summaryrefslogtreecommitdiff
path: root/numeric.c
diff options
context:
space:
mode:
Diffstat (limited to 'numeric.c')
-rw-r--r--numeric.c1465
1 files changed, 869 insertions, 596 deletions
diff --git a/numeric.c b/numeric.c
index 7489d96dd2..e8df2a6aa0 100644
--- a/numeric.c
+++ b/numeric.c
@@ -144,31 +144,37 @@ round_half_down(double x, double s)
static double
round_half_even(double x, double s)
{
- double f, d, xs = x * s;
+ double u, v, us, vs, f, d, uf;
+
+ v = modf(x, &u);
+ us = u * s;
+ vs = v * s;
if (x > 0.0) {
- f = floor(xs);
- d = xs - f;
+ f = floor(vs);
+ uf = us + f;
+ d = vs - f;
if (d > 0.5)
d = 1.0;
- else if (d == 0.5 || ((double)((f + 0.5) / s) <= x))
- d = fmod(f, 2.0);
+ else if (d == 0.5 || ((double)((uf + 0.5) / s) <= x))
+ d = fmod(uf, 2.0);
else
d = 0.0;
x = f + d;
}
else if (x < 0.0) {
- f = ceil(xs);
- d = f - xs;
+ f = ceil(vs);
+ uf = us + f;
+ d = f - vs;
if (d > 0.5)
d = 1.0;
- else if (d == 0.5 || ((double)((f - 0.5) / s) >= x))
- d = fmod(-f, 2.0);
+ else if (d == 0.5 || ((double)((uf - 0.5) / s) >= x))
+ d = fmod(-uf, 2.0);
else
d = 0.0;
x = f - d;
}
- return x;
+ return us + x;
}
static VALUE fix_lshift(long, unsigned long);
@@ -546,39 +552,6 @@ num_clone(int argc, VALUE *argv, VALUE x)
# define num_clone rb_immutable_obj_clone
#endif
-#if 0
-/*
- * call-seq:
- * dup -> self
- *
- * Returns +self+.
- *
- * Related: Numeric#clone.
- *
- */
-static VALUE
-num_dup(VALUE x)
-{
- return x;
-}
-#else
-# define num_dup num_uplus
-#endif
-
-/*
- * call-seq:
- * +self -> self
- *
- * Returns +self+.
- *
- */
-
-static VALUE
-num_uplus(VALUE num)
-{
- return num;
-}
-
/*
* call-seq:
* i -> complex
@@ -603,7 +576,7 @@ num_imaginary(VALUE num)
* call-seq:
* -self -> numeric
*
- * Unary Minus---Returns the receiver, negated.
+ * Returns +self+, negated.
*/
static VALUE
@@ -622,8 +595,8 @@ num_uminus(VALUE num)
* fdiv(other) -> float
*
* Returns the quotient <tt>self/other</tt> as a float,
- * using method +/+ in the derived class of +self+.
- * (\Numeric itself does not define method +/+.)
+ * using method +/+ as defined in the subclass of \Numeric.
+ * (\Numeric itself does not define +/+.)
*
* Of the Core and Standard Library classes,
* only BigDecimal uses this implementation.
@@ -641,8 +614,8 @@ num_fdiv(VALUE x, VALUE y)
* div(other) -> integer
*
* Returns the quotient <tt>self/other</tt> as an integer (via +floor+),
- * using method +/+ in the derived class of +self+.
- * (\Numeric itself does not define method +/+.)
+ * using method +/+ as defined in the subclass of \Numeric.
+ * (\Numeric itself does not define +/+.)
*
* Of the Core and Standard Library classes,
* Only Float and Rational use this implementation.
@@ -660,12 +633,12 @@ num_div(VALUE x, VALUE y)
* call-seq:
* self % other -> real_numeric
*
- * Returns +self+ modulo +other+ as a real number.
+ * Returns +self+ modulo +other+ as a real numeric (\Integer, \Float, or \Rational).
*
* Of the Core and Standard Library classes,
* only Rational uses this implementation.
*
- * For \Rational +r+ and real number +n+, these expressions are equivalent:
+ * For Rational +r+ and real number +n+, these expressions are equivalent:
*
* r % n
* r-n*(r/n).floor
@@ -688,8 +661,6 @@ num_div(VALUE x, VALUE y)
* (-r) % r2 # => (119/100)
* (-r) %-r2 # => (-21/100)
*
- * Numeric#modulo is an alias for Numeric#%.
- *
*/
static VALUE
@@ -734,6 +705,9 @@ num_modulo(VALUE x, VALUE y)
static VALUE
num_remainder(VALUE x, VALUE y)
{
+ if (!rb_obj_is_kind_of(y, rb_cNumeric)) {
+ do_coerce(&x, &y, TRUE);
+ }
VALUE z = num_funcall1(x, '%', y);
if ((!rb_equal(z, INT2FIX(0))) &&
@@ -795,8 +769,6 @@ num_divmod(VALUE x, VALUE y)
* (-34.56).abs #=> 34.56
* -34.56.abs #=> 34.56
*
- * Numeric#magnitude is an alias for Numeric#abs.
- *
*/
static VALUE
@@ -831,7 +803,7 @@ int_zero_p(VALUE num)
if (FIXNUM_P(num)) {
return FIXNUM_ZERO_P(num);
}
- assert(RB_BIGNUM_TYPE_P(num));
+ RUBY_ASSERT(RB_BIGNUM_TYPE_P(num));
return rb_bigzero_p(num);
}
@@ -857,6 +829,8 @@ rb_int_zero_p(VALUE num)
* Of the Core and Standard Library classes,
* Integer, Float, Rational, and Complex use this implementation.
*
+ * Related: #zero?
+ *
*/
static VALUE
@@ -873,7 +847,8 @@ num_nonzero_p(VALUE num)
* to_int -> integer
*
* Returns +self+ as an integer;
- * converts using method +to_i+ in the derived class.
+ * converts using method +to_i+ in the subclass of \Numeric.
+ * (\Numeric itself does not define +to_i+.)
*
* Of the Core and Standard Library classes,
* only Rational and Complex use this implementation.
@@ -883,7 +858,7 @@ num_nonzero_p(VALUE num)
* Rational(1, 2).to_int # => 0
* Rational(2, 1).to_int # => 2
* Complex(2, 0).to_int # => 2
- * Complex(2, 1) # Raises RangeError (non-zero imaginary part)
+ * Complex(2, 1).to_int # Raises RangeError (non-zero imaginary part)
*
*/
@@ -931,89 +906,10 @@ num_negative_p(VALUE num)
return RBOOL(rb_num_negative_int_p(num));
}
-
-/********************************************************************
- *
- * Document-class: Float
- *
- * A \Float object represents a sometimes-inexact real number using the native
- * architecture's double-precision floating point representation.
- *
- * Floating point has a different arithmetic and is an inexact number.
- * So you should know its esoteric system. See following:
- *
- * - https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
- * - https://github.com/rdp/ruby_tutorials_core/wiki/Ruby-Talk-FAQ#floats_imprecise
- * - https://en.wikipedia.org/wiki/Floating_point#Accuracy_problems
- *
- * You can create a \Float object explicitly with:
- *
- * - A {floating-point literal}[rdoc-ref:syntax/literals.rdoc@Float+Literals].
- *
- * You can convert certain objects to Floats with:
- *
- * - \Method #Float.
- *
- * == What's Here
- *
- * First, what's elsewhere. \Class \Float:
- *
- * - Inherits from {class Numeric}[rdoc-ref:Numeric@What-27s+Here].
- *
- * Here, class \Float provides methods for:
- *
- * - {Querying}[rdoc-ref:Float@Querying]
- * - {Comparing}[rdoc-ref:Float@Comparing]
- * - {Converting}[rdoc-ref:Float@Converting]
- *
- * === Querying
- *
- * - #finite?: Returns whether +self+ is finite.
- * - #hash: Returns the integer hash code for +self+.
- * - #infinite?: Returns whether +self+ is infinite.
- * - #nan?: Returns whether +self+ is a NaN (not-a-number).
- *
- * === Comparing
- *
- * - #<: Returns whether +self+ is less than the given value.
- * - #<=: Returns whether +self+ is less than or equal to the given value.
- * - #<=>: Returns a number indicating whether +self+ is less than, equal
- * to, or greater than the given value.
- * - #== (aliased as #=== and #eql?): Returns whether +self+ is equal to
- * the given value.
- * - #>: Returns whether +self+ is greater than the given value.
- * - #>=: Returns whether +self+ is greater than or equal to the given value.
- *
- * === Converting
- *
- * - #% (aliased as #modulo): Returns +self+ modulo the given value.
- * - #*: Returns the product of +self+ and the given value.
- * - #**: Returns the value of +self+ raised to the power of the given value.
- * - #+: Returns the sum of +self+ and the given value.
- * - #-: Returns the difference of +self+ and the given value.
- * - #/: Returns the quotient of +self+ and the given value.
- * - #ceil: Returns the smallest number greater than or equal to +self+.
- * - #coerce: Returns a 2-element array containing the given value converted to a \Float
- and +self+
- * - #divmod: Returns a 2-element array containing the quotient and remainder
- * results of dividing +self+ by the given value.
- * - #fdiv: Returns the Float result of dividing +self+ by the given value.
- * - #floor: Returns the greatest number smaller than or equal to +self+.
- * - #next_float: Returns the next-larger representable \Float.
- * - #prev_float: Returns the next-smaller representable \Float.
- * - #quo: Returns the quotient from dividing +self+ by the given value.
- * - #round: Returns +self+ rounded to the nearest value, to a given precision.
- * - #to_i (aliased as #to_int): Returns +self+ truncated to an Integer.
- * - #to_s (aliased as #inspect): Returns a string containing the place-value
- * representation of +self+ in the given radix.
- * - #truncate: Returns +self+ truncated to a given precision.
- *
- */
-
VALUE
rb_float_new_in_heap(double d)
{
- NEWOBJ_OF(flt, struct RFloat, rb_cFloat, T_FLOAT | (RGENGC_WB_PROTECTED_FLOAT ? FL_WB_PROTECTED : 0));
+ NEWOBJ_OF(flt, struct RFloat, rb_cFloat, T_FLOAT | (RGENGC_WB_PROTECTED_FLOAT ? FL_WB_PROTECTED : 0), sizeof(struct RFloat), 0);
#if SIZEOF_DOUBLE <= SIZEOF_VALUE
flt->float_value = d;
@@ -1037,16 +933,15 @@ rb_float_new_in_heap(double d)
* may contain:
*
* - A fixed-point number.
+ * 3.14.to_s # => "3.14"
* - A number in "scientific notation" (containing an exponent).
+ * (10.1**50).to_s # => "1.644631821843879e+50"
* - 'Infinity'.
+ * (10.1**500).to_s # => "Infinity"
* - '-Infinity'.
+ * (-10.1**500).to_s # => "-Infinity"
* - 'NaN' (indicating not-a-number).
- *
- * 3.14.to_s # => "3.14"
- * (10.1**50).to_s # => "1.644631821843879e+50"
- * (10.1**500).to_s # => "Infinity"
- * (-10.1**500).to_s # => "-Infinity"
- * (0.0/0.0).to_s # => "NaN"
+ * (0.0/0.0).to_s # => "NaN"
*
*/
@@ -1073,7 +968,7 @@ flo_to_s(VALUE flt)
s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
memcpy(buf, p, digs);
- xfree(p);
+ free(p);
if (decpt > 0) {
if (decpt < digs) {
memmove(buf + decpt + 1, buf + decpt, digs - decpt);
@@ -1147,7 +1042,7 @@ flo_coerce(VALUE x, VALUE y)
return rb_assoc_new(rb_Float(y), x);
}
-MJIT_FUNC_EXPORTED VALUE
+VALUE
rb_float_uminus(VALUE flt)
{
return DBL2NUM(-RFLOAT_VALUE(flt));
@@ -1155,15 +1050,21 @@ rb_float_uminus(VALUE flt)
/*
* call-seq:
- * self + other -> numeric
+ * self + other -> float or complex
*
- * Returns a new \Float which is the sum of +self+ and +other+:
+ * Returns the sum of +self+ and +other+;
+ * the result may be inexact (see Float):
*
- * f = 3.14
- * f + 1 # => 4.140000000000001
- * f + 1.0 # => 4.140000000000001
- * f + Rational(1, 1) # => 4.140000000000001
- * f + Complex(1, 0) # => (4.140000000000001+0i)
+ * 3.14 + 0 # => 3.14
+ * 3.14 + 1 # => 4.140000000000001
+ * -3.14 + 0 # => -3.14
+ * -3.14 + 1 # => -2.14
+
+ * 3.14 + -3.14 # => 0.0
+ * -3.14 + -3.14 # => -6.28
+ *
+ * 3.14 + Complex(1, 0) # => (4.140000000000001+0i)
+ * 3.14 + Rational(1, 1) # => 4.140000000000001
*
*/
@@ -1188,7 +1089,7 @@ rb_float_plus(VALUE x, VALUE y)
* call-seq:
* self - other -> numeric
*
- * Returns a new \Float which is the difference of +self+ and +other+:
+ * Returns the difference of +self+ and +other+:
*
* f = 3.14
* f - 1 # => 2.14
@@ -1219,13 +1120,14 @@ rb_float_minus(VALUE x, VALUE y)
* call-seq:
* self * other -> numeric
*
- * Returns a new \Float which is the product of +self+ and +other+:
+ * Returns the numeric product of +self+ and +other+:
*
* f = 3.14
* f * 2 # => 6.28
* f * 2.0 # => 6.28
* f * Rational(1, 2) # => 1.57
* f * Complex(2, 0) # => (6.28+0.0i)
+ *
*/
VALUE
@@ -1260,7 +1162,7 @@ double_div_double(double x, double y)
}
}
-MJIT_FUNC_EXPORTED VALUE
+VALUE
rb_flo_div_flo(VALUE x, VALUE y)
{
double num = RFLOAT_VALUE(x);
@@ -1273,7 +1175,7 @@ rb_flo_div_flo(VALUE x, VALUE y)
* call-seq:
* self / other -> numeric
*
- * Returns a new \Float which is the result of dividing +self+ by +other+:
+ * Returns the quotient of +self+ and +other+:
*
* f = 3.14
* f / 2 # => 1.57
@@ -1319,8 +1221,6 @@ rb_float_div(VALUE x, VALUE y)
* f.quo(Rational(2, 1)) # => 1.57
* f.quo(Complex(2, 0)) # => (1.57+0.0i)
*
- * Float#fdiv is an alias for Float#quo.
- *
*/
static VALUE
@@ -1372,7 +1272,7 @@ flodivmod(double x, double y, double *divp, double *modp)
* An error will be raised if y == 0.
*/
-MJIT_FUNC_EXPORTED double
+double
ruby_float_mod(double x, double y)
{
double mod;
@@ -1384,7 +1284,7 @@ ruby_float_mod(double x, double y)
* call-seq:
* self % other -> float
*
- * Returns +self+ modulo +other+ as a float.
+ * Returns +self+ modulo +other+ as a \Float.
*
* For float +f+ and real number +r+, these expressions are equivalent:
*
@@ -1407,8 +1307,6 @@ ruby_float_mod(double x, double y)
* 10.0 % 4.0 # => 2.0
* 10.0 % Rational(4, 1) # => 2.0
*
- * Float#modulo is an alias for Float#%.
- *
*/
static VALUE
@@ -1492,9 +1390,9 @@ flo_divmod(VALUE x, VALUE y)
/*
* call-seq:
- * self ** other -> numeric
+ * self ** exponent -> numeric
*
- * Raises +self+ to the power of +other+:
+ * Returns +self+ raised to the power +exponent+:
*
* f = 3.14
* f ** 2 # => 9.8596
@@ -1549,8 +1447,8 @@ rb_float_pow(VALUE x, VALUE y)
* 1.eql?(Rational(1, 1)) # => false
* 1.eql?(Complex(1, 0)) # => false
*
- * \Method +eql?+ is different from +==+ in that +eql?+ requires matching types,
- * while +==+ does not.
+ * Method +eql?+ is different from <tt>==</tt> in that +eql?+ requires matching types,
+ * while <tt>==</tt> does not.
*
*/
@@ -1570,10 +1468,17 @@ num_eql(VALUE x, VALUE y)
* call-seq:
* self <=> other -> zero or nil
*
- * Returns zero if +self+ is the same as +other+, +nil+ otherwise.
+ * Compares +self+ and +other+.
*
- * No subclass in the Ruby Core or Standard Library uses this implementation.
+ * Returns:
+ *
+ * - Zero, if +self+ is the same as +other+.
+ * - +nil+, otherwise.
*
+ * \Class \Numeric includes module Comparable,
+ * each of whose methods uses Numeric#<=> for comparison.
+ *
+ * No subclass in the Ruby Core or Standard Library uses this implementation.
*/
static VALUE
@@ -1596,7 +1501,7 @@ num_equal(VALUE x, VALUE y)
* call-seq:
* self == other -> true or false
*
- * Returns +true+ if +other+ has the same value as +self+, +false+ otherwise:
+ * Returns whether +other+ is numerically equal to +self+:
*
* 2.0 == 2 # => true
* 2.0 == 2.0 # => true
@@ -1609,7 +1514,7 @@ num_equal(VALUE x, VALUE y)
*
*/
-MJIT_FUNC_EXPORTED VALUE
+VALUE
rb_float_equal(VALUE x, VALUE y)
{
volatile double a, b;
@@ -1619,17 +1524,11 @@ rb_float_equal(VALUE x, VALUE y)
}
else if (RB_FLOAT_TYPE_P(y)) {
b = RFLOAT_VALUE(y);
-#if MSC_VERSION_BEFORE(1300)
- if (isnan(b)) return Qfalse;
-#endif
}
else {
return num_equal(x, y);
}
a = RFLOAT_VALUE(x);
-#if MSC_VERSION_BEFORE(1300)
- if (isnan(a)) return Qfalse;
-#endif
return RBOOL(a == b);
}
@@ -1669,30 +1568,32 @@ rb_dbl_cmp(double a, double b)
/*
* call-seq:
- * self <=> other -> -1, 0, +1, or nil
+ * self <=> other -> -1, 0, 1, or nil
+ *
+ * Compares +self+ and +other+.
*
- * Returns a value that depends on the numeric relation
- * between +self+ and +other+:
+ * Returns:
*
- * - -1, if +self+ is less than +other+.
- * - 0, if +self+ is equal to +other+.
- * - 1, if +self+ is greater than +other+.
+ * - +-1+, if +self+ is less than +other+.
+ * - +0+, if +self+ is equal to +other+.
+ * - +1+, if +self+ is greater than +other+.
* - +nil+, if the two values are incommensurate.
*
* Examples:
*
+ * 2.0 <=> 2.1 # => -1
* 2.0 <=> 2 # => 0
- 2.0 <=> 2.0 # => 0
- 2.0 <=> Rational(2, 1) # => 0
- 2.0 <=> Complex(2, 0) # => 0
- 2.0 <=> 1.9 # => 1
- 2.0 <=> 2.1 # => -1
- 2.0 <=> 'foo' # => nil
- *
- * This is the basis for the tests in the Comparable module.
+ * 2.0 <=> 2.0 # => 0
+ * 2.0 <=> Rational(2, 1) # => 0
+ * 2.0 <=> Complex(2, 0) # => 0
+ * 2.0 <=> 1.9 # => 1
+ * 2.0 <=> 'foo' # => nil
*
* <tt>Float::NAN <=> Float::NAN</tt> returns an implementation-dependent value.
*
+ * \Class \Float includes module Comparable,
+ * each of whose methods uses Float#<=> for comparison.
+ *
*/
static VALUE
@@ -1727,7 +1628,7 @@ flo_cmp(VALUE x, VALUE y)
return rb_dbl_cmp(a, b);
}
-MJIT_FUNC_EXPORTED int
+int
rb_float_cmp(VALUE x, VALUE y)
{
return NUM2INT(ensure_cmp(flo_cmp(x, y), x, y));
@@ -1737,7 +1638,8 @@ rb_float_cmp(VALUE x, VALUE y)
* call-seq:
* self > other -> true or false
*
- * Returns +true+ if +self+ is numerically greater than +other+:
+ * Returns whether the value of +self+ is greater than the value of +other+;
+ * +other+ must be numeric, but may not be Complex:
*
* 2.0 > 1 # => true
* 2.0 > 1.0 # => true
@@ -1762,16 +1664,10 @@ rb_float_gt(VALUE x, VALUE y)
}
else if (RB_FLOAT_TYPE_P(y)) {
b = RFLOAT_VALUE(y);
-#if MSC_VERSION_BEFORE(1300)
- if (isnan(b)) return Qfalse;
-#endif
}
else {
return rb_num_coerce_relop(x, y, '>');
}
-#if MSC_VERSION_BEFORE(1300)
- if (isnan(a)) return Qfalse;
-#endif
return RBOOL(a > b);
}
@@ -1779,7 +1675,8 @@ rb_float_gt(VALUE x, VALUE y)
* call-seq:
* self >= other -> true or false
*
- * Returns +true+ if +self+ is numerically greater than or equal to +other+:
+ * Returns whether the value of +self+ is greater than or equal to the value of +other+;
+ * +other+ must be numeric, but may not be Complex:
*
* 2.0 >= 1 # => true
* 2.0 >= 1.0 # => true
@@ -1805,16 +1702,10 @@ flo_ge(VALUE x, VALUE y)
}
else if (RB_FLOAT_TYPE_P(y)) {
b = RFLOAT_VALUE(y);
-#if MSC_VERSION_BEFORE(1300)
- if (isnan(b)) return Qfalse;
-#endif
}
else {
return rb_num_coerce_relop(x, y, idGE);
}
-#if MSC_VERSION_BEFORE(1300)
- if (isnan(a)) return Qfalse;
-#endif
return RBOOL(a >= b);
}
@@ -1822,7 +1713,8 @@ flo_ge(VALUE x, VALUE y)
* call-seq:
* self < other -> true or false
*
- * Returns +true+ if +self+ is numerically less than +other+:
+ * Returns whether the value of +self+ is less than the value of +other+;
+ * +other+ must be numeric, but may not be Complex:
*
* 2.0 < 3 # => true
* 2.0 < 3.0 # => true
@@ -1830,7 +1722,6 @@ flo_ge(VALUE x, VALUE y)
* 2.0 < 2.0 # => false
*
* <tt>Float::NAN < Float::NAN</tt> returns an implementation-dependent value.
- *
*/
static VALUE
@@ -1847,16 +1738,10 @@ flo_lt(VALUE x, VALUE y)
}
else if (RB_FLOAT_TYPE_P(y)) {
b = RFLOAT_VALUE(y);
-#if MSC_VERSION_BEFORE(1300)
- if (isnan(b)) return Qfalse;
-#endif
}
else {
return rb_num_coerce_relop(x, y, '<');
}
-#if MSC_VERSION_BEFORE(1300)
- if (isnan(a)) return Qfalse;
-#endif
return RBOOL(a < b);
}
@@ -1864,7 +1749,8 @@ flo_lt(VALUE x, VALUE y)
* call-seq:
* self <= other -> true or false
*
- * Returns +true+ if +self+ is numerically less than or equal to +other+:
+ * Returns whether the value of +self+ is less than or equal to the value of +other+;
+ * +other+ must be numeric, but may not be Complex:
*
* 2.0 <= 3 # => true
* 2.0 <= 3.0 # => true
@@ -1890,16 +1776,10 @@ flo_le(VALUE x, VALUE y)
}
else if (RB_FLOAT_TYPE_P(y)) {
b = RFLOAT_VALUE(y);
-#if MSC_VERSION_BEFORE(1300)
- if (isnan(b)) return Qfalse;
-#endif
}
else {
return rb_num_coerce_relop(x, y, idLE);
}
-#if MSC_VERSION_BEFORE(1300)
- if (isnan(a)) return Qfalse;
-#endif
return RBOOL(a <= b);
}
@@ -1921,23 +1801,20 @@ flo_le(VALUE x, VALUE y)
* Related: Float#== (performs type conversions).
*/
-MJIT_FUNC_EXPORTED VALUE
+VALUE
rb_float_eql(VALUE x, VALUE y)
{
if (RB_FLOAT_TYPE_P(y)) {
double a = RFLOAT_VALUE(x);
double b = RFLOAT_VALUE(y);
-#if MSC_VERSION_BEFORE(1300)
- if (isnan(a) || isnan(b)) return Qfalse;
-#endif
- return RBOOL(a == b);
+ return RBOOL(a == b);
}
return Qfalse;
}
#define flo_eql rb_float_eql
-MJIT_FUNC_EXPORTED VALUE
+VALUE
rb_float_abs(VALUE flt)
{
double val = fabs(RFLOAT_VALUE(flt));
@@ -2164,36 +2041,78 @@ flo_ndigits(int argc, VALUE *argv)
}
/*
+ * :markup: markdown
+ *
* call-seq:
* floor(ndigits = 0) -> float or integer
*
- * Returns the largest number less than or equal to +self+ with
- * a precision of +ndigits+ decimal digits.
+ * Returns a float or integer that is a "floor" value for `self`,
+ * as specified by `ndigits`,
+ * which must be an
+ * [integer-convertible object](rdoc-ref:implicit_conversion.rdoc@Integer-Convertible+Objects).
*
- * When +ndigits+ is positive, returns a float with +ndigits+
- * digits after the decimal point (as available):
+ * When `self` is zero,
+ * returns a zero value:
+ * a float if `ndigits` is positive,
+ * an integer otherwise:
*
- * f = 12345.6789
- * f.floor(1) # => 12345.6
- * f.floor(3) # => 12345.678
- * f = -12345.6789
- * f.floor(1) # => -12345.7
- * f.floor(3) # => -12345.679
+ * ```
+ * f = 0.0 # => 0.0
+ * f.floor(20) # => 0.0
+ * f.floor(0) # => 0
+ * f.floor(-20) # => 0
+ * ```
*
- * When +ndigits+ is non-positive, returns an integer with at least
- * <code>ndigits.abs</code> trailing zeros:
+ * When `self` is non-zero and `ndigits` is positive, returns a float with `ndigits`
+ * digits after the decimal point (as available):
*
- * f = 12345.6789
- * f.floor(0) # => 12345
- * f.floor(-3) # => 12000
- * f = -12345.6789
- * f.floor(0) # => -12346
- * f.floor(-3) # => -13000
+ * ```
+ * f = 12345.6789
+ * f.floor(1) # => 12345.6
+ * f.floor(3) # => 12345.678
+ * f.floor(30) # => 12345.6789
+ * f = -12345.6789
+ * f.floor(1) # => -12345.7
+ * f.floor(3) # => -12345.679
+ * f.floor(30) # => -12345.6789
+ * ```
+ *
+ * When `self` is non-zero and `ndigits` is non-positive,
+ * returns an integer value based on a computed granularity:
+ *
+ * - The granularity is `10 ** ndigits.abs`.
+ * - The returned value is the largest multiple of the granularity
+ * that is less than or equal to `self`.
+ *
+ * Examples with positive `self`:
+ *
+ * | ndigits | Granularity | 12345.6789.floor(ndigits) |
+ * |--------:|------------:|--------------------------:|
+ * | 0 | 1 | 12345 |
+ * | -1 | 10 | 12340 |
+ * | -2 | 100 | 12300 |
+ * | -3 | 1000 | 12000 |
+ * | -4 | 10000 | 10000 |
+ * | -5 | 100000 | 0 |
+ *
+ * Examples with negative `self`:
+ *
+ * | ndigits | Granularity | -12345.6789.floor(ndigits) |
+ * |--------:|------------:|---------------------------:|
+ * | 0 | 1 | -12346 |
+ * | -1 | 10 | -12350 |
+ * | -2 | 100 | -12400 |
+ * | -3 | 1000 | -13000 |
+ * | -4 | 10000 | -20000 |
+ * | -5 | 100000 | -100000 |
+ * | -6 | 1000000 | -1000000 |
*
* Note that the limited precision of floating-point arithmetic
* may lead to surprising results:
*
- * (0.3 / 0.1).floor #=> 2 (!)
+ * ```
+ * (0.3 / 0.1).floor # => 2 # Not 3, (because (0.3 / 0.1) # => 2.9999999999999996, not 3.0)
+ * ```
*
* Related: Float#ceil.
*
@@ -2207,36 +2126,78 @@ flo_floor(int argc, VALUE *argv, VALUE num)
}
/*
+ * :markup: markdown
+ *
* call-seq:
* ceil(ndigits = 0) -> float or integer
*
- * Returns the smallest number greater than or equal to +self+ with
- * a precision of +ndigits+ decimal digits.
- *
- * When +ndigits+ is positive, returns a float with +ndigits+
- * digits after the decimal point (as available):
- *
- * f = 12345.6789
- * f.ceil(1) # => 12345.7
- * f.ceil(3) # => 12345.679
- * f = -12345.6789
- * f.ceil(1) # => -12345.6
- * f.ceil(3) # => -12345.678
- *
- * When +ndigits+ is non-positive, returns an integer with at least
- * <code>ndigits.abs</code> trailing zeros:
- *
- * f = 12345.6789
- * f.ceil(0) # => 12346
- * f.ceil(-3) # => 13000
- * f = -12345.6789
- * f.ceil(0) # => -12345
- * f.ceil(-3) # => -12000
+ * Returns a numeric that is a "ceiling" value for `self`,
+ * as specified by the given `ndigits`,
+ * which must be an
+ * [integer-convertible object](rdoc-ref:implicit_conversion.rdoc@Integer-Convertible+Objects).
+ *
+ * When `ndigits` is positive, returns a Float with `ndigits`
+ * decimal digits after the decimal point
+ * (as available, but no fewer than 1):
+ *
+ * ```
+ * f = 12345.6789
+ * f.ceil(1) # => 12345.7
+ * f.ceil(3) # => 12345.679
+ * f.ceil(30) # => 12345.6789
+ * f = -12345.6789
+ * f.ceil(1) # => -12345.6
+ * f.ceil(3) # => -12345.678
+ * f.ceil(30) # => -12345.6789
+ * f = 0.0
+ * f.ceil(1) # => 0.0
+ * f.ceil(100) # => 0.0
+ * ```
+ *
+ * When `ndigits` is non-positive,
+ * returns an Integer based on a computed granularity:
+ *
+ * - The granularity is `10 ** ndigits.abs`.
+ * - The returned value is the largest multiple of the granularity
+ * that is less than or equal to `self`.
+ *
+ * Examples with positive `self`:
+ *
+ * | ndigits | Granularity | 12345.6789.ceil(ndigits) |
+ * |--------:|------------:|-------------------------:|
+ * | 0 | 1 | 12346 |
+ * | -1 | 10 | 12350 |
+ * | -2 | 100 | 12400 |
+ * | -3 | 1000 | 13000 |
+ * | -4 | 10000 | 20000 |
+ * | -5 | 100000 | 100000 |
+ *
+ * Examples with negative `self`:
+ *
+ * | ndigits | Granularity | -12345.6789.ceil(ndigits) |
+ * |--------:|------------:|--------------------------:|
+ * | 0 | 1 | -12345 |
+ * | -1 | 10 | -12340 |
+ * | -2 | 100 | -12300 |
+ * | -3 | 1000 | -12000 |
+ * | -4 | 10000 | -10000 |
+ * | -5 | 100000 | 0 |
+ *
+ * When `self` is zero and `ndigits` is non-positive,
+ * returns Integer zero:
+ *
+ * ```
+ * 0.0.ceil(0) # => 0
+ * 0.0.ceil(-1) # => 0
+ * 0.0.ceil(-2) # => 0
+ * ```
*
* Note that the limited precision of floating-point arithmetic
* may lead to surprising results:
*
- * (2.1 / 0.7).ceil #=> 4 (!)
+ * ```
+ * (2.1 / 0.7).ceil #=> 4 # Not 3 (because 2.1 / 0.7 # => 3.0000000000000004, not 3.0)
+ * ```
*
* Related: Float#floor.
*
@@ -2334,7 +2295,7 @@ int_half_p_half_down(VALUE num, VALUE n, VALUE f)
}
/*
- * Assumes num is an Integer, ndigits <= 0
+ * Assumes num is an \Integer, ndigits <= 0
*/
static VALUE
rb_int_round(VALUE num, int ndigits, enum ruby_num_rounding_mode mode)
@@ -2372,11 +2333,7 @@ rb_int_round(VALUE num, int ndigits, enum ruby_num_rounding_mode mode)
static VALUE
rb_int_floor(VALUE num, int ndigits)
{
- VALUE f;
-
- if (int_round_zero_p(num, ndigits))
- return INT2FIX(0);
- f = int_pow(10, -ndigits);
+ VALUE f = int_pow(10, -ndigits);
if (FIXNUM_P(num) && FIXNUM_P(f)) {
SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
int neg = x < 0;
@@ -2385,21 +2342,19 @@ rb_int_floor(VALUE num, int ndigits)
if (neg) x = -x;
return LONG2NUM(x);
}
- if (RB_FLOAT_TYPE_P(f)) {
- /* then int_pow overflow */
- return INT2FIX(0);
+ else {
+ bool neg = int_neg_p(num);
+ if (neg) num = rb_int_minus(rb_int_plus(rb_int_uminus(num), f), INT2FIX(1));
+ num = rb_int_mul(rb_int_div(num, f), f);
+ if (neg) num = rb_int_uminus(num);
+ return num;
}
- return rb_int_minus(num, rb_int_modulo(num, f));
}
static VALUE
rb_int_ceil(VALUE num, int ndigits)
{
- VALUE f;
-
- if (int_round_zero_p(num, ndigits))
- return INT2FIX(0);
- f = int_pow(10, -ndigits);
+ VALUE f = int_pow(10, -ndigits);
if (FIXNUM_P(num) && FIXNUM_P(f)) {
SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
int neg = x < 0;
@@ -2409,11 +2364,16 @@ rb_int_ceil(VALUE num, int ndigits)
if (neg) x = -x;
return LONG2NUM(x);
}
- if (RB_FLOAT_TYPE_P(f)) {
- /* then int_pow overflow */
- return INT2FIX(0);
+ else {
+ bool neg = int_neg_p(num);
+ if (neg)
+ num = rb_int_uminus(num);
+ else
+ num = rb_int_plus(num, rb_int_minus(f, INT2FIX(1)));
+ num = rb_int_mul(rb_int_div(num, f), f);
+ if (neg) num = rb_int_uminus(num);
+ return num;
}
- return rb_int_plus(num, rb_int_minus(f, rb_int_modulo(num, f)));
}
VALUE
@@ -2448,7 +2408,7 @@ rb_int_truncate(VALUE num, int ndigits)
/*
* call-seq:
- * round(ndigits = 0, half: :up]) -> integer or float
+ * round(ndigits = 0, half: :up) -> integer or float
*
* Returns +self+ rounded to the nearest value with
* a precision of +ndigits+ decimal digits.
@@ -2591,7 +2551,6 @@ float_round_underflow(int ndigits, int binexp)
*
* (0.3 / 0.1).to_i # => 2 (!)
*
- * Float#to_int is an alias for Float#to_i.
*/
static VALUE
@@ -2651,13 +2610,16 @@ flo_truncate(int argc, VALUE *argv, VALUE num)
/*
* call-seq:
- * floor(digits = 0) -> integer or float
+ * floor(ndigits = 0) -> float or integer
*
- * Returns the largest number that is less than or equal to +self+ with
- * a precision of +digits+ decimal digits.
+ * Returns the largest float or integer that is less than or equal to +self+,
+ * as specified by the given +ndigits+,
+ * which must be an
+ * {integer-convertible object}[rdoc-ref:implicit_conversion.rdoc@Integer-Convertible+Objects].
*
- * \Numeric implements this by converting +self+ to a Float and
- * invoking Float#floor.
+ * Equivalent to <tt>self.to_f.floor(ndigits)</tt>.
+ *
+ * Related: #ceil, Float#floor.
*/
static VALUE
@@ -2668,13 +2630,16 @@ num_floor(int argc, VALUE *argv, VALUE num)
/*
* call-seq:
- * ceil(digits = 0) -> integer or float
+ * ceil(ndigits = 0) -> float or integer
*
- * Returns the smallest number that is greater than or equal to +self+ with
- * a precision of +digits+ decimal digits.
+ * Returns the smallest float or integer that is greater than or equal to +self+,
+ * as specified by the given +ndigits+,
+ * which must be an
+ * {integer-convertible object}[rdoc-ref:implicit_conversion.rdoc@Integer-Convertible+Objects].
*
- * \Numeric implements this by converting +self+ to a Float and
- * invoking Float#ceil.
+ * Equivalent to <tt>self.to_f.ceil(ndigits)</tt>.
+ *
+ * Related: #floor, Float#ceil.
*/
static VALUE
@@ -2834,7 +2799,7 @@ ruby_num_interval_step_size(VALUE from, VALUE to, VALUE step, int excl)
}
if (RTEST(rb_funcall(from, cmp, 1, to))) return INT2FIX(0);
result = rb_funcall(rb_funcall(to, '-', 1, from), id_div, 1, step);
- if (!excl || RTEST(rb_funcall(rb_funcall(from, '+', 1, rb_funcall(result, '*', 1, step)), cmp, 1, to))) {
+ if (!excl || RTEST(rb_funcall(to, cmp, 1, rb_funcall(from, '+', 1, rb_funcall(result, '*', 1, step))))) {
result = rb_funcall(result, '+', 1, INT2FIX(1));
}
return result;
@@ -2946,88 +2911,88 @@ num_step_size(VALUE from, VALUE args, VALUE eobj)
* step(by: , to: nil) {|n| ... } -> self
* step(by: , to: nil) -> enumerator
*
- * Generates a sequence of numbers; with a block given, traverses the sequence.
+ * Generates a sequence of numbers; with a block given, traverses the sequence.
*
- * Of the Core and Standard Library classes,
- * Integer, Float, and Rational use this implementation.
- *
- * A quick example:
- *
- * squares = []
- * 1.step(by: 2, to: 10) {|i| squares.push(i*i) }
- * squares # => [1, 9, 25, 49, 81]
- *
- * The generated sequence:
- *
- * - Begins with +self+.
- * - Continues at intervals of +step+ (which may not be zero).
- * - Ends with the last number that is within or equal to +limit+;
- * that is, less than or equal to +limit+ if +step+ is positive,
- * greater than or equal to +limit+ if +step+ is negative.
- * If +limit+ is not given, the sequence is of infinite length.
- *
- * If a block is given, calls the block with each number in the sequence;
- * returns +self+. If no block is given, returns an Enumerator::ArithmeticSequence.
- *
- * <b>Keyword Arguments</b>
- *
- * With keyword arguments +by+ and +to+,
- * their values (or defaults) determine the step and limit:
- *
- * # Both keywords given.
- * squares = []
- * 4.step(by: 2, to: 10) {|i| squares.push(i*i) } # => 4
- * squares # => [16, 36, 64, 100]
- * cubes = []
- * 3.step(by: -1.5, to: -3) {|i| cubes.push(i*i*i) } # => 3
- * cubes # => [27.0, 3.375, 0.0, -3.375, -27.0]
- * squares = []
- * 1.2.step(by: 0.2, to: 2.0) {|f| squares.push(f*f) }
- * squares # => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
- *
- * squares = []
- * Rational(6/5).step(by: 0.2, to: 2.0) {|r| squares.push(r*r) }
- * squares # => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
- *
- * # Only keyword to given.
- * squares = []
- * 4.step(to: 10) {|i| squares.push(i*i) } # => 4
- * squares # => [16, 25, 36, 49, 64, 81, 100]
- * # Only by given.
- *
- * # Only keyword by given
- * squares = []
- * 4.step(by:2) {|i| squares.push(i*i); break if i > 10 }
- * squares # => [16, 36, 64, 100, 144]
- *
- * # No block given.
- * e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3))
- * e.class # => Enumerator::ArithmeticSequence
- *
- * <b>Positional Arguments</b>
- *
- * With optional positional arguments +limit+ and +step+,
- * their values (or defaults) determine the step and limit:
- *
- * squares = []
- * 4.step(10, 2) {|i| squares.push(i*i) } # => 4
- * squares # => [16, 36, 64, 100]
- * squares = []
- * 4.step(10) {|i| squares.push(i*i) }
- * squares # => [16, 25, 36, 49, 64, 81, 100]
- * squares = []
- * 4.step {|i| squares.push(i*i); break if i > 10 } # => nil
- * squares # => [16, 25, 36, 49, 64, 81, 100, 121]
+ * Of the Core and Standard Library classes,
+ * Integer, Float, and Rational use this implementation.
+ *
+ * A quick example:
+ *
+ * squares = []
+ * 1.step(by: 2, to: 10) {|i| squares.push(i*i) }
+ * squares # => [1, 9, 25, 49, 81]
+ *
+ * The generated sequence:
+ *
+ * - Begins with +self+.
+ * - Continues at intervals of +by+ (which may not be zero).
+ * - Ends with the last number that is within or equal to +to+;
+ * that is, less than or equal to +to+ if +by+ is positive,
+ * greater than or equal to +to+ if +by+ is negative.
+ * If +to+ is +nil+, the sequence is of infinite length.
+ *
+ * If a block is given, calls the block with each number in the sequence;
+ * returns +self+. If no block is given, returns an Enumerator::ArithmeticSequence.
+ *
+ * <b>Keyword Arguments</b>
+ *
+ * With keyword arguments +by+ and +to+,
+ * their values (or defaults) determine the step and limit:
+ *
+ * # Both keywords given.
+ * squares = []
+ * 4.step(by: 2, to: 10) {|i| squares.push(i*i) } # => 4
+ * squares # => [16, 36, 64, 100]
+ * cubes = []
+ * 3.step(by: -1.5, to: -3) {|i| cubes.push(i*i*i) } # => 3
+ * cubes # => [27.0, 3.375, 0.0, -3.375, -27.0]
+ * squares = []
+ * 1.2.step(by: 0.2, to: 2.0) {|f| squares.push(f*f) }
+ * squares # => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
+ *
+ * squares = []
+ * Rational(6/5).step(by: 0.2, to: 2.0) {|r| squares.push(r*r) }
+ * squares # => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
+ *
+ * # Only keyword to given.
+ * squares = []
+ * 4.step(to: 10) {|i| squares.push(i*i) } # => 4
+ * squares # => [16, 25, 36, 49, 64, 81, 100]
+ * # Only by given.
+ *
+ * # Only keyword by given
+ * squares = []
+ * 4.step(by:2) {|i| squares.push(i*i); break if i > 10 }
+ * squares # => [16, 36, 64, 100, 144]
+ *
+ * # No block given.
+ * e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3))
+ * e.class # => Enumerator::ArithmeticSequence
+ *
+ * <b>Positional Arguments</b>
+ *
+ * With optional positional arguments +to+ and +by+,
+ * their values (or defaults) determine the step and limit:
+ *
+ * squares = []
+ * 4.step(10, 2) {|i| squares.push(i*i) } # => 4
+ * squares # => [16, 36, 64, 100]
+ * squares = []
+ * 4.step(10) {|i| squares.push(i*i) }
+ * squares # => [16, 25, 36, 49, 64, 81, 100]
+ * squares = []
+ * 4.step {|i| squares.push(i*i); break if i > 10 } # => nil
+ * squares # => [16, 25, 36, 49, 64, 81, 100, 121]
*
* <b>Implementation Notes</b>
*
- * If all the arguments are integers, the loop operates using an integer
- * counter.
+ * If all the arguments are integers, the loop operates using an integer
+ * counter.
*
- * If any of the arguments are floating point numbers, all are converted
- * to floats, and the loop is executed
- * <i>floor(n + n*Float::EPSILON) + 1</i> times,
- * where <i>n = (limit - self)/step</i>.
+ * If any of the arguments are floating point numbers, all are converted
+ * to floats, and the loop is executed
+ * <i>floor(n + n*Float::EPSILON) + 1</i> times,
+ * where <i>n = (limit - self)/step</i>.
*
*/
@@ -3165,7 +3130,7 @@ rb_num2ulong_internal(VALUE val, int *wrap_p)
{
again:
if (NIL_P(val)) {
- rb_raise(rb_eTypeError, "no implicit conversion from nil to integer");
+ rb_raise(rb_eTypeError, "no implicit conversion of nil into Integer");
}
if (FIXNUM_P(val)) {
@@ -3210,7 +3175,7 @@ rb_num2ulong(VALUE val)
void
rb_out_of_int(SIGNED_VALUE num)
{
- rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `int'",
+ rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to 'int'",
num, num < 0 ? "small" : "big");
}
@@ -3229,12 +3194,12 @@ check_uint(unsigned long num, int sign)
if (sign) {
/* minus */
if (num < (unsigned long)INT_MIN)
- rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned int'", (long)num);
+ rb_raise(rb_eRangeError, "integer %ld too small to convert to 'unsigned int'", (long)num);
}
else {
/* plus */
if (UINT_MAX < num)
- rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned int'", num);
+ rb_raise(rb_eRangeError, "integer %lu too big to convert to 'unsigned int'", num);
}
}
@@ -3309,7 +3274,7 @@ NORETURN(static void rb_out_of_short(SIGNED_VALUE num));
static void
rb_out_of_short(SIGNED_VALUE num)
{
- rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `short'",
+ rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to 'short'",
num, num < 0 ? "small" : "big");
}
@@ -3327,12 +3292,12 @@ check_ushort(unsigned long num, int sign)
if (sign) {
/* minus */
if (num < (unsigned long)SHRT_MIN)
- rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned short'", (long)num);
+ rb_raise(rb_eRangeError, "integer %ld too small to convert to 'unsigned short'", (long)num);
}
else {
/* plus */
if (USHRT_MAX < num)
- rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned short'", num);
+ rb_raise(rb_eRangeError, "integer %lu too big to convert to 'unsigned short'", num);
}
}
@@ -3440,7 +3405,7 @@ unsigned LONG_LONG
rb_num2ull(VALUE val)
{
if (NIL_P(val)) {
- rb_raise(rb_eTypeError, "no implicit conversion from nil");
+ rb_raise(rb_eTypeError, "no implicit conversion of nil into Integer");
}
else if (FIXNUM_P(val)) {
return (LONG_LONG)FIX2LONG(val); /* this is FIX2LONG, intended */
@@ -3459,18 +3424,239 @@ rb_num2ull(VALUE val)
else if (RB_BIGNUM_TYPE_P(val)) {
return rb_big2ull(val);
}
- else if (RB_TYPE_P(val, T_STRING)) {
- rb_raise(rb_eTypeError, "no implicit conversion from string");
+ else {
+ val = rb_to_int(val);
+ return NUM2ULL(val);
}
- else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) {
- rb_raise(rb_eTypeError, "no implicit conversion from boolean");
+}
+
+#endif /* HAVE_LONG_LONG */
+
+// Conversion functions for unified 128-bit integer structures,
+// These work with or without native 128-bit integer support.
+
+#ifndef HAVE_UINT128_T
+// Helper function to build 128-bit value from bignum digits (fallback path).
+static inline void
+rb_uint128_from_bignum_digits_fallback(rb_uint128_t *result, BDIGIT *digits, size_t length)
+{
+ // Build the 128-bit value from bignum digits:
+ for (long i = length - 1; i >= 0; i--) {
+ // Shift both low and high parts:
+ uint64_t carry = result->parts.low >> (64 - (SIZEOF_BDIGIT * CHAR_BIT));
+ result->parts.low = (result->parts.low << (SIZEOF_BDIGIT * CHAR_BIT)) | digits[i];
+ result->parts.high = (result->parts.high << (SIZEOF_BDIGIT * CHAR_BIT)) | carry;
}
+}
- val = rb_to_int(val);
- return NUM2ULL(val);
+// Helper function to convert absolute value of negative bignum to two's complement.
+// Ruby stores negative bignums as absolute values, so we need to convert to two's complement.
+static inline void
+rb_uint128_twos_complement_negate(rb_uint128_t *value)
+{
+ if (value->parts.low == 0) {
+ value->parts.high = ~value->parts.high + 1;
+ }
+ else {
+ value->parts.low = ~value->parts.low + 1;
+ value->parts.high = ~value->parts.high + (value->parts.low == 0 ? 1 : 0);
+ }
}
+#endif
-#endif /* HAVE_LONG_LONG */
+rb_uint128_t
+rb_numeric_to_uint128(VALUE x)
+{
+ rb_uint128_t result = {0};
+ if (RB_FIXNUM_P(x)) {
+ long value = RB_FIX2LONG(x);
+ if (value < 0) {
+ rb_raise(rb_eRangeError, "negative integer cannot be converted to unsigned 128-bit integer");
+ }
+#ifdef HAVE_UINT128_T
+ result.value = (uint128_t)value;
+#else
+ result.parts.low = (uint64_t)value;
+ result.parts.high = 0;
+#endif
+ return result;
+ }
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ if (BIGNUM_NEGATIVE_P(x)) {
+ rb_raise(rb_eRangeError, "negative integer cannot be converted to unsigned 128-bit integer");
+ }
+ size_t length = BIGNUM_LEN(x);
+#ifdef HAVE_UINT128_T
+ if (length > roomof(SIZEOF_INT128_T, SIZEOF_BDIGIT)) {
+ rb_raise(rb_eRangeError, "bignum too big to convert into 'unsigned 128-bit integer'");
+ }
+ BDIGIT *digits = BIGNUM_DIGITS(x);
+ result.value = 0;
+ for (long i = length - 1; i >= 0; i--) {
+ result.value = (result.value << (SIZEOF_BDIGIT * CHAR_BIT)) | digits[i];
+ }
+#else
+ // Check if bignum fits in 128 bits (16 bytes)
+ if (length > roomof(16, SIZEOF_BDIGIT)) {
+ rb_raise(rb_eRangeError, "bignum too big to convert into 'unsigned 128-bit integer'");
+ }
+ BDIGIT *digits = BIGNUM_DIGITS(x);
+ rb_uint128_from_bignum_digits_fallback(&result, digits, length);
+#endif
+ return result;
+ }
+ else {
+ rb_raise(rb_eTypeError, "not an integer");
+ }
+}
+
+rb_int128_t
+rb_numeric_to_int128(VALUE x)
+{
+ rb_int128_t result = {0};
+ if (RB_FIXNUM_P(x)) {
+ long value = RB_FIX2LONG(x);
+#ifdef HAVE_UINT128_T
+ result.value = (int128_t)value;
+#else
+ if (value < 0) {
+ // Two's complement representation: for negative values, sign extend
+ // Convert to unsigned: for -1, we want all bits set
+ result.parts.low = (uint64_t)value; // This will be the two's complement representation
+ result.parts.high = UINT64_MAX; // Sign extend: all bits set for negative
+ }
+ else {
+ result.parts.low = (uint64_t)value;
+ result.parts.high = 0;
+ }
+#endif
+ return result;
+ }
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ size_t length = BIGNUM_LEN(x);
+#ifdef HAVE_UINT128_T
+ if (length > roomof(SIZEOF_INT128_T, SIZEOF_BDIGIT)) {
+ rb_raise(rb_eRangeError, "bignum too big to convert into 'signed 128-bit integer'");
+ }
+ BDIGIT *digits = BIGNUM_DIGITS(x);
+ uint128_t unsigned_result = 0;
+ for (long i = length - 1; i >= 0; i--) {
+ unsigned_result = (unsigned_result << (SIZEOF_BDIGIT * CHAR_BIT)) | digits[i];
+ }
+ if (BIGNUM_NEGATIVE_P(x)) {
+ // Convert from two's complement
+ // Maximum negative value is 2^127
+ if (unsigned_result > ((uint128_t)1 << 127)) {
+ rb_raise(rb_eRangeError, "bignum too big to convert into 'signed 128-bit integer'");
+ }
+ result.value = -(int128_t)(unsigned_result - 1) - 1;
+ }
+ else {
+ // Maximum positive value is 2^127 - 1
+ if (unsigned_result > (((uint128_t)1 << 127) - 1)) {
+ rb_raise(rb_eRangeError, "bignum too big to convert into 'signed 128-bit integer'");
+ }
+ result.value = (int128_t)unsigned_result;
+ }
+#else
+ if (length > roomof(16, SIZEOF_BDIGIT)) {
+ rb_raise(rb_eRangeError, "bignum too big to convert into 'signed 128-bit integer'");
+ }
+ BDIGIT *digits = BIGNUM_DIGITS(x);
+ rb_uint128_t unsigned_result = {0};
+ rb_uint128_from_bignum_digits_fallback(&unsigned_result, digits, length);
+ if (BIGNUM_NEGATIVE_P(x)) {
+ // Check if value fits in signed 128-bit (max negative is 2^127)
+ uint64_t max_neg_high = (uint64_t)1 << 63;
+ if (unsigned_result.parts.high > max_neg_high || (unsigned_result.parts.high == max_neg_high && unsigned_result.parts.low > 0)) {
+ rb_raise(rb_eRangeError, "bignum too big to convert into 'signed 128-bit integer'");
+ }
+ // Convert from absolute value to two's complement (Ruby stores negative as absolute value)
+ rb_uint128_twos_complement_negate(&unsigned_result);
+ result.parts.low = unsigned_result.parts.low;
+ result.parts.high = (int64_t)unsigned_result.parts.high; // Sign extend
+ }
+ else {
+ // Check if value fits in signed 128-bit (max positive is 2^127 - 1)
+ // Max positive: high = 0x7FFFFFFFFFFFFFFF, low = 0xFFFFFFFFFFFFFFFF
+ uint64_t max_pos_high = ((uint64_t)1 << 63) - 1;
+ if (unsigned_result.parts.high > max_pos_high) {
+ rb_raise(rb_eRangeError, "bignum too big to convert into 'signed 128-bit integer'");
+ }
+ result.parts.low = unsigned_result.parts.low;
+ result.parts.high = unsigned_result.parts.high;
+ }
+#endif
+ return result;
+ }
+ else {
+ rb_raise(rb_eTypeError, "not an integer");
+ }
+}
+
+VALUE
+rb_uint128_to_numeric(rb_uint128_t n)
+{
+#ifdef HAVE_UINT128_T
+ if (n.value <= (uint128_t)RUBY_FIXNUM_MAX) {
+ return LONG2FIX((long)n.value);
+ }
+ return rb_uint128t2big(n.value);
+#else
+ // If high part is zero and low part fits in fixnum
+ if (n.parts.high == 0 && n.parts.low <= (uint64_t)RUBY_FIXNUM_MAX) {
+ return LONG2FIX((long)n.parts.low);
+ }
+ // Convert to bignum by building it from the two 64-bit parts
+ VALUE bignum = rb_ull2big(n.parts.low);
+ if (n.parts.high > 0) {
+ VALUE high_bignum = rb_ull2big(n.parts.high);
+ // Multiply high part by 2^64 and add to low part
+ VALUE shifted_value = rb_int_lshift(high_bignum, INT2FIX(64));
+ bignum = rb_int_plus(bignum, shifted_value);
+ }
+ return bignum;
+#endif
+}
+
+VALUE
+rb_int128_to_numeric(rb_int128_t n)
+{
+#ifdef HAVE_UINT128_T
+ if (FIXABLE(n.value)) {
+ return LONG2FIX((long)n.value);
+ }
+ return rb_int128t2big(n.value);
+#else
+ int64_t high = (int64_t)n.parts.high;
+ // If it's a small positive value that fits in fixnum
+ if (high == 0 && n.parts.low <= (uint64_t)RUBY_FIXNUM_MAX) {
+ return LONG2FIX((long)n.parts.low);
+ }
+ // Check if it's negative (high bit of high part is set)
+ if (high < 0) {
+ // Negative value - convert from two's complement to absolute value
+ rb_uint128_t unsigned_value = {0};
+ if (n.parts.low == 0) {
+ unsigned_value.parts.low = 0;
+ unsigned_value.parts.high = ~n.parts.high + 1;
+ }
+ else {
+ unsigned_value.parts.low = ~n.parts.low + 1;
+ unsigned_value.parts.high = ~n.parts.high + (unsigned_value.parts.low == 0 ? 1 : 0);
+ }
+ VALUE bignum = rb_uint128_to_numeric(unsigned_value);
+ return rb_int_uminus(bignum);
+ }
+ else {
+ // Positive value
+ union uint128_int128_conversion conversion = {
+ .int128 = n
+ };
+ return rb_uint128_to_numeric(conversion.uint128);
+ }
+#endif
+}
/********************************************************************
*
@@ -3484,16 +3670,19 @@ rb_num2ull(VALUE val)
*
* You can convert certain objects to Integers with:
*
- * - \Method #Integer.
+ * - Method #Integer.
*
* An attempt to add a singleton method to an instance of this class
* causes an exception to be raised.
*
* == What's Here
*
- * First, what's elsewhere. \Class \Integer:
+ * First, what's elsewhere. Class \Integer:
*
- * - Inherits from {class Numeric}[rdoc-ref:Numeric@What-27s+Here].
+ * - Inherits from
+ * {class Numeric}[rdoc-ref:Numeric@What-27s+Here]
+ * and {class Object}[rdoc-ref:Object@What-27s+Here].
+ * - Includes {module Comparable}[rdoc-ref:Comparable@What-27s+Here].
*
* Here, class \Integer provides methods for:
*
@@ -3534,6 +3723,7 @@ rb_num2ull(VALUE val)
* - #>>: Returns the value of +self+ after a rightward bit-shift.
* - #[]: Returns a slice of bits from +self+.
* - #^: Returns the bitwise EXCLUSIVE OR of +self+ and the given value.
+ * - #|: Returns the bitwise OR of +self+ and the given value.
* - #ceil: Returns the smallest number greater than or equal to +self+.
* - #chr: Returns a 1-character string containing the character
* represented by the value of +self+.
@@ -3553,7 +3743,6 @@ rb_num2ull(VALUE val)
* - #to_s (aliased as #inspect): Returns a string containing the place-value
* representation of +self+ in the given radix.
* - #truncate: Returns +self+ truncated to the given precision.
- * - #|: Returns the bitwise OR of +self+ and the given value.
*
* === Other
*
@@ -3573,7 +3762,7 @@ rb_int_odd_p(VALUE num)
return RBOOL(num & 2);
}
else {
- assert(RB_BIGNUM_TYPE_P(num));
+ RUBY_ASSERT(RB_BIGNUM_TYPE_P(num));
return rb_big_odd_p(num);
}
}
@@ -3585,7 +3774,7 @@ int_even_p(VALUE num)
return RBOOL((num & 2) == 0);
}
else {
- assert(RB_BIGNUM_TYPE_P(num));
+ RUBY_ASSERT(RB_BIGNUM_TYPE_P(num));
return rb_big_even_p(num);
}
}
@@ -3695,8 +3884,6 @@ int_nobits_p(VALUE num, VALUE mask)
* 1.succ #=> 2
* -1.succ #=> 0
*
- * Integer#next is an alias for Integer#succ.
- *
* Related: Integer#pred (predecessor value).
*/
@@ -3844,7 +4031,7 @@ rb_int_uminus(VALUE num)
return fix_uminus(num);
}
else {
- assert(RB_BIGNUM_TYPE_P(num));
+ RUBY_ASSERT(RB_BIGNUM_TYPE_P(num));
return rb_big_uminus(num);
}
}
@@ -3893,7 +4080,7 @@ rb_fix2str(VALUE x, int base)
static VALUE rb_fix_to_s_static[10];
-MJIT_FUNC_EXPORTED VALUE
+VALUE
rb_fix_to_s(VALUE x)
{
long i = FIX2LONG(x);
@@ -3919,12 +4106,9 @@ rb_fix_to_s(VALUE x)
* 78546939656932.to_s(36) # => "rubyrules"
*
* Raises an exception if +base+ is out of range.
- *
- * Integer#inspect is an alias for Integer#to_s.
- *
*/
-MJIT_FUNC_EXPORTED VALUE
+VALUE
rb_int_to_s(int argc, VALUE *argv, VALUE x)
{
int base;
@@ -3977,17 +4161,20 @@ rb_fix_plus(VALUE x, VALUE y)
/*
* call-seq:
- * self + numeric -> numeric_result
+ * self + other -> numeric
+ *
+ * Returns the sum of +self+ and +other+:
*
- * Performs addition:
+ * 1 + 1 # => 2
+ * 1 + -1 # => 0
+ * 1 + 0 # => 1
+ * 1 + -2 # => -1
+ * 1 + Complex(1, 0) # => (2+0i)
+ * 1 + Rational(1, 1) # => (2/1)
*
- * 2 + 2 # => 4
- * -2 + 2 # => 0
- * -2 + -2 # => -4
- * 2 + 2.0 # => 4.0
- * 2 + Rational(2, 1) # => (4/1)
- * 2 + Complex(2, 0) # => (4+0i)
+ * For a computation involving Floats, the result may be inexact (see Float#+):
*
+ * 1 + 3.14 # => 4.140000000000001
*/
VALUE
@@ -4022,9 +4209,9 @@ fix_minus(VALUE x, VALUE y)
/*
* call-seq:
- * self - numeric -> numeric_result
+ * self - other -> numeric
*
- * Performs subtraction:
+ * Returns the difference of +self+ and +other+:
*
* 4 - 2 # => 2
* -4 - 2 # => -6
@@ -4078,16 +4265,17 @@ fix_mul(VALUE x, VALUE y)
/*
* call-seq:
- * self * numeric -> numeric_result
+ * self * other -> numeric
*
- * Performs multiplication:
+ * Returns the numeric product of +self+ and +other+:
*
* 4 * 2 # => 8
- * 4 * -2 # => -8
* -4 * 2 # => -8
+ * 4 * -2 # => -8
* 4 * 2.0 # => 8.0
* 4 * Rational(1, 3) # => (4/3)
* 4 * Complex(2, 0) # => (8+0i)
+ *
*/
VALUE
@@ -4106,7 +4294,13 @@ static double
fix_fdiv_double(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
- return double_div_double(FIX2LONG(x), FIX2LONG(y));
+ long iy = FIX2LONG(y);
+#if SIZEOF_LONG * CHAR_BIT > DBL_MANT_DIG
+ if ((iy < 0 ? -iy : iy) >= (1L << DBL_MANT_DIG)) {
+ return rb_big_fdiv_double(rb_int2big(FIX2LONG(x)), rb_int2big(iy));
+ }
+#endif
+ return double_div_double(FIX2LONG(x), iy);
}
else if (RB_BIGNUM_TYPE_P(y)) {
return rb_big_fdiv_double(rb_int2big(FIX2LONG(x)), y);
@@ -4124,7 +4318,7 @@ rb_int_fdiv_double(VALUE x, VALUE y)
{
if (RB_INTEGER_TYPE_P(y) && !FIXNUM_ZERO_P(y)) {
VALUE gcd = rb_gcd(x, y);
- if (!FIXNUM_ZERO_P(gcd)) {
+ if (!FIXNUM_ZERO_P(gcd) && gcd != INT2FIX(1)) {
x = rb_int_idiv(x, gcd);
y = rb_int_idiv(y, gcd);
}
@@ -4204,16 +4398,18 @@ fix_div(VALUE x, VALUE y)
/*
* call-seq:
- * self / numeric -> numeric_result
+ * self / other -> numeric
*
- * Performs division; for integer +numeric+, truncates the result to an integer:
+ * Returns the quotient of +self+ and +other+.
+ *
+ * For integer +other+, truncates the result to an integer:
*
* 4 / 3 # => 1
* 4 / -3 # => -2
* -4 / 3 # => -2
* -4 / -3 # => 1
*
- * For other +numeric+, returns non-integer result:
+ * For non-integer +other+, returns a non-integer result:
*
* 4 / 3.0 # => 1.3333333333333333
* 4 / Rational(3, 1) # => (4/3)
@@ -4246,14 +4442,14 @@ fix_idiv(VALUE x, VALUE y)
* Performs integer division; returns the integer result of dividing +self+
* by +numeric+:
*
- * 4.div(3) # => 1
- * 4.div(-3) # => -2
- * -4.div(3) # => -2
- * -4.div(-3) # => 1
- * 4.div(3.0) # => 1
- * 4.div(Rational(3, 1)) # => 1
+ * 4.div(3) # => 1
+ * 4.div(-3) # => -2
+ * -4.div(3) # => -2
+ * -4.div(-3) # => 1
+ * 4.div(3.0) # => 1
+ * 4.div(Rational(3, 1)) # => 1
*
- * Raises an exception if +numeric+ does not have method +div+.
+ * Raises an exception if +numeric+ does not have method +div+.
*
*/
@@ -4290,9 +4486,9 @@ fix_mod(VALUE x, VALUE y)
/*
* call-seq:
- * self % other -> real_number
+ * self % other -> real_numeric
*
- * Returns +self+ modulo +other+ as a real number.
+ * Returns +self+ modulo +other+ as a real numeric (\Integer, \Float, or \Rational).
*
* For integer +n+ and real number +r+, these expressions are equivalent:
*
@@ -4315,8 +4511,6 @@ fix_mod(VALUE x, VALUE y)
* 10 % 3.0 # => 1.0
* 10 % Rational(3, 1) # => (1/1)
*
- * Integer#modulo is an alias for Integer#%.
- *
*/
VALUE
rb_int_modulo(VALUE x, VALUE y)
@@ -4357,12 +4551,22 @@ static VALUE
int_remainder(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return num_remainder(x, y);
+ if (FIXNUM_P(y)) {
+ VALUE z = fix_mod(x, y);
+ RUBY_ASSERT(FIXNUM_P(z));
+ if (z != INT2FIX(0) && (SIGNED_VALUE)(x ^ y) < 0)
+ z = fix_minus(z, y);
+ return z;
+ }
+ else if (!RB_BIGNUM_TYPE_P(y)) {
+ return num_remainder(x, y);
+ }
+ x = rb_int2big(FIX2LONG(x));
}
- else if (RB_BIGNUM_TYPE_P(x)) {
- return rb_big_remainder(x, y);
+ else if (!RB_BIGNUM_TYPE_P(x)) {
+ return Qnil;
}
- return Qnil;
+ return rb_big_remainder(x, y);
}
static VALUE
@@ -4433,9 +4637,9 @@ rb_int_divmod(VALUE x, VALUE y)
/*
* call-seq:
- * self ** numeric -> numeric_result
+ * self ** exponent -> numeric
*
- * Raises +self+ to the power of +numeric+:
+ * Returns +self+ raised to the power +exponent+:
*
* 2 ** 3 # => 8
* 2 ** -3 # => (1/8)
@@ -4556,17 +4760,47 @@ fix_pow(VALUE x, VALUE y)
/*
* call-seq:
- * self ** numeric -> numeric_result
- *
- * Raises +self+ to the power of +numeric+:
- *
- * 2 ** 3 # => 8
- * 2 ** -3 # => (1/8)
- * -2 ** 3 # => -8
- * -2 ** -3 # => (-1/8)
- * 2 ** 3.3 # => 9.849155306759329
- * 2 ** Rational(3, 1) # => (8/1)
- * 2 ** Complex(3, 0) # => (8+0i)
+ * self ** exponent -> numeric
+ *
+ * Returns +self+ raised to the power +exponent+:
+ *
+ * # Result for non-negative Integer exponent is Integer.
+ * 2 ** 0 # => 1
+ * 2 ** 1 # => 2
+ * 2 ** 2 # => 4
+ * 2 ** 3 # => 8
+ * -2 ** 3 # => -8
+ * # Result for negative Integer exponent is Rational, not Float.
+ * 2 ** -3 # => (1/8)
+ * -2 ** -3 # => (-1/8)
+ *
+ * # Result for Float exponent is Float.
+ * 2 ** 0.0 # => 1.0
+ * 2 ** 1.0 # => 2.0
+ * 2 ** 2.0 # => 4.0
+ * 2 ** 3.0 # => 8.0
+ * -2 ** 3.0 # => -8.0
+ * 2 ** -3.0 # => 0.125
+ * -2 ** -3.0 # => -0.125
+ *
+ * # Result for non-negative Complex exponent is Complex with Integer parts.
+ * 2 ** Complex(0, 0) # => (1+0i)
+ * 2 ** Complex(1, 0) # => (2+0i)
+ * 2 ** Complex(2, 0) # => (4+0i)
+ * 2 ** Complex(3, 0) # => (8+0i)
+ * -2 ** Complex(3, 0) # => (-8+0i)
+ * # Result for negative Complex exponent is Complex with Rational parts.
+ * 2 ** Complex(-3, 0) # => ((1/8)+(0/1)*i)
+ * -2 ** Complex(-3, 0) # => ((-1/8)+(0/1)*i)
+ *
+ * # Result for Rational exponent is Rational.
+ * 2 ** Rational(0, 1) # => (1/1)
+ * 2 ** Rational(1, 1) # => (2/1)
+ * 2 ** Rational(2, 1) # => (4/1)
+ * 2 ** Rational(3, 1) # => (8/1)
+ * -2 ** Rational(3, 1) # => (-8/1)
+ * 2 ** Rational(-3, 1) # => (1/8)
+ * -2 ** Rational(-3, 1) # => (-1/8)
*
*/
VALUE
@@ -4619,15 +4853,12 @@ fix_equal(VALUE x, VALUE y)
* call-seq:
* self == other -> true or false
*
- * Returns +true+ if +self+ is numerically equal to +other+; +false+ otherwise.
+ * Returns whether +self+ is numerically equal to +other+:
*
* 1 == 2 #=> false
* 1 == 1.0 #=> true
*
* Related: Integer#eql? (requires +other+ to be an \Integer).
- *
- * Integer#=== is an alias for Integer#==.
- *
*/
VALUE
@@ -4668,28 +4899,29 @@ fix_cmp(VALUE x, VALUE y)
/*
* call-seq:
- * self <=> other -> -1, 0, +1, or nil
+ * self <=> other -> -1, 0, 1, or nil
+ *
+ * Compares +self+ and +other+.
*
* Returns:
*
- * - -1, if +self+ is less than +other+.
- * - 0, if +self+ is equal to +other+.
- * - 1, if +self+ is greater then +other+.
+ * - +-1+, if +self+ is less than +other+.
+ * - +0+, if +self+ is equal to +other+.
+ * - +1+, if +self+ is greater then +other+.
* - +nil+, if +self+ and +other+ are incomparable.
*
* Examples:
*
* 1 <=> 2 # => -1
* 1 <=> 1 # => 0
- * 1 <=> 0 # => 1
- * 1 <=> 'foo' # => nil
- *
* 1 <=> 1.0 # => 0
* 1 <=> Rational(1, 1) # => 0
* 1 <=> Complex(1, 0) # => 0
+ * 1 <=> 0 # => 1
+ * 1 <=> 'foo' # => nil
*
- * This method is the basis for comparisons in module Comparable.
- *
+ * \Class \Integer includes module Comparable,
+ * each of whose methods uses Integer#<=> for comparison.
*/
VALUE
@@ -4702,7 +4934,7 @@ rb_int_cmp(VALUE x, VALUE y)
return rb_big_cmp(x, y);
}
else {
- rb_raise(rb_eNotImpError, "need to define `<=>' in %s", rb_obj_classname(x));
+ rb_raise(rb_eNotImpError, "need to define '<=>' in %s", rb_obj_classname(x));
}
}
@@ -4727,7 +4959,8 @@ fix_gt(VALUE x, VALUE y)
* call-seq:
* self > other -> true or false
*
- * Returns +true+ if the value of +self+ is greater than that of +other+:
+ * Returns whether the value of +self+ is greater than the value of +other+;
+ * +other+ must be numeric, but may not be Complex:
*
* 1 > 0 # => true
* 1 > 1 # => false
@@ -4771,10 +5004,10 @@ fix_ge(VALUE x, VALUE y)
/*
* call-seq:
- * self >= real -> true or false
+ * self >= other -> true or false
*
- * Returns +true+ if the value of +self+ is greater than or equal to
- * that of +other+:
+ * Returns whether the value of +self+ is greater than or equal to the value of +other+;
+ * +other+ must be numeric, but may not be Complex:
*
* 1 >= 0 # => true
* 1 >= 1 # => true
@@ -4819,7 +5052,8 @@ fix_lt(VALUE x, VALUE y)
* call-seq:
* self < other -> true or false
*
- * Returns +true+ if the value of +self+ is less than that of +other+:
+ * Returns whether the value of +self+ is less than the value of +other+;
+ * +other+ must be numeric, but may not be Complex:
*
* 1 < 0 # => false
* 1 < 1 # => false
@@ -4827,8 +5061,6 @@ fix_lt(VALUE x, VALUE y)
* 1 < 0.5 # => false
* 1 < Rational(1, 2) # => false
*
- * Raises an exception if the comparison cannot be made.
- *
*/
static VALUE
@@ -4863,10 +5095,10 @@ fix_le(VALUE x, VALUE y)
/*
* call-seq:
- * self <= real -> true or false
+ * self <= other -> true or false
*
- * Returns +true+ if the value of +self+ is less than or equal to
- * that of +other+:
+ * Returns whether the value of +self+ is less than or equal to the value of +other+;
+ * +other+ must be numeric, but may not be Complex:
*
* 1 <= 0 # => false
* 1 <= 1 # => true
@@ -5051,8 +5283,8 @@ fix_xor(VALUE x, VALUE y)
*
*/
-static VALUE
-int_xor(VALUE x, VALUE y)
+VALUE
+rb_int_xor(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_xor(x, y);
@@ -5162,7 +5394,7 @@ fix_rshift(long val, unsigned long i)
*
*/
-static VALUE
+VALUE
rb_int_rshift(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
@@ -5174,7 +5406,7 @@ rb_int_rshift(VALUE x, VALUE y)
return Qnil;
}
-MJIT_FUNC_EXPORTED VALUE
+VALUE
rb_fix_aref(VALUE fix, VALUE idx)
{
long val = FIX2LONG(fix);
@@ -5225,9 +5457,22 @@ generate_mask(VALUE len)
}
static VALUE
+int_aref2(VALUE num, VALUE beg, VALUE len)
+{
+ if (RB_TYPE_P(num, T_BIGNUM)) {
+ return rb_big_aref2(num, beg, len);
+ }
+ else {
+ num = rb_int_rshift(num, beg);
+ VALUE mask = generate_mask(len);
+ return rb_int_and(num, mask);
+ }
+}
+
+static VALUE
int_aref1(VALUE num, VALUE arg)
{
- VALUE orig_num = num, beg, end;
+ VALUE beg, end;
int excl;
if (rb_range_values(arg, &beg, &end, &excl)) {
@@ -5247,22 +5492,19 @@ int_aref1(VALUE num, VALUE arg)
return INT2FIX(0);
}
}
- num = rb_int_rshift(num, beg);
int cmp = compare_indexes(beg, end);
if (!NIL_P(end) && cmp < 0) {
VALUE len = rb_int_minus(end, beg);
if (!excl) len = rb_int_plus(len, INT2FIX(1));
- VALUE mask = generate_mask(len);
- num = rb_int_and(num, mask);
+ return int_aref2(num, beg, len);
}
else if (cmp == 0) {
if (excl) return INT2FIX(0);
- num = orig_num;
arg = beg;
goto one_bit;
}
- return num;
+ return rb_int_rshift(num, beg);
}
one_bit:
@@ -5275,15 +5517,6 @@ one_bit:
return Qnil;
}
-static VALUE
-int_aref2(VALUE num, VALUE beg, VALUE len)
-{
- num = rb_int_rshift(num, beg);
- VALUE mask = generate_mask(len);
- num = rb_int_and(num, mask);
- return num;
-}
-
/*
* call-seq:
* self[offset] -> 0 or 1
@@ -5344,7 +5577,7 @@ int_aref(int const argc, VALUE * const argv, VALUE const num)
* 1.to_f # => 1.0
* -1.to_f # => -1.0
*
- * If the value of +self+ does not fit in a \Float,
+ * If the value of +self+ does not fit in a Float,
* the result is infinity:
*
* (10**400).to_f # => Infinity
@@ -5398,7 +5631,7 @@ fix_size(VALUE fix)
return INT2FIX(sizeof(long));
}
-MJIT_FUNC_EXPORTED VALUE
+VALUE
rb_int_size(VALUE num)
{
if (FIXNUM_P(num)) {
@@ -5437,7 +5670,7 @@ rb_fix_digits(VALUE fix, long base)
VALUE digits;
long x = FIX2LONG(fix);
- assert(x >= 0);
+ RUBY_ASSERT(x >= 0);
if (base < 2)
rb_raise(rb_eArgError, "invalid radix %ld", base);
@@ -5446,11 +5679,12 @@ rb_fix_digits(VALUE fix, long base)
return rb_ary_new_from_args(1, INT2FIX(0));
digits = rb_ary_new();
- while (x > 0) {
+ while (x >= base) {
long q = x % base;
rb_ary_push(digits, LONG2NUM(q));
x /= base;
}
+ rb_ary_push(digits, LONG2NUM(x));
return digits;
}
@@ -5460,7 +5694,7 @@ rb_int_digits_bigbase(VALUE num, VALUE base)
{
VALUE digits, bases;
- assert(!rb_num_negative_p(num));
+ RUBY_ASSERT(!rb_num_negative_p(num));
if (RB_BIGNUM_TYPE_P(base))
base = rb_big_norm(base);
@@ -5487,7 +5721,7 @@ rb_int_digits_bigbase(VALUE num, VALUE base)
}
bases = rb_ary_new();
- for (VALUE b = base; int_lt(b, num) == Qtrue; b = rb_int_mul(b, b)) {
+ for (VALUE b = base; int_le(b, num) == Qtrue; b = rb_int_mul(b, b)) {
rb_ary_push(bases, b);
}
digits = rb_ary_new_from_args(1, num);
@@ -5660,53 +5894,7 @@ int_downto(VALUE from, VALUE to)
static VALUE
int_dotimes_size(VALUE num, VALUE args, VALUE eobj)
{
- if (FIXNUM_P(num)) {
- if (NUM2LONG(num) <= 0) return INT2FIX(0);
- }
- else {
- if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) return INT2FIX(0);
- }
- return num;
-}
-
-/*
- * call-seq:
- * times {|i| ... } -> self
- * times -> enumerator
- *
- * Calls the given block +self+ times with each integer in <tt>(0..self-1)</tt>:
- *
- * a = []
- * 5.times {|i| a.push(i) } # => 5
- * a # => [0, 1, 2, 3, 4]
- *
- * With no block given, returns an Enumerator.
- *
- */
-
-static VALUE
-int_dotimes(VALUE num)
-{
- RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size);
-
- if (FIXNUM_P(num)) {
- long i, end;
-
- end = FIX2LONG(num);
- for (i=0; i<end; i++) {
- rb_yield_1(LONG2FIX(i));
- }
- }
- else {
- VALUE i = INT2FIX(0);
-
- for (;;) {
- if (!RTEST(int_le(i, num))) break;
- rb_yield(i);
- i = rb_int_plus(i, INT2FIX(1));
- }
- }
- return num;
+ return int_neg_p(num) ? INT2FIX(0) : num;
}
/*
@@ -5775,24 +5963,56 @@ int_round(int argc, VALUE* argv, VALUE num)
}
/*
+ * :markup: markdown
+ *
* call-seq:
* floor(ndigits = 0) -> integer
*
- * Returns the largest number less than or equal to +self+ with
- * a precision of +ndigits+ decimal digits.
+ * Returns an integer that is a "floor" value for `self`,
+ * as specified by the given `ndigits`,
+ * which must be an
+ * [integer-convertible object](rdoc-ref:implicit_conversion.rdoc@Integer-Convertible+Objects).
*
- * When +ndigits+ is negative, the returned value
- * has at least <tt>ndigits.abs</tt> trailing zeros:
+ * - When `self` is zero, returns zero (regardless of the value of `ndigits`):
*
- * 555.floor(-1) # => 550
- * 555.floor(-2) # => 500
- * -555.floor(-2) # => -600
- * 555.floor(-3) # => 0
+ * ```
+ * 0.floor(2) # => 0
+ * 0.floor(-2) # => 0
+ * ```
*
- * Returns +self+ when +ndigits+ is zero or positive.
+ * - When `self` is non-zero and `ndigits` is non-negative, returns `self`:
+ *
+ * ```
+ * 555.floor # => 555
+ * 555.floor(50) # => 555
+ * ```
*
- * 555.floor # => 555
- * 555.floor(50) # => 555
+ * - When `self` is non-zero and `ndigits` is negative,
+ * returns a value based on a computed granularity:
+ *
+ * - The granularity is `10 ** ndigits.abs`.
+ * - The returned value is the largest multiple of the granularity
+ * that is less than or equal to `self`.
+ *
+ * Examples with positive `self`:
+ *
+ * | ndigits | Granularity | 1234.floor(ndigits) |
+ * |--------:|------------:|--------------------:|
+ * | -1 | 10 | 1230 |
+ * | -2 | 100 | 1200 |
+ * | -3 | 1000 | 1000 |
+ * | -4 | 10000 | 0 |
+ * | -5 | 100000 | 0 |
+ *
+ * Examples with negative `self`:
+ *
+ * | ndigits | Granularity | -1234.floor(ndigits) |
+ * |--------:|------------:|---------------------:|
+ * | -1 | 10 | -1240 |
+ * | -2 | 100 | -1300 |
+ * | -3 | 1000 | -2000 |
+ * | -4 | 10000 | -10000 |
+ * | -5 | 100000 | -100000 |
*
* Related: Integer#ceil.
*
@@ -5812,27 +6032,58 @@ int_floor(int argc, VALUE* argv, VALUE num)
}
/*
+ * :markup: markdown
+ *
* call-seq:
* ceil(ndigits = 0) -> integer
*
- * Returns the smallest number greater than or equal to +self+ with
- * a precision of +ndigits+ decimal digits.
+ * Returns an integer that is a "ceiling" value for `self`,
+ * as specified by the given `ndigits`,
+ * which must be an
+ * [integer-convertible object](rdoc-ref:implicit_conversion.rdoc@Integer-Convertible+Objects).
*
- * When the precision is negative, the returned value is an integer
- * with at least <code>ndigits.abs</code> trailing zeros:
+ * - When `self` is zero, returns zero (regardless of the value of `ndigits`):
*
- * 555.ceil(-1) # => 560
- * 555.ceil(-2) # => 600
- * -555.ceil(-2) # => -500
- * 555.ceil(-3) # => 1000
+ * ```
+ * 0.ceil(2) # => 0
+ * 0.ceil(-2) # => 0
+ * ```
*
- * Returns +self+ when +ndigits+ is zero or positive.
+ * - When `self` is non-zero and `ndigits` is non-negative, returns `self`:
*
- * 555.ceil # => 555
- * 555.ceil(50) # => 555
+ * ```
+ * 555.ceil # => 555
+ * 555.ceil(50) # => 555
+ * ```
*
- * Related: Integer#floor.
+ * - When `self` is non-zero and `ndigits` is negative,
+ * returns a value based on a computed granularity:
+ *
+ * - The granularity is `10 ** ndigits.abs`.
+ * - The returned value is the smallest multiple of the granularity
+ * that is greater than or equal to `self`.
+ *
+ * Examples with positive `self`:
+ *
+ * | ndigits | Granularity | 1234.ceil(ndigits) |
+ * |--------:|------------:|-------------------:|
+ * | -1 | 10 | 1240 |
+ * | -2 | 100 | 1300 |
+ * | -3 | 1000 | 2000 |
+ * | -4 | 10000 | 10000 |
+ * | -5 | 100000 | 100000 |
*
+ * Examples with negative `self`:
+ *
+ * | ndigits | Granularity | -1234.ceil(ndigits) |
+ * |--------:|------------:|--------------------:|
+ * | -1 | 10 | -1230 |
+ * | -2 | 100 | -1200 |
+ * | -3 | 1000 | -1000 |
+ * | -4 | 10000 | 0 |
+ * | -5 | 100000 | 0 |
+ *
+ * Related: Integer#floor.
*/
static VALUE
@@ -5896,7 +6147,11 @@ prefix##_isqrt(argtype n) \
while ((t = n/x) < (argtype)x) x = (rettype)((x + t) >> 1); \
return x; \
} \
- return (rettype)sqrt(argtype##_TO_DOUBLE(n)); \
+ rettype x = (rettype)sqrt(argtype##_TO_DOUBLE(n)); \
+ /* libm sqrt may returns a larger approximation than actual. */ \
+ /* Our isqrt always returns a smaller approximation. */ \
+ if (x * x > n) x--; \
+ return x; \
}
#if SIZEOF_LONG*CHAR_BIT > DBL_MANT_DIG
@@ -5989,7 +6244,22 @@ rb_int_s_isqrt(VALUE self, VALUE num)
}
}
-/* :nodoc: */
+/*
+ * call-seq:
+ * Integer.try_convert(object) -> object, integer, or nil
+ *
+ * If +object+ is an \Integer object, returns +object+.
+ * Integer.try_convert(1) # => 1
+ *
+ * Otherwise if +object+ responds to <tt>:to_int</tt>,
+ * calls <tt>object.to_int</tt> and returns the result.
+ * Integer.try_convert(1.25) # => 1
+ *
+ * Returns +nil+ if +object+ does not respond to <tt>:to_int</tt>
+ * Integer.try_convert([]) # => nil
+ *
+ * Raises an exception unless <tt>object.to_int</tt> returns an \Integer object.
+ */
static VALUE
int_s_try_convert(VALUE self, VALUE num)
{
@@ -6022,9 +6292,9 @@ int_s_try_convert(VALUE self, VALUE num)
/*
* Document-class: Numeric
*
- * Numeric is the class from which all higher-level numeric classes should inherit.
+ * \Numeric is the class from which all higher-level numeric classes should inherit.
*
- * Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as
+ * \Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as
* Integer are implemented as immediates, which means that each Integer is a single immutable
* object which is always passed by value.
*
@@ -6038,9 +6308,9 @@ int_s_try_convert(VALUE self, VALUE num)
* 1.dup #=> 1
* 1.object_id == 1.dup.object_id #=> true
*
- * For this reason, Numeric should be used when defining other numeric classes.
+ * For this reason, \Numeric should be used when defining other numeric classes.
*
- * Classes which inherit from Numeric must implement +coerce+, which returns a two-member
+ * Classes which inherit from \Numeric must implement +coerce+, which returns a two-member
* Array containing an object that has been coerced into an instance of the new class
* and +self+ (see #coerce).
*
@@ -6093,7 +6363,7 @@ int_s_try_convert(VALUE self, VALUE num)
*
* == What's Here
*
- * First, what's elsewhere. \Class \Numeric:
+ * First, what's elsewhere. Class \Numeric:
*
* - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here].
* - Includes {module Comparable}[rdoc-ref:Comparable@What-27s+Here].
@@ -6192,10 +6462,8 @@ Init_Numeric(void)
rb_include_module(rb_cNumeric, rb_mComparable);
rb_define_method(rb_cNumeric, "coerce", num_coerce, 1);
rb_define_method(rb_cNumeric, "clone", num_clone, -1);
- rb_define_method(rb_cNumeric, "dup", num_dup, 0);
rb_define_method(rb_cNumeric, "i", num_imaginary, 0);
- rb_define_method(rb_cNumeric, "+@", num_uplus, 0);
rb_define_method(rb_cNumeric, "-@", num_uminus, 0);
rb_define_method(rb_cNumeric, "<=>", num_cmp, 1);
rb_define_method(rb_cNumeric, "eql?", num_eql, 1);
@@ -6233,7 +6501,6 @@ Init_Numeric(void)
rb_define_method(rb_cInteger, "nobits?", int_nobits_p, 1);
rb_define_method(rb_cInteger, "upto", int_upto, 1);
rb_define_method(rb_cInteger, "downto", int_downto, 1);
- rb_define_method(rb_cInteger, "times", int_dotimes, 0);
rb_define_method(rb_cInteger, "succ", int_succ, 0);
rb_define_method(rb_cInteger, "next", int_succ, 0);
rb_define_method(rb_cInteger, "pred", int_pred, 0);
@@ -6268,7 +6535,7 @@ Init_Numeric(void)
rb_define_method(rb_cInteger, "&", rb_int_and, 1);
rb_define_method(rb_cInteger, "|", int_or, 1);
- rb_define_method(rb_cInteger, "^", int_xor, 1);
+ rb_define_method(rb_cInteger, "^", rb_int_xor, 1);
rb_define_method(rb_cInteger, "[]", int_aref, -1);
rb_define_method(rb_cInteger, "<<", rb_int_lshift, 1);
@@ -6276,19 +6543,25 @@ Init_Numeric(void)
rb_define_method(rb_cInteger, "digits", rb_int_digits, -1);
- rb_fix_to_s_static[0] = rb_fstring_literal("0");
- rb_fix_to_s_static[1] = rb_fstring_literal("1");
- rb_fix_to_s_static[2] = rb_fstring_literal("2");
- rb_fix_to_s_static[3] = rb_fstring_literal("3");
- rb_fix_to_s_static[4] = rb_fstring_literal("4");
- rb_fix_to_s_static[5] = rb_fstring_literal("5");
- rb_fix_to_s_static[6] = rb_fstring_literal("6");
- rb_fix_to_s_static[7] = rb_fstring_literal("7");
- rb_fix_to_s_static[8] = rb_fstring_literal("8");
- rb_fix_to_s_static[9] = rb_fstring_literal("9");
- for(int i = 0; i < 10; i++) {
- rb_gc_register_mark_object(rb_fix_to_s_static[i]);
- }
+#define fix_to_s_static(n) do { \
+ VALUE lit = rb_fstring_literal(#n); \
+ rb_fix_to_s_static[n] = lit; \
+ rb_vm_register_global_object(lit); \
+ RB_GC_GUARD(lit); \
+ } while (0)
+
+ fix_to_s_static(0);
+ fix_to_s_static(1);
+ fix_to_s_static(2);
+ fix_to_s_static(3);
+ fix_to_s_static(4);
+ fix_to_s_static(5);
+ fix_to_s_static(6);
+ fix_to_s_static(7);
+ fix_to_s_static(8);
+ fix_to_s_static(9);
+
+#undef fix_to_s_static
rb_cFloat = rb_define_class("Float", rb_cNumeric);
@@ -6350,7 +6623,7 @@ Init_Numeric(void)
*
* If the platform supports denormalized numbers,
* there are numbers between zero and Float::MIN.
- * 0.0.next_float returns the smallest positive floating point number
+ * +0.0.next_float+ returns the smallest positive floating point number
* including denormalized numbers.
*/
rb_define_const(rb_cFloat, "MIN", DBL2NUM(DBL_MIN));