ * * Use the {Lambda proc literal}[rdoc-ref:syntax/literals.rdoc@Lambda+Proc+Literals] syntax
+ * (also constructs a proc with lambda semantics):
+ *
+ * lambda2 = ->(x) { x**2 }
+ *
+ * == Lambda and non-lambda semantics
+ *
+ * Procs are coming in two flavors: lambda and non-lambda (regular procs).
+ * Differences are:
+ *
+ * * In lambdas, +return+ and +break+ means exit from this lambda;
+ * * In non-lambda procs, +return+ means exit from embracing method
+ * (and will throw +LocalJumpError+ if invoked outside the method);
+ * * In non-lambda procs, +break+ means exit from the method which the block given for.
+ * (and will throw +LocalJumpError+ if invoked after the method returns);
+ * * In lambdas, arguments are treated in the same way as in methods: strict,
+ * with +ArgumentError+ for mismatching argument number,
+ * and no additional argument processing;
+ * * Regular procs accept arguments more generously: missing arguments
+ * are filled with +nil+, single Array arguments are deconstructed if the
+ * proc has multiple arguments, and there is no error raised on extra
+ * arguments.
+ *
+ * Examples:
+ *
+ * # +return+ in non-lambda proc, +b+, exits +m2+.
+ * # (The block +{ return }+ is given for +m1+ and embraced by +m2+.)
+ * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { return }; $a << :m2 end; m2; p $a
+ * #=> []
+ *
+ * # +break+ in non-lambda proc, +b+, exits +m1+.
+ * # (The block +{ break }+ is given for +m1+ and embraced by +m2+.)
+ * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { break }; $a << :m2 end; m2; p $a
+ * #=> [:m2]
+ *
+ * # +next+ in non-lambda proc, +b+, exits the block.
+ * # (The block +{ next }+ is given for +m1+ and embraced by +m2+.)
+ * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { next }; $a << :m2 end; m2; p $a
+ * #=> [:m1, :m2]
+ *
+ * # Using +proc+ method changes the behavior as follows because
+ * # The block is given for +proc+ method and embraced by +m2+.
+ * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { return }); $a << :m2 end; m2; p $a
+ * #=> []
+ * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { break }); $a << :m2 end; m2; p $a
+ * # break from proc-closure (LocalJumpError)
+ * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { next }); $a << :m2 end; m2; p $a
+ * #=> [:m1, :m2]
+ *
+ * # +return+, +break+ and +next+ in the stubby lambda exits the block.
+ * # (+lambda+ method behaves same.)
+ * # (The block is given for stubby lambda syntax and embraced by +m2+.)
+ * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { return }); $a << :m2 end; m2; p $a
+ * #=> [:m1, :m2]
+ * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { break }); $a << :m2 end; m2; p $a
+ * #=> [:m1, :m2]
+ * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { next }); $a << :m2 end; m2; p $a
+ * #=> [:m1, :m2]
+ *
+ * p = proc {|x, y| "x=#{x}, y=#{y}" }
+ * p.call(1, 2) #=> "x=1, y=2"
+ * p.call([1, 2]) #=> "x=1, y=2", array deconstructed
+ * p.call(1, 2, 8) #=> "x=1, y=2", extra argument discarded
+ * p.call(1) #=> "x=1, y=", nil substituted instead of error
+ *
+ * l = lambda {|x, y| "x=#{x}, y=#{y}" }
+ * l.call(1, 2) #=> "x=1, y=2"
+ * l.call([1, 2]) # ArgumentError: wrong number of arguments (given 1, expected 2)
+ * l.call(1, 2, 8) # ArgumentError: wrong number of arguments (given 3, expected 2)
+ * l.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2)
+ *
+ * def test_return
+ * -> { return 3 }.call # just returns from lambda into method body
+ * proc { return 4 }.call # returns from method
+ * return 5
+ * end
+ *
+ * test_return # => 4, return from proc
+ *
+ * Lambdas are useful as self-sufficient functions, in particular useful as
+ * arguments to higher-order functions, behaving exactly like Ruby methods.
+ *
+ * Procs are useful for implementing iterators:
+ *
+ * def test
+ * [[1, 2], [3, 4], [5, 6]].map {|a, b| return a if a + b > 10 }
+ * # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+ * end
+ *
+ * Inside +map+, the block of code is treated as a regular (non-lambda) proc,
+ * which means that the internal arrays will be deconstructed to pairs of
+ * arguments, and +return+ will exit from the method +test+. That would
+ * not be possible with a stricter lambda.
+ *
+ * You can tell a lambda from a regular proc by using the #lambda? instance method.
+ *
+ * Lambda semantics is typically preserved during the proc lifetime, including
+ * <code>&</code>-deconstruction to a block of code:
+ *
+ * p = proc {|x, y| x }
+ * l = lambda {|x, y| x }
+ * [[1, 2], [3, 4]].map(&p) #=> [1, 3]
+ * [[1, 2], [3, 4]].map(&l) # ArgumentError: wrong number of arguments (given 1, expected 2)
+ *
+ * The only exception is dynamic method definition: even if defined by
+ * passing a non-lambda proc, methods still have normal semantics of argument
+ * checking.
+ *
+ * class C
+ * define_method(:e, &proc {})
+ * end
+ * C.new.e(1,2) #=> ArgumentError
+ * C.new.method(:e).to_proc.lambda? #=> true
+ *
+ * This exception ensures that methods never have unusual argument passing
+ * conventions, and makes it easy to have wrappers defining methods that
+ * behave as usual.
+ *
+ * class C
+ * def self.def2(name, &body)
+ * define_method(name, &body)
+ * end
+ *
+ * def2(:f) {}
+ * end
+ * C.new.f(1,2) #=> ArgumentError
+ *
+ * The wrapper <code>def2</code> receives _body_ as a non-lambda proc,
+ * yet defines a method which has normal semantics.
+ *
+ * == Conversion of other objects to procs
+ *
+ * Any object that implements the +to_proc+ method can be converted into
+ * a proc by the <code>&</code> operator, and therefore can be
+ * consumed by iterators.
+ *
+ * class Greeter
+ * def initialize(greeting)
+ * @greeting = greeting
+ * end
+ *
+ * def to_proc
+ * proc {|name| "#{@greeting}, #{name}!" }
+ * end
+ * end
+ *
+ * hi = Greeter.new("Hi")
+ * hey = Greeter.new("Hey")
+ * ["Bob", "Jane"].map(&hi) #=> ["Hi, Bob!", "Hi, Jane!"]
+ * ["Bob", "Jane"].map(&hey) #=> ["Hey, Bob!", "Hey, Jane!"]
+ *
+ * Of the Ruby core classes, this method is implemented by +Symbol+,
+ * +Method+, and +Hash+.
+ *
+ * :to_s.to_proc.call(1) #=> "1"
+ * [1, 2].map(&:to_s) #=> ["1", "2"]
+ *
+ * method(:puts).to_proc.call(1) # prints 1
+ * [1, 2].each(&method(:puts)) # prints 1, 2
+ *
+ * {test: 1}.to_proc.call(:test) #=> 1
+ * %i[test many keys].map(&{test: 1}) #=> [1, nil, nil]
+ *
+ * == Orphaned Proc
+ *
+ * +return+ and +break+ in a block exit a method.
+ * If a Proc object is generated from the block and the Proc object
+ * survives until the method is returned, +return+ and +break+ cannot work.
+ * In such case, +return+ and +break+ raises LocalJumpError.
+ * A Proc object in such situation is called as orphaned Proc object.
+ *
+ * Note that the method to exit is different for +return+ and +break+.
+ * There is a situation that orphaned for +break+ but not orphaned for +return+.
+ *
+ * def m1(&b) b.call end; def m2(); m1 { return } end; m2 # ok
+ * def m1(&b) b.call end; def m2(); m1 { break } end; m2 # ok
+ *
+ * def m1(&b) b end; def m2(); m1 { return }.call end; m2 # ok
+ * def m1(&b) b end; def m2(); m1 { break }.call end; m2 # LocalJumpError
+ *
+ * def m1(&b) b end; def m2(); m1 { return } end; m2.call # LocalJumpError
+ * def m1(&b) b end; def m2(); m1 { break } end; m2.call # LocalJumpError
+ *
+ * Since +return+ and +break+ exits the block itself in lambdas,
+ * lambdas cannot be orphaned.
+ *
+ * == Anonymous block parameters
+ *
+ * To simplify writing short blocks, Ruby provides two different types of
+ * anonymous parameters: +it+ (single parameter) and numbered ones: <tt>_1</tt>,
+ * <tt>_2</tt> and so on.
+ *
+ * # Explicit parameter:
+ * %w[test me please].each { |str| puts str.upcase } # prints TEST, ME, PLEASE
+ * (1..5).map { |i| i**2 } # => [1, 4, 9, 16, 25]
+ *
+ * # it:
+ * %w[test me please].each { puts it.upcase } # prints TEST, ME, PLEASE
+ * (1..5).map { it**2 } # => [1, 4, 9, 16, 25]
+ *
+ * # Numbered parameter:
+ * %w[test me please].each { puts _1.upcase } # prints TEST, ME, PLEASE
+ * (1..5).map { _1**2 } # => [1, 4, 9, 16, 25]
+ *
+ * === +it+
+ *
+ * +it+ is a name that is available inside a block when no explicit parameters
+ * defined, as shown above.
+ *
+ * %w[test me please].each { puts it.upcase } # prints TEST, ME, PLEASE
+ * (1..5).map { it**2 } # => [1, 4, 9, 16, 25]
+ *
+ * +it+ is a "soft keyword": it is not a reserved name, and can be used as
+ * a name for methods and local variables:
+ *
+ * it = 5 # no warnings
+ * def it(&block) # RSpec-like API, no warnings
+ * # ...
+ * end
+ *
+ * +it+ can be used as a local variable even in blocks that use it as an
+ * implicit parameter (though this style is obviously confusing):
+ *
+ * [1, 2, 3].each {
+ * # takes a value of implicit parameter "it" and uses it to
+ * # define a local variable with the same name
+ * it = it**2
+ * p it
+ * }
+ *
+ * In a block with explicit parameters defined +it+ usage raises an exception:
+ *
+ * [1, 2, 3].each { |x| p it }
+ * # syntax error found (SyntaxError)
+ * # [1, 2, 3].each { |x| p it }
+ * # ^~ 'it' is not allowed when an ordinary parameter is defined
+ *
+ * But if a local name (variable or method) is available, it would be used:
+ *
+ * it = 5
+ * [1, 2, 3].each { |x| p it }
+ * # Prints 5, 5, 5
+ *
+ * Blocks using +it+ can be nested:
+ *
+ * %w[test me].each { it.each_char { p it } }
+ * # Prints "t", "e", "s", "t", "m", "e"
+ *
+ * Blocks using +it+ are considered to have one parameter:
+ *
+ * p = proc { it**2 }
+ * l = lambda { it**2 }
+ * p.parameters # => [[:opt]]
+ * p.arity # => 1
+ * l.parameters # => [[:req]]
+ * l.arity # => 1
+ *
+ * === Numbered parameters
+ *
+ * Numbered parameters are another way to name block parameters implicitly.
+ * Unlike +it+, numbered parameters allow to refer to several parameters
+ * in one block.
+ *
+ * %w[test me please].each { puts _1.upcase } # prints TEST, ME, PLEASE
+ * {a: 100, b: 200}.map { "#{_1} = #{_2}" } # => "a = 100", "b = 200"
+ *
+ * Parameter names from +_1+ to +_9+ are supported:
+ *
+ * [10, 20, 30].zip([40, 50, 60], [70, 80, 90]).map { _1 + _2 + _3 }
+ * # => [120, 150, 180]
+ *
+ * Though, it is advised to resort to them wisely, probably limiting
+ * yourself to +_1+ and +_2+, and to one-line blocks.
+ *
+ * Numbered parameters can't be used together with explicitly named
+ * ones:
+ *
+ * [10, 20, 30].map { |x| _1**2 }
+ * # SyntaxError (ordinary parameter is defined)
+ *
+ * Numbered parameters can't be mixed with +it+ either:
+ *
+ * [10, 20, 30].map { _1 + it }
+ * # SyntaxError: 'it' is not allowed when a numbered parameter is already used
+ *
+ * To avoid conflicts, naming local variables or method
+ * arguments +_1+, +_2+ and so on, causes an error.
+ *
+ * _1 = 'test'
+ * # ^~ _1 is reserved for numbered parameters (SyntaxError)
+ *
+ * Using implicit numbered parameters affects block's arity:
+ *
+ * p = proc { _1 + _2 }
+ * l = lambda { _1 + _2 }
+ * p.parameters # => [[:opt, :_1], [:opt, :_2]]
+ * p.arity # => 2
+ * l.parameters # => [[:req, :_1], [:req, :_2]]
+ * l.arity # => 2
+ *
+ * Blocks with numbered parameters can't be nested:
+ *
+ * %w[test me].each { _1.each_char { p _1 } }
+ * # numbered parameter is already used in outer block (SyntaxError)
+ * # %w[test me].each { _1.each_char { p _1 } }
+ * # ^~
+ *
+ */
+
+void
+Init_Proc(void)
+{
+#undef rb_intern
+ /* Proc */
+ rb_cProc = rb_define_class("Proc", rb_cObject);
+ rb_undef_alloc_func(rb_cProc);
+ rb_define_singleton_method(rb_cProc, "new", rb_proc_s_new, -1);
+
+ rb_add_method_optimized(rb_cProc, idCall, OPTIMIZED_METHOD_TYPE_CALL, 0, METHOD_VISI_PUBLIC);
+ rb_add_method_optimized(rb_cProc, rb_intern("[]"), OPTIMIZED_METHOD_TYPE_CALL, 0, METHOD_VISI_PUBLIC);
+ rb_add_method_optimized(rb_cProc, rb_intern("==="), OPTIMIZED_METHOD_TYPE_CALL, 0, METHOD_VISI_PUBLIC);
+ rb_add_method_optimized(rb_cProc, rb_intern("yield"), OPTIMIZED_METHOD_TYPE_CALL, 0, METHOD_VISI_PUBLIC);
+
+#if 0 /* for RDoc */
+ rb_define_method(rb_cProc, "call", proc_call, -1);
+ rb_define_method(rb_cProc, "[]", proc_call, -1);
+ rb_define_method(rb_cProc, "===", proc_call, -1);
+ rb_define_method(rb_cProc, "yield", proc_call, -1);
+#endif
+
+ rb_define_method(rb_cProc, "to_proc", proc_to_proc, 0);
+ rb_define_method(rb_cProc, "arity", proc_arity, 0);
+ rb_define_method(rb_cProc, "clone", proc_clone, 0);
+ rb_define_method(rb_cProc, "dup", proc_dup, 0);
+ rb_define_method(rb_cProc, "hash", proc_hash, 0);
+ rb_define_method(rb_cProc, "to_s", proc_to_s, 0);
+ rb_define_alias(rb_cProc, "inspect", "to_s");
+ rb_define_method(rb_cProc, "lambda?", rb_proc_lambda_p, 0);
+ rb_define_method(rb_cProc, "binding", proc_binding, 0);
+ rb_define_method(rb_cProc, "curry", proc_curry, -1);
+ rb_define_method(rb_cProc, "<<", proc_compose_to_left, 1);
+ rb_define_method(rb_cProc, ">>", proc_compose_to_right, 1);
+ rb_define_method(rb_cProc, "==", proc_eq, 1);
+ rb_define_method(rb_cProc, "eql?", proc_eq, 1);
+ rb_define_method(rb_cProc, "source_location", rb_proc_location, 0);
+ rb_define_method(rb_cProc, "parameters", rb_proc_parameters, -1);
+ rb_define_method(rb_cProc, "ruby2_keywords", proc_ruby2_keywords, 0);
+ // rb_define_method(rb_cProc, "isolate", rb_proc_isolate, 0); is not accepted.
+
+ /* Exceptions */
+ rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError);
+ rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0);
+ rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0);
+
+ rb_eSysStackError = rb_define_class("SystemStackError", rb_eException);
+ rb_vm_register_special_exception(ruby_error_sysstack, rb_eSysStackError, "stack level too deep");
+
+ /* utility functions */
+ rb_define_global_function("proc", f_proc, 0);
+ rb_define_global_function("lambda", f_lambda, 0);
+
+ /* Method */
+ rb_cMethod = rb_define_class("Method", rb_cObject);
+ rb_undef_alloc_func(rb_cMethod);
+ rb_undef_method(CLASS_OF(rb_cMethod), "new");
+ rb_define_method(rb_cMethod, "==", method_eq, 1);
+ rb_define_method(rb_cMethod, "eql?", method_eq, 1);
+ rb_define_method(rb_cMethod, "hash", method_hash, 0);
+ rb_define_method(rb_cMethod, "clone", method_clone, 0);
+ rb_define_method(rb_cMethod, "dup", method_dup, 0);
+ rb_define_method(rb_cMethod, "call", rb_method_call_pass_called_kw, -1);
+ rb_define_method(rb_cMethod, "===", rb_method_call_pass_called_kw, -1);
+ rb_define_method(rb_cMethod, "curry", rb_method_curry, -1);
+ rb_define_method(rb_cMethod, "<<", rb_method_compose_to_left, 1);
+ rb_define_method(rb_cMethod, ">>", rb_method_compose_to_right, 1);
+ rb_define_method(rb_cMethod, "[]", rb_method_call_pass_called_kw, -1);
+ rb_define_method(rb_cMethod, "arity", method_arity_m, 0);
+ rb_define_method(rb_cMethod, "inspect", method_inspect, 0);
+ rb_define_method(rb_cMethod, "to_s", method_inspect, 0);
+ rb_define_method(rb_cMethod, "to_proc", method_to_proc, 0);
+ rb_define_method(rb_cMethod, "receiver", method_receiver, 0);
+ rb_define_method(rb_cMethod, "name", method_name, 0);
+ rb_define_method(rb_cMethod, "original_name", method_original_name, 0);
+ rb_define_method(rb_cMethod, "owner", method_owner, 0);
+ rb_define_method(rb_cMethod, "unbind", method_unbind, 0);
+ rb_define_method(rb_cMethod, "source_location", rb_method_location, 0);
+ rb_define_method(rb_cMethod, "parameters", rb_method_parameters, 0);
+ rb_define_method(rb_cMethod, "super_method", method_super_method, 0);
+ rb_define_method(rb_mKernel, "method", rb_obj_method, 1);
+ rb_define_method(rb_mKernel, "public_method", rb_obj_public_method, 1);
+ rb_define_method(rb_mKernel, "singleton_method", rb_obj_singleton_method, 1);
+
+ rb_define_method(rb_cMethod, "box", method_box, 0);
+
+ /* UnboundMethod */
+ rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject);
+ rb_undef_alloc_func(rb_cUnboundMethod);
+ rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new");
+ rb_define_method(rb_cUnboundMethod, "==", unbound_method_eq, 1);
+ rb_define_method(rb_cUnboundMethod, "eql?", unbound_method_eq, 1);
+ rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0);
+ rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0);
+ rb_define_method(rb_cUnboundMethod, "dup", method_dup, 0);
+ rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0);
+ rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0);
+ rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0);
+ rb_define_method(rb_cUnboundMethod, "name", method_name, 0);
+ rb_define_method(rb_cUnboundMethod, "original_name", method_original_name, 0);
+ rb_define_method(rb_cUnboundMethod, "owner", method_owner, 0);
+ rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1);
+ rb_define_method(rb_cUnboundMethod, "bind_call", umethod_bind_call, -1);
+ rb_define_method(rb_cUnboundMethod, "source_location", rb_method_location, 0);
+ rb_define_method(rb_cUnboundMethod, "parameters", rb_method_parameters, 0);
+ rb_define_method(rb_cUnboundMethod, "super_method", method_super_method, 0);
+
+ /* Module#*_method */
+ rb_define_method(rb_cModule, "instance_method", rb_mod_instance_method, 1);
+ rb_define_method(rb_cModule, "public_instance_method", rb_mod_public_instance_method, 1);
+ rb_define_method(rb_cModule, "define_method", rb_mod_define_method, -1);
+
+ /* Kernel */
+ rb_define_method(rb_mKernel, "define_singleton_method", rb_obj_define_method, -1);
+
+ rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
+ "define_method", top_define_method, -1);
+}
+
+/*
+ * Objects of class Binding encapsulate the execution context at some
+ * particular place in the code and retain this context for future
+ * use. The variables, methods, value of <code>self</code>, and
+ * possibly an iterator block that can be accessed in this context
+ * are all retained. Binding objects can be created using
+ * Kernel#binding, and are made available to the callback of
+ * Kernel#set_trace_func and instances of TracePoint.
+ *
+ * These binding objects can be passed as the second argument of the
+ * Kernel#eval method, establishing an environment for the
+ * evaluation.
+ *
+ * class Demo
+ * def initialize(n)
+ * @secret = n
+ * end
+ * def get_binding
+ * binding
+ * end
+ * end
+ *
+ * k1 = Demo.new(99)
+ * b1 = k1.get_binding
+ * k2 = Demo.new(-3)
+ * b2 = k2.get_binding
+ *
+ * eval("@secret", b1) #=> 99
+ * eval("@secret", b2) #=> -3
+ * eval("@secret") #=> nil
+ *
+ * Binding objects have no class-specific methods.
+ *
+ */
+
+void
+Init_Binding(void)
+{
+ rb_gc_register_address(&sym_proc_cache);
+
+ rb_cBinding = rb_define_class("Binding", rb_cObject);
+ rb_undef_alloc_func(rb_cBinding);
+ rb_undef_method(CLASS_OF(rb_cBinding), "new");
+ rb_define_method(rb_cBinding, "clone", binding_clone, 0);
+ rb_define_method(rb_cBinding, "dup", binding_dup, 0);
+ rb_define_method(rb_cBinding, "eval", bind_eval, -1);
+ rb_define_method(rb_cBinding, "local_variables", bind_local_variables, 0);
+ rb_define_method(rb_cBinding, "local_variable_get", bind_local_variable_get, 1);
+ rb_define_method(rb_cBinding, "local_variable_set", bind_local_variable_set, 2);
+ rb_define_method(rb_cBinding, "local_variable_defined?", bind_local_variable_defined_p, 1);
+ rb_define_method(rb_cBinding, "implicit_parameters", bind_implicit_parameters, 0);
+ rb_define_method(rb_cBinding, "implicit_parameter_get", bind_implicit_parameter_get, 1);
+ rb_define_method(rb_cBinding, "implicit_parameter_defined?", bind_implicit_parameter_defined_p, 1);
+ rb_define_method(rb_cBinding, "receiver", bind_receiver, 0);
+ rb_define_method(rb_cBinding, "source_location", bind_location, 0);
+ rb_define_global_function("binding", rb_f_binding, 0);
+}