summaryrefslogtreecommitdiff
path: root/prism/util/pm_integer.c
diff options
context:
space:
mode:
Diffstat (limited to 'prism/util/pm_integer.c')
-rw-r--r--prism/util/pm_integer.c642
1 files changed, 642 insertions, 0 deletions
diff --git a/prism/util/pm_integer.c b/prism/util/pm_integer.c
new file mode 100644
index 0000000000..e523bae90b
--- /dev/null
+++ b/prism/util/pm_integer.c
@@ -0,0 +1,642 @@
+#include "prism/util/pm_integer.h"
+
+/**
+ * Pull out the length and values from the integer, regardless of the form in
+ * which the length/values are stored.
+ */
+#define INTEGER_EXTRACT(integer, length_variable, values_variable) \
+ if ((integer)->values == NULL) { \
+ length_variable = 1; \
+ values_variable = &(integer)->value; \
+ } else { \
+ length_variable = (integer)->length; \
+ values_variable = (integer)->values; \
+ }
+
+/**
+ * Adds two positive pm_integer_t with the given base.
+ * Return pm_integer_t with values allocated. Not normalized.
+ */
+static void
+big_add(pm_integer_t *destination, pm_integer_t *left, pm_integer_t *right, uint64_t base) {
+ size_t left_length;
+ uint32_t *left_values;
+ INTEGER_EXTRACT(left, left_length, left_values)
+
+ size_t right_length;
+ uint32_t *right_values;
+ INTEGER_EXTRACT(right, right_length, right_values)
+
+ size_t length = left_length < right_length ? right_length : left_length;
+ uint32_t *values = (uint32_t *) xmalloc(sizeof(uint32_t) * (length + 1));
+ if (values == NULL) return;
+
+ uint64_t carry = 0;
+ for (size_t index = 0; index < length; index++) {
+ uint64_t sum = carry + (index < left_length ? left_values[index] : 0) + (index < right_length ? right_values[index] : 0);
+ values[index] = (uint32_t) (sum % base);
+ carry = sum / base;
+ }
+
+ if (carry > 0) {
+ values[length] = (uint32_t) carry;
+ length++;
+ }
+
+ *destination = (pm_integer_t) { 0, length, values, false };
+}
+
+/**
+ * Internal use for karatsuba_multiply. Calculates `a - b - c` with the given
+ * base. Assume a, b, c, a - b - c all to be poitive.
+ * Return pm_integer_t with values allocated. Not normalized.
+ */
+static void
+big_sub2(pm_integer_t *destination, pm_integer_t *a, pm_integer_t *b, pm_integer_t *c, uint64_t base) {
+ size_t a_length;
+ uint32_t *a_values;
+ INTEGER_EXTRACT(a, a_length, a_values)
+
+ size_t b_length;
+ uint32_t *b_values;
+ INTEGER_EXTRACT(b, b_length, b_values)
+
+ size_t c_length;
+ uint32_t *c_values;
+ INTEGER_EXTRACT(c, c_length, c_values)
+
+ uint32_t *values = (uint32_t*) xmalloc(sizeof(uint32_t) * a_length);
+ int64_t carry = 0;
+
+ for (size_t index = 0; index < a_length; index++) {
+ int64_t sub = (
+ carry +
+ a_values[index] -
+ (index < b_length ? b_values[index] : 0) -
+ (index < c_length ? c_values[index] : 0)
+ );
+
+ if (sub >= 0) {
+ values[index] = (uint32_t) sub;
+ carry = 0;
+ } else {
+ sub += 2 * (int64_t) base;
+ values[index] = (uint32_t) ((uint64_t) sub % base);
+ carry = sub / (int64_t) base - 2;
+ }
+ }
+
+ while (a_length > 1 && values[a_length - 1] == 0) a_length--;
+ *destination = (pm_integer_t) { 0, a_length, values, false };
+}
+
+/**
+ * Multiply two positive integers with the given base using karatsuba algorithm.
+ * Return pm_integer_t with values allocated. Not normalized.
+ */
+static void
+karatsuba_multiply(pm_integer_t *destination, pm_integer_t *left, pm_integer_t *right, uint64_t base) {
+ size_t left_length;
+ uint32_t *left_values;
+ INTEGER_EXTRACT(left, left_length, left_values)
+
+ size_t right_length;
+ uint32_t *right_values;
+ INTEGER_EXTRACT(right, right_length, right_values)
+
+ if (left_length > right_length) {
+ size_t temporary_length = left_length;
+ left_length = right_length;
+ right_length = temporary_length;
+
+ uint32_t *temporary_values = left_values;
+ left_values = right_values;
+ right_values = temporary_values;
+ }
+
+ if (left_length <= 10) {
+ size_t length = left_length + right_length;
+ uint32_t *values = (uint32_t *) xcalloc(length, sizeof(uint32_t));
+ if (values == NULL) return;
+
+ for (size_t left_index = 0; left_index < left_length; left_index++) {
+ uint32_t carry = 0;
+ for (size_t right_index = 0; right_index < right_length; right_index++) {
+ uint64_t product = (uint64_t) left_values[left_index] * right_values[right_index] + values[left_index + right_index] + carry;
+ values[left_index + right_index] = (uint32_t) (product % base);
+ carry = (uint32_t) (product / base);
+ }
+ values[left_index + right_length] = carry;
+ }
+
+ while (length > 1 && values[length - 1] == 0) length--;
+ *destination = (pm_integer_t) { 0, length, values, false };
+ return;
+ }
+
+ if (left_length * 2 <= right_length) {
+ uint32_t *values = (uint32_t *) xcalloc(left_length + right_length, sizeof(uint32_t));
+
+ for (size_t start_offset = 0; start_offset < right_length; start_offset += left_length) {
+ size_t end_offset = start_offset + left_length;
+ if (end_offset > right_length) end_offset = right_length;
+
+ pm_integer_t sliced_left = {
+ .value = 0,
+ .length = left_length,
+ .values = left_values,
+ .negative = false
+ };
+
+ pm_integer_t sliced_right = {
+ .value = 0,
+ .length = end_offset - start_offset,
+ .values = right_values + start_offset,
+ .negative = false
+ };
+
+ pm_integer_t product;
+ karatsuba_multiply(&product, &sliced_left, &sliced_right, base);
+
+ uint32_t carry = 0;
+ for (size_t index = 0; index < product.length; index++) {
+ uint64_t sum = (uint64_t) values[start_offset + index] + product.values[index] + carry;
+ values[start_offset + index] = (uint32_t) (sum % base);
+ carry = (uint32_t) (sum / base);
+ }
+
+ if (carry > 0) values[start_offset + product.length] += carry;
+ pm_integer_free(&product);
+ }
+
+ *destination = (pm_integer_t) { 0, left_length + right_length, values, false };
+ return;
+ }
+
+ size_t half = left_length / 2;
+ pm_integer_t x0 = { 0, half, left_values, false };
+ pm_integer_t x1 = { 0, left_length - half, left_values + half, false };
+ pm_integer_t y0 = { 0, half, right_values, false };
+ pm_integer_t y1 = { 0, right_length - half, right_values + half, false };
+
+ pm_integer_t z0 = { 0 };
+ karatsuba_multiply(&z0, &x0, &y0, base);
+
+ pm_integer_t z2 = { 0 };
+ karatsuba_multiply(&z2, &x1, &y1, base);
+
+ // For simplicity to avoid considering negative values,
+ // use `z1 = (x0 + x1) * (y0 + y1) - z0 - z2` instead of original karatsuba algorithm.
+ pm_integer_t x01 = { 0 };
+ big_add(&x01, &x0, &x1, base);
+
+ pm_integer_t y01 = { 0 };
+ big_add(&y01, &y0, &y1, base);
+
+ pm_integer_t xy = { 0 };
+ karatsuba_multiply(&xy, &x01, &y01, base);
+
+ pm_integer_t z1;
+ big_sub2(&z1, &xy, &z0, &z2, base);
+
+ size_t length = left_length + right_length;
+ uint32_t *values = (uint32_t*) xcalloc(length, sizeof(uint32_t));
+
+ assert(z0.values != NULL);
+ memcpy(values, z0.values, sizeof(uint32_t) * z0.length);
+
+ assert(z2.values != NULL);
+ memcpy(values + 2 * half, z2.values, sizeof(uint32_t) * z2.length);
+
+ uint32_t carry = 0;
+ for(size_t index = 0; index < z1.length; index++) {
+ uint64_t sum = (uint64_t) carry + values[index + half] + z1.values[index];
+ values[index + half] = (uint32_t) (sum % base);
+ carry = (uint32_t) (sum / base);
+ }
+
+ for(size_t index = half + z1.length; carry > 0; index++) {
+ uint64_t sum = (uint64_t) carry + values[index];
+ values[index] = (uint32_t) (sum % base);
+ carry = (uint32_t) (sum / base);
+ }
+
+ while (length > 1 && values[length - 1] == 0) length--;
+ pm_integer_free(&z0);
+ pm_integer_free(&z1);
+ pm_integer_free(&z2);
+ pm_integer_free(&x01);
+ pm_integer_free(&y01);
+ pm_integer_free(&xy);
+
+ *destination = (pm_integer_t) { 0, length, values, false };
+}
+
+/**
+ * The values of a hexadecimal digit, where the index is the ASCII character.
+ * Note that there's an odd exception here where _ is mapped to 0. This is
+ * because it's possible for us to end up trying to parse a number that has
+ * already had an error attached to it, and we want to provide _something_ to
+ * the user.
+ */
+static const int8_t pm_integer_parse_digit_values[256] = {
+// 0 1 2 3 4 5 6 7 8 9 A B C D E F
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 1x
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 2x
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, // 3x
+ -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 4x
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, // 5x
+ -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 6x
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 7x
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 8x
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 9x
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Ax
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Bx
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Cx
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Dx
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Ex
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Fx
+};
+
+/**
+ * Return the value of a hexadecimal digit in a uint8_t.
+ */
+static uint8_t
+pm_integer_parse_digit(const uint8_t character) {
+ int8_t value = pm_integer_parse_digit_values[character];
+ assert(value != -1 && "invalid digit");
+
+ return (uint8_t) value;
+}
+
+/**
+ * Create a pm_integer_t from uint64_t with the given base. It is assumed that
+ * the memory for the pm_integer_t pointer has been zeroed.
+ */
+static void
+pm_integer_from_uint64(pm_integer_t *integer, uint64_t value, uint64_t base) {
+ if (value < base) {
+ integer->value = (uint32_t) value;
+ return;
+ }
+
+ size_t length = 0;
+ uint64_t length_value = value;
+ while (length_value > 0) {
+ length++;
+ length_value /= base;
+ }
+
+ uint32_t *values = (uint32_t *) xmalloc(sizeof(uint32_t) * length);
+ if (values == NULL) return;
+
+ for (size_t value_index = 0; value_index < length; value_index++) {
+ values[value_index] = (uint32_t) (value % base);
+ value /= base;
+ }
+
+ integer->length = length;
+ integer->values = values;
+}
+
+/**
+ * Normalize pm_integer_t.
+ * Heading zero values will be removed. If the integer fits into uint32_t,
+ * values is set to NULL, length is set to 0, and value field will be used.
+ */
+static void
+pm_integer_normalize(pm_integer_t *integer) {
+ if (integer->values == NULL) {
+ return;
+ }
+
+ while (integer->length > 1 && integer->values[integer->length - 1] == 0) {
+ integer->length--;
+ }
+
+ if (integer->length > 1) {
+ return;
+ }
+
+ uint32_t value = integer->values[0];
+ bool negative = integer->negative && value != 0;
+
+ pm_integer_free(integer);
+ *integer = (pm_integer_t) { .value = value, .length = 0, .values = NULL, .negative = negative };
+}
+
+/**
+ * Convert base of the integer.
+ * In practice, it converts 10**9 to 1<<32 or 1<<32 to 10**9.
+ */
+static void
+pm_integer_convert_base(pm_integer_t *destination, const pm_integer_t *source, uint64_t base_from, uint64_t base_to) {
+ size_t source_length;
+ const uint32_t *source_values;
+ INTEGER_EXTRACT(source, source_length, source_values)
+
+ size_t bigints_length = (source_length + 1) / 2;
+ assert(bigints_length > 0);
+
+ pm_integer_t *bigints = (pm_integer_t *) xcalloc(bigints_length, sizeof(pm_integer_t));
+ if (bigints == NULL) return;
+
+ for (size_t index = 0; index < source_length; index += 2) {
+ uint64_t value = source_values[index] + base_from * (index + 1 < source_length ? source_values[index + 1] : 0);
+ pm_integer_from_uint64(&bigints[index / 2], value, base_to);
+ }
+
+ pm_integer_t base = { 0 };
+ pm_integer_from_uint64(&base, base_from, base_to);
+
+ while (bigints_length > 1) {
+ pm_integer_t next_base;
+ karatsuba_multiply(&next_base, &base, &base, base_to);
+
+ pm_integer_free(&base);
+ base = next_base;
+
+ size_t next_length = (bigints_length + 1) / 2;
+ pm_integer_t *next_bigints = (pm_integer_t *) xcalloc(next_length, sizeof(pm_integer_t));
+
+ for (size_t bigints_index = 0; bigints_index < bigints_length; bigints_index += 2) {
+ if (bigints_index + 1 == bigints_length) {
+ next_bigints[bigints_index / 2] = bigints[bigints_index];
+ } else {
+ pm_integer_t multiplied = { 0 };
+ karatsuba_multiply(&multiplied, &base, &bigints[bigints_index + 1], base_to);
+
+ big_add(&next_bigints[bigints_index / 2], &bigints[bigints_index], &multiplied, base_to);
+ pm_integer_free(&bigints[bigints_index]);
+ pm_integer_free(&bigints[bigints_index + 1]);
+ pm_integer_free(&multiplied);
+ }
+ }
+
+ xfree(bigints);
+ bigints = next_bigints;
+ bigints_length = next_length;
+ }
+
+ *destination = bigints[0];
+ destination->negative = source->negative;
+ pm_integer_normalize(destination);
+
+ xfree(bigints);
+ pm_integer_free(&base);
+}
+
+#undef INTEGER_EXTRACT
+
+/**
+ * Convert digits to integer with the given power-of-two base.
+ */
+static void
+pm_integer_parse_powof2(pm_integer_t *integer, uint32_t base, const uint8_t *digits, size_t digits_length) {
+ size_t bit = 1;
+ while (base > (uint32_t) (1 << bit)) bit++;
+
+ size_t length = (digits_length * bit + 31) / 32;
+ uint32_t *values = (uint32_t *) xcalloc(length, sizeof(uint32_t));
+
+ for (size_t digit_index = 0; digit_index < digits_length; digit_index++) {
+ size_t bit_position = bit * (digits_length - digit_index - 1);
+ uint32_t value = digits[digit_index];
+
+ size_t index = bit_position / 32;
+ size_t shift = bit_position % 32;
+
+ values[index] |= value << shift;
+ if (32 - shift < bit) values[index + 1] |= value >> (32 - shift);
+ }
+
+ while (length > 1 && values[length - 1] == 0) length--;
+ *integer = (pm_integer_t) { .value = 0, .length = length, .values = values, .negative = false };
+ pm_integer_normalize(integer);
+}
+
+/**
+ * Convert decimal digits to pm_integer_t.
+ */
+static void
+pm_integer_parse_decimal(pm_integer_t *integer, const uint8_t *digits, size_t digits_length) {
+ const size_t batch = 9;
+ size_t length = (digits_length + batch - 1) / batch;
+
+ uint32_t *values = (uint32_t *) xcalloc(length, sizeof(uint32_t));
+ uint32_t value = 0;
+
+ for (size_t digits_index = 0; digits_index < digits_length; digits_index++) {
+ value = value * 10 + digits[digits_index];
+
+ size_t reverse_index = digits_length - digits_index - 1;
+ if (reverse_index % batch == 0) {
+ values[reverse_index / batch] = value;
+ value = 0;
+ }
+ }
+
+ // Convert base from 10**9 to 1<<32.
+ pm_integer_convert_base(integer, &((pm_integer_t) { .value = 0, .length = length, .values = values, .negative = false }), 1000000000, ((uint64_t) 1 << 32));
+ xfree(values);
+}
+
+/**
+ * Parse a large integer from a string that does not fit into uint32_t.
+ */
+static void
+pm_integer_parse_big(pm_integer_t *integer, uint32_t multiplier, const uint8_t *start, const uint8_t *end) {
+ // Allocate an array to store digits.
+ uint8_t *digits = xmalloc(sizeof(uint8_t) * (size_t) (end - start));
+ size_t digits_length = 0;
+
+ for (; start < end; start++) {
+ if (*start == '_') continue;
+ digits[digits_length++] = pm_integer_parse_digit(*start);
+ }
+
+ // Construct pm_integer_t from the digits.
+ if (multiplier == 10) {
+ pm_integer_parse_decimal(integer, digits, digits_length);
+ } else {
+ pm_integer_parse_powof2(integer, multiplier, digits, digits_length);
+ }
+
+ xfree(digits);
+}
+
+/**
+ * Parse an integer from a string. This assumes that the format of the integer
+ * has already been validated, as internal validation checks are not performed
+ * here.
+ */
+PRISM_EXPORTED_FUNCTION void
+pm_integer_parse(pm_integer_t *integer, pm_integer_base_t base, const uint8_t *start, const uint8_t *end) {
+ // Ignore unary +. Unary + is parsed differently and will not end up here.
+ // Instead, it will modify the parsed integer later.
+ if (*start == '+') start++;
+
+ // Determine the multiplier from the base, and skip past any prefixes.
+ uint32_t multiplier = 10;
+ switch (base) {
+ case PM_INTEGER_BASE_BINARY:
+ start += 2; // 0b
+ multiplier = 2;
+ break;
+ case PM_INTEGER_BASE_OCTAL:
+ start++; // 0
+ if (*start == '_' || *start == 'o' || *start == 'O') start++; // o
+ multiplier = 8;
+ break;
+ case PM_INTEGER_BASE_DECIMAL:
+ if (*start == '0' && (end - start) > 1) start += 2; // 0d
+ break;
+ case PM_INTEGER_BASE_HEXADECIMAL:
+ start += 2; // 0x
+ multiplier = 16;
+ break;
+ case PM_INTEGER_BASE_UNKNOWN:
+ if (*start == '0' && (end - start) > 1) {
+ switch (start[1]) {
+ case '_': start += 2; multiplier = 8; break;
+ case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': start++; multiplier = 8; break;
+ case 'b': case 'B': start += 2; multiplier = 2; break;
+ case 'o': case 'O': start += 2; multiplier = 8; break;
+ case 'd': case 'D': start += 2; break;
+ case 'x': case 'X': start += 2; multiplier = 16; break;
+ default: assert(false && "unreachable"); break;
+ }
+ }
+ break;
+ }
+
+ // It's possible that we've consumed everything at this point if there is an
+ // invalid integer. If this is the case, we'll just return 0.
+ if (start >= end) return;
+
+ const uint8_t *cursor = start;
+ uint64_t value = (uint64_t) pm_integer_parse_digit(*cursor++);
+
+ for (; cursor < end; cursor++) {
+ if (*cursor == '_') continue;
+ value = value * multiplier + (uint64_t) pm_integer_parse_digit(*cursor);
+
+ if (value > UINT32_MAX) {
+ // If the integer is too large to fit into a single uint32_t, then
+ // we'll parse it as a big integer.
+ pm_integer_parse_big(integer, multiplier, start, end);
+ return;
+ }
+ }
+
+ integer->value = (uint32_t) value;
+}
+
+/**
+ * Return the memory size of the integer.
+ */
+size_t
+pm_integer_memsize(const pm_integer_t *integer) {
+ return sizeof(pm_integer_t) + integer->length * sizeof(uint32_t);
+}
+
+/**
+ * Compare two integers. This function returns -1 if the left integer is less
+ * than the right integer, 0 if they are equal, and 1 if the left integer is
+ * greater than the right integer.
+ */
+int
+pm_integer_compare(const pm_integer_t *left, const pm_integer_t *right) {
+ if (left->negative != right->negative) return left->negative ? -1 : 1;
+ int negative = left->negative ? -1 : 1;
+
+ if (left->values == NULL && right->values == NULL) {
+ if (left->value < right->value) return -1 * negative;
+ if (left->value > right->value) return 1 * negative;
+ return 0;
+ }
+
+ if (left->values == NULL || left->length < right->length) return -1 * negative;
+ if (right->values == NULL || left->length > right->length) return 1 * negative;
+
+ for (size_t index = 0; index < left->length; index++) {
+ size_t value_index = left->length - index - 1;
+ uint32_t left_value = left->values[value_index];
+ uint32_t right_value = right->values[value_index];
+
+ if (left_value < right_value) return -1 * negative;
+ if (left_value > right_value) return 1 * negative;
+ }
+
+ return 0;
+}
+
+/**
+ * Convert an integer to a decimal string.
+ */
+PRISM_EXPORTED_FUNCTION void
+pm_integer_string(pm_buffer_t *buffer, const pm_integer_t *integer) {
+ if (integer->negative) {
+ pm_buffer_append_byte(buffer, '-');
+ }
+
+ // If the integer fits into a single uint32_t, then we can just append the
+ // value directly to the buffer.
+ if (integer->values == NULL) {
+ pm_buffer_append_format(buffer, "%" PRIu32, integer->value);
+ return;
+ }
+
+ // If the integer is two uint32_t values, then we can | them together and
+ // append the result to the buffer.
+ if (integer->length == 2) {
+ const uint64_t value = ((uint64_t) integer->values[0]) | ((uint64_t) integer->values[1] << 32);
+ pm_buffer_append_format(buffer, "%" PRIu64, value);
+ return;
+ }
+
+ // Otherwise, first we'll convert the base from 1<<32 to 10**9.
+ pm_integer_t converted = { 0 };
+ pm_integer_convert_base(&converted, integer, (uint64_t) 1 << 32, 1000000000);
+
+ if (converted.values == NULL) {
+ pm_buffer_append_format(buffer, "%" PRIu32, converted.value);
+ pm_integer_free(&converted);
+ return;
+ }
+
+ // Allocate a buffer that we'll copy the decimal digits into.
+ size_t digits_length = converted.length * 9;
+ char *digits = xcalloc(digits_length, sizeof(char));
+ if (digits == NULL) return;
+
+ // Pack bigdecimal to digits.
+ for (size_t value_index = 0; value_index < converted.length; value_index++) {
+ uint32_t value = converted.values[value_index];
+
+ for (size_t digit_index = 0; digit_index < 9; digit_index++) {
+ digits[digits_length - 9 * value_index - digit_index - 1] = (char) ('0' + value % 10);
+ value /= 10;
+ }
+ }
+
+ size_t start_offset = 0;
+ while (start_offset < digits_length - 1 && digits[start_offset] == '0') start_offset++;
+
+ // Finally, append the string to the buffer and free the digits.
+ pm_buffer_append_string(buffer, digits + start_offset, digits_length - start_offset);
+ xfree(digits);
+ pm_integer_free(&converted);
+}
+
+/**
+ * Free the internal memory of an integer. This memory will only be allocated if
+ * the integer exceeds the size of a single uint32_t.
+ */
+PRISM_EXPORTED_FUNCTION void
+pm_integer_free(pm_integer_t *integer) {
+ if (integer->values) {
+ xfree(integer->values);
+ }
+}