diff options
Diffstat (limited to 'proc.c')
| -rw-r--r-- | proc.c | 4728 |
1 files changed, 4728 insertions, 0 deletions
diff --git a/proc.c b/proc.c new file mode 100644 index 0000000000..5f23e5fed6 --- /dev/null +++ b/proc.c @@ -0,0 +1,4728 @@ +/********************************************************************** + + proc.c - Proc, Binding, Env + + $Author$ + created at: Wed Jan 17 12:13:14 2007 + + Copyright (C) 2004-2007 Koichi Sasada + +**********************************************************************/ + +#include "eval_intern.h" +#include "internal.h" +#include "internal/class.h" +#include "internal/error.h" +#include "internal/eval.h" +#include "internal/gc.h" +#include "internal/hash.h" +#include "internal/object.h" +#include "internal/proc.h" +#include "internal/symbol.h" +#include "method.h" +#include "iseq.h" +#include "vm_core.h" +#include "ractor_core.h" +#include "yjit.h" + +const rb_cref_t *rb_vm_cref_in_context(VALUE self, VALUE cbase); + +struct METHOD { + const VALUE recv; + const VALUE klass; + /* needed for #super_method */ + const VALUE iclass; + /* Different than me->owner only for ZSUPER methods. + This is error-prone but unavoidable unless ZSUPER methods are removed. */ + const VALUE owner; + const rb_method_entry_t * const me; + /* for bound methods, `me' should be rb_callable_method_entry_t * */ +}; + +VALUE rb_cUnboundMethod; +VALUE rb_cMethod; +VALUE rb_cBinding; +VALUE rb_cProc; + +static rb_block_call_func bmcall; +static int method_arity(VALUE); +static int method_min_max_arity(VALUE, int *max); +static VALUE proc_binding(VALUE self); + +/* Proc */ + +#define IS_METHOD_PROC_IFUNC(ifunc) ((ifunc)->func == bmcall) + +static void +block_mark_and_move(struct rb_block *block) +{ + switch (block->type) { + case block_type_iseq: + case block_type_ifunc: + { + struct rb_captured_block *captured = &block->as.captured; + rb_gc_mark_and_move(&captured->self); + rb_gc_mark_and_move(&captured->code.val); + if (captured->ep) { + rb_gc_mark_and_move((VALUE *)&captured->ep[VM_ENV_DATA_INDEX_ENV]); + } + } + break; + case block_type_symbol: + rb_gc_mark_and_move(&block->as.symbol); + break; + case block_type_proc: + rb_gc_mark_and_move(&block->as.proc); + break; + } +} + +static void +proc_mark_and_move(void *ptr) +{ + rb_proc_t *proc = ptr; + block_mark_and_move((struct rb_block *)&proc->block); +} + +typedef struct { + rb_proc_t basic; + VALUE env[VM_ENV_DATA_SIZE + 1]; /* ..., envval */ +} cfunc_proc_t; + +static size_t +proc_memsize(const void *ptr) +{ + const rb_proc_t *proc = ptr; + if (proc->block.as.captured.ep == ((const cfunc_proc_t *)ptr)->env+1) + return sizeof(cfunc_proc_t); + return sizeof(rb_proc_t); +} + +static const rb_data_type_t proc_data_type = { + "proc", + { + proc_mark_and_move, + RUBY_TYPED_DEFAULT_FREE, + proc_memsize, + proc_mark_and_move, + }, + 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED +}; + +VALUE +rb_proc_alloc(VALUE klass) +{ + rb_proc_t *proc; + return TypedData_Make_Struct(klass, rb_proc_t, &proc_data_type, proc); +} + +VALUE +rb_obj_is_proc(VALUE proc) +{ + return RBOOL(rb_typeddata_is_kind_of(proc, &proc_data_type)); +} + +/* :nodoc: */ +static VALUE +proc_clone(VALUE self) +{ + VALUE procval = rb_proc_dup(self); + return rb_obj_clone_setup(self, procval, Qnil); +} + +/* :nodoc: */ +static VALUE +proc_dup(VALUE self) +{ + VALUE procval = rb_proc_dup(self); + return rb_obj_dup_setup(self, procval); +} + +/* + * call-seq: + * prc.lambda? -> true or false + * + * Returns +true+ if a Proc object is lambda. + * +false+ if non-lambda. + * + * The lambda-ness affects argument handling and the behavior of +return+ and +break+. + * + * A Proc object generated by +proc+ ignores extra arguments. + * + * proc {|a,b| [a,b] }.call(1,2,3) #=> [1,2] + * + * It provides +nil+ for missing arguments. + * + * proc {|a,b| [a,b] }.call(1) #=> [1,nil] + * + * It expands a single array argument. + * + * proc {|a,b| [a,b] }.call([1,2]) #=> [1,2] + * + * A Proc object generated by +lambda+ doesn't have such tricks. + * + * lambda {|a,b| [a,b] }.call(1,2,3) #=> ArgumentError + * lambda {|a,b| [a,b] }.call(1) #=> ArgumentError + * lambda {|a,b| [a,b] }.call([1,2]) #=> ArgumentError + * + * Proc#lambda? is a predicate for the tricks. + * It returns +true+ if no tricks apply. + * + * lambda {}.lambda? #=> true + * proc {}.lambda? #=> false + * + * Proc.new is the same as +proc+. + * + * Proc.new {}.lambda? #=> false + * + * +lambda+, +proc+ and Proc.new preserve the tricks of + * a Proc object given by <code>&</code> argument. + * + * lambda(&lambda {}).lambda? #=> true + * proc(&lambda {}).lambda? #=> true + * Proc.new(&lambda {}).lambda? #=> true + * + * lambda(&proc {}).lambda? #=> false + * proc(&proc {}).lambda? #=> false + * Proc.new(&proc {}).lambda? #=> false + * + * A Proc object generated by <code>&</code> argument has the tricks + * + * def n(&b) b.lambda? end + * n {} #=> false + * + * The <code>&</code> argument preserves the tricks if a Proc object + * is given by <code>&</code> argument. + * + * n(&lambda {}) #=> true + * n(&proc {}) #=> false + * n(&Proc.new {}) #=> false + * + * A Proc object converted from a method has no tricks. + * + * def m() end + * method(:m).to_proc.lambda? #=> true + * + * n(&method(:m)) #=> true + * n(&method(:m).to_proc) #=> true + * + * +define_method+ is treated the same as method definition. + * The defined method has no tricks. + * + * class C + * define_method(:d) {} + * end + * C.new.d(1,2) #=> ArgumentError + * C.new.method(:d).to_proc.lambda? #=> true + * + * +define_method+ always defines a method without the tricks, + * even if a non-lambda Proc object is given. + * This is the only exception for which the tricks are not preserved. + * + * class C + * define_method(:e, &proc {}) + * end + * C.new.e(1,2) #=> ArgumentError + * C.new.method(:e).to_proc.lambda? #=> true + * + * This exception ensures that methods never have tricks + * and makes it easy to have wrappers to define methods that behave as usual. + * + * class C + * def self.def2(name, &body) + * define_method(name, &body) + * end + * + * def2(:f) {} + * end + * C.new.f(1,2) #=> ArgumentError + * + * The wrapper <i>def2</i> defines a method which has no tricks. + * + */ + +VALUE +rb_proc_lambda_p(VALUE procval) +{ + rb_proc_t *proc; + GetProcPtr(procval, proc); + + return RBOOL(proc->is_lambda); +} + +/* Binding */ + +static void +binding_free(void *ptr) +{ + RUBY_FREE_ENTER("binding"); + ruby_xfree(ptr); + RUBY_FREE_LEAVE("binding"); +} + +static void +binding_mark_and_move(void *ptr) +{ + rb_binding_t *bind = ptr; + + block_mark_and_move((struct rb_block *)&bind->block); + rb_gc_mark_and_move((VALUE *)&bind->pathobj); +} + +static size_t +binding_memsize(const void *ptr) +{ + return sizeof(rb_binding_t); +} + +const rb_data_type_t ruby_binding_data_type = { + "binding", + { + binding_mark_and_move, + binding_free, + binding_memsize, + binding_mark_and_move, + }, + 0, 0, RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_FREE_IMMEDIATELY +}; + +VALUE +rb_binding_alloc(VALUE klass) +{ + VALUE obj; + rb_binding_t *bind; + obj = TypedData_Make_Struct(klass, rb_binding_t, &ruby_binding_data_type, bind); +#if YJIT_STATS + rb_yjit_collect_binding_alloc(); +#endif + return obj; +} + +static VALUE +binding_copy(VALUE self) +{ + VALUE bindval = rb_binding_alloc(rb_cBinding); + rb_binding_t *src, *dst; + GetBindingPtr(self, src); + GetBindingPtr(bindval, dst); + rb_vm_block_copy(bindval, &dst->block, &src->block); + RB_OBJ_WRITE(bindval, &dst->pathobj, src->pathobj); + dst->first_lineno = src->first_lineno; + return bindval; +} + +/* :nodoc: */ +static VALUE +binding_dup(VALUE self) +{ + return rb_obj_dup_setup(self, binding_copy(self)); +} + +/* :nodoc: */ +static VALUE +binding_clone(VALUE self) +{ + return rb_obj_clone_setup(self, binding_copy(self), Qnil); +} + +VALUE +rb_binding_new(void) +{ + rb_execution_context_t *ec = GET_EC(); + return rb_vm_make_binding(ec, ec->cfp); +} + +/* + * call-seq: + * binding -> a_binding + * + * Returns a Binding object, describing the variable and + * method bindings at the point of call. This object can be used when + * calling Binding#eval to execute the evaluated command in this + * environment, or extracting its local variables. + * + * class User + * def initialize(name, position) + * @name = name + * @position = position + * end + * + * def get_binding + * binding + * end + * end + * + * user = User.new('Joan', 'manager') + * template = '{name: @name, position: @position}' + * + * # evaluate template in context of the object + * eval(template, user.get_binding) + * #=> {:name=>"Joan", :position=>"manager"} + * + * Binding#local_variable_get can be used to access the variables + * whose names are reserved Ruby keywords: + * + * # This is valid parameter declaration, but `if` parameter can't + * # be accessed by name, because it is a reserved word. + * def validate(field, validation, if: nil) + * condition = binding.local_variable_get('if') + * return unless condition + * + * # ...Some implementation ... + * end + * + * validate(:name, :empty?, if: false) # skips validation + * validate(:name, :empty?, if: true) # performs validation + * + */ + +static VALUE +rb_f_binding(VALUE self) +{ + return rb_binding_new(); +} + +/* + * call-seq: + * binding.eval(string [, filename [,lineno]]) -> obj + * + * Evaluates the Ruby expression(s) in <em>string</em>, in the + * <em>binding</em>'s context. If the optional <em>filename</em> and + * <em>lineno</em> parameters are present, they will be used when + * reporting syntax errors. + * + * def get_binding(param) + * binding + * end + * b = get_binding("hello") + * b.eval("param") #=> "hello" + */ + +static VALUE +bind_eval(int argc, VALUE *argv, VALUE bindval) +{ + VALUE args[4]; + + rb_scan_args(argc, argv, "12", &args[0], &args[2], &args[3]); + args[1] = bindval; + return rb_f_eval(argc+1, args, Qnil /* self will be searched in eval */); +} + +static const VALUE * +get_local_variable_ptr(const rb_env_t **envp, ID lid, bool search_outer) +{ + const rb_env_t *env = *envp; + do { + if (!VM_ENV_FLAGS(env->ep, VM_FRAME_FLAG_CFRAME)) { + if (VM_ENV_FLAGS(env->ep, VM_ENV_FLAG_ISOLATED)) { + return NULL; + } + + const rb_iseq_t *iseq = env->iseq; + + VM_ASSERT(rb_obj_is_iseq((VALUE)iseq)); + + const unsigned int local_table_size = ISEQ_BODY(iseq)->local_table_size; + for (unsigned int i=0; i<local_table_size; i++) { + if (ISEQ_BODY(iseq)->local_table[i] == lid) { + if (ISEQ_BODY(iseq)->local_iseq == iseq && + ISEQ_BODY(iseq)->param.flags.has_block && + (unsigned int)ISEQ_BODY(iseq)->param.block_start == i) { + const VALUE *ep = env->ep; + if (!VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM)) { + RB_OBJ_WRITE(env, &env->env[i], rb_vm_bh_to_procval(GET_EC(), VM_ENV_BLOCK_HANDLER(ep))); + VM_ENV_FLAGS_SET(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM); + } + } + + *envp = env; + unsigned int last_lvar = env->env_size+VM_ENV_INDEX_LAST_LVAR + - 1 /* errinfo */; + return &env->env[last_lvar - (local_table_size - i)]; + } + } + } + else { + *envp = NULL; + return NULL; + } + } while (search_outer && (env = rb_vm_env_prev_env(env)) != NULL); + + *envp = NULL; + return NULL; +} + +/* + * check local variable name. + * returns ID if it's an already interned symbol, or 0 with setting + * local name in String to *namep. + */ +static ID +check_local_id(VALUE bindval, volatile VALUE *pname) +{ + ID lid = rb_check_id(pname); + VALUE name = *pname; + + if (lid) { + if (!rb_is_local_id(lid)) { + rb_name_err_raise("wrong local variable name '%1$s' for %2$s", + bindval, ID2SYM(lid)); + } + } + else { + if (!rb_is_local_name(name)) { + rb_name_err_raise("wrong local variable name '%1$s' for %2$s", + bindval, name); + } + return 0; + } + return lid; +} + +/* + * call-seq: + * binding.local_variables -> Array + * + * Returns the names of the binding's local variables as symbols. + * + * def foo + * a = 1 + * 2.times do |n| + * binding.local_variables #=> [:a, :n] + * end + * end + * + * This method is the short version of the following code: + * + * binding.eval("local_variables") + * + */ +static VALUE +bind_local_variables(VALUE bindval) +{ + const rb_binding_t *bind; + const rb_env_t *env; + + GetBindingPtr(bindval, bind); + env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); + return rb_vm_env_local_variables(env); +} + +int +rb_numparam_id_p(ID id) +{ + return (tNUMPARAM_1 << ID_SCOPE_SHIFT) <= id && id < ((tNUMPARAM_1 + 9) << ID_SCOPE_SHIFT); +} + +int +rb_implicit_param_p(ID id) +{ + return id == idItImplicit || rb_numparam_id_p(id); +} + +/* + * call-seq: + * binding.local_variable_get(symbol) -> obj + * + * Returns the value of the local variable +symbol+. + * + * def foo + * a = 1 + * binding.local_variable_get(:a) #=> 1 + * binding.local_variable_get(:b) #=> NameError + * end + * + * This method is the short version of the following code: + * + * binding.eval("#{symbol}") + * + */ +static VALUE +bind_local_variable_get(VALUE bindval, VALUE sym) +{ + ID lid = check_local_id(bindval, &sym); + const rb_binding_t *bind; + const VALUE *ptr; + const rb_env_t *env; + + if (!lid) goto undefined; + if (rb_numparam_id_p(lid)) { + rb_name_err_raise("numbered parameter '%1$s' is not a local variable", + bindval, ID2SYM(lid)); + } + + GetBindingPtr(bindval, bind); + + env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); + if ((ptr = get_local_variable_ptr(&env, lid, TRUE)) != NULL) { + return *ptr; + } + + sym = ID2SYM(lid); + undefined: + rb_name_err_raise("local variable '%1$s' is not defined for %2$s", + bindval, sym); + UNREACHABLE_RETURN(Qundef); +} + +/* + * call-seq: + * binding.local_variable_set(symbol, obj) -> obj + * + * Set local variable named +symbol+ as +obj+. + * + * def foo + * a = 1 + * bind = binding + * bind.local_variable_set(:a, 2) # set existing local variable `a' + * bind.local_variable_set(:b, 3) # create new local variable `b' + * # `b' exists only in binding + * + * p bind.local_variable_get(:a) #=> 2 + * p bind.local_variable_get(:b) #=> 3 + * p a #=> 2 + * p b #=> NameError + * end + * + * This method behaves similarly to the following code: + * + * binding.eval("#{symbol} = #{obj}") + * + * if +obj+ can be dumped in Ruby code. + */ +static VALUE +bind_local_variable_set(VALUE bindval, VALUE sym, VALUE val) +{ + ID lid = check_local_id(bindval, &sym); + rb_binding_t *bind; + const VALUE *ptr; + const rb_env_t *env; + + if (!lid) lid = rb_intern_str(sym); + if (rb_numparam_id_p(lid)) { + rb_name_err_raise("numbered parameter '%1$s' is not a local variable", + bindval, ID2SYM(lid)); + } + + GetBindingPtr(bindval, bind); + env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); + if ((ptr = get_local_variable_ptr(&env, lid, TRUE)) == NULL) { + /* not found. create new env */ + ptr = rb_binding_add_dynavars(bindval, bind, 1, &lid); + env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); + } + +#if YJIT_STATS + rb_yjit_collect_binding_set(); +#endif + + RB_OBJ_WRITE(env, ptr, val); + + return val; +} + +/* + * call-seq: + * binding.local_variable_defined?(symbol) -> obj + * + * Returns +true+ if a local variable +symbol+ exists. + * + * def foo + * a = 1 + * binding.local_variable_defined?(:a) #=> true + * binding.local_variable_defined?(:b) #=> false + * end + * + * This method is the short version of the following code: + * + * binding.eval("defined?(#{symbol}) == 'local-variable'") + * + */ +static VALUE +bind_local_variable_defined_p(VALUE bindval, VALUE sym) +{ + ID lid = check_local_id(bindval, &sym); + const rb_binding_t *bind; + const rb_env_t *env; + + if (!lid) return Qfalse; + if (rb_numparam_id_p(lid)) { + rb_name_err_raise("numbered parameter '%1$s' is not a local variable", + bindval, ID2SYM(lid)); + } + + GetBindingPtr(bindval, bind); + env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); + return RBOOL(get_local_variable_ptr(&env, lid, TRUE)); +} + +/* + * call-seq: + * binding.implicit_parameters -> Array + * + * Returns the names of numbered parameters and "it" parameter + * that are defined in the binding. + * + * def foo + * [42].each do + * it + * binding.implicit_parameters #=> [:it] + * end + * + * { k: 42 }.each do + * _2 + * binding.implicit_parameters #=> [:_1, :_2] + * end + * end + * + */ +static VALUE +bind_implicit_parameters(VALUE bindval) +{ + const rb_binding_t *bind; + const rb_env_t *env; + + GetBindingPtr(bindval, bind); + env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); + + if (get_local_variable_ptr(&env, idItImplicit, FALSE)) { + return rb_ary_new_from_args(1, ID2SYM(idIt)); + } + + env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); + return rb_vm_env_numbered_parameters(env); +} + +/* + * call-seq: + * binding.implicit_parameter_get(symbol) -> obj + * + * Returns the value of the numbered parameter or "it" parameter. + * + * def foo + * [42].each do + * it + * binding.implicit_parameter_get(:it) #=> 42 + * end + * + * { k: 42 }.each do + * _2 + * binding.implicit_parameter_get(:_1) #=> :k + * binding.implicit_parameter_get(:_2) #=> 42 + * end + * end + * + */ +static VALUE +bind_implicit_parameter_get(VALUE bindval, VALUE sym) +{ + ID lid = check_local_id(bindval, &sym); + const rb_binding_t *bind; + const VALUE *ptr; + const rb_env_t *env; + + if (lid == idIt) lid = idItImplicit; + + if (!lid || !rb_implicit_param_p(lid)) { + rb_name_err_raise("'%1$s' is not an implicit parameter", + bindval, sym); + } + + GetBindingPtr(bindval, bind); + + env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); + if ((ptr = get_local_variable_ptr(&env, lid, FALSE)) != NULL) { + return *ptr; + } + + if (lid == idItImplicit) lid = idIt; + rb_name_err_raise("implicit parameter '%1$s' is not defined for %2$s", bindval, ID2SYM(lid)); + UNREACHABLE_RETURN(Qundef); +} + +/* + * call-seq: + * binding.implicit_parameter_defined?(symbol) -> obj + * + * Returns +true+ if the numbered parameter or "it" parameter exists. + * + * def foo + * [42].each do + * it + * binding.implicit_parameter_defined?(:it) #=> true + * binding.implicit_parameter_defined?(:_1) #=> false + * end + * + * { k: 42 }.each do + * _2 + * binding.implicit_parameter_defined?(:_1) #=> true + * binding.implicit_parameter_defined?(:_2) #=> true + * binding.implicit_parameter_defined?(:_3) #=> false + * binding.implicit_parameter_defined?(:it) #=> false + * end + * end + * + */ +static VALUE +bind_implicit_parameter_defined_p(VALUE bindval, VALUE sym) +{ + ID lid = check_local_id(bindval, &sym); + const rb_binding_t *bind; + const rb_env_t *env; + + if (lid == idIt) lid = idItImplicit; + + if (!lid || !rb_implicit_param_p(lid)) { + rb_name_err_raise("'%1$s' is not an implicit parameter", + bindval, sym); + } + + GetBindingPtr(bindval, bind); + env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); + return RBOOL(get_local_variable_ptr(&env, lid, FALSE)); +} + +/* + * call-seq: + * binding.receiver -> object + * + * Returns the bound receiver of the binding object. + */ +static VALUE +bind_receiver(VALUE bindval) +{ + const rb_binding_t *bind; + GetBindingPtr(bindval, bind); + return vm_block_self(&bind->block); +} + +/* + * call-seq: + * binding.source_location -> [String, Integer] + * + * Returns the Ruby source filename and line number of the binding object. + */ +static VALUE +bind_location(VALUE bindval) +{ + VALUE loc[2]; + const rb_binding_t *bind; + GetBindingPtr(bindval, bind); + loc[0] = pathobj_path(bind->pathobj); + loc[1] = INT2FIX(bind->first_lineno); + + return rb_ary_new4(2, loc); +} + +static VALUE +cfunc_proc_new(VALUE klass, VALUE ifunc) +{ + rb_proc_t *proc; + cfunc_proc_t *sproc; + VALUE procval = TypedData_Make_Struct(klass, cfunc_proc_t, &proc_data_type, sproc); + VALUE *ep; + + proc = &sproc->basic; + vm_block_type_set(&proc->block, block_type_ifunc); + + *(VALUE **)&proc->block.as.captured.ep = ep = sproc->env + VM_ENV_DATA_SIZE-1; + ep[VM_ENV_DATA_INDEX_FLAGS] = VM_FRAME_MAGIC_IFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL | VM_ENV_FLAG_ESCAPED; + ep[VM_ENV_DATA_INDEX_ME_CREF] = Qfalse; + ep[VM_ENV_DATA_INDEX_SPECVAL] = VM_BLOCK_HANDLER_NONE; + ep[VM_ENV_DATA_INDEX_ENV] = Qundef; /* envval */ + + /* self? */ + RB_OBJ_WRITE(procval, &proc->block.as.captured.code.ifunc, ifunc); + proc->is_lambda = TRUE; + return procval; +} + +VALUE +rb_func_proc_dup(VALUE src_obj) +{ + RUBY_ASSERT(rb_typeddata_is_instance_of(src_obj, &proc_data_type)); + + rb_proc_t *src_proc; + GetProcPtr(src_obj, src_proc); + RUBY_ASSERT(vm_block_type(&src_proc->block) == block_type_ifunc); + + cfunc_proc_t *proc; + VALUE proc_obj = TypedData_Make_Struct(rb_obj_class(src_obj), cfunc_proc_t, &proc_data_type, proc); + + memcpy(&proc->basic, src_proc, sizeof(rb_proc_t)); + RB_OBJ_WRITTEN(proc_obj, Qundef, proc->basic.block.as.captured.self); + RB_OBJ_WRITTEN(proc_obj, Qundef, proc->basic.block.as.captured.code.val); + + const VALUE *src_ep = src_proc->block.as.captured.ep; + VALUE *ep = *(VALUE **)&proc->basic.block.as.captured.ep = proc->env + VM_ENV_DATA_SIZE - 1; + ep[VM_ENV_DATA_INDEX_FLAGS] = src_ep[VM_ENV_DATA_INDEX_FLAGS]; + ep[VM_ENV_DATA_INDEX_ME_CREF] = src_ep[VM_ENV_DATA_INDEX_ME_CREF]; + ep[VM_ENV_DATA_INDEX_SPECVAL] = src_ep[VM_ENV_DATA_INDEX_SPECVAL]; + RB_OBJ_WRITE(proc_obj, &ep[VM_ENV_DATA_INDEX_ENV], src_ep[VM_ENV_DATA_INDEX_ENV]); + + return proc_obj; +} + +static VALUE +sym_proc_new(VALUE klass, VALUE sym) +{ + VALUE procval = rb_proc_alloc(klass); + rb_proc_t *proc; + GetProcPtr(procval, proc); + + vm_block_type_set(&proc->block, block_type_symbol); + proc->is_lambda = TRUE; + RB_OBJ_WRITE(procval, &proc->block.as.symbol, sym); + return procval; +} + +struct vm_ifunc * +rb_vm_ifunc_new(rb_block_call_func_t func, const void *data, int min_argc, int max_argc) +{ + if (min_argc < UNLIMITED_ARGUMENTS || +#if SIZEOF_INT * 2 > SIZEOF_VALUE + min_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) || +#endif + 0) { + rb_raise(rb_eRangeError, "minimum argument number out of range: %d", + min_argc); + } + if (max_argc < UNLIMITED_ARGUMENTS || +#if SIZEOF_INT * 2 > SIZEOF_VALUE + max_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) || +#endif + 0) { + rb_raise(rb_eRangeError, "maximum argument number out of range: %d", + max_argc); + } + rb_execution_context_t *ec = GET_EC(); + + struct vm_ifunc *ifunc = IMEMO_NEW(struct vm_ifunc, imemo_ifunc, (VALUE)rb_vm_svar_lep(ec, ec->cfp)); + + rb_gc_register_pinning_obj((VALUE)ifunc); + + ifunc->func = func; + ifunc->data = data; + ifunc->argc.min = min_argc; + ifunc->argc.max = max_argc; + + return ifunc; +} + +VALUE +rb_func_lambda_new(rb_block_call_func_t func, VALUE val, int min_argc, int max_argc) +{ + struct vm_ifunc *ifunc = rb_vm_ifunc_new(func, (void *)val, min_argc, max_argc); + return cfunc_proc_new(rb_cProc, (VALUE)ifunc); +} + +static const char proc_without_block[] = "tried to create Proc object without a block"; + +static VALUE +proc_new(VALUE klass, int8_t is_lambda) +{ + VALUE procval; + const rb_execution_context_t *ec = GET_EC(); + rb_control_frame_t *cfp = ec->cfp; + VALUE block_handler; + + if ((block_handler = rb_vm_frame_block_handler(cfp)) == VM_BLOCK_HANDLER_NONE) { + rb_raise(rb_eArgError, proc_without_block); + } + + /* block is in cf */ + switch (vm_block_handler_type(block_handler)) { + case block_handler_type_proc: + procval = VM_BH_TO_PROC(block_handler); + + if (RBASIC_CLASS(procval) == klass) { + return procval; + } + else { + VALUE newprocval = rb_proc_dup(procval); + RBASIC_SET_CLASS(newprocval, klass); + return newprocval; + } + break; + + case block_handler_type_symbol: + return (klass != rb_cProc) ? + sym_proc_new(klass, VM_BH_TO_SYMBOL(block_handler)) : + rb_sym_to_proc(VM_BH_TO_SYMBOL(block_handler)); + break; + + case block_handler_type_ifunc: + case block_handler_type_iseq: + return rb_vm_make_proc_lambda(ec, VM_BH_TO_CAPT_BLOCK(block_handler), klass, is_lambda); + } + VM_UNREACHABLE(proc_new); + return Qnil; +} + +/* + * call-seq: + * Proc.new {|...| block } -> a_proc + * + * Creates a new Proc object, bound to the current context. + * + * proc = Proc.new { "hello" } + * proc.call #=> "hello" + * + * Raises ArgumentError if called without a block. + * + * Proc.new #=> ArgumentError + */ + +static VALUE +rb_proc_s_new(int argc, VALUE *argv, VALUE klass) +{ + VALUE block = proc_new(klass, FALSE); + + rb_obj_call_init_kw(block, argc, argv, RB_PASS_CALLED_KEYWORDS); + return block; +} + +VALUE +rb_block_proc(void) +{ + return proc_new(rb_cProc, FALSE); +} + +/* + * call-seq: + * proc { |...| block } -> a_proc + * + * Equivalent to Proc.new. + */ + +static VALUE +f_proc(VALUE _) +{ + return proc_new(rb_cProc, FALSE); +} + +VALUE +rb_block_lambda(void) +{ + return proc_new(rb_cProc, TRUE); +} + +static void +f_lambda_filter_non_literal(void) +{ + rb_control_frame_t *cfp = GET_EC()->cfp; + VALUE block_handler = rb_vm_frame_block_handler(cfp); + + if (block_handler == VM_BLOCK_HANDLER_NONE) { + // no block error raised else where + return; + } + + switch (vm_block_handler_type(block_handler)) { + case block_handler_type_iseq: + if (RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp)->ep == VM_BH_TO_ISEQ_BLOCK(block_handler)->ep) { + return; + } + break; + case block_handler_type_symbol: + return; + case block_handler_type_proc: + if (rb_proc_lambda_p(VM_BH_TO_PROC(block_handler))) { + return; + } + break; + case block_handler_type_ifunc: + break; + } + + rb_raise(rb_eArgError, "the lambda method requires a literal block"); +} + +/* + * call-seq: + * lambda { |...| block } -> a_proc + * + * Equivalent to Proc.new, except the resulting Proc objects check the + * number of parameters passed when called. + */ + +static VALUE +f_lambda(VALUE _) +{ + f_lambda_filter_non_literal(); + return rb_block_lambda(); +} + +/* Document-method: Proc#=== + * + * call-seq: + * proc === obj -> result_of_proc + * + * Invokes the block with +obj+ as the proc's parameter like Proc#call. + * This allows a proc object to be the target of a +when+ clause + * in a case statement. + */ + +/* CHECKME: are the argument checking semantics correct? */ + +/* + * Document-method: Proc#[] + * Document-method: Proc#call + * Document-method: Proc#yield + * + * call-seq: + * call(...) -> obj + * self[...] -> obj + * yield(...) -> obj + * + * Invokes the block, setting the block's parameters to the arguments + * using something close to method calling semantics. + * Returns the value of the last expression evaluated in the block. + * + * a_proc = Proc.new {|scalar, *values| values.map {|value| value*scalar } } + * a_proc.call(9, 1, 2, 3) #=> [9, 18, 27] + * a_proc[9, 1, 2, 3] #=> [9, 18, 27] + * a_proc.(9, 1, 2, 3) #=> [9, 18, 27] + * a_proc.yield(9, 1, 2, 3) #=> [9, 18, 27] + * + * Note that <code>prc.()</code> invokes <code>prc.call()</code> with + * the parameters given. It's syntactic sugar to hide "call". + * + * For procs created using #lambda or <code>->()</code> an error is + * generated if the wrong number of parameters are passed to the + * proc. For procs created using Proc.new or Kernel.proc, extra + * parameters are silently discarded and missing parameters are set + * to +nil+. + * + * a_proc = proc {|a,b| [a,b] } + * a_proc.call(1) #=> [1, nil] + * + * a_proc = lambda {|a,b| [a,b] } + * a_proc.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2) + * + * See also Proc#lambda?. + */ +#if 0 +static VALUE +proc_call(int argc, VALUE *argv, VALUE procval) +{ + /* removed */ +} +#endif + +#if SIZEOF_LONG > SIZEOF_INT +static inline int +check_argc(long argc) +{ + if (argc > INT_MAX || argc < 0) { + rb_raise(rb_eArgError, "too many arguments (%lu)", + (unsigned long)argc); + } + return (int)argc; +} +#else +#define check_argc(argc) (argc) +#endif + +VALUE +rb_proc_call_kw(VALUE self, VALUE args, int kw_splat) +{ + VALUE vret; + rb_proc_t *proc; + int argc = check_argc(RARRAY_LEN(args)); + const VALUE *argv = RARRAY_CONST_PTR(args); + GetProcPtr(self, proc); + vret = rb_vm_invoke_proc(GET_EC(), proc, argc, argv, + kw_splat, VM_BLOCK_HANDLER_NONE); + RB_GC_GUARD(self); + RB_GC_GUARD(args); + return vret; +} + +VALUE +rb_proc_call(VALUE self, VALUE args) +{ + return rb_proc_call_kw(self, args, RB_NO_KEYWORDS); +} + +static VALUE +proc_to_block_handler(VALUE procval) +{ + return NIL_P(procval) ? VM_BLOCK_HANDLER_NONE : procval; +} + +VALUE +rb_proc_call_with_block_kw(VALUE self, int argc, const VALUE *argv, VALUE passed_procval, int kw_splat) +{ + rb_execution_context_t *ec = GET_EC(); + VALUE vret; + rb_proc_t *proc; + GetProcPtr(self, proc); + vret = rb_vm_invoke_proc(ec, proc, argc, argv, kw_splat, proc_to_block_handler(passed_procval)); + RB_GC_GUARD(self); + return vret; +} + +VALUE +rb_proc_call_with_block(VALUE self, int argc, const VALUE *argv, VALUE passed_procval) +{ + return rb_proc_call_with_block_kw(self, argc, argv, passed_procval, RB_NO_KEYWORDS); +} + + +/* + * call-seq: + * prc.arity -> integer + * + * Returns the number of mandatory arguments. If the block + * is declared to take no arguments, returns 0. If the block is known + * to take exactly n arguments, returns n. + * If the block has optional arguments, returns -n-1, where n is the + * number of mandatory arguments, with the exception for blocks that + * are not lambdas and have only a finite number of optional arguments; + * in this latter case, returns n. + * Keyword arguments will be considered as a single additional argument, + * that argument being mandatory if any keyword argument is mandatory. + * A #proc with no argument declarations is the same as a block + * declaring <code>||</code> as its arguments. + * + * proc {}.arity #=> 0 + * proc { || }.arity #=> 0 + * proc { |a| }.arity #=> 1 + * proc { |a, b| }.arity #=> 2 + * proc { |a, b, c| }.arity #=> 3 + * proc { |*a| }.arity #=> -1 + * proc { |a, *b| }.arity #=> -2 + * proc { |a, *b, c| }.arity #=> -3 + * proc { |x:, y:, z:0| }.arity #=> 1 + * proc { |*a, x:, y:0| }.arity #=> -2 + * + * proc { |a=0| }.arity #=> 0 + * lambda { |a=0| }.arity #=> -1 + * proc { |a=0, b| }.arity #=> 1 + * lambda { |a=0, b| }.arity #=> -2 + * proc { |a=0, b=0| }.arity #=> 0 + * lambda { |a=0, b=0| }.arity #=> -1 + * proc { |a, b=0| }.arity #=> 1 + * lambda { |a, b=0| }.arity #=> -2 + * proc { |(a, b), c=0| }.arity #=> 1 + * lambda { |(a, b), c=0| }.arity #=> -2 + * proc { |a, x:0, y:0| }.arity #=> 1 + * lambda { |a, x:0, y:0| }.arity #=> -2 + */ + +static VALUE +proc_arity(VALUE self) +{ + int arity = rb_proc_arity(self); + return INT2FIX(arity); +} + +static inline int +rb_iseq_min_max_arity(const rb_iseq_t *iseq, int *max) +{ + *max = ISEQ_BODY(iseq)->param.flags.has_rest == FALSE ? + ISEQ_BODY(iseq)->param.lead_num + ISEQ_BODY(iseq)->param.opt_num + ISEQ_BODY(iseq)->param.post_num + + (ISEQ_BODY(iseq)->param.flags.has_kw == TRUE || ISEQ_BODY(iseq)->param.flags.has_kwrest == TRUE || ISEQ_BODY(iseq)->param.flags.forwardable == TRUE) + : UNLIMITED_ARGUMENTS; + return ISEQ_BODY(iseq)->param.lead_num + ISEQ_BODY(iseq)->param.post_num + (ISEQ_BODY(iseq)->param.flags.has_kw && ISEQ_BODY(iseq)->param.keyword->required_num > 0); +} + +static int +rb_vm_block_min_max_arity(const struct rb_block *block, int *max) +{ + again: + switch (vm_block_type(block)) { + case block_type_iseq: + return rb_iseq_min_max_arity(rb_iseq_check(block->as.captured.code.iseq), max); + case block_type_proc: + block = vm_proc_block(block->as.proc); + goto again; + case block_type_ifunc: + { + const struct vm_ifunc *ifunc = block->as.captured.code.ifunc; + if (IS_METHOD_PROC_IFUNC(ifunc)) { + /* e.g. method(:foo).to_proc.arity */ + return method_min_max_arity((VALUE)ifunc->data, max); + } + *max = ifunc->argc.max; + return ifunc->argc.min; + } + case block_type_symbol: + *max = UNLIMITED_ARGUMENTS; + return 1; + } + *max = UNLIMITED_ARGUMENTS; + return 0; +} + +/* + * Returns the number of required parameters and stores the maximum + * number of parameters in max, or UNLIMITED_ARGUMENTS if no max. + * For non-lambda procs, the maximum is the number of non-ignored + * parameters even though there is no actual limit to the number of parameters + */ +static int +rb_proc_min_max_arity(VALUE self, int *max) +{ + rb_proc_t *proc; + GetProcPtr(self, proc); + return rb_vm_block_min_max_arity(&proc->block, max); +} + +int +rb_proc_arity(VALUE self) +{ + rb_proc_t *proc; + int max, min; + GetProcPtr(self, proc); + min = rb_vm_block_min_max_arity(&proc->block, &max); + return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1; +} + +static void +block_setup(struct rb_block *block, VALUE block_handler) +{ + switch (vm_block_handler_type(block_handler)) { + case block_handler_type_iseq: + block->type = block_type_iseq; + block->as.captured = *VM_BH_TO_ISEQ_BLOCK(block_handler); + break; + case block_handler_type_ifunc: + block->type = block_type_ifunc; + block->as.captured = *VM_BH_TO_IFUNC_BLOCK(block_handler); + break; + case block_handler_type_symbol: + block->type = block_type_symbol; + block->as.symbol = VM_BH_TO_SYMBOL(block_handler); + break; + case block_handler_type_proc: + block->type = block_type_proc; + block->as.proc = VM_BH_TO_PROC(block_handler); + } +} + +int +rb_block_pair_yield_optimizable(void) +{ + int min, max; + const rb_execution_context_t *ec = GET_EC(); + rb_control_frame_t *cfp = ec->cfp; + VALUE block_handler = rb_vm_frame_block_handler(cfp); + struct rb_block block; + + if (block_handler == VM_BLOCK_HANDLER_NONE) { + rb_raise(rb_eArgError, "no block given"); + } + + block_setup(&block, block_handler); + min = rb_vm_block_min_max_arity(&block, &max); + + switch (vm_block_type(&block)) { + case block_type_symbol: + return 0; + + case block_type_proc: + { + VALUE procval = block_handler; + rb_proc_t *proc; + GetProcPtr(procval, proc); + if (proc->is_lambda) return 0; + if (min != max) return 0; + return min > 1; + } + + case block_type_ifunc: + { + const struct vm_ifunc *ifunc = block.as.captured.code.ifunc; + if (ifunc->flags & IFUNC_YIELD_OPTIMIZABLE) return 1; + } + + default: + return min > 1; + } +} + +int +rb_block_arity(void) +{ + int min, max; + const rb_execution_context_t *ec = GET_EC(); + rb_control_frame_t *cfp = ec->cfp; + VALUE block_handler = rb_vm_frame_block_handler(cfp); + struct rb_block block; + + if (block_handler == VM_BLOCK_HANDLER_NONE) { + rb_raise(rb_eArgError, "no block given"); + } + + block_setup(&block, block_handler); + + switch (vm_block_type(&block)) { + case block_type_symbol: + return -1; + + case block_type_proc: + return rb_proc_arity(block_handler); + + default: + min = rb_vm_block_min_max_arity(&block, &max); + return max != UNLIMITED_ARGUMENTS ? min : -min-1; + } +} + +int +rb_block_min_max_arity(int *max) +{ + const rb_execution_context_t *ec = GET_EC(); + rb_control_frame_t *cfp = ec->cfp; + VALUE block_handler = rb_vm_frame_block_handler(cfp); + struct rb_block block; + + if (block_handler == VM_BLOCK_HANDLER_NONE) { + rb_raise(rb_eArgError, "no block given"); + } + + block_setup(&block, block_handler); + return rb_vm_block_min_max_arity(&block, max); +} + +const rb_iseq_t * +rb_proc_get_iseq(VALUE self, int *is_proc) +{ + const rb_proc_t *proc; + const struct rb_block *block; + + GetProcPtr(self, proc); + block = &proc->block; + if (is_proc) *is_proc = !proc->is_lambda; + + switch (vm_block_type(block)) { + case block_type_iseq: + return rb_iseq_check(block->as.captured.code.iseq); + case block_type_proc: + return rb_proc_get_iseq(block->as.proc, is_proc); + case block_type_ifunc: + { + const struct vm_ifunc *ifunc = block->as.captured.code.ifunc; + if (IS_METHOD_PROC_IFUNC(ifunc)) { + /* method(:foo).to_proc */ + if (is_proc) *is_proc = 0; + return rb_method_iseq((VALUE)ifunc->data); + } + else { + return NULL; + } + } + case block_type_symbol: + return NULL; + } + + VM_UNREACHABLE(rb_proc_get_iseq); + return NULL; +} + +/* call-seq: + * self == other -> true or false + * eql?(other) -> true or false + * + * Returns whether +self+ and +other+ were created from the same code block: + * + * def return_block(&block) + * block + * end + * + * def pass_block_twice(&block) + * [return_block(&block), return_block(&block)] + * end + * + * block1, block2 = pass_block_twice { puts 'test' } + * # Blocks might be instantiated into Proc's lazily, so they may, or may not, + * # be the same object. + * # But they are produced from the same code block, so they are equal + * block1 == block2 + * #=> true + * + * # Another Proc will never be equal, even if the code is the "same" + * block1 == proc { puts 'test' } + * #=> false + * + */ +static VALUE +proc_eq(VALUE self, VALUE other) +{ + const rb_proc_t *self_proc, *other_proc; + const struct rb_block *self_block, *other_block; + + if (rb_obj_class(self) != rb_obj_class(other)) { + return Qfalse; + } + + GetProcPtr(self, self_proc); + GetProcPtr(other, other_proc); + + if (self_proc->is_from_method != other_proc->is_from_method || + self_proc->is_lambda != other_proc->is_lambda) { + return Qfalse; + } + + self_block = &self_proc->block; + other_block = &other_proc->block; + + if (vm_block_type(self_block) != vm_block_type(other_block)) { + return Qfalse; + } + + switch (vm_block_type(self_block)) { + case block_type_iseq: + if (self_block->as.captured.ep != \ + other_block->as.captured.ep || + self_block->as.captured.code.iseq != \ + other_block->as.captured.code.iseq) { + return Qfalse; + } + break; + case block_type_ifunc: + if (self_block->as.captured.code.ifunc != \ + other_block->as.captured.code.ifunc) { + return Qfalse; + } + + if (memcmp( + ((cfunc_proc_t *)self_proc)->env, + ((cfunc_proc_t *)other_proc)->env, + sizeof(((cfunc_proc_t *)self_proc)->env))) { + return Qfalse; + } + break; + case block_type_proc: + if (self_block->as.proc != other_block->as.proc) { + return Qfalse; + } + break; + case block_type_symbol: + if (self_block->as.symbol != other_block->as.symbol) { + return Qfalse; + } + break; + } + + return Qtrue; +} + +static VALUE +iseq_location(const rb_iseq_t *iseq) +{ + VALUE loc[5]; + int i = 0; + + if (!iseq) return Qnil; + rb_iseq_check(iseq); + loc[i++] = rb_iseq_path(iseq); + const rb_code_location_t *cl = &ISEQ_BODY(iseq)->location.code_location; + loc[i++] = RB_INT2NUM(cl->beg_pos.lineno); + loc[i++] = RB_INT2NUM(cl->beg_pos.column); + loc[i++] = RB_INT2NUM(cl->end_pos.lineno); + loc[i++] = RB_INT2NUM(cl->end_pos.column); + RUBY_ASSERT_ALWAYS(i == numberof(loc)); + + return rb_ary_new_from_values(i, loc); +} + +VALUE +rb_iseq_location(const rb_iseq_t *iseq) +{ + return iseq_location(iseq); +} + +/* + * call-seq: + * prc.source_location -> [String, Integer, Integer, Integer, Integer] + * + * Returns the location where the Proc was defined. + * The returned Array contains: + * (1) the Ruby source filename + * (2) the line number where the definition starts + * (3) the position where the definition starts, in number of bytes from the start of the line + * (4) the line number where the definition ends + * (5) the position where the definitions ends, in number of bytes from the start of the line + * + * This method will return +nil+ if the Proc was not defined in Ruby (i.e. native). + */ + +VALUE +rb_proc_location(VALUE self) +{ + return iseq_location(rb_proc_get_iseq(self, 0)); +} + +VALUE +rb_unnamed_parameters(int arity) +{ + VALUE a, param = rb_ary_new2((arity < 0) ? -arity : arity); + int n = (arity < 0) ? ~arity : arity; + ID req, rest; + CONST_ID(req, "req"); + a = rb_ary_new3(1, ID2SYM(req)); + OBJ_FREEZE(a); + for (; n; --n) { + rb_ary_push(param, a); + } + if (arity < 0) { + CONST_ID(rest, "rest"); + rb_ary_store(param, ~arity, rb_ary_new3(1, ID2SYM(rest))); + } + return param; +} + +/* + * call-seq: + * prc.parameters(lambda: nil) -> array + * + * Returns the parameter information of this proc. If the lambda + * keyword is provided and not nil, treats the proc as a lambda if + * true and as a non-lambda if false. + * + * prc = proc{|x, y=42, *other|} + * prc.parameters #=> [[:opt, :x], [:opt, :y], [:rest, :other]] + * prc = lambda{|x, y=42, *other|} + * prc.parameters #=> [[:req, :x], [:opt, :y], [:rest, :other]] + * prc = proc{|x, y=42, *other|} + * prc.parameters(lambda: true) #=> [[:req, :x], [:opt, :y], [:rest, :other]] + * prc = lambda{|x, y=42, *other|} + * prc.parameters(lambda: false) #=> [[:opt, :x], [:opt, :y], [:rest, :other]] + */ + +static VALUE +rb_proc_parameters(int argc, VALUE *argv, VALUE self) +{ + static ID keyword_ids[1]; + VALUE opt, lambda; + VALUE kwargs[1]; + int is_proc ; + const rb_iseq_t *iseq; + + iseq = rb_proc_get_iseq(self, &is_proc); + + if (!keyword_ids[0]) { + CONST_ID(keyword_ids[0], "lambda"); + } + + rb_scan_args(argc, argv, "0:", &opt); + if (!NIL_P(opt)) { + rb_get_kwargs(opt, keyword_ids, 0, 1, kwargs); + lambda = kwargs[0]; + if (!NIL_P(lambda)) { + is_proc = !RTEST(lambda); + } + } + + if (!iseq) { + return rb_unnamed_parameters(rb_proc_arity(self)); + } + return rb_iseq_parameters(iseq, is_proc); +} + +st_index_t +rb_hash_proc(st_index_t hash, VALUE prc) +{ + rb_proc_t *proc; + GetProcPtr(prc, proc); + + switch (vm_block_type(&proc->block)) { + case block_type_iseq: + hash = rb_st_hash_uint(hash, (st_index_t)proc->block.as.captured.code.iseq->body); + break; + case block_type_ifunc: + hash = rb_st_hash_uint(hash, (st_index_t)proc->block.as.captured.code.ifunc->func); + hash = rb_st_hash_uint(hash, (st_index_t)proc->block.as.captured.code.ifunc->data); + break; + case block_type_symbol: + hash = rb_st_hash_uint(hash, rb_any_hash(proc->block.as.symbol)); + break; + case block_type_proc: + hash = rb_st_hash_uint(hash, rb_any_hash(proc->block.as.proc)); + break; + default: + rb_bug("rb_hash_proc: unknown block type %d", vm_block_type(&proc->block)); + } + + /* ifunc procs have their own allocated ep. If an ifunc is duplicated, they + * will point to different ep but they should return the same hash code, so + * we cannot include the ep in the hash. */ + if (vm_block_type(&proc->block) != block_type_ifunc) { + hash = rb_hash_uint(hash, (st_index_t)proc->block.as.captured.ep); + } + + return hash; +} + +static VALUE sym_proc_cache = Qfalse; + +/* + * call-seq: + * to_proc + * + * Returns a Proc object which calls the method with name of +self+ + * on the first parameter and passes the remaining parameters to the method. + * + * proc = :to_s.to_proc # => #<Proc:0x000001afe0e48680(&:to_s) (lambda)> + * proc.call(1000) # => "1000" + * proc.call(1000, 16) # => "3e8" + * (1..3).collect(&:to_s) # => ["1", "2", "3"] + * + */ + +VALUE +rb_sym_to_proc(VALUE sym) +{ + enum {SYM_PROC_CACHE_SIZE = 67}; + + if (rb_ractor_main_p()) { + if (!sym_proc_cache) { + sym_proc_cache = rb_ary_hidden_new(SYM_PROC_CACHE_SIZE); + rb_ary_store(sym_proc_cache, SYM_PROC_CACHE_SIZE - 1, Qnil); + } + + ID id = SYM2ID(sym); + long index = (id % SYM_PROC_CACHE_SIZE); + VALUE procval = RARRAY_AREF(sym_proc_cache, index); + if (RTEST(procval)) { + rb_proc_t *proc; + GetProcPtr(procval, proc); + + if (proc->block.as.symbol == sym) { + return procval; + } + } + + procval = sym_proc_new(rb_cProc, sym); + RARRAY_ASET(sym_proc_cache, index, procval); + + return RB_GC_GUARD(procval); + } + else { + return sym_proc_new(rb_cProc, sym); + } +} + +/* + * call-seq: + * prc.hash -> integer + * + * Returns a hash value corresponding to proc body. + * + * See also Object#hash. + */ + +static VALUE +proc_hash(VALUE self) +{ + st_index_t hash; + hash = rb_hash_start(0); + hash = rb_hash_proc(hash, self); + hash = rb_hash_end(hash); + return ST2FIX(hash); +} + +VALUE +rb_block_to_s(VALUE self, const struct rb_block *block, const char *additional_info) +{ + VALUE cname = rb_obj_class(self); + VALUE str = rb_sprintf("#<%"PRIsVALUE":", cname); + + again: + switch (vm_block_type(block)) { + case block_type_proc: + block = vm_proc_block(block->as.proc); + goto again; + case block_type_iseq: + { + const rb_iseq_t *iseq = rb_iseq_check(block->as.captured.code.iseq); + rb_str_catf(str, "%p %"PRIsVALUE":%d", (void *)self, + rb_iseq_path(iseq), + ISEQ_BODY(iseq)->location.first_lineno); + } + break; + case block_type_symbol: + rb_str_catf(str, "%p(&%+"PRIsVALUE")", (void *)self, block->as.symbol); + break; + case block_type_ifunc: + rb_str_catf(str, "%p", (void *)block->as.captured.code.ifunc); + break; + } + + if (additional_info) rb_str_cat_cstr(str, additional_info); + rb_str_cat_cstr(str, ">"); + return str; +} + +/* + * call-seq: + * prc.to_s -> string + * + * Returns the unique identifier for this proc, along with + * an indication of where the proc was defined. + */ + +static VALUE +proc_to_s(VALUE self) +{ + const rb_proc_t *proc; + GetProcPtr(self, proc); + return rb_block_to_s(self, &proc->block, proc->is_lambda ? " (lambda)" : NULL); +} + +/* + * call-seq: + * prc.to_proc -> proc + * + * Part of the protocol for converting objects to Proc objects. + * Instances of class Proc simply return themselves. + */ + +static VALUE +proc_to_proc(VALUE self) +{ + return self; +} + +static void +bm_mark_and_move(void *ptr) +{ + struct METHOD *data = ptr; + rb_gc_mark_and_move((VALUE *)&data->recv); + rb_gc_mark_and_move((VALUE *)&data->klass); + rb_gc_mark_and_move((VALUE *)&data->iclass); + rb_gc_mark_and_move((VALUE *)&data->owner); + rb_gc_mark_and_move_ptr((rb_method_entry_t **)&data->me); +} + +static const rb_data_type_t method_data_type = { + "method", + { + bm_mark_and_move, + RUBY_TYPED_DEFAULT_FREE, + NULL, // No external memory to report, + bm_mark_and_move, + }, + 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_EMBEDDABLE | RUBY_TYPED_FROZEN_SHAREABLE_NO_REC +}; + +VALUE +rb_obj_is_method(VALUE m) +{ + return RBOOL(rb_typeddata_is_kind_of(m, &method_data_type)); +} + +static int +respond_to_missing_p(VALUE klass, VALUE obj, VALUE sym, int scope) +{ + /* TODO: merge with obj_respond_to() */ + ID rmiss = idRespond_to_missing; + + if (UNDEF_P(obj)) return 0; + if (rb_method_basic_definition_p(klass, rmiss)) return 0; + return RTEST(rb_funcall(obj, rmiss, 2, sym, RBOOL(!scope))); +} + + +static VALUE +mnew_missing(VALUE klass, VALUE obj, ID id, VALUE mclass) +{ + struct METHOD *data; + VALUE method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data); + rb_method_entry_t *me; + rb_method_definition_t *def; + + RB_OBJ_WRITE(method, &data->recv, obj); + RB_OBJ_WRITE(method, &data->klass, klass); + RB_OBJ_WRITE(method, &data->owner, klass); + + def = ZALLOC(rb_method_definition_t); + def->type = VM_METHOD_TYPE_MISSING; + def->original_id = id; + + me = rb_method_entry_create(id, klass, METHOD_VISI_UNDEF, def); + + RB_OBJ_WRITE(method, &data->me, me); + + return method; +} + +static VALUE +mnew_missing_by_name(VALUE klass, VALUE obj, VALUE *name, int scope, VALUE mclass) +{ + VALUE vid = rb_str_intern(*name); + *name = vid; + if (!respond_to_missing_p(klass, obj, vid, scope)) return Qfalse; + return mnew_missing(klass, obj, SYM2ID(vid), mclass); +} + +static VALUE +mnew_internal(const rb_method_entry_t *me, VALUE klass, VALUE iclass, + VALUE obj, ID id, VALUE mclass, int scope, int error) +{ + struct METHOD *data; + VALUE method; + const rb_method_entry_t *original_me = me; + rb_method_visibility_t visi = METHOD_VISI_UNDEF; + + again: + if (UNDEFINED_METHOD_ENTRY_P(me)) { + if (respond_to_missing_p(klass, obj, ID2SYM(id), scope)) { + return mnew_missing(klass, obj, id, mclass); + } + if (!error) return Qnil; + rb_print_undef(klass, id, METHOD_VISI_UNDEF); + } + if (visi == METHOD_VISI_UNDEF) { + visi = METHOD_ENTRY_VISI(me); + RUBY_ASSERT(visi != METHOD_VISI_UNDEF); /* !UNDEFINED_METHOD_ENTRY_P(me) */ + if (scope && (visi != METHOD_VISI_PUBLIC)) { + if (!error) return Qnil; + rb_print_inaccessible(klass, id, visi); + } + } + if (me->def->type == VM_METHOD_TYPE_ZSUPER) { + if (me->defined_class) { + VALUE klass = RCLASS_SUPER(RCLASS_ORIGIN(me->defined_class)); + id = me->def->original_id; + me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass); + } + else { + VALUE klass = RCLASS_SUPER(RCLASS_ORIGIN(me->owner)); + id = me->def->original_id; + me = rb_method_entry_without_refinements(klass, id, &iclass); + } + goto again; + } + + method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data); + + if (UNDEF_P(obj)) { + RB_OBJ_WRITE(method, &data->recv, Qundef); + RB_OBJ_WRITE(method, &data->klass, Qundef); + } + else { + RB_OBJ_WRITE(method, &data->recv, obj); + RB_OBJ_WRITE(method, &data->klass, klass); + } + RB_OBJ_WRITE(method, &data->iclass, iclass); + RB_OBJ_WRITE(method, &data->owner, original_me->owner); + RB_OBJ_WRITE(method, &data->me, me); + + return method; +} + +static VALUE +mnew_from_me(const rb_method_entry_t *me, VALUE klass, VALUE iclass, + VALUE obj, ID id, VALUE mclass, int scope) +{ + return mnew_internal(me, klass, iclass, obj, id, mclass, scope, TRUE); +} + +static VALUE +mnew_callable(VALUE klass, VALUE obj, ID id, VALUE mclass, int scope) +{ + const rb_method_entry_t *me; + VALUE iclass = Qnil; + + ASSUME(!UNDEF_P(obj)); + me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass); + return mnew_from_me(me, klass, iclass, obj, id, mclass, scope); +} + +static VALUE +mnew_unbound(VALUE klass, ID id, VALUE mclass, int scope) +{ + const rb_method_entry_t *me; + VALUE iclass = Qnil; + + me = rb_method_entry_with_refinements(klass, id, &iclass); + return mnew_from_me(me, klass, iclass, Qundef, id, mclass, scope); +} + +static inline VALUE +method_entry_defined_class(const rb_method_entry_t *me) +{ + VALUE defined_class = me->defined_class; + return defined_class ? defined_class : me->owner; +} + +/********************************************************************** + * + * Document-class: Method + * + * +Method+ objects are created by Object#method, and are associated + * with a particular object (not just with a class). They may be + * used to invoke the method within the object, and as a block + * associated with an iterator. They may also be unbound from one + * object (creating an UnboundMethod) and bound to another. + * + * class Thing + * def square(n) + * n*n + * end + * end + * thing = Thing.new + * meth = thing.method(:square) + * + * meth.call(9) #=> 81 + * [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9] + * + * [ 1, 2, 3 ].each(&method(:puts)) #=> prints 1, 2, 3 + * + * require 'date' + * %w[2017-03-01 2017-03-02].collect(&Date.method(:parse)) + * #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>] + */ + +/* + * call-seq: + * self == other -> true or false + * + * Returns whether +self+ and +other+ are bound to the same + * object and refer to the same method definition and the classes + * defining the methods are the same class or module. + */ + +static VALUE +method_eq(VALUE method, VALUE other) +{ + struct METHOD *m1, *m2; + VALUE klass1, klass2; + + if (!rb_obj_is_method(other)) + return Qfalse; + if (CLASS_OF(method) != CLASS_OF(other)) + return Qfalse; + + Check_TypedStruct(method, &method_data_type); + m1 = (struct METHOD *)RTYPEDDATA_GET_DATA(method); + m2 = (struct METHOD *)RTYPEDDATA_GET_DATA(other); + + klass1 = method_entry_defined_class(m1->me); + klass2 = method_entry_defined_class(m2->me); + + if (!rb_method_entry_eq(m1->me, m2->me) || + klass1 != klass2 || + m1->klass != m2->klass || + m1->recv != m2->recv) { + return Qfalse; + } + + return Qtrue; +} + +/* + * call-seq: + * meth.eql?(other_meth) -> true or false + * meth == other_meth -> true or false + * + * Two unbound method objects are equal if they refer to the same + * method definition. + * + * Array.instance_method(:each_slice) == Enumerable.instance_method(:each_slice) + * #=> true + * + * Array.instance_method(:sum) == Enumerable.instance_method(:sum) + * #=> false, Array redefines the method for efficiency + */ +#define unbound_method_eq method_eq + +/* + * call-seq: + * meth.hash -> integer + * + * Returns a hash value corresponding to the method object. + * + * See also Object#hash. + */ + +static VALUE +method_hash(VALUE method) +{ + struct METHOD *m; + st_index_t hash; + + TypedData_Get_Struct(method, struct METHOD, &method_data_type, m); + hash = rb_hash_start((st_index_t)m->recv); + hash = rb_hash_method_entry(hash, m->me); + hash = rb_hash_end(hash); + + return ST2FIX(hash); +} + +/* + * call-seq: + * meth.unbind -> unbound_method + * + * Dissociates <i>meth</i> from its current receiver. The resulting + * UnboundMethod can subsequently be bound to a new object of the + * same class (see UnboundMethod). + */ + +static VALUE +method_unbind(VALUE obj) +{ + VALUE method; + struct METHOD *orig, *data; + + TypedData_Get_Struct(obj, struct METHOD, &method_data_type, orig); + method = TypedData_Make_Struct(rb_cUnboundMethod, struct METHOD, + &method_data_type, data); + RB_OBJ_WRITE(method, &data->recv, Qundef); + RB_OBJ_WRITE(method, &data->klass, Qundef); + RB_OBJ_WRITE(method, &data->iclass, orig->iclass); + RB_OBJ_WRITE(method, &data->owner, orig->me->owner); + RB_OBJ_WRITE(method, &data->me, rb_method_entry_clone(orig->me)); + + return method; +} + +/* + * call-seq: + * meth.receiver -> object + * + * Returns the bound receiver of the method object. + * + * (1..3).method(:map).receiver # => 1..3 + */ + +static VALUE +method_receiver(VALUE obj) +{ + struct METHOD *data; + + TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); + return data->recv; +} + +/* + * call-seq: + * meth.name -> symbol + * + * Returns the name of the method. + */ + +static VALUE +method_name(VALUE obj) +{ + struct METHOD *data; + + TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); + return ID2SYM(data->me->called_id); +} + +/* + * call-seq: + * meth.original_name -> symbol + * + * Returns the original name of the method. + * + * class C + * def foo; end + * alias bar foo + * end + * C.instance_method(:bar).original_name # => :foo + */ + +static VALUE +method_original_name(VALUE obj) +{ + struct METHOD *data; + + TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); + return ID2SYM(data->me->def->original_id); +} + +/* + * call-seq: + * meth.owner -> class_or_module + * + * Returns the class or module on which this method is defined. + * In other words, + * + * meth.owner.instance_methods(false).include?(meth.name) # => true + * + * holds as long as the method is not removed/undefined/replaced, + * (with private_instance_methods instead of instance_methods if the method + * is private). + * + * See also Method#receiver. + * + * (1..3).method(:map).owner #=> Enumerable + */ + +static VALUE +method_owner(VALUE obj) +{ + struct METHOD *data; + TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); + return data->owner; +} + +/* + * call-seq: + * meth.box -> box or nil + * + * Returns the Ruby::Box where +meth+ is defined in. + */ +static VALUE +method_box(VALUE obj) +{ + struct METHOD *data; + const rb_box_t *box; + + TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); + box = data->me->def->box; + if (!box) return Qnil; + if (box->box_object) return box->box_object; + rb_bug("Unexpected box on the method definition: %p", (void*) box); + UNREACHABLE_RETURN(Qnil); +} + +void +rb_method_name_error(VALUE klass, VALUE str) +{ +#define MSG(s) rb_fstring_lit("undefined method '%1$s' for"s" '%2$s'") + VALUE c = klass; + VALUE s = Qundef; + + if (RCLASS_SINGLETON_P(c)) { + VALUE obj = RCLASS_ATTACHED_OBJECT(klass); + + switch (BUILTIN_TYPE(obj)) { + case T_MODULE: + case T_CLASS: + c = obj; + break; + default: + break; + } + } + else if (RB_TYPE_P(c, T_MODULE)) { + s = MSG(" module"); + } + if (UNDEF_P(s)) { + s = MSG(" class"); + } + rb_name_err_raise_str(s, c, str); +#undef MSG +} + +static VALUE +obj_method(VALUE obj, VALUE vid, int scope) +{ + ID id = rb_check_id(&vid); + const VALUE klass = CLASS_OF(obj); + const VALUE mclass = rb_cMethod; + + if (!id) { + VALUE m = mnew_missing_by_name(klass, obj, &vid, scope, mclass); + if (m) return m; + rb_method_name_error(klass, vid); + } + return mnew_callable(klass, obj, id, mclass, scope); +} + +/* + * call-seq: + * obj.method(sym) -> method + * + * Looks up the named method as a receiver in <i>obj</i>, returning a + * +Method+ object (or raising NameError). The +Method+ object acts as a + * closure in <i>obj</i>'s object instance, so instance variables and + * the value of <code>self</code> remain available. + * + * class Demo + * def initialize(n) + * @iv = n + * end + * def hello() + * "Hello, @iv = #{@iv}" + * end + * end + * + * k = Demo.new(99) + * m = k.method(:hello) + * m.call #=> "Hello, @iv = 99" + * + * l = Demo.new('Fred') + * m = l.method("hello") + * m.call #=> "Hello, @iv = Fred" + * + * Note that +Method+ implements <code>to_proc</code> method, which + * means it can be used with iterators. + * + * [ 1, 2, 3 ].each(&method(:puts)) # => prints 3 lines to stdout + * + * out = File.open('test.txt', 'w') + * [ 1, 2, 3 ].each(&out.method(:puts)) # => prints 3 lines to file + * + * require 'date' + * %w[2017-03-01 2017-03-02].collect(&Date.method(:parse)) + * #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>] + */ + +VALUE +rb_obj_method(VALUE obj, VALUE vid) +{ + return obj_method(obj, vid, FALSE); +} + +/* + * call-seq: + * obj.public_method(sym) -> method + * + * Similar to _method_, searches public method only. + */ + +VALUE +rb_obj_public_method(VALUE obj, VALUE vid) +{ + return obj_method(obj, vid, TRUE); +} + +static VALUE +rb_obj_singleton_method_lookup(VALUE arg) +{ + VALUE *args = (VALUE *)arg; + return rb_obj_method(args[0], args[1]); +} + +static VALUE +rb_obj_singleton_method_lookup_fail(VALUE arg1, VALUE arg2) +{ + return Qfalse; +} + +/* + * call-seq: + * obj.singleton_method(sym) -> method + * + * Similar to _method_, searches singleton method only. + * + * class Demo + * def initialize(n) + * @iv = n + * end + * def hello() + * "Hello, @iv = #{@iv}" + * end + * end + * + * k = Demo.new(99) + * def k.hi + * "Hi, @iv = #{@iv}" + * end + * m = k.singleton_method(:hi) + * m.call #=> "Hi, @iv = 99" + * m = k.singleton_method(:hello) #=> NameError + */ + +VALUE +rb_obj_singleton_method(VALUE obj, VALUE vid) +{ + VALUE sc = rb_singleton_class_get(obj); + VALUE klass; + ID id = rb_check_id(&vid); + + if (NIL_P(sc) || + NIL_P(klass = RCLASS_ORIGIN(sc)) || + !NIL_P(rb_special_singleton_class(obj))) { + /* goto undef; */ + } + else if (! id) { + VALUE m = mnew_missing_by_name(klass, obj, &vid, FALSE, rb_cMethod); + if (m) return m; + /* else goto undef; */ + } + else { + VALUE args[2] = {obj, vid}; + VALUE ruby_method = rb_rescue(rb_obj_singleton_method_lookup, (VALUE)args, rb_obj_singleton_method_lookup_fail, Qfalse); + if (ruby_method) { + struct METHOD *method = (struct METHOD *)RTYPEDDATA_GET_DATA(ruby_method); + VALUE lookup_class = RBASIC_CLASS(obj); + VALUE stop_class = rb_class_superclass(sc); + VALUE method_class = method->iclass; + + /* Determine if method is in singleton class, or module included in or prepended to it */ + do { + if (lookup_class == method_class) { + return ruby_method; + } + lookup_class = RCLASS_SUPER(lookup_class); + } while (lookup_class && lookup_class != stop_class); + } + } + + /* undef: */ + vid = ID2SYM(id); + rb_name_err_raise("undefined singleton method '%1$s' for '%2$s'", + obj, vid); + UNREACHABLE_RETURN(Qundef); +} + +/* + * call-seq: + * mod.instance_method(symbol) -> unbound_method + * + * Returns an +UnboundMethod+ representing the given + * instance method in _mod_. + * See +UnboundMethod+ about how to utilize it + * + * class Person + * def initialize(name) + * @name = name + * end + * + * def hi + * puts "Hi, I'm #{@name}!" + * end + * end + * + * dave = Person.new('Dave') + * thomas = Person.new('Thomas') + * + * hi = Person.instance_method(:hi) + * hi.bind_call(dave) + * hi.bind_call(thomas) + * + * <em>produces:</em> + * + * Hi, I'm Dave! + * Hi, I'm Thomas! + */ + +static VALUE +rb_mod_instance_method(VALUE mod, VALUE vid) +{ + ID id = rb_check_id(&vid); + if (!id) { + rb_method_name_error(mod, vid); + } + return mnew_unbound(mod, id, rb_cUnboundMethod, FALSE); +} + +/* + * call-seq: + * mod.public_instance_method(symbol) -> unbound_method + * + * Similar to _instance_method_, searches public method only. + */ + +static VALUE +rb_mod_public_instance_method(VALUE mod, VALUE vid) +{ + ID id = rb_check_id(&vid); + if (!id) { + rb_method_name_error(mod, vid); + } + return mnew_unbound(mod, id, rb_cUnboundMethod, TRUE); +} + +static VALUE +rb_mod_define_method_with_visibility(int argc, VALUE *argv, VALUE mod, const struct rb_scope_visi_struct* scope_visi) +{ + ID id; + VALUE body; + VALUE name; + int is_method = FALSE; + + rb_check_arity(argc, 1, 2); + name = argv[0]; + id = rb_check_id(&name); + if (argc == 1) { + body = rb_block_lambda(); + } + else { + body = argv[1]; + + if (rb_obj_is_method(body)) { + is_method = TRUE; + } + else if (rb_obj_is_proc(body)) { + is_method = FALSE; + } + else { + rb_raise(rb_eTypeError, + "wrong argument type %s (expected Proc/Method/UnboundMethod)", + rb_obj_classname(body)); + } + } + if (!id) id = rb_to_id(name); + + if (is_method) { + struct METHOD *method = (struct METHOD *)RTYPEDDATA_GET_DATA(body); + if (method->me->owner != mod && !RB_TYPE_P(method->me->owner, T_MODULE) && + !RTEST(rb_class_inherited_p(mod, method->me->owner))) { + if (RCLASS_SINGLETON_P(method->me->owner)) { + rb_raise(rb_eTypeError, + "can't bind singleton method to a different class"); + } + else { + rb_raise(rb_eTypeError, + "bind argument must be a subclass of % "PRIsVALUE, + method->me->owner); + } + } + rb_method_entry_set(mod, id, method->me, scope_visi->method_visi); + if (scope_visi->module_func) { + rb_method_entry_set(rb_singleton_class(mod), id, method->me, METHOD_VISI_PUBLIC); + } + RB_GC_GUARD(body); + } + else { + VALUE procval = rb_proc_dup(body); + if (vm_proc_iseq(procval) != NULL) { + rb_proc_t *proc; + GetProcPtr(procval, proc); + proc->is_lambda = TRUE; + proc->is_from_method = TRUE; + } + rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)procval, scope_visi->method_visi); + if (scope_visi->module_func) { + rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, METHOD_VISI_PUBLIC); + } + } + + return ID2SYM(id); +} + +/* + * call-seq: + * define_method(symbol, method) -> symbol + * define_method(symbol) { block } -> symbol + * + * Defines an instance method in the receiver. The _method_ + * parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object. + * If a block is specified, it is used as the method body. + * If a block or the _method_ parameter has parameters, + * they're used as method parameters. + * This block is evaluated using #instance_eval. + * + * class A + * def fred + * puts "In Fred" + * end + * def create_method(name, &block) + * self.class.define_method(name, &block) + * end + * define_method(:wilma) { puts "Charge it!" } + * define_method(:flint) {|name| puts "I'm #{name}!"} + * end + * class B < A + * define_method(:barney, instance_method(:fred)) + * end + * a = B.new + * a.barney + * a.wilma + * a.flint('Dino') + * a.create_method(:betty) { p self } + * a.betty + * + * <em>produces:</em> + * + * In Fred + * Charge it! + * I'm Dino! + * #<B:0x401b39e8> + */ + +static VALUE +rb_mod_define_method(int argc, VALUE *argv, VALUE mod) +{ + const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod); + const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE}; + const rb_scope_visibility_t *scope_visi = &default_scope_visi; + + if (cref) { + scope_visi = CREF_SCOPE_VISI(cref); + } + + return rb_mod_define_method_with_visibility(argc, argv, mod, scope_visi); +} + +/* + * call-seq: + * define_singleton_method(symbol, method) -> symbol + * define_singleton_method(symbol) { block } -> symbol + * + * Defines a public singleton method in the receiver. The _method_ + * parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object. + * If a block is specified, it is used as the method body. + * If a block or a method has parameters, they're used as method parameters. + * + * class A + * class << self + * def class_name + * to_s + * end + * end + * end + * A.define_singleton_method(:who_am_i) do + * "I am: #{class_name}" + * end + * A.who_am_i # ==> "I am: A" + * + * guy = "Bob" + * guy.define_singleton_method(:hello) { "#{self}: Hello there!" } + * guy.hello #=> "Bob: Hello there!" + * + * chris = "Chris" + * chris.define_singleton_method(:greet) {|greeting| "#{greeting}, I'm Chris!" } + * chris.greet("Hi") #=> "Hi, I'm Chris!" + */ + +static VALUE +rb_obj_define_method(int argc, VALUE *argv, VALUE obj) +{ + VALUE klass = rb_singleton_class(obj); + const rb_scope_visibility_t scope_visi = {METHOD_VISI_PUBLIC, FALSE}; + + return rb_mod_define_method_with_visibility(argc, argv, klass, &scope_visi); +} + +/* + * define_method(symbol, method) -> symbol + * define_method(symbol) { block } -> symbol + * + * Defines a global function by _method_ or the block. + */ + +static VALUE +top_define_method(int argc, VALUE *argv, VALUE obj) +{ + return rb_mod_define_method(argc, argv, rb_top_main_class("define_method")); +} + +/* + * call-seq: + * method.clone -> new_method + * + * Returns a clone of this method. + * + * class A + * def foo + * return "bar" + * end + * end + * + * m = A.new.method(:foo) + * m.call # => "bar" + * n = m.clone.call # => "bar" + */ + +static VALUE +method_clone(VALUE self) +{ + VALUE clone; + struct METHOD *orig, *data; + + TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig); + clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data); + rb_obj_clone_setup(self, clone, Qnil); + RB_OBJ_WRITE(clone, &data->recv, orig->recv); + RB_OBJ_WRITE(clone, &data->klass, orig->klass); + RB_OBJ_WRITE(clone, &data->iclass, orig->iclass); + RB_OBJ_WRITE(clone, &data->owner, orig->owner); + RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me)); + return clone; +} + +/* :nodoc: */ +static VALUE +method_dup(VALUE self) +{ + VALUE clone; + struct METHOD *orig, *data; + + TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig); + clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data); + rb_obj_dup_setup(self, clone); + RB_OBJ_WRITE(clone, &data->recv, orig->recv); + RB_OBJ_WRITE(clone, &data->klass, orig->klass); + RB_OBJ_WRITE(clone, &data->iclass, orig->iclass); + RB_OBJ_WRITE(clone, &data->owner, orig->owner); + RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me)); + return clone; +} + +/* + * call-seq: + * call(...) -> obj + * self[...] -> obj + * self === obj -> result_of_method + * + * Invokes +self+ with the specified arguments, returning the + * method's return value. + * + * m = 12.method("+") + * m.call(3) #=> 15 + * m.call(20) #=> 32 + * + * Using Method#=== allows a method object to be the target of a +when+ clause + * in a case statement. + * + * require 'prime' + * + * case 1373 + * when Prime.method(:prime?) + * # ... + * end + */ + +static VALUE +rb_method_call_pass_called_kw(int argc, const VALUE *argv, VALUE method) +{ + return rb_method_call_kw(argc, argv, method, RB_PASS_CALLED_KEYWORDS); +} + +VALUE +rb_method_call_kw(int argc, const VALUE *argv, VALUE method, int kw_splat) +{ + VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil; + return rb_method_call_with_block_kw(argc, argv, method, procval, kw_splat); +} + +VALUE +rb_method_call(int argc, const VALUE *argv, VALUE method) +{ + VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil; + return rb_method_call_with_block(argc, argv, method, procval); +} + +static const rb_callable_method_entry_t * +method_callable_method_entry(const struct METHOD *data) +{ + if (data->me->defined_class == 0) rb_bug("method_callable_method_entry: not callable."); + return (const rb_callable_method_entry_t *)data->me; +} + +static inline VALUE +call_method_data(rb_execution_context_t *ec, const struct METHOD *data, + int argc, const VALUE *argv, VALUE passed_procval, int kw_splat) +{ + vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval)); + return rb_vm_call_kw(ec, data->recv, data->me->called_id, argc, argv, + method_callable_method_entry(data), kw_splat); +} + +VALUE +rb_method_call_with_block_kw(int argc, const VALUE *argv, VALUE method, VALUE passed_procval, int kw_splat) +{ + const struct METHOD *data; + rb_execution_context_t *ec = GET_EC(); + + TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); + if (UNDEF_P(data->recv)) { + rb_raise(rb_eTypeError, "can't call unbound method; bind first"); + } + return call_method_data(ec, data, argc, argv, passed_procval, kw_splat); +} + +VALUE +rb_method_call_with_block(int argc, const VALUE *argv, VALUE method, VALUE passed_procval) +{ + return rb_method_call_with_block_kw(argc, argv, method, passed_procval, RB_NO_KEYWORDS); +} + +/********************************************************************** + * + * Document-class: UnboundMethod + * + * Ruby supports two forms of objectified methods. Class +Method+ is + * used to represent methods that are associated with a particular + * object: these method objects are bound to that object. Bound + * method objects for an object can be created using Object#method. + * + * Ruby also supports unbound methods; methods objects that are not + * associated with a particular object. These can be created either + * by calling Module#instance_method or by calling #unbind on a bound + * method object. The result of both of these is an UnboundMethod + * object. + * + * Unbound methods can only be called after they are bound to an + * object. That object must be a kind_of? the method's original + * class. + * + * class Square + * def area + * @side * @side + * end + * def initialize(side) + * @side = side + * end + * end + * + * area_un = Square.instance_method(:area) + * + * s = Square.new(12) + * area = area_un.bind(s) + * area.call #=> 144 + * + * Unbound methods are a reference to the method at the time it was + * objectified: subsequent changes to the underlying class will not + * affect the unbound method. + * + * class Test + * def test + * :original + * end + * end + * um = Test.instance_method(:test) + * class Test + * def test + * :modified + * end + * end + * t = Test.new + * t.test #=> :modified + * um.bind(t).call #=> :original + * + */ + +static void +convert_umethod_to_method_components(const struct METHOD *data, VALUE recv, VALUE *methclass_out, VALUE *klass_out, VALUE *iclass_out, const rb_method_entry_t **me_out, const bool clone) +{ + VALUE methclass = data->owner; + VALUE iclass = data->me->defined_class; + VALUE klass = CLASS_OF(recv); + + if (RB_TYPE_P(methclass, T_MODULE)) { + VALUE refined_class = rb_refinement_module_get_refined_class(methclass); + if (!NIL_P(refined_class)) methclass = refined_class; + } + if (!RB_TYPE_P(methclass, T_MODULE) && !RTEST(rb_obj_is_kind_of(recv, methclass))) { + if (RCLASS_SINGLETON_P(methclass)) { + rb_raise(rb_eTypeError, + "singleton method called for a different object"); + } + else { + rb_raise(rb_eTypeError, "bind argument must be an instance of % "PRIsVALUE, + methclass); + } + } + + const rb_method_entry_t *me; + if (clone) { + me = rb_method_entry_clone(data->me); + } + else { + me = data->me; + } + + if (RB_TYPE_P(me->owner, T_MODULE)) { + if (!clone) { + // if we didn't previously clone the method entry, then we need to clone it now + // because this branch manipulates it in rb_method_entry_complement_defined_class + me = rb_method_entry_clone(me); + } + VALUE ic = rb_class_search_ancestor(klass, me->owner); + if (ic) { + klass = ic; + iclass = ic; + } + else { + klass = rb_include_class_new(methclass, klass); + } + me = (const rb_method_entry_t *) rb_method_entry_complement_defined_class(me, me->called_id, klass); + } + + *methclass_out = methclass; + *klass_out = klass; + *iclass_out = iclass; + *me_out = me; +} + +/* + * call-seq: + * umeth.bind(obj) -> method + * + * Bind <i>umeth</i> to <i>obj</i>. If Klass was the class from which + * <i>umeth</i> was obtained, <code>obj.kind_of?(Klass)</code> must + * be true. + * + * class A + * def test + * puts "In test, class = #{self.class}" + * end + * end + * class B < A + * end + * class C < B + * end + * + * + * um = B.instance_method(:test) + * bm = um.bind(C.new) + * bm.call + * bm = um.bind(B.new) + * bm.call + * bm = um.bind(A.new) + * bm.call + * + * <em>produces:</em> + * + * In test, class = C + * In test, class = B + * prog.rb:16:in `bind': bind argument must be an instance of B (TypeError) + * from prog.rb:16 + */ + +static VALUE +umethod_bind(VALUE method, VALUE recv) +{ + VALUE methclass, klass, iclass; + const rb_method_entry_t *me; + const struct METHOD *data; + TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); + convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me, true); + + struct METHOD *bound; + method = TypedData_Make_Struct(rb_cMethod, struct METHOD, &method_data_type, bound); + RB_OBJ_WRITE(method, &bound->recv, recv); + RB_OBJ_WRITE(method, &bound->klass, klass); + RB_OBJ_WRITE(method, &bound->iclass, iclass); + RB_OBJ_WRITE(method, &bound->owner, methclass); + RB_OBJ_WRITE(method, &bound->me, me); + + return method; +} + +/* + * call-seq: + * umeth.bind_call(recv, args, ...) -> obj + * + * Bind <i>umeth</i> to <i>recv</i> and then invokes the method with the + * specified arguments. + * This is semantically equivalent to <code>umeth.bind(recv).call(args, ...)</code>. + */ +static VALUE +umethod_bind_call(int argc, VALUE *argv, VALUE method) +{ + rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); + VALUE recv = argv[0]; + argc--; + argv++; + + VALUE passed_procval = rb_block_given_p() ? rb_block_proc() : Qnil; + rb_execution_context_t *ec = GET_EC(); + + const struct METHOD *data; + TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); + + const rb_callable_method_entry_t *cme = rb_callable_method_entry(CLASS_OF(recv), data->me->called_id); + if (data->me == (const rb_method_entry_t *)cme) { + vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval)); + return rb_vm_call_kw(ec, recv, cme->called_id, argc, argv, cme, RB_PASS_CALLED_KEYWORDS); + } + else { + VALUE methclass, klass, iclass; + const rb_method_entry_t *me; + convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me, false); + struct METHOD bound = { recv, klass, 0, methclass, me }; + + return call_method_data(ec, &bound, argc, argv, passed_procval, RB_PASS_CALLED_KEYWORDS); + } +} + +/* + * Returns the number of required parameters and stores the maximum + * number of parameters in max, or UNLIMITED_ARGUMENTS + * if there is no maximum. + */ +static int +method_def_min_max_arity(const rb_method_definition_t *def, int *max) +{ + again: + if (!def) return *max = 0; + switch (def->type) { + case VM_METHOD_TYPE_CFUNC: + if (def->body.cfunc.argc < 0) { + *max = UNLIMITED_ARGUMENTS; + return 0; + } + return *max = check_argc(def->body.cfunc.argc); + case VM_METHOD_TYPE_ZSUPER: + *max = UNLIMITED_ARGUMENTS; + return 0; + case VM_METHOD_TYPE_ATTRSET: + return *max = 1; + case VM_METHOD_TYPE_IVAR: + return *max = 0; + case VM_METHOD_TYPE_ALIAS: + def = def->body.alias.original_me->def; + goto again; + case VM_METHOD_TYPE_BMETHOD: + return rb_proc_min_max_arity(def->body.bmethod.proc, max); + case VM_METHOD_TYPE_ISEQ: + return rb_iseq_min_max_arity(rb_iseq_check(def->body.iseq.iseqptr), max); + case VM_METHOD_TYPE_UNDEF: + case VM_METHOD_TYPE_NOTIMPLEMENTED: + return *max = 0; + case VM_METHOD_TYPE_MISSING: + *max = UNLIMITED_ARGUMENTS; + return 0; + case VM_METHOD_TYPE_OPTIMIZED: { + switch (def->body.optimized.type) { + case OPTIMIZED_METHOD_TYPE_SEND: + *max = UNLIMITED_ARGUMENTS; + return 0; + case OPTIMIZED_METHOD_TYPE_CALL: + *max = UNLIMITED_ARGUMENTS; + return 0; + case OPTIMIZED_METHOD_TYPE_BLOCK_CALL: + *max = UNLIMITED_ARGUMENTS; + return 0; + case OPTIMIZED_METHOD_TYPE_STRUCT_AREF: + *max = 0; + return 0; + case OPTIMIZED_METHOD_TYPE_STRUCT_ASET: + *max = 1; + return 1; + default: + break; + } + break; + } + case VM_METHOD_TYPE_REFINED: + *max = UNLIMITED_ARGUMENTS; + return 0; + } + rb_bug("method_def_min_max_arity: invalid method entry type (%d)", def->type); + UNREACHABLE_RETURN(Qnil); +} + +static int +method_def_arity(const rb_method_definition_t *def) +{ + int max, min = method_def_min_max_arity(def, &max); + return min == max ? min : -min-1; +} + +int +rb_method_entry_arity(const rb_method_entry_t *me) +{ + return method_def_arity(me->def); +} + +/* + * call-seq: + * meth.arity -> integer + * + * Returns an indication of the number of arguments accepted by a + * method. Returns a nonnegative integer for methods that take a fixed + * number of arguments. For Ruby methods that take a variable number of + * arguments, returns -n-1, where n is the number of required arguments. + * Keyword arguments will be considered as a single additional argument, + * that argument being mandatory if any keyword argument is mandatory. + * For methods written in C, returns -1 if the call takes a + * variable number of arguments. + * + * class C + * def one; end + * def two(a); end + * def three(*a); end + * def four(a, b); end + * def five(a, b, *c); end + * def six(a, b, *c, &d); end + * def seven(a, b, x:0); end + * def eight(x:, y:); end + * def nine(x:, y:, **z); end + * def ten(*a, x:, y:); end + * end + * c = C.new + * c.method(:one).arity #=> 0 + * c.method(:two).arity #=> 1 + * c.method(:three).arity #=> -1 + * c.method(:four).arity #=> 2 + * c.method(:five).arity #=> -3 + * c.method(:six).arity #=> -3 + * c.method(:seven).arity #=> -3 + * c.method(:eight).arity #=> 1 + * c.method(:nine).arity #=> 1 + * c.method(:ten).arity #=> -2 + * + * "cat".method(:size).arity #=> 0 + * "cat".method(:replace).arity #=> 1 + * "cat".method(:squeeze).arity #=> -1 + * "cat".method(:count).arity #=> -1 + */ + +static VALUE +method_arity_m(VALUE method) +{ + int n = method_arity(method); + return INT2FIX(n); +} + +static int +method_arity(VALUE method) +{ + struct METHOD *data; + + TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); + return rb_method_entry_arity(data->me); +} + +static const rb_method_entry_t * +original_method_entry(VALUE mod, ID id) +{ + const rb_method_entry_t *me; + + while ((me = rb_method_entry(mod, id)) != 0) { + const rb_method_definition_t *def = me->def; + if (def->type != VM_METHOD_TYPE_ZSUPER) break; + mod = RCLASS_SUPER(me->owner); + id = def->original_id; + } + return me; +} + +static int +method_min_max_arity(VALUE method, int *max) +{ + const struct METHOD *data; + + TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); + return method_def_min_max_arity(data->me->def, max); +} + +int +rb_mod_method_arity(VALUE mod, ID id) +{ + const rb_method_entry_t *me = original_method_entry(mod, id); + if (!me) return 0; /* should raise? */ + return rb_method_entry_arity(me); +} + +int +rb_obj_method_arity(VALUE obj, ID id) +{ + return rb_mod_method_arity(CLASS_OF(obj), id); +} + +VALUE +rb_callable_receiver(VALUE callable) +{ + if (rb_obj_is_proc(callable)) { + VALUE binding = proc_binding(callable); + return rb_funcall(binding, rb_intern("receiver"), 0); + } + else if (rb_obj_is_method(callable)) { + return method_receiver(callable); + } + else { + return Qundef; + } +} + +const rb_method_definition_t * +rb_method_def(VALUE method) +{ + const struct METHOD *data; + + TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); + return data->me->def; +} + +static const rb_iseq_t * +method_def_iseq(const rb_method_definition_t *def) +{ + switch (def->type) { + case VM_METHOD_TYPE_ISEQ: + return rb_iseq_check(def->body.iseq.iseqptr); + case VM_METHOD_TYPE_BMETHOD: + return rb_proc_get_iseq(def->body.bmethod.proc, 0); + case VM_METHOD_TYPE_ALIAS: + return method_def_iseq(def->body.alias.original_me->def); + case VM_METHOD_TYPE_CFUNC: + case VM_METHOD_TYPE_ATTRSET: + case VM_METHOD_TYPE_IVAR: + case VM_METHOD_TYPE_ZSUPER: + case VM_METHOD_TYPE_UNDEF: + case VM_METHOD_TYPE_NOTIMPLEMENTED: + case VM_METHOD_TYPE_OPTIMIZED: + case VM_METHOD_TYPE_MISSING: + case VM_METHOD_TYPE_REFINED: + break; + } + return NULL; +} + +const rb_iseq_t * +rb_method_iseq(VALUE method) +{ + return method_def_iseq(rb_method_def(method)); +} + +static const rb_cref_t * +method_cref(VALUE method) +{ + const rb_method_definition_t *def = rb_method_def(method); + + again: + switch (def->type) { + case VM_METHOD_TYPE_ISEQ: + return def->body.iseq.cref; + case VM_METHOD_TYPE_ALIAS: + def = def->body.alias.original_me->def; + goto again; + default: + return NULL; + } +} + +static VALUE +method_def_location(const rb_method_definition_t *def) +{ + if (def->type == VM_METHOD_TYPE_ATTRSET || def->type == VM_METHOD_TYPE_IVAR) { + if (!def->body.attr.location) + return Qnil; + return rb_ary_dup(def->body.attr.location); + } + return iseq_location(method_def_iseq(def)); +} + +VALUE +rb_method_entry_location(const rb_method_entry_t *me) +{ + if (!me) return Qnil; + return method_def_location(me->def); +} + +/* + * call-seq: + * meth.source_location -> [String, Integer, Integer, Integer, Integer] + * + * Returns the location where the method was defined. + * The returned Array contains: + * (1) the Ruby source filename + * (2) the line number where the definition starts + * (3) the position where the definition starts, in number of bytes from the start of the line + * (4) the line number where the definition ends + * (5) the position where the definitions ends, in number of bytes from the start of the line + * + * This method will return +nil+ if the method was not defined in Ruby (i.e. native). + */ + +VALUE +rb_method_location(VALUE method) +{ + return method_def_location(rb_method_def(method)); +} + +static const rb_method_definition_t * +vm_proc_method_def(VALUE procval) +{ + const rb_proc_t *proc; + const struct rb_block *block; + const struct vm_ifunc *ifunc; + + GetProcPtr(procval, proc); + block = &proc->block; + + if (vm_block_type(block) == block_type_ifunc && + IS_METHOD_PROC_IFUNC(ifunc = block->as.captured.code.ifunc)) { + return rb_method_def((VALUE)ifunc->data); + } + else { + return NULL; + } +} + +static VALUE +method_def_parameters(const rb_method_definition_t *def) +{ + const rb_iseq_t *iseq; + const rb_method_definition_t *bmethod_def; + + switch (def->type) { + case VM_METHOD_TYPE_ISEQ: + iseq = method_def_iseq(def); + return rb_iseq_parameters(iseq, 0); + case VM_METHOD_TYPE_BMETHOD: + if ((iseq = method_def_iseq(def)) != NULL) { + return rb_iseq_parameters(iseq, 0); + } + else if ((bmethod_def = vm_proc_method_def(def->body.bmethod.proc)) != NULL) { + return method_def_parameters(bmethod_def); + } + break; + + case VM_METHOD_TYPE_ALIAS: + return method_def_parameters(def->body.alias.original_me->def); + + case VM_METHOD_TYPE_OPTIMIZED: + if (def->body.optimized.type == OPTIMIZED_METHOD_TYPE_STRUCT_ASET) { + VALUE param = rb_ary_new_from_args(2, ID2SYM(rb_intern("req")), ID2SYM(rb_intern("_"))); + return rb_ary_new_from_args(1, param); + } + break; + + case VM_METHOD_TYPE_CFUNC: + case VM_METHOD_TYPE_ATTRSET: + case VM_METHOD_TYPE_IVAR: + case VM_METHOD_TYPE_ZSUPER: + case VM_METHOD_TYPE_UNDEF: + case VM_METHOD_TYPE_NOTIMPLEMENTED: + case VM_METHOD_TYPE_MISSING: + case VM_METHOD_TYPE_REFINED: + break; + } + + return rb_unnamed_parameters(method_def_arity(def)); + +} + +/* + * call-seq: + * meth.parameters -> array + * + * Returns the parameter information of this method. + * + * def foo(bar); end + * method(:foo).parameters #=> [[:req, :bar]] + * + * def foo(bar, baz, bat, &blk); end + * method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:req, :bat], [:block, :blk]] + * + * def foo(bar, *args); end + * method(:foo).parameters #=> [[:req, :bar], [:rest, :args]] + * + * def foo(bar, baz, *args, &blk); end + * method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:rest, :args], [:block, :blk]] + */ + +static VALUE +rb_method_parameters(VALUE method) +{ + return method_def_parameters(rb_method_def(method)); +} + +/* + * call-seq: + * meth.to_s -> string + * meth.inspect -> string + * + * Returns a human-readable description of the underlying method. + * + * "cat".method(:count).inspect #=> "#<Method: String#count(*)>" + * (1..3).method(:map).inspect #=> "#<Method: Range(Enumerable)#map()>" + * + * In the latter case, the method description includes the "owner" of the + * original method (+Enumerable+ module, which is included into +Range+). + * + * +inspect+ also provides, when possible, method argument names (call + * sequence) and source location. + * + * require 'net/http' + * Net::HTTP.method(:get).inspect + * #=> "#<Method: Net::HTTP.get(uri_or_host, path=..., port=...) <skip>/lib/ruby/2.7.0/net/http.rb:457>" + * + * <code>...</code> in argument definition means argument is optional (has + * some default value). + * + * For methods defined in C (language core and extensions), location and + * argument names can't be extracted, and only generic information is provided + * in form of <code>*</code> (any number of arguments) or <code>_</code> (some + * positional argument). + * + * "cat".method(:count).inspect #=> "#<Method: String#count(*)>" + * "cat".method(:+).inspect #=> "#<Method: String#+(_)>"" + + */ + +static VALUE +method_inspect(VALUE method) +{ + struct METHOD *data; + VALUE str; + const char *sharp = "#"; + VALUE mklass; + VALUE defined_class; + + TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); + str = rb_sprintf("#<% "PRIsVALUE": ", rb_obj_class(method)); + + mklass = data->iclass; + if (!mklass) mklass = data->klass; + + if (RB_TYPE_P(mklass, T_ICLASS)) { + /* TODO: I'm not sure why mklass is T_ICLASS. + * UnboundMethod#bind() can set it as T_ICLASS at convert_umethod_to_method_components() + * but not sure it is needed. + */ + mklass = RBASIC_CLASS(mklass); + } + + if (data->me->def->type == VM_METHOD_TYPE_ALIAS) { + defined_class = data->me->def->body.alias.original_me->owner; + } + else { + defined_class = method_entry_defined_class(data->me); + } + + if (RB_TYPE_P(defined_class, T_ICLASS)) { + defined_class = RBASIC_CLASS(defined_class); + } + + if (UNDEF_P(data->recv)) { + // UnboundMethod + rb_str_buf_append(str, rb_inspect(defined_class)); + } + else if (RCLASS_SINGLETON_P(mklass)) { + VALUE v = RCLASS_ATTACHED_OBJECT(mklass); + + if (UNDEF_P(data->recv)) { + rb_str_buf_append(str, rb_inspect(mklass)); + } + else if (data->recv == v) { + rb_str_buf_append(str, rb_inspect(v)); + sharp = "."; + } + else { + rb_str_buf_append(str, rb_inspect(data->recv)); + rb_str_buf_cat2(str, "("); + rb_str_buf_append(str, rb_inspect(v)); + rb_str_buf_cat2(str, ")"); + sharp = "."; + } + } + else { + mklass = data->klass; + if (RCLASS_SINGLETON_P(mklass)) { + VALUE v = RCLASS_ATTACHED_OBJECT(mklass); + if (!(RB_TYPE_P(v, T_CLASS) || RB_TYPE_P(v, T_MODULE))) { + do { + mklass = RCLASS_SUPER(mklass); + } while (RB_TYPE_P(mklass, T_ICLASS)); + } + } + rb_str_buf_append(str, rb_inspect(mklass)); + if (defined_class != mklass) { + rb_str_catf(str, "(% "PRIsVALUE")", defined_class); + } + } + rb_str_buf_cat2(str, sharp); + rb_str_append(str, rb_id2str(data->me->called_id)); + if (data->me->called_id != data->me->def->original_id) { + rb_str_catf(str, "(%"PRIsVALUE")", + rb_id2str(data->me->def->original_id)); + } + if (data->me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) { + rb_str_buf_cat2(str, " (not-implemented)"); + } + + // parameter information + { + VALUE params = rb_method_parameters(method); + VALUE pair, name, kind; + const VALUE req = ID2SYM(rb_intern("req")); + const VALUE opt = ID2SYM(rb_intern("opt")); + const VALUE keyreq = ID2SYM(rb_intern("keyreq")); + const VALUE key = ID2SYM(rb_intern("key")); + const VALUE rest = ID2SYM(rb_intern("rest")); + const VALUE keyrest = ID2SYM(rb_intern("keyrest")); + const VALUE block = ID2SYM(rb_intern("block")); + const VALUE nokey = ID2SYM(rb_intern("nokey")); + int forwarding = 0; + + rb_str_buf_cat2(str, "("); + + if (RARRAY_LEN(params) == 3 && + RARRAY_AREF(RARRAY_AREF(params, 0), 0) == rest && + RARRAY_AREF(RARRAY_AREF(params, 0), 1) == ID2SYM('*') && + RARRAY_AREF(RARRAY_AREF(params, 1), 0) == keyrest && + RARRAY_AREF(RARRAY_AREF(params, 1), 1) == ID2SYM(idPow) && + RARRAY_AREF(RARRAY_AREF(params, 2), 0) == block && + RARRAY_AREF(RARRAY_AREF(params, 2), 1) == ID2SYM('&')) { + forwarding = 1; + } + + for (int i = 0; i < RARRAY_LEN(params); i++) { + pair = RARRAY_AREF(params, i); + kind = RARRAY_AREF(pair, 0); + if (RARRAY_LEN(pair) > 1) { + name = RARRAY_AREF(pair, 1); + } + else { + // FIXME: can it be reduced to switch/case? + if (kind == req || kind == opt) { + name = rb_str_new2("_"); + } + else if (kind == rest || kind == keyrest) { + name = rb_str_new2(""); + } + else if (kind == block) { + name = rb_str_new2("block"); + } + else if (kind == nokey) { + name = rb_str_new2("nil"); + } + else { + name = Qnil; + } + } + + if (kind == req) { + rb_str_catf(str, "%"PRIsVALUE, name); + } + else if (kind == opt) { + rb_str_catf(str, "%"PRIsVALUE"=...", name); + } + else if (kind == keyreq) { + rb_str_catf(str, "%"PRIsVALUE":", name); + } + else if (kind == key) { + rb_str_catf(str, "%"PRIsVALUE": ...", name); + } + else if (kind == rest) { + if (name == ID2SYM('*')) { + rb_str_cat_cstr(str, forwarding ? "..." : "*"); + } + else { + rb_str_catf(str, "*%"PRIsVALUE, name); + } + } + else if (kind == keyrest) { + if (name != ID2SYM(idPow)) { + rb_str_catf(str, "**%"PRIsVALUE, name); + } + else if (i > 0) { + rb_str_set_len(str, RSTRING_LEN(str) - 2); + } + else { + rb_str_cat_cstr(str, "**"); + } + } + else if (kind == block) { + if (name == ID2SYM('&')) { + if (forwarding) { + rb_str_set_len(str, RSTRING_LEN(str) - 2); + } + else { + rb_str_cat_cstr(str, "..."); + } + } + else { + rb_str_catf(str, "&%"PRIsVALUE, name); + } + } + else if (kind == nokey) { + rb_str_buf_cat2(str, "**nil"); + } + + if (i < RARRAY_LEN(params) - 1) { + rb_str_buf_cat2(str, ", "); + } + } + rb_str_buf_cat2(str, ")"); + } + + { // source location + VALUE loc = rb_method_location(method); + if (!NIL_P(loc)) { + rb_str_catf(str, " %"PRIsVALUE":%"PRIsVALUE, + RARRAY_AREF(loc, 0), RARRAY_AREF(loc, 1)); + } + } + + rb_str_buf_cat2(str, ">"); + + return str; +} + +static VALUE +bmcall(RB_BLOCK_CALL_FUNC_ARGLIST(args, method)) +{ + return rb_method_call_with_block_kw(argc, argv, method, blockarg, RB_PASS_CALLED_KEYWORDS); +} + +VALUE +rb_proc_new( + rb_block_call_func_t func, + VALUE val) +{ + VALUE procval = rb_block_call(rb_mRubyVMFrozenCore, idProc, 0, 0, func, val); + return procval; +} + +/* + * call-seq: + * meth.to_proc -> proc + * + * Returns a Proc object corresponding to this method. + */ + +static VALUE +method_to_proc(VALUE method) +{ + VALUE procval; + rb_proc_t *proc; + + /* + * class Method + * def to_proc + * lambda{|*args| + * self.call(*args) + * } + * end + * end + */ + procval = rb_block_call(rb_mRubyVMFrozenCore, idLambda, 0, 0, bmcall, method); + GetProcPtr(procval, proc); + proc->is_from_method = 1; + return procval; +} + +extern VALUE rb_find_defined_class_by_owner(VALUE current_class, VALUE target_owner); + +/* + * call-seq: + * meth.super_method -> method + * + * Returns a +Method+ of superclass which would be called when super is used + * or nil if there is no method on superclass. + */ + +static VALUE +method_super_method(VALUE method) +{ + const struct METHOD *data; + VALUE super_class, iclass; + ID mid; + const rb_method_entry_t *me; + + TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); + iclass = data->iclass; + if (!iclass) return Qnil; + if (data->me->def->type == VM_METHOD_TYPE_ALIAS && data->me->defined_class) { + super_class = RCLASS_SUPER(rb_find_defined_class_by_owner(data->me->defined_class, + data->me->def->body.alias.original_me->owner)); + mid = data->me->def->body.alias.original_me->def->original_id; + } + else { + super_class = RCLASS_SUPER(RCLASS_ORIGIN(iclass)); + mid = data->me->def->original_id; + } + if (!super_class) return Qnil; + me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(super_class, mid, &iclass); + if (!me) return Qnil; + return mnew_internal(me, me->owner, iclass, data->recv, mid, rb_obj_class(method), FALSE, FALSE); +} + +/* + * call-seq: + * local_jump_error.exit_value -> obj + * + * Returns the exit value associated with this +LocalJumpError+. + */ +static VALUE +localjump_xvalue(VALUE exc) +{ + return rb_iv_get(exc, "@exit_value"); +} + +/* + * call-seq: + * local_jump_error.reason -> symbol + * + * The reason this block was terminated: + * :break, :redo, :retry, :next, :return, or :noreason. + */ + +static VALUE +localjump_reason(VALUE exc) +{ + return rb_iv_get(exc, "@reason"); +} + +rb_cref_t *rb_vm_cref_new_toplevel(void); /* vm.c */ + +static const rb_env_t * +env_clone(const rb_env_t *env, const rb_cref_t *cref) +{ + VALUE *new_ep; + VALUE *new_body; + const rb_env_t *new_env; + + VM_ASSERT(env->ep > env->env); + VM_ASSERT(VM_ENV_ESCAPED_P(env->ep)); + + if (cref == NULL) { + cref = rb_vm_cref_new_toplevel(); + } + + new_body = ALLOC_N(VALUE, env->env_size); + new_ep = &new_body[env->ep - env->env]; + new_env = vm_env_new(new_ep, new_body, env->env_size, env->iseq); + + /* The memcpy has to happen after the vm_env_new because it can trigger a + * GC compaction which can move the objects in the env. */ + MEMCPY(new_body, env->env, VALUE, env->env_size); + /* VM_ENV_DATA_INDEX_ENV is set in vm_env_new but will get overwritten + * by the memcpy above. */ + new_ep[VM_ENV_DATA_INDEX_ENV] = (VALUE)new_env; + RB_OBJ_WRITE(new_env, &new_ep[VM_ENV_DATA_INDEX_ME_CREF], (VALUE)cref); + VM_ASSERT(VM_ENV_ESCAPED_P(new_ep)); + return new_env; +} + +/* + * call-seq: + * prc.binding -> binding + * + * Returns the binding associated with <i>prc</i>. + * + * def fred(param) + * proc {} + * end + * + * b = fred(99) + * eval("param", b.binding) #=> 99 + */ +static VALUE +proc_binding(VALUE self) +{ + VALUE bindval, binding_self = Qundef; + rb_binding_t *bind; + const rb_proc_t *proc; + const rb_iseq_t *iseq = NULL; + const struct rb_block *block; + const rb_env_t *env = NULL; + + GetProcPtr(self, proc); + block = &proc->block; + + if (proc->is_isolated) rb_raise(rb_eArgError, "Can't create Binding from isolated Proc"); + + again: + switch (vm_block_type(block)) { + case block_type_iseq: + iseq = block->as.captured.code.iseq; + binding_self = block->as.captured.self; + env = VM_ENV_ENVVAL_PTR(block->as.captured.ep); + break; + case block_type_proc: + GetProcPtr(block->as.proc, proc); + block = &proc->block; + goto again; + case block_type_ifunc: + { + const struct vm_ifunc *ifunc = block->as.captured.code.ifunc; + if (IS_METHOD_PROC_IFUNC(ifunc)) { + VALUE method = (VALUE)ifunc->data; + VALUE name = rb_fstring_lit("<empty_iseq>"); + rb_iseq_t *empty; + binding_self = method_receiver(method); + iseq = rb_method_iseq(method); + env = VM_ENV_ENVVAL_PTR(block->as.captured.ep); + env = env_clone(env, method_cref(method)); + /* set empty iseq */ + empty = rb_iseq_new(Qnil, name, name, Qnil, 0, ISEQ_TYPE_TOP); + RB_OBJ_WRITE(env, &env->iseq, empty); + break; + } + } + /* FALLTHROUGH */ + case block_type_symbol: + rb_raise(rb_eArgError, "Can't create Binding from C level Proc"); + UNREACHABLE_RETURN(Qnil); + } + + bindval = rb_binding_alloc(rb_cBinding); + GetBindingPtr(bindval, bind); + RB_OBJ_WRITE(bindval, &bind->block.as.captured.self, binding_self); + RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, env->iseq); + rb_vm_block_ep_update(bindval, &bind->block, env->ep); + RB_OBJ_WRITTEN(bindval, Qundef, VM_ENV_ENVVAL(env->ep)); + + if (iseq) { + rb_iseq_check(iseq); + RB_OBJ_WRITE(bindval, &bind->pathobj, ISEQ_BODY(iseq)->location.pathobj); + bind->first_lineno = ISEQ_BODY(iseq)->location.first_lineno; + } + else { + RB_OBJ_WRITE(bindval, &bind->pathobj, + rb_iseq_pathobj_new(rb_fstring_lit("(binding)"), Qnil)); + bind->first_lineno = 1; + } + + return bindval; +} + +static rb_block_call_func curry; + +static VALUE +make_curry_proc(VALUE proc, VALUE passed, VALUE arity) +{ + VALUE args = rb_ary_new3(3, proc, passed, arity); + rb_proc_t *procp; + int is_lambda; + + GetProcPtr(proc, procp); + is_lambda = procp->is_lambda; + rb_ary_freeze(passed); + rb_ary_freeze(args); + proc = rb_proc_new(curry, args); + GetProcPtr(proc, procp); + procp->is_lambda = is_lambda; + return proc; +} + +static VALUE +curry(RB_BLOCK_CALL_FUNC_ARGLIST(_, args)) +{ + VALUE proc, passed, arity; + proc = RARRAY_AREF(args, 0); + passed = RARRAY_AREF(args, 1); + arity = RARRAY_AREF(args, 2); + + passed = rb_ary_plus(passed, rb_ary_new4(argc, argv)); + rb_ary_freeze(passed); + + if (RARRAY_LEN(passed) < FIX2INT(arity)) { + if (!NIL_P(blockarg)) { + rb_warn("given block not used"); + } + arity = make_curry_proc(proc, passed, arity); + return arity; + } + else { + return rb_proc_call_with_block(proc, check_argc(RARRAY_LEN(passed)), RARRAY_CONST_PTR(passed), blockarg); + } +} + + /* + * call-seq: + * prc.curry -> a_proc + * prc.curry(arity) -> a_proc + * + * Returns a curried proc. If the optional <i>arity</i> argument is given, + * it determines the number of arguments. + * A curried proc receives some arguments. If a sufficient number of + * arguments are supplied, it passes the supplied arguments to the original + * proc and returns the result. Otherwise, returns another curried proc that + * takes the rest of arguments. + * + * The optional <i>arity</i> argument should be supplied when currying procs with + * variable arguments to determine how many arguments are needed before the proc is + * called. + * + * b = proc {|x, y, z| (x||0) + (y||0) + (z||0) } + * p b.curry[1][2][3] #=> 6 + * p b.curry[1, 2][3, 4] #=> 6 + * p b.curry(5)[1][2][3][4][5] #=> 6 + * p b.curry(5)[1, 2][3, 4][5] #=> 6 + * p b.curry(1)[1] #=> 1 + * + * b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) } + * p b.curry[1][2][3] #=> 6 + * p b.curry[1, 2][3, 4] #=> 10 + * p b.curry(5)[1][2][3][4][5] #=> 15 + * p b.curry(5)[1, 2][3, 4][5] #=> 15 + * p b.curry(1)[1] #=> 1 + * + * b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) } + * p b.curry[1][2][3] #=> 6 + * p b.curry[1, 2][3, 4] #=> wrong number of arguments (given 4, expected 3) + * p b.curry(5) #=> wrong number of arguments (given 5, expected 3) + * p b.curry(1) #=> wrong number of arguments (given 1, expected 3) + * + * b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) } + * p b.curry[1][2][3] #=> 6 + * p b.curry[1, 2][3, 4] #=> 10 + * p b.curry(5)[1][2][3][4][5] #=> 15 + * p b.curry(5)[1, 2][3, 4][5] #=> 15 + * p b.curry(1) #=> wrong number of arguments (given 1, expected 3) + * + * b = proc { :foo } + * p b.curry[] #=> :foo + */ +static VALUE +proc_curry(int argc, const VALUE *argv, VALUE self) +{ + int sarity, max_arity, min_arity = rb_proc_min_max_arity(self, &max_arity); + VALUE arity; + + if (rb_check_arity(argc, 0, 1) == 0 || NIL_P(arity = argv[0])) { + arity = INT2FIX(min_arity); + } + else { + sarity = FIX2INT(arity); + if (rb_proc_lambda_p(self)) { + rb_check_arity(sarity, min_arity, max_arity); + } + } + + return make_curry_proc(self, rb_ary_new(), arity); +} + +/* + * call-seq: + * meth.curry -> proc + * meth.curry(arity) -> proc + * + * Returns a curried proc based on the method. When the proc is called with a number of + * arguments that is lower than the method's arity, then another curried proc is returned. + * Only when enough arguments have been supplied to satisfy the method signature, will the + * method actually be called. + * + * The optional <i>arity</i> argument should be supplied when currying methods with + * variable arguments to determine how many arguments are needed before the method is + * called. + * + * def foo(a,b,c) + * [a, b, c] + * end + * + * proc = self.method(:foo).curry + * proc2 = proc.call(1, 2) #=> #<Proc> + * proc2.call(3) #=> [1,2,3] + * + * def vararg(*args) + * args + * end + * + * proc = self.method(:vararg).curry(4) + * proc2 = proc.call(:x) #=> #<Proc> + * proc3 = proc2.call(:y, :z) #=> #<Proc> + * proc3.call(:a) #=> [:x, :y, :z, :a] + */ + +static VALUE +rb_method_curry(int argc, const VALUE *argv, VALUE self) +{ + VALUE proc = method_to_proc(self); + return proc_curry(argc, argv, proc); +} + +static VALUE +compose(RB_BLOCK_CALL_FUNC_ARGLIST(_, args)) +{ + VALUE f, g, fargs; + f = RARRAY_AREF(args, 0); + g = RARRAY_AREF(args, 1); + + if (rb_obj_is_proc(g)) + fargs = rb_proc_call_with_block_kw(g, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS); + else + fargs = rb_funcall_with_block_kw(g, idCall, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS); + + if (rb_obj_is_proc(f)) + return rb_proc_call(f, rb_ary_new3(1, fargs)); + else + return rb_funcallv(f, idCall, 1, &fargs); +} + +static VALUE +to_callable(VALUE f) +{ + VALUE mesg; + + if (rb_obj_is_proc(f)) return f; + if (rb_obj_is_method(f)) return f; + if (rb_obj_respond_to(f, idCall, TRUE)) return f; + mesg = rb_fstring_lit("callable object is expected"); + rb_exc_raise(rb_exc_new_str(rb_eTypeError, mesg)); +} + +static VALUE rb_proc_compose_to_left(VALUE self, VALUE g); +static VALUE rb_proc_compose_to_right(VALUE self, VALUE g); + +/* + * call-seq: + * prc << g -> a_proc + * + * Returns a proc that is the composition of this proc and the given <i>g</i>. + * The returned proc takes a variable number of arguments, calls <i>g</i> with them + * then calls this proc with the result. + * + * f = proc {|x| x * x } + * g = proc {|x| x + x } + * p (f << g).call(2) #=> 16 + * + * See Proc#>> for detailed explanations. + */ +static VALUE +proc_compose_to_left(VALUE self, VALUE g) +{ + return rb_proc_compose_to_left(self, to_callable(g)); +} + +static VALUE +rb_proc_compose_to_left(VALUE self, VALUE g) +{ + VALUE proc, args, procs[2]; + rb_proc_t *procp; + int is_lambda; + + procs[0] = self; + procs[1] = g; + args = rb_ary_tmp_new_from_values(0, 2, procs); + + if (rb_obj_is_proc(g)) { + GetProcPtr(g, procp); + is_lambda = procp->is_lambda; + } + else { + VM_ASSERT(rb_obj_is_method(g) || rb_obj_respond_to(g, idCall, TRUE)); + is_lambda = 1; + } + + proc = rb_proc_new(compose, args); + GetProcPtr(proc, procp); + procp->is_lambda = is_lambda; + + return proc; +} + +/* + * call-seq: + * prc >> g -> a_proc + * + * Returns a proc that is the composition of this proc and the given <i>g</i>. + * The returned proc takes a variable number of arguments, calls this proc with them + * then calls <i>g</i> with the result. + * + * f = proc {|x| x * x } + * g = proc {|x| x + x } + * p (f >> g).call(2) #=> 8 + * + * <i>g</i> could be other Proc, or Method, or any other object responding to + * +call+ method: + * + * class Parser + * def self.call(text) + * # ...some complicated parsing logic... + * end + * end + * + * pipeline = File.method(:read) >> Parser >> proc { |data| puts "data size: #{data.count}" } + * pipeline.call('data.json') + * + * See also Method#>> and Method#<<. + */ +static VALUE +proc_compose_to_right(VALUE self, VALUE g) +{ + return rb_proc_compose_to_right(self, to_callable(g)); +} + +static VALUE +rb_proc_compose_to_right(VALUE self, VALUE g) +{ + VALUE proc, args, procs[2]; + rb_proc_t *procp; + int is_lambda; + + procs[0] = g; + procs[1] = self; + args = rb_ary_tmp_new_from_values(0, 2, procs); + + GetProcPtr(self, procp); + is_lambda = procp->is_lambda; + + proc = rb_proc_new(compose, args); + GetProcPtr(proc, procp); + procp->is_lambda = is_lambda; + + return proc; +} + +/* + * call-seq: + * self << g -> a_proc + * + * Returns a proc that is the composition of the given +g+ and this method. + * + * The returned proc takes a variable number of arguments. It first calls +g+ + * with the arguments, then calls +self+ with the return value of +g+. + * + * def f(ary) = ary << 'in f' + * + * f = self.method(:f) + * g = proc { |ary| ary << 'in proc' } + * (f << g).call([]) # => ["in proc", "in f"] + */ +static VALUE +rb_method_compose_to_left(VALUE self, VALUE g) +{ + g = to_callable(g); + self = method_to_proc(self); + return proc_compose_to_left(self, g); +} + +/* + * call-seq: + * self >> g -> a_proc + * + * Returns a proc that is the composition of this method and the given +g+. + * + * The returned proc takes a variable number of arguments. It first calls +self+ + * with the arguments, then calls +g+ with the return value of +self+. + * + * def f(ary) = ary << 'in f' + * + * f = self.method(:f) + * g = proc { |ary| ary << 'in proc' } + * (f >> g).call([]) # => ["in f", "in proc"] + */ +static VALUE +rb_method_compose_to_right(VALUE self, VALUE g) +{ + g = to_callable(g); + self = method_to_proc(self); + return proc_compose_to_right(self, g); +} + +/* + * call-seq: + * proc.ruby2_keywords -> proc + * + * Marks the proc as passing keywords through a normal argument splat. + * This should only be called on procs that accept an argument splat + * (<tt>*args</tt>) but not explicit keywords or a keyword splat. It + * marks the proc such that if the proc is called with keyword arguments, + * the final hash argument is marked with a special flag such that if it + * is the final element of a normal argument splat to another method call, + * and that method call does not include explicit keywords or a keyword + * splat, the final element is interpreted as keywords. In other words, + * keywords will be passed through the proc to other methods. + * + * This should only be used for procs that delegate keywords to another + * method, and only for backwards compatibility with Ruby versions before + * 2.7. + * + * This method will probably be removed at some point, as it exists only + * for backwards compatibility. As it does not exist in Ruby versions + * before 2.7, check that the proc responds to this method before calling + * it. Also, be aware that if this method is removed, the behavior of the + * proc will change so that it does not pass through keywords. + * + * module Mod + * foo = ->(meth, *args, &block) do + * send(:"do_#{meth}", *args, &block) + * end + * foo.ruby2_keywords if foo.respond_to?(:ruby2_keywords) + * end + */ + +static VALUE +proc_ruby2_keywords(VALUE procval) +{ + rb_proc_t *proc; + GetProcPtr(procval, proc); + + rb_check_frozen(procval); + + if (proc->is_from_method) { + rb_warn("Skipping set of ruby2_keywords flag for proc (proc created from method)"); + return procval; + } + + switch (proc->block.type) { + case block_type_iseq: + if (ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.has_rest && + !ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.has_post && + !ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.has_kw && + !ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.has_kwrest) { + ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.ruby2_keywords = 1; + } + else { + rb_warn("Skipping set of ruby2_keywords flag for proc (proc accepts keywords or post arguments or proc does not accept argument splat)"); + } + break; + default: + rb_warn("Skipping set of ruby2_keywords flag for proc (proc not defined in Ruby)"); + break; + } + + return procval; +} + +/* + * Document-class: LocalJumpError + * + * Raised when Ruby can't yield as requested. + * + * A typical scenario is attempting to yield when no block is given: + * + * def call_block + * yield 42 + * end + * call_block + * + * <em>raises the exception:</em> + * + * LocalJumpError: no block given (yield) + * + * A more subtle example: + * + * def get_me_a_return + * Proc.new { return 42 } + * end + * get_me_a_return.call + * + * <em>raises the exception:</em> + * + * LocalJumpError: unexpected return + */ + +/* + * Document-class: SystemStackError + * + * Raised in case of a stack overflow. + * + * def me_myself_and_i + * me_myself_and_i + * end + * me_myself_and_i + * + * <em>raises the exception:</em> + * + * SystemStackError: stack level too deep + */ + +/* + * Document-class: Proc + * + * A +Proc+ object is an encapsulation of a block of code, which can be stored + * in a local variable, passed to a method or another Proc, and can be called. + * Proc is an essential concept in Ruby and a core of its functional + * programming features. + * + * square = Proc.new {|x| x**2 } + * + * square.call(3) #=> 9 + * # shorthands: + * square.(3) #=> 9 + * square[3] #=> 9 + * + * Proc objects are _closures_, meaning they remember and can use the entire + * context in which they were created. + * + * def gen_times(factor) + * Proc.new {|n| n*factor } # remembers the value of factor at the moment of creation + * end + * + * times3 = gen_times(3) + * times5 = gen_times(5) + * + * times3.call(12) #=> 36 + * times5.call(5) #=> 25 + * times3.call(times5.call(4)) #=> 60 + * + * == Creation + * + * There are several methods to create a Proc + * + * * Use the Proc class constructor: + * + * proc1 = Proc.new {|x| x**2 } + * + * * Use the Kernel#proc method as a shorthand of Proc.new: + * + * proc2 = proc {|x| x**2 } + * + * * Receiving a block of code into proc argument (note the <code>&</code>): + * + * def make_proc(&block) + * block + * end + * + * proc3 = make_proc {|x| x**2 } + * + * * Construct a proc with lambda semantics using the Kernel#lambda method + * (see below for explanations about lambdas): + * + * lambda1 = lambda {|x| x**2 } + * + * * Use the {Lambda proc literal}[rdoc-ref:syntax/literals.rdoc@Lambda+Proc+Literals] syntax + * (also constructs a proc with lambda semantics): + * + * lambda2 = ->(x) { x**2 } + * + * == Lambda and non-lambda semantics + * + * Procs are coming in two flavors: lambda and non-lambda (regular procs). + * Differences are: + * + * * In lambdas, +return+ and +break+ means exit from this lambda; + * * In non-lambda procs, +return+ means exit from embracing method + * (and will throw +LocalJumpError+ if invoked outside the method); + * * In non-lambda procs, +break+ means exit from the method which the block given for. + * (and will throw +LocalJumpError+ if invoked after the method returns); + * * In lambdas, arguments are treated in the same way as in methods: strict, + * with +ArgumentError+ for mismatching argument number, + * and no additional argument processing; + * * Regular procs accept arguments more generously: missing arguments + * are filled with +nil+, single Array arguments are deconstructed if the + * proc has multiple arguments, and there is no error raised on extra + * arguments. + * + * Examples: + * + * # +return+ in non-lambda proc, +b+, exits +m2+. + * # (The block +{ return }+ is given for +m1+ and embraced by +m2+.) + * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { return }; $a << :m2 end; m2; p $a + * #=> [] + * + * # +break+ in non-lambda proc, +b+, exits +m1+. + * # (The block +{ break }+ is given for +m1+ and embraced by +m2+.) + * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { break }; $a << :m2 end; m2; p $a + * #=> [:m2] + * + * # +next+ in non-lambda proc, +b+, exits the block. + * # (The block +{ next }+ is given for +m1+ and embraced by +m2+.) + * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { next }; $a << :m2 end; m2; p $a + * #=> [:m1, :m2] + * + * # Using +proc+ method changes the behavior as follows because + * # The block is given for +proc+ method and embraced by +m2+. + * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { return }); $a << :m2 end; m2; p $a + * #=> [] + * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { break }); $a << :m2 end; m2; p $a + * # break from proc-closure (LocalJumpError) + * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { next }); $a << :m2 end; m2; p $a + * #=> [:m1, :m2] + * + * # +return+, +break+ and +next+ in the stubby lambda exits the block. + * # (+lambda+ method behaves same.) + * # (The block is given for stubby lambda syntax and embraced by +m2+.) + * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { return }); $a << :m2 end; m2; p $a + * #=> [:m1, :m2] + * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { break }); $a << :m2 end; m2; p $a + * #=> [:m1, :m2] + * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { next }); $a << :m2 end; m2; p $a + * #=> [:m1, :m2] + * + * p = proc {|x, y| "x=#{x}, y=#{y}" } + * p.call(1, 2) #=> "x=1, y=2" + * p.call([1, 2]) #=> "x=1, y=2", array deconstructed + * p.call(1, 2, 8) #=> "x=1, y=2", extra argument discarded + * p.call(1) #=> "x=1, y=", nil substituted instead of error + * + * l = lambda {|x, y| "x=#{x}, y=#{y}" } + * l.call(1, 2) #=> "x=1, y=2" + * l.call([1, 2]) # ArgumentError: wrong number of arguments (given 1, expected 2) + * l.call(1, 2, 8) # ArgumentError: wrong number of arguments (given 3, expected 2) + * l.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2) + * + * def test_return + * -> { return 3 }.call # just returns from lambda into method body + * proc { return 4 }.call # returns from method + * return 5 + * end + * + * test_return # => 4, return from proc + * + * Lambdas are useful as self-sufficient functions, in particular useful as + * arguments to higher-order functions, behaving exactly like Ruby methods. + * + * Procs are useful for implementing iterators: + * + * def test + * [[1, 2], [3, 4], [5, 6]].map {|a, b| return a if a + b > 10 } + * # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + * end + * + * Inside +map+, the block of code is treated as a regular (non-lambda) proc, + * which means that the internal arrays will be deconstructed to pairs of + * arguments, and +return+ will exit from the method +test+. That would + * not be possible with a stricter lambda. + * + * You can tell a lambda from a regular proc by using the #lambda? instance method. + * + * Lambda semantics is typically preserved during the proc lifetime, including + * <code>&</code>-deconstruction to a block of code: + * + * p = proc {|x, y| x } + * l = lambda {|x, y| x } + * [[1, 2], [3, 4]].map(&p) #=> [1, 3] + * [[1, 2], [3, 4]].map(&l) # ArgumentError: wrong number of arguments (given 1, expected 2) + * + * The only exception is dynamic method definition: even if defined by + * passing a non-lambda proc, methods still have normal semantics of argument + * checking. + * + * class C + * define_method(:e, &proc {}) + * end + * C.new.e(1,2) #=> ArgumentError + * C.new.method(:e).to_proc.lambda? #=> true + * + * This exception ensures that methods never have unusual argument passing + * conventions, and makes it easy to have wrappers defining methods that + * behave as usual. + * + * class C + * def self.def2(name, &body) + * define_method(name, &body) + * end + * + * def2(:f) {} + * end + * C.new.f(1,2) #=> ArgumentError + * + * The wrapper <code>def2</code> receives _body_ as a non-lambda proc, + * yet defines a method which has normal semantics. + * + * == Conversion of other objects to procs + * + * Any object that implements the +to_proc+ method can be converted into + * a proc by the <code>&</code> operator, and therefore can be + * consumed by iterators. + * + * class Greeter + * def initialize(greeting) + * @greeting = greeting + * end + * + * def to_proc + * proc {|name| "#{@greeting}, #{name}!" } + * end + * end + * + * hi = Greeter.new("Hi") + * hey = Greeter.new("Hey") + * ["Bob", "Jane"].map(&hi) #=> ["Hi, Bob!", "Hi, Jane!"] + * ["Bob", "Jane"].map(&hey) #=> ["Hey, Bob!", "Hey, Jane!"] + * + * Of the Ruby core classes, this method is implemented by +Symbol+, + * +Method+, and +Hash+. + * + * :to_s.to_proc.call(1) #=> "1" + * [1, 2].map(&:to_s) #=> ["1", "2"] + * + * method(:puts).to_proc.call(1) # prints 1 + * [1, 2].each(&method(:puts)) # prints 1, 2 + * + * {test: 1}.to_proc.call(:test) #=> 1 + * %i[test many keys].map(&{test: 1}) #=> [1, nil, nil] + * + * == Orphaned Proc + * + * +return+ and +break+ in a block exit a method. + * If a Proc object is generated from the block and the Proc object + * survives until the method is returned, +return+ and +break+ cannot work. + * In such case, +return+ and +break+ raises LocalJumpError. + * A Proc object in such situation is called as orphaned Proc object. + * + * Note that the method to exit is different for +return+ and +break+. + * There is a situation that orphaned for +break+ but not orphaned for +return+. + * + * def m1(&b) b.call end; def m2(); m1 { return } end; m2 # ok + * def m1(&b) b.call end; def m2(); m1 { break } end; m2 # ok + * + * def m1(&b) b end; def m2(); m1 { return }.call end; m2 # ok + * def m1(&b) b end; def m2(); m1 { break }.call end; m2 # LocalJumpError + * + * def m1(&b) b end; def m2(); m1 { return } end; m2.call # LocalJumpError + * def m1(&b) b end; def m2(); m1 { break } end; m2.call # LocalJumpError + * + * Since +return+ and +break+ exits the block itself in lambdas, + * lambdas cannot be orphaned. + * + * == Anonymous block parameters + * + * To simplify writing short blocks, Ruby provides two different types of + * anonymous parameters: +it+ (single parameter) and numbered ones: <tt>_1</tt>, + * <tt>_2</tt> and so on. + * + * # Explicit parameter: + * %w[test me please].each { |str| puts str.upcase } # prints TEST, ME, PLEASE + * (1..5).map { |i| i**2 } # => [1, 4, 9, 16, 25] + * + * # it: + * %w[test me please].each { puts it.upcase } # prints TEST, ME, PLEASE + * (1..5).map { it**2 } # => [1, 4, 9, 16, 25] + * + * # Numbered parameter: + * %w[test me please].each { puts _1.upcase } # prints TEST, ME, PLEASE + * (1..5).map { _1**2 } # => [1, 4, 9, 16, 25] + * + * === +it+ + * + * +it+ is a name that is available inside a block when no explicit parameters + * defined, as shown above. + * + * %w[test me please].each { puts it.upcase } # prints TEST, ME, PLEASE + * (1..5).map { it**2 } # => [1, 4, 9, 16, 25] + * + * +it+ is a "soft keyword": it is not a reserved name, and can be used as + * a name for methods and local variables: + * + * it = 5 # no warnings + * def it(&block) # RSpec-like API, no warnings + * # ... + * end + * + * +it+ can be used as a local variable even in blocks that use it as an + * implicit parameter (though this style is obviously confusing): + * + * [1, 2, 3].each { + * # takes a value of implicit parameter "it" and uses it to + * # define a local variable with the same name + * it = it**2 + * p it + * } + * + * In a block with explicit parameters defined +it+ usage raises an exception: + * + * [1, 2, 3].each { |x| p it } + * # syntax error found (SyntaxError) + * # [1, 2, 3].each { |x| p it } + * # ^~ 'it' is not allowed when an ordinary parameter is defined + * + * But if a local name (variable or method) is available, it would be used: + * + * it = 5 + * [1, 2, 3].each { |x| p it } + * # Prints 5, 5, 5 + * + * Blocks using +it+ can be nested: + * + * %w[test me].each { it.each_char { p it } } + * # Prints "t", "e", "s", "t", "m", "e" + * + * Blocks using +it+ are considered to have one parameter: + * + * p = proc { it**2 } + * l = lambda { it**2 } + * p.parameters # => [[:opt]] + * p.arity # => 1 + * l.parameters # => [[:req]] + * l.arity # => 1 + * + * === Numbered parameters + * + * Numbered parameters are another way to name block parameters implicitly. + * Unlike +it+, numbered parameters allow to refer to several parameters + * in one block. + * + * %w[test me please].each { puts _1.upcase } # prints TEST, ME, PLEASE + * {a: 100, b: 200}.map { "#{_1} = #{_2}" } # => "a = 100", "b = 200" + * + * Parameter names from +_1+ to +_9+ are supported: + * + * [10, 20, 30].zip([40, 50, 60], [70, 80, 90]).map { _1 + _2 + _3 } + * # => [120, 150, 180] + * + * Though, it is advised to resort to them wisely, probably limiting + * yourself to +_1+ and +_2+, and to one-line blocks. + * + * Numbered parameters can't be used together with explicitly named + * ones: + * + * [10, 20, 30].map { |x| _1**2 } + * # SyntaxError (ordinary parameter is defined) + * + * Numbered parameters can't be mixed with +it+ either: + * + * [10, 20, 30].map { _1 + it } + * # SyntaxError: 'it' is not allowed when a numbered parameter is already used + * + * To avoid conflicts, naming local variables or method + * arguments +_1+, +_2+ and so on, causes an error. + * + * _1 = 'test' + * # ^~ _1 is reserved for numbered parameters (SyntaxError) + * + * Using implicit numbered parameters affects block's arity: + * + * p = proc { _1 + _2 } + * l = lambda { _1 + _2 } + * p.parameters # => [[:opt, :_1], [:opt, :_2]] + * p.arity # => 2 + * l.parameters # => [[:req, :_1], [:req, :_2]] + * l.arity # => 2 + * + * Blocks with numbered parameters can't be nested: + * + * %w[test me].each { _1.each_char { p _1 } } + * # numbered parameter is already used in outer block (SyntaxError) + * # %w[test me].each { _1.each_char { p _1 } } + * # ^~ + * + */ + +void +Init_Proc(void) +{ +#undef rb_intern + /* Proc */ + rb_cProc = rb_define_class("Proc", rb_cObject); + rb_undef_alloc_func(rb_cProc); + rb_define_singleton_method(rb_cProc, "new", rb_proc_s_new, -1); + + rb_add_method_optimized(rb_cProc, idCall, OPTIMIZED_METHOD_TYPE_CALL, 0, METHOD_VISI_PUBLIC); + rb_add_method_optimized(rb_cProc, rb_intern("[]"), OPTIMIZED_METHOD_TYPE_CALL, 0, METHOD_VISI_PUBLIC); + rb_add_method_optimized(rb_cProc, rb_intern("==="), OPTIMIZED_METHOD_TYPE_CALL, 0, METHOD_VISI_PUBLIC); + rb_add_method_optimized(rb_cProc, rb_intern("yield"), OPTIMIZED_METHOD_TYPE_CALL, 0, METHOD_VISI_PUBLIC); + +#if 0 /* for RDoc */ + rb_define_method(rb_cProc, "call", proc_call, -1); + rb_define_method(rb_cProc, "[]", proc_call, -1); + rb_define_method(rb_cProc, "===", proc_call, -1); + rb_define_method(rb_cProc, "yield", proc_call, -1); +#endif + + rb_define_method(rb_cProc, "to_proc", proc_to_proc, 0); + rb_define_method(rb_cProc, "arity", proc_arity, 0); + rb_define_method(rb_cProc, "clone", proc_clone, 0); + rb_define_method(rb_cProc, "dup", proc_dup, 0); + rb_define_method(rb_cProc, "hash", proc_hash, 0); + rb_define_method(rb_cProc, "to_s", proc_to_s, 0); + rb_define_alias(rb_cProc, "inspect", "to_s"); + rb_define_method(rb_cProc, "lambda?", rb_proc_lambda_p, 0); + rb_define_method(rb_cProc, "binding", proc_binding, 0); + rb_define_method(rb_cProc, "curry", proc_curry, -1); + rb_define_method(rb_cProc, "<<", proc_compose_to_left, 1); + rb_define_method(rb_cProc, ">>", proc_compose_to_right, 1); + rb_define_method(rb_cProc, "==", proc_eq, 1); + rb_define_method(rb_cProc, "eql?", proc_eq, 1); + rb_define_method(rb_cProc, "source_location", rb_proc_location, 0); + rb_define_method(rb_cProc, "parameters", rb_proc_parameters, -1); + rb_define_method(rb_cProc, "ruby2_keywords", proc_ruby2_keywords, 0); + // rb_define_method(rb_cProc, "isolate", rb_proc_isolate, 0); is not accepted. + + /* Exceptions */ + rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError); + rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0); + rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0); + + rb_eSysStackError = rb_define_class("SystemStackError", rb_eException); + rb_vm_register_special_exception(ruby_error_sysstack, rb_eSysStackError, "stack level too deep"); + + /* utility functions */ + rb_define_global_function("proc", f_proc, 0); + rb_define_global_function("lambda", f_lambda, 0); + + /* Method */ + rb_cMethod = rb_define_class("Method", rb_cObject); + rb_undef_alloc_func(rb_cMethod); + rb_undef_method(CLASS_OF(rb_cMethod), "new"); + rb_define_method(rb_cMethod, "==", method_eq, 1); + rb_define_method(rb_cMethod, "eql?", method_eq, 1); + rb_define_method(rb_cMethod, "hash", method_hash, 0); + rb_define_method(rb_cMethod, "clone", method_clone, 0); + rb_define_method(rb_cMethod, "dup", method_dup, 0); + rb_define_method(rb_cMethod, "call", rb_method_call_pass_called_kw, -1); + rb_define_method(rb_cMethod, "===", rb_method_call_pass_called_kw, -1); + rb_define_method(rb_cMethod, "curry", rb_method_curry, -1); + rb_define_method(rb_cMethod, "<<", rb_method_compose_to_left, 1); + rb_define_method(rb_cMethod, ">>", rb_method_compose_to_right, 1); + rb_define_method(rb_cMethod, "[]", rb_method_call_pass_called_kw, -1); + rb_define_method(rb_cMethod, "arity", method_arity_m, 0); + rb_define_method(rb_cMethod, "inspect", method_inspect, 0); + rb_define_method(rb_cMethod, "to_s", method_inspect, 0); + rb_define_method(rb_cMethod, "to_proc", method_to_proc, 0); + rb_define_method(rb_cMethod, "receiver", method_receiver, 0); + rb_define_method(rb_cMethod, "name", method_name, 0); + rb_define_method(rb_cMethod, "original_name", method_original_name, 0); + rb_define_method(rb_cMethod, "owner", method_owner, 0); + rb_define_method(rb_cMethod, "unbind", method_unbind, 0); + rb_define_method(rb_cMethod, "source_location", rb_method_location, 0); + rb_define_method(rb_cMethod, "parameters", rb_method_parameters, 0); + rb_define_method(rb_cMethod, "super_method", method_super_method, 0); + rb_define_method(rb_mKernel, "method", rb_obj_method, 1); + rb_define_method(rb_mKernel, "public_method", rb_obj_public_method, 1); + rb_define_method(rb_mKernel, "singleton_method", rb_obj_singleton_method, 1); + + rb_define_method(rb_cMethod, "box", method_box, 0); + + /* UnboundMethod */ + rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject); + rb_undef_alloc_func(rb_cUnboundMethod); + rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new"); + rb_define_method(rb_cUnboundMethod, "==", unbound_method_eq, 1); + rb_define_method(rb_cUnboundMethod, "eql?", unbound_method_eq, 1); + rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0); + rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0); + rb_define_method(rb_cUnboundMethod, "dup", method_dup, 0); + rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0); + rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0); + rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0); + rb_define_method(rb_cUnboundMethod, "name", method_name, 0); + rb_define_method(rb_cUnboundMethod, "original_name", method_original_name, 0); + rb_define_method(rb_cUnboundMethod, "owner", method_owner, 0); + rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1); + rb_define_method(rb_cUnboundMethod, "bind_call", umethod_bind_call, -1); + rb_define_method(rb_cUnboundMethod, "source_location", rb_method_location, 0); + rb_define_method(rb_cUnboundMethod, "parameters", rb_method_parameters, 0); + rb_define_method(rb_cUnboundMethod, "super_method", method_super_method, 0); + + /* Module#*_method */ + rb_define_method(rb_cModule, "instance_method", rb_mod_instance_method, 1); + rb_define_method(rb_cModule, "public_instance_method", rb_mod_public_instance_method, 1); + rb_define_method(rb_cModule, "define_method", rb_mod_define_method, -1); + + /* Kernel */ + rb_define_method(rb_mKernel, "define_singleton_method", rb_obj_define_method, -1); + + rb_define_private_method(rb_singleton_class(rb_vm_top_self()), + "define_method", top_define_method, -1); +} + +/* + * Objects of class Binding encapsulate the execution context at some + * particular place in the code and retain this context for future + * use. The variables, methods, value of <code>self</code>, and + * possibly an iterator block that can be accessed in this context + * are all retained. Binding objects can be created using + * Kernel#binding, and are made available to the callback of + * Kernel#set_trace_func and instances of TracePoint. + * + * These binding objects can be passed as the second argument of the + * Kernel#eval method, establishing an environment for the + * evaluation. + * + * class Demo + * def initialize(n) + * @secret = n + * end + * def get_binding + * binding + * end + * end + * + * k1 = Demo.new(99) + * b1 = k1.get_binding + * k2 = Demo.new(-3) + * b2 = k2.get_binding + * + * eval("@secret", b1) #=> 99 + * eval("@secret", b2) #=> -3 + * eval("@secret") #=> nil + * + * Binding objects have no class-specific methods. + * + */ + +void +Init_Binding(void) +{ + rb_gc_register_address(&sym_proc_cache); + + rb_cBinding = rb_define_class("Binding", rb_cObject); + rb_undef_alloc_func(rb_cBinding); + rb_undef_method(CLASS_OF(rb_cBinding), "new"); + rb_define_method(rb_cBinding, "clone", binding_clone, 0); + rb_define_method(rb_cBinding, "dup", binding_dup, 0); + rb_define_method(rb_cBinding, "eval", bind_eval, -1); + rb_define_method(rb_cBinding, "local_variables", bind_local_variables, 0); + rb_define_method(rb_cBinding, "local_variable_get", bind_local_variable_get, 1); + rb_define_method(rb_cBinding, "local_variable_set", bind_local_variable_set, 2); + rb_define_method(rb_cBinding, "local_variable_defined?", bind_local_variable_defined_p, 1); + rb_define_method(rb_cBinding, "implicit_parameters", bind_implicit_parameters, 0); + rb_define_method(rb_cBinding, "implicit_parameter_get", bind_implicit_parameter_get, 1); + rb_define_method(rb_cBinding, "implicit_parameter_defined?", bind_implicit_parameter_defined_p, 1); + rb_define_method(rb_cBinding, "receiver", bind_receiver, 0); + rb_define_method(rb_cBinding, "source_location", bind_location, 0); + rb_define_global_function("binding", rb_f_binding, 0); +} |
