diff options
Diffstat (limited to 'numeric.c')
| -rw-r--r-- | numeric.c | 1422 |
1 files changed, 838 insertions, 584 deletions
@@ -552,39 +552,6 @@ num_clone(int argc, VALUE *argv, VALUE x) # define num_clone rb_immutable_obj_clone #endif -#if 0 -/* - * call-seq: - * dup -> self - * - * Returns +self+. - * - * Related: Numeric#clone. - * - */ -static VALUE -num_dup(VALUE x) -{ - return x; -} -#else -# define num_dup num_uplus -#endif - -/* - * call-seq: - * +self -> self - * - * Returns +self+. - * - */ - -static VALUE -num_uplus(VALUE num) -{ - return num; -} - /* * call-seq: * i -> complex @@ -609,7 +576,7 @@ num_imaginary(VALUE num) * call-seq: * -self -> numeric * - * Unary Minus---Returns the receiver, negated. + * Returns +self+, negated. */ static VALUE @@ -628,8 +595,8 @@ num_uminus(VALUE num) * fdiv(other) -> float * * Returns the quotient <tt>self/other</tt> as a float, - * using method +/+ in the derived class of +self+. - * (\Numeric itself does not define method +/+.) + * using method +/+ as defined in the subclass of \Numeric. + * (\Numeric itself does not define +/+.) * * Of the Core and Standard Library classes, * only BigDecimal uses this implementation. @@ -647,8 +614,8 @@ num_fdiv(VALUE x, VALUE y) * div(other) -> integer * * Returns the quotient <tt>self/other</tt> as an integer (via +floor+), - * using method +/+ in the derived class of +self+. - * (\Numeric itself does not define method +/+.) + * using method +/+ as defined in the subclass of \Numeric. + * (\Numeric itself does not define +/+.) * * Of the Core and Standard Library classes, * Only Float and Rational use this implementation. @@ -666,12 +633,12 @@ num_div(VALUE x, VALUE y) * call-seq: * self % other -> real_numeric * - * Returns +self+ modulo +other+ as a real number. + * Returns +self+ modulo +other+ as a real numeric (\Integer, \Float, or \Rational). * * Of the Core and Standard Library classes, * only Rational uses this implementation. * - * For \Rational +r+ and real number +n+, these expressions are equivalent: + * For Rational +r+ and real number +n+, these expressions are equivalent: * * r % n * r-n*(r/n).floor @@ -694,8 +661,6 @@ num_div(VALUE x, VALUE y) * (-r) % r2 # => (119/100) * (-r) %-r2 # => (-21/100) * - * Numeric#modulo is an alias for Numeric#%. - * */ static VALUE @@ -804,8 +769,6 @@ num_divmod(VALUE x, VALUE y) * (-34.56).abs #=> 34.56 * -34.56.abs #=> 34.56 * - * Numeric#magnitude is an alias for Numeric#abs. - * */ static VALUE @@ -840,7 +803,7 @@ int_zero_p(VALUE num) if (FIXNUM_P(num)) { return FIXNUM_ZERO_P(num); } - assert(RB_BIGNUM_TYPE_P(num)); + RUBY_ASSERT(RB_BIGNUM_TYPE_P(num)); return rb_bigzero_p(num); } @@ -866,6 +829,8 @@ rb_int_zero_p(VALUE num) * Of the Core and Standard Library classes, * Integer, Float, Rational, and Complex use this implementation. * + * Related: #zero? + * */ static VALUE @@ -882,7 +847,8 @@ num_nonzero_p(VALUE num) * to_int -> integer * * Returns +self+ as an integer; - * converts using method +to_i+ in the derived class. + * converts using method +to_i+ in the subclass of \Numeric. + * (\Numeric itself does not define +to_i+.) * * Of the Core and Standard Library classes, * only Rational and Complex use this implementation. @@ -892,7 +858,7 @@ num_nonzero_p(VALUE num) * Rational(1, 2).to_int # => 0 * Rational(2, 1).to_int # => 2 * Complex(2, 0).to_int # => 2 - * Complex(2, 1) # Raises RangeError (non-zero imaginary part) + * Complex(2, 1).to_int # Raises RangeError (non-zero imaginary part) * */ @@ -940,89 +906,10 @@ num_negative_p(VALUE num) return RBOOL(rb_num_negative_int_p(num)); } - -/******************************************************************** - * - * Document-class: Float - * - * A \Float object represents a sometimes-inexact real number using the native - * architecture's double-precision floating point representation. - * - * Floating point has a different arithmetic and is an inexact number. - * So you should know its esoteric system. See following: - * - * - https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html - * - https://github.com/rdp/ruby_tutorials_core/wiki/Ruby-Talk-FAQ#floats_imprecise - * - https://en.wikipedia.org/wiki/Floating_point#Accuracy_problems - * - * You can create a \Float object explicitly with: - * - * - A {floating-point literal}[rdoc-ref:syntax/literals.rdoc@Float+Literals]. - * - * You can convert certain objects to Floats with: - * - * - \Method #Float. - * - * == What's Here - * - * First, what's elsewhere. \Class \Float: - * - * - Inherits from {class Numeric}[rdoc-ref:Numeric@What-27s+Here]. - * - * Here, class \Float provides methods for: - * - * - {Querying}[rdoc-ref:Float@Querying] - * - {Comparing}[rdoc-ref:Float@Comparing] - * - {Converting}[rdoc-ref:Float@Converting] - * - * === Querying - * - * - #finite?: Returns whether +self+ is finite. - * - #hash: Returns the integer hash code for +self+. - * - #infinite?: Returns whether +self+ is infinite. - * - #nan?: Returns whether +self+ is a NaN (not-a-number). - * - * === Comparing - * - * - #<: Returns whether +self+ is less than the given value. - * - #<=: Returns whether +self+ is less than or equal to the given value. - * - #<=>: Returns a number indicating whether +self+ is less than, equal - * to, or greater than the given value. - * - #== (aliased as #=== and #eql?): Returns whether +self+ is equal to - * the given value. - * - #>: Returns whether +self+ is greater than the given value. - * - #>=: Returns whether +self+ is greater than or equal to the given value. - * - * === Converting - * - * - #% (aliased as #modulo): Returns +self+ modulo the given value. - * - #*: Returns the product of +self+ and the given value. - * - #**: Returns the value of +self+ raised to the power of the given value. - * - #+: Returns the sum of +self+ and the given value. - * - #-: Returns the difference of +self+ and the given value. - * - #/: Returns the quotient of +self+ and the given value. - * - #ceil: Returns the smallest number greater than or equal to +self+. - * - #coerce: Returns a 2-element array containing the given value converted to a \Float - and +self+ - * - #divmod: Returns a 2-element array containing the quotient and remainder - * results of dividing +self+ by the given value. - * - #fdiv: Returns the Float result of dividing +self+ by the given value. - * - #floor: Returns the greatest number smaller than or equal to +self+. - * - #next_float: Returns the next-larger representable \Float. - * - #prev_float: Returns the next-smaller representable \Float. - * - #quo: Returns the quotient from dividing +self+ by the given value. - * - #round: Returns +self+ rounded to the nearest value, to a given precision. - * - #to_i (aliased as #to_int): Returns +self+ truncated to an Integer. - * - #to_s (aliased as #inspect): Returns a string containing the place-value - * representation of +self+ in the given radix. - * - #truncate: Returns +self+ truncated to a given precision. - * - */ - VALUE rb_float_new_in_heap(double d) { - NEWOBJ_OF(flt, struct RFloat, rb_cFloat, T_FLOAT | (RGENGC_WB_PROTECTED_FLOAT ? FL_WB_PROTECTED : 0)); + NEWOBJ_OF(flt, struct RFloat, rb_cFloat, T_FLOAT | (RGENGC_WB_PROTECTED_FLOAT ? FL_WB_PROTECTED : 0), sizeof(struct RFloat), 0); #if SIZEOF_DOUBLE <= SIZEOF_VALUE flt->float_value = d; @@ -1046,16 +933,15 @@ rb_float_new_in_heap(double d) * may contain: * * - A fixed-point number. + * 3.14.to_s # => "3.14" * - A number in "scientific notation" (containing an exponent). + * (10.1**50).to_s # => "1.644631821843879e+50" * - 'Infinity'. + * (10.1**500).to_s # => "Infinity" * - '-Infinity'. + * (-10.1**500).to_s # => "-Infinity" * - 'NaN' (indicating not-a-number). - * - * 3.14.to_s # => "3.14" - * (10.1**50).to_s # => "1.644631821843879e+50" - * (10.1**500).to_s # => "Infinity" - * (-10.1**500).to_s # => "-Infinity" - * (0.0/0.0).to_s # => "NaN" + * (0.0/0.0).to_s # => "NaN" * */ @@ -1082,7 +968,7 @@ flo_to_s(VALUE flt) s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0); if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1; memcpy(buf, p, digs); - xfree(p); + free(p); if (decpt > 0) { if (decpt < digs) { memmove(buf + decpt + 1, buf + decpt, digs - decpt); @@ -1156,7 +1042,7 @@ flo_coerce(VALUE x, VALUE y) return rb_assoc_new(rb_Float(y), x); } -MJIT_FUNC_EXPORTED VALUE +VALUE rb_float_uminus(VALUE flt) { return DBL2NUM(-RFLOAT_VALUE(flt)); @@ -1164,15 +1050,21 @@ rb_float_uminus(VALUE flt) /* * call-seq: - * self + other -> numeric + * self + other -> float or complex * - * Returns a new \Float which is the sum of +self+ and +other+: + * Returns the sum of +self+ and +other+; + * the result may be inexact (see Float): * - * f = 3.14 - * f + 1 # => 4.140000000000001 - * f + 1.0 # => 4.140000000000001 - * f + Rational(1, 1) # => 4.140000000000001 - * f + Complex(1, 0) # => (4.140000000000001+0i) + * 3.14 + 0 # => 3.14 + * 3.14 + 1 # => 4.140000000000001 + * -3.14 + 0 # => -3.14 + * -3.14 + 1 # => -2.14 + + * 3.14 + -3.14 # => 0.0 + * -3.14 + -3.14 # => -6.28 + * + * 3.14 + Complex(1, 0) # => (4.140000000000001+0i) + * 3.14 + Rational(1, 1) # => 4.140000000000001 * */ @@ -1197,7 +1089,7 @@ rb_float_plus(VALUE x, VALUE y) * call-seq: * self - other -> numeric * - * Returns a new \Float which is the difference of +self+ and +other+: + * Returns the difference of +self+ and +other+: * * f = 3.14 * f - 1 # => 2.14 @@ -1228,13 +1120,14 @@ rb_float_minus(VALUE x, VALUE y) * call-seq: * self * other -> numeric * - * Returns a new \Float which is the product of +self+ and +other+: + * Returns the numeric product of +self+ and +other+: * * f = 3.14 * f * 2 # => 6.28 * f * 2.0 # => 6.28 * f * Rational(1, 2) # => 1.57 * f * Complex(2, 0) # => (6.28+0.0i) + * */ VALUE @@ -1269,7 +1162,7 @@ double_div_double(double x, double y) } } -MJIT_FUNC_EXPORTED VALUE +VALUE rb_flo_div_flo(VALUE x, VALUE y) { double num = RFLOAT_VALUE(x); @@ -1282,7 +1175,7 @@ rb_flo_div_flo(VALUE x, VALUE y) * call-seq: * self / other -> numeric * - * Returns a new \Float which is the result of dividing +self+ by +other+: + * Returns the quotient of +self+ and +other+: * * f = 3.14 * f / 2 # => 1.57 @@ -1328,8 +1221,6 @@ rb_float_div(VALUE x, VALUE y) * f.quo(Rational(2, 1)) # => 1.57 * f.quo(Complex(2, 0)) # => (1.57+0.0i) * - * Float#fdiv is an alias for Float#quo. - * */ static VALUE @@ -1381,7 +1272,7 @@ flodivmod(double x, double y, double *divp, double *modp) * An error will be raised if y == 0. */ -MJIT_FUNC_EXPORTED double +double ruby_float_mod(double x, double y) { double mod; @@ -1393,7 +1284,7 @@ ruby_float_mod(double x, double y) * call-seq: * self % other -> float * - * Returns +self+ modulo +other+ as a float. + * Returns +self+ modulo +other+ as a \Float. * * For float +f+ and real number +r+, these expressions are equivalent: * @@ -1416,8 +1307,6 @@ ruby_float_mod(double x, double y) * 10.0 % 4.0 # => 2.0 * 10.0 % Rational(4, 1) # => 2.0 * - * Float#modulo is an alias for Float#%. - * */ static VALUE @@ -1501,9 +1390,9 @@ flo_divmod(VALUE x, VALUE y) /* * call-seq: - * self ** other -> numeric + * self ** exponent -> numeric * - * Raises +self+ to the power of +other+: + * Returns +self+ raised to the power +exponent+: * * f = 3.14 * f ** 2 # => 9.8596 @@ -1558,8 +1447,8 @@ rb_float_pow(VALUE x, VALUE y) * 1.eql?(Rational(1, 1)) # => false * 1.eql?(Complex(1, 0)) # => false * - * \Method +eql?+ is different from +==+ in that +eql?+ requires matching types, - * while +==+ does not. + * Method +eql?+ is different from <tt>==</tt> in that +eql?+ requires matching types, + * while <tt>==</tt> does not. * */ @@ -1579,10 +1468,17 @@ num_eql(VALUE x, VALUE y) * call-seq: * self <=> other -> zero or nil * - * Returns zero if +self+ is the same as +other+, +nil+ otherwise. + * Compares +self+ and +other+. * - * No subclass in the Ruby Core or Standard Library uses this implementation. + * Returns: + * + * - Zero, if +self+ is the same as +other+. + * - +nil+, otherwise. + * + * \Class \Numeric includes module Comparable, + * each of whose methods uses Numeric#<=> for comparison. * + * No subclass in the Ruby Core or Standard Library uses this implementation. */ static VALUE @@ -1605,7 +1501,7 @@ num_equal(VALUE x, VALUE y) * call-seq: * self == other -> true or false * - * Returns +true+ if +other+ has the same value as +self+, +false+ otherwise: + * Returns whether +other+ is numerically equal to +self+: * * 2.0 == 2 # => true * 2.0 == 2.0 # => true @@ -1618,7 +1514,7 @@ num_equal(VALUE x, VALUE y) * */ -MJIT_FUNC_EXPORTED VALUE +VALUE rb_float_equal(VALUE x, VALUE y) { volatile double a, b; @@ -1628,17 +1524,11 @@ rb_float_equal(VALUE x, VALUE y) } else if (RB_FLOAT_TYPE_P(y)) { b = RFLOAT_VALUE(y); -#if MSC_VERSION_BEFORE(1300) - if (isnan(b)) return Qfalse; -#endif } else { return num_equal(x, y); } a = RFLOAT_VALUE(x); -#if MSC_VERSION_BEFORE(1300) - if (isnan(a)) return Qfalse; -#endif return RBOOL(a == b); } @@ -1678,30 +1568,32 @@ rb_dbl_cmp(double a, double b) /* * call-seq: - * self <=> other -> -1, 0, +1, or nil + * self <=> other -> -1, 0, 1, or nil + * + * Compares +self+ and +other+. * - * Returns a value that depends on the numeric relation - * between +self+ and +other+: + * Returns: * - * - -1, if +self+ is less than +other+. - * - 0, if +self+ is equal to +other+. - * - 1, if +self+ is greater than +other+. + * - +-1+, if +self+ is less than +other+. + * - +0+, if +self+ is equal to +other+. + * - +1+, if +self+ is greater than +other+. * - +nil+, if the two values are incommensurate. * * Examples: * + * 2.0 <=> 2.1 # => -1 * 2.0 <=> 2 # => 0 - 2.0 <=> 2.0 # => 0 - 2.0 <=> Rational(2, 1) # => 0 - 2.0 <=> Complex(2, 0) # => 0 - 2.0 <=> 1.9 # => 1 - 2.0 <=> 2.1 # => -1 - 2.0 <=> 'foo' # => nil - * - * This is the basis for the tests in the Comparable module. + * 2.0 <=> 2.0 # => 0 + * 2.0 <=> Rational(2, 1) # => 0 + * 2.0 <=> Complex(2, 0) # => 0 + * 2.0 <=> 1.9 # => 1 + * 2.0 <=> 'foo' # => nil * * <tt>Float::NAN <=> Float::NAN</tt> returns an implementation-dependent value. * + * \Class \Float includes module Comparable, + * each of whose methods uses Float#<=> for comparison. + * */ static VALUE @@ -1736,7 +1628,7 @@ flo_cmp(VALUE x, VALUE y) return rb_dbl_cmp(a, b); } -MJIT_FUNC_EXPORTED int +int rb_float_cmp(VALUE x, VALUE y) { return NUM2INT(ensure_cmp(flo_cmp(x, y), x, y)); @@ -1746,7 +1638,8 @@ rb_float_cmp(VALUE x, VALUE y) * call-seq: * self > other -> true or false * - * Returns +true+ if +self+ is numerically greater than +other+: + * Returns whether the value of +self+ is greater than the value of +other+; + * +other+ must be numeric, but may not be Complex: * * 2.0 > 1 # => true * 2.0 > 1.0 # => true @@ -1771,16 +1664,10 @@ rb_float_gt(VALUE x, VALUE y) } else if (RB_FLOAT_TYPE_P(y)) { b = RFLOAT_VALUE(y); -#if MSC_VERSION_BEFORE(1300) - if (isnan(b)) return Qfalse; -#endif } else { return rb_num_coerce_relop(x, y, '>'); } -#if MSC_VERSION_BEFORE(1300) - if (isnan(a)) return Qfalse; -#endif return RBOOL(a > b); } @@ -1788,7 +1675,8 @@ rb_float_gt(VALUE x, VALUE y) * call-seq: * self >= other -> true or false * - * Returns +true+ if +self+ is numerically greater than or equal to +other+: + * Returns whether the value of +self+ is greater than or equal to the value of +other+; + * +other+ must be numeric, but may not be Complex: * * 2.0 >= 1 # => true * 2.0 >= 1.0 # => true @@ -1814,16 +1702,10 @@ flo_ge(VALUE x, VALUE y) } else if (RB_FLOAT_TYPE_P(y)) { b = RFLOAT_VALUE(y); -#if MSC_VERSION_BEFORE(1300) - if (isnan(b)) return Qfalse; -#endif } else { return rb_num_coerce_relop(x, y, idGE); } -#if MSC_VERSION_BEFORE(1300) - if (isnan(a)) return Qfalse; -#endif return RBOOL(a >= b); } @@ -1831,7 +1713,8 @@ flo_ge(VALUE x, VALUE y) * call-seq: * self < other -> true or false * - * Returns +true+ if +self+ is numerically less than +other+: + * Returns whether the value of +self+ is less than the value of +other+; + * +other+ must be numeric, but may not be Complex: * * 2.0 < 3 # => true * 2.0 < 3.0 # => true @@ -1839,7 +1722,6 @@ flo_ge(VALUE x, VALUE y) * 2.0 < 2.0 # => false * * <tt>Float::NAN < Float::NAN</tt> returns an implementation-dependent value. - * */ static VALUE @@ -1856,16 +1738,10 @@ flo_lt(VALUE x, VALUE y) } else if (RB_FLOAT_TYPE_P(y)) { b = RFLOAT_VALUE(y); -#if MSC_VERSION_BEFORE(1300) - if (isnan(b)) return Qfalse; -#endif } else { return rb_num_coerce_relop(x, y, '<'); } -#if MSC_VERSION_BEFORE(1300) - if (isnan(a)) return Qfalse; -#endif return RBOOL(a < b); } @@ -1873,7 +1749,8 @@ flo_lt(VALUE x, VALUE y) * call-seq: * self <= other -> true or false * - * Returns +true+ if +self+ is numerically less than or equal to +other+: + * Returns whether the value of +self+ is less than or equal to the value of +other+; + * +other+ must be numeric, but may not be Complex: * * 2.0 <= 3 # => true * 2.0 <= 3.0 # => true @@ -1899,16 +1776,10 @@ flo_le(VALUE x, VALUE y) } else if (RB_FLOAT_TYPE_P(y)) { b = RFLOAT_VALUE(y); -#if MSC_VERSION_BEFORE(1300) - if (isnan(b)) return Qfalse; -#endif } else { return rb_num_coerce_relop(x, y, idLE); } -#if MSC_VERSION_BEFORE(1300) - if (isnan(a)) return Qfalse; -#endif return RBOOL(a <= b); } @@ -1930,23 +1801,20 @@ flo_le(VALUE x, VALUE y) * Related: Float#== (performs type conversions). */ -MJIT_FUNC_EXPORTED VALUE +VALUE rb_float_eql(VALUE x, VALUE y) { if (RB_FLOAT_TYPE_P(y)) { double a = RFLOAT_VALUE(x); double b = RFLOAT_VALUE(y); -#if MSC_VERSION_BEFORE(1300) - if (isnan(a) || isnan(b)) return Qfalse; -#endif - return RBOOL(a == b); + return RBOOL(a == b); } return Qfalse; } #define flo_eql rb_float_eql -MJIT_FUNC_EXPORTED VALUE +VALUE rb_float_abs(VALUE flt) { double val = fabs(RFLOAT_VALUE(flt)); @@ -2173,36 +2041,78 @@ flo_ndigits(int argc, VALUE *argv) } /* + * :markup: markdown + * * call-seq: * floor(ndigits = 0) -> float or integer * - * Returns the largest number less than or equal to +self+ with - * a precision of +ndigits+ decimal digits. + * Returns a float or integer that is a "floor" value for `self`, + * as specified by `ndigits`, + * which must be an + * [integer-convertible object](rdoc-ref:implicit_conversion.rdoc@Integer-Convertible+Objects). * - * When +ndigits+ is positive, returns a float with +ndigits+ - * digits after the decimal point (as available): + * When `self` is zero, + * returns a zero value: + * a float if `ndigits` is positive, + * an integer otherwise: * - * f = 12345.6789 - * f.floor(1) # => 12345.6 - * f.floor(3) # => 12345.678 - * f = -12345.6789 - * f.floor(1) # => -12345.7 - * f.floor(3) # => -12345.679 + * ``` + * f = 0.0 # => 0.0 + * f.floor(20) # => 0.0 + * f.floor(0) # => 0 + * f.floor(-20) # => 0 + * ``` * - * When +ndigits+ is non-positive, returns an integer with at least - * <code>ndigits.abs</code> trailing zeros: + * When `self` is non-zero and `ndigits` is positive, returns a float with `ndigits` + * digits after the decimal point (as available): * - * f = 12345.6789 - * f.floor(0) # => 12345 - * f.floor(-3) # => 12000 - * f = -12345.6789 - * f.floor(0) # => -12346 - * f.floor(-3) # => -13000 + * ``` + * f = 12345.6789 + * f.floor(1) # => 12345.6 + * f.floor(3) # => 12345.678 + * f.floor(30) # => 12345.6789 + * f = -12345.6789 + * f.floor(1) # => -12345.7 + * f.floor(3) # => -12345.679 + * f.floor(30) # => -12345.6789 + * ``` + * + * When `self` is non-zero and `ndigits` is non-positive, + * returns an integer value based on a computed granularity: + * + * - The granularity is `10 ** ndigits.abs`. + * - The returned value is the largest multiple of the granularity + * that is less than or equal to `self`. + * + * Examples with positive `self`: + * + * | ndigits | Granularity | 12345.6789.floor(ndigits) | + * |--------:|------------:|--------------------------:| + * | 0 | 1 | 12345 | + * | -1 | 10 | 12340 | + * | -2 | 100 | 12300 | + * | -3 | 1000 | 12000 | + * | -4 | 10000 | 10000 | + * | -5 | 100000 | 0 | + * + * Examples with negative `self`: + * + * | ndigits | Granularity | -12345.6789.floor(ndigits) | + * |--------:|------------:|---------------------------:| + * | 0 | 1 | -12346 | + * | -1 | 10 | -12350 | + * | -2 | 100 | -12400 | + * | -3 | 1000 | -13000 | + * | -4 | 10000 | -20000 | + * | -5 | 100000 | -100000 | + * | -6 | 1000000 | -1000000 | * * Note that the limited precision of floating-point arithmetic * may lead to surprising results: * - * (0.3 / 0.1).floor #=> 2 (!) + * ``` + * (0.3 / 0.1).floor # => 2 # Not 3, (because (0.3 / 0.1) # => 2.9999999999999996, not 3.0) + * ``` * * Related: Float#ceil. * @@ -2216,36 +2126,78 @@ flo_floor(int argc, VALUE *argv, VALUE num) } /* + * :markup: markdown + * * call-seq: * ceil(ndigits = 0) -> float or integer * - * Returns the smallest number greater than or equal to +self+ with - * a precision of +ndigits+ decimal digits. - * - * When +ndigits+ is positive, returns a float with +ndigits+ - * digits after the decimal point (as available): - * - * f = 12345.6789 - * f.ceil(1) # => 12345.7 - * f.ceil(3) # => 12345.679 - * f = -12345.6789 - * f.ceil(1) # => -12345.6 - * f.ceil(3) # => -12345.678 - * - * When +ndigits+ is non-positive, returns an integer with at least - * <code>ndigits.abs</code> trailing zeros: - * - * f = 12345.6789 - * f.ceil(0) # => 12346 - * f.ceil(-3) # => 13000 - * f = -12345.6789 - * f.ceil(0) # => -12345 - * f.ceil(-3) # => -12000 + * Returns a numeric that is a "ceiling" value for `self`, + * as specified by the given `ndigits`, + * which must be an + * [integer-convertible object](rdoc-ref:implicit_conversion.rdoc@Integer-Convertible+Objects). + * + * When `ndigits` is positive, returns a Float with `ndigits` + * decimal digits after the decimal point + * (as available, but no fewer than 1): + * + * ``` + * f = 12345.6789 + * f.ceil(1) # => 12345.7 + * f.ceil(3) # => 12345.679 + * f.ceil(30) # => 12345.6789 + * f = -12345.6789 + * f.ceil(1) # => -12345.6 + * f.ceil(3) # => -12345.678 + * f.ceil(30) # => -12345.6789 + * f = 0.0 + * f.ceil(1) # => 0.0 + * f.ceil(100) # => 0.0 + * ``` + * + * When `ndigits` is non-positive, + * returns an Integer based on a computed granularity: + * + * - The granularity is `10 ** ndigits.abs`. + * - The returned value is the largest multiple of the granularity + * that is less than or equal to `self`. + * + * Examples with positive `self`: + * + * | ndigits | Granularity | 12345.6789.ceil(ndigits) | + * |--------:|------------:|-------------------------:| + * | 0 | 1 | 12346 | + * | -1 | 10 | 12350 | + * | -2 | 100 | 12400 | + * | -3 | 1000 | 13000 | + * | -4 | 10000 | 20000 | + * | -5 | 100000 | 100000 | + * + * Examples with negative `self`: + * + * | ndigits | Granularity | -12345.6789.ceil(ndigits) | + * |--------:|------------:|--------------------------:| + * | 0 | 1 | -12345 | + * | -1 | 10 | -12340 | + * | -2 | 100 | -12300 | + * | -3 | 1000 | -12000 | + * | -4 | 10000 | -10000 | + * | -5 | 100000 | 0 | + * + * When `self` is zero and `ndigits` is non-positive, + * returns Integer zero: + * + * ``` + * 0.0.ceil(0) # => 0 + * 0.0.ceil(-1) # => 0 + * 0.0.ceil(-2) # => 0 + * ``` * * Note that the limited precision of floating-point arithmetic * may lead to surprising results: * - * (2.1 / 0.7).ceil #=> 4 (!) + * ``` + * (2.1 / 0.7).ceil #=> 4 # Not 3 (because 2.1 / 0.7 # => 3.0000000000000004, not 3.0) + * ``` * * Related: Float#floor. * @@ -2343,7 +2295,7 @@ int_half_p_half_down(VALUE num, VALUE n, VALUE f) } /* - * Assumes num is an Integer, ndigits <= 0 + * Assumes num is an \Integer, ndigits <= 0 */ static VALUE rb_int_round(VALUE num, int ndigits, enum ruby_num_rounding_mode mode) @@ -2381,11 +2333,7 @@ rb_int_round(VALUE num, int ndigits, enum ruby_num_rounding_mode mode) static VALUE rb_int_floor(VALUE num, int ndigits) { - VALUE f; - - if (int_round_zero_p(num, ndigits)) - return INT2FIX(0); - f = int_pow(10, -ndigits); + VALUE f = int_pow(10, -ndigits); if (FIXNUM_P(num) && FIXNUM_P(f)) { SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f); int neg = x < 0; @@ -2394,21 +2342,19 @@ rb_int_floor(VALUE num, int ndigits) if (neg) x = -x; return LONG2NUM(x); } - if (RB_FLOAT_TYPE_P(f)) { - /* then int_pow overflow */ - return INT2FIX(0); + else { + bool neg = int_neg_p(num); + if (neg) num = rb_int_minus(rb_int_plus(rb_int_uminus(num), f), INT2FIX(1)); + num = rb_int_mul(rb_int_div(num, f), f); + if (neg) num = rb_int_uminus(num); + return num; } - return rb_int_minus(num, rb_int_modulo(num, f)); } static VALUE rb_int_ceil(VALUE num, int ndigits) { - VALUE f; - - if (int_round_zero_p(num, ndigits)) - return INT2FIX(0); - f = int_pow(10, -ndigits); + VALUE f = int_pow(10, -ndigits); if (FIXNUM_P(num) && FIXNUM_P(f)) { SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f); int neg = x < 0; @@ -2418,11 +2364,16 @@ rb_int_ceil(VALUE num, int ndigits) if (neg) x = -x; return LONG2NUM(x); } - if (RB_FLOAT_TYPE_P(f)) { - /* then int_pow overflow */ - return INT2FIX(0); + else { + bool neg = int_neg_p(num); + if (neg) + num = rb_int_uminus(num); + else + num = rb_int_plus(num, rb_int_minus(f, INT2FIX(1))); + num = rb_int_mul(rb_int_div(num, f), f); + if (neg) num = rb_int_uminus(num); + return num; } - return rb_int_plus(num, rb_int_minus(f, rb_int_modulo(num, f))); } VALUE @@ -2457,7 +2408,7 @@ rb_int_truncate(VALUE num, int ndigits) /* * call-seq: - * round(ndigits = 0, half: :up]) -> integer or float + * round(ndigits = 0, half: :up) -> integer or float * * Returns +self+ rounded to the nearest value with * a precision of +ndigits+ decimal digits. @@ -2600,7 +2551,6 @@ float_round_underflow(int ndigits, int binexp) * * (0.3 / 0.1).to_i # => 2 (!) * - * Float#to_int is an alias for Float#to_i. */ static VALUE @@ -2660,13 +2610,16 @@ flo_truncate(int argc, VALUE *argv, VALUE num) /* * call-seq: - * floor(digits = 0) -> integer or float + * floor(ndigits = 0) -> float or integer * - * Returns the largest number that is less than or equal to +self+ with - * a precision of +digits+ decimal digits. + * Returns the largest float or integer that is less than or equal to +self+, + * as specified by the given +ndigits+, + * which must be an + * {integer-convertible object}[rdoc-ref:implicit_conversion.rdoc@Integer-Convertible+Objects]. * - * \Numeric implements this by converting +self+ to a Float and - * invoking Float#floor. + * Equivalent to <tt>self.to_f.floor(ndigits)</tt>. + * + * Related: #ceil, Float#floor. */ static VALUE @@ -2677,13 +2630,16 @@ num_floor(int argc, VALUE *argv, VALUE num) /* * call-seq: - * ceil(digits = 0) -> integer or float + * ceil(ndigits = 0) -> float or integer * - * Returns the smallest number that is greater than or equal to +self+ with - * a precision of +digits+ decimal digits. + * Returns the smallest float or integer that is greater than or equal to +self+, + * as specified by the given +ndigits+, + * which must be an + * {integer-convertible object}[rdoc-ref:implicit_conversion.rdoc@Integer-Convertible+Objects]. * - * \Numeric implements this by converting +self+ to a Float and - * invoking Float#ceil. + * Equivalent to <tt>self.to_f.ceil(ndigits)</tt>. + * + * Related: #floor, Float#ceil. */ static VALUE @@ -2843,7 +2799,7 @@ ruby_num_interval_step_size(VALUE from, VALUE to, VALUE step, int excl) } if (RTEST(rb_funcall(from, cmp, 1, to))) return INT2FIX(0); result = rb_funcall(rb_funcall(to, '-', 1, from), id_div, 1, step); - if (!excl || RTEST(rb_funcall(rb_funcall(from, '+', 1, rb_funcall(result, '*', 1, step)), cmp, 1, to))) { + if (!excl || RTEST(rb_funcall(to, cmp, 1, rb_funcall(from, '+', 1, rb_funcall(result, '*', 1, step))))) { result = rb_funcall(result, '+', 1, INT2FIX(1)); } return result; @@ -2955,88 +2911,88 @@ num_step_size(VALUE from, VALUE args, VALUE eobj) * step(by: , to: nil) {|n| ... } -> self * step(by: , to: nil) -> enumerator * - * Generates a sequence of numbers; with a block given, traverses the sequence. + * Generates a sequence of numbers; with a block given, traverses the sequence. * - * Of the Core and Standard Library classes, - * Integer, Float, and Rational use this implementation. - * - * A quick example: - * - * squares = [] - * 1.step(by: 2, to: 10) {|i| squares.push(i*i) } - * squares # => [1, 9, 25, 49, 81] - * - * The generated sequence: - * - * - Begins with +self+. - * - Continues at intervals of +step+ (which may not be zero). - * - Ends with the last number that is within or equal to +limit+; - * that is, less than or equal to +limit+ if +step+ is positive, - * greater than or equal to +limit+ if +step+ is negative. - * If +limit+ is not given, the sequence is of infinite length. - * - * If a block is given, calls the block with each number in the sequence; - * returns +self+. If no block is given, returns an Enumerator::ArithmeticSequence. - * - * <b>Keyword Arguments</b> - * - * With keyword arguments +by+ and +to+, - * their values (or defaults) determine the step and limit: - * - * # Both keywords given. - * squares = [] - * 4.step(by: 2, to: 10) {|i| squares.push(i*i) } # => 4 - * squares # => [16, 36, 64, 100] - * cubes = [] - * 3.step(by: -1.5, to: -3) {|i| cubes.push(i*i*i) } # => 3 - * cubes # => [27.0, 3.375, 0.0, -3.375, -27.0] - * squares = [] - * 1.2.step(by: 0.2, to: 2.0) {|f| squares.push(f*f) } - * squares # => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0] - * - * squares = [] - * Rational(6/5).step(by: 0.2, to: 2.0) {|r| squares.push(r*r) } - * squares # => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0] - * - * # Only keyword to given. - * squares = [] - * 4.step(to: 10) {|i| squares.push(i*i) } # => 4 - * squares # => [16, 25, 36, 49, 64, 81, 100] - * # Only by given. - * - * # Only keyword by given - * squares = [] - * 4.step(by:2) {|i| squares.push(i*i); break if i > 10 } - * squares # => [16, 36, 64, 100, 144] - * - * # No block given. - * e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3)) - * e.class # => Enumerator::ArithmeticSequence - * - * <b>Positional Arguments</b> - * - * With optional positional arguments +limit+ and +step+, - * their values (or defaults) determine the step and limit: - * - * squares = [] - * 4.step(10, 2) {|i| squares.push(i*i) } # => 4 - * squares # => [16, 36, 64, 100] - * squares = [] - * 4.step(10) {|i| squares.push(i*i) } - * squares # => [16, 25, 36, 49, 64, 81, 100] - * squares = [] - * 4.step {|i| squares.push(i*i); break if i > 10 } # => nil - * squares # => [16, 25, 36, 49, 64, 81, 100, 121] + * Of the Core and Standard Library classes, + * Integer, Float, and Rational use this implementation. + * + * A quick example: + * + * squares = [] + * 1.step(by: 2, to: 10) {|i| squares.push(i*i) } + * squares # => [1, 9, 25, 49, 81] + * + * The generated sequence: + * + * - Begins with +self+. + * - Continues at intervals of +by+ (which may not be zero). + * - Ends with the last number that is within or equal to +to+; + * that is, less than or equal to +to+ if +by+ is positive, + * greater than or equal to +to+ if +by+ is negative. + * If +to+ is +nil+, the sequence is of infinite length. + * + * If a block is given, calls the block with each number in the sequence; + * returns +self+. If no block is given, returns an Enumerator::ArithmeticSequence. + * + * <b>Keyword Arguments</b> + * + * With keyword arguments +by+ and +to+, + * their values (or defaults) determine the step and limit: + * + * # Both keywords given. + * squares = [] + * 4.step(by: 2, to: 10) {|i| squares.push(i*i) } # => 4 + * squares # => [16, 36, 64, 100] + * cubes = [] + * 3.step(by: -1.5, to: -3) {|i| cubes.push(i*i*i) } # => 3 + * cubes # => [27.0, 3.375, 0.0, -3.375, -27.0] + * squares = [] + * 1.2.step(by: 0.2, to: 2.0) {|f| squares.push(f*f) } + * squares # => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0] + * + * squares = [] + * Rational(6/5).step(by: 0.2, to: 2.0) {|r| squares.push(r*r) } + * squares # => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0] + * + * # Only keyword to given. + * squares = [] + * 4.step(to: 10) {|i| squares.push(i*i) } # => 4 + * squares # => [16, 25, 36, 49, 64, 81, 100] + * # Only by given. + * + * # Only keyword by given + * squares = [] + * 4.step(by:2) {|i| squares.push(i*i); break if i > 10 } + * squares # => [16, 36, 64, 100, 144] + * + * # No block given. + * e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3)) + * e.class # => Enumerator::ArithmeticSequence + * + * <b>Positional Arguments</b> + * + * With optional positional arguments +to+ and +by+, + * their values (or defaults) determine the step and limit: + * + * squares = [] + * 4.step(10, 2) {|i| squares.push(i*i) } # => 4 + * squares # => [16, 36, 64, 100] + * squares = [] + * 4.step(10) {|i| squares.push(i*i) } + * squares # => [16, 25, 36, 49, 64, 81, 100] + * squares = [] + * 4.step {|i| squares.push(i*i); break if i > 10 } # => nil + * squares # => [16, 25, 36, 49, 64, 81, 100, 121] * * <b>Implementation Notes</b> * - * If all the arguments are integers, the loop operates using an integer - * counter. + * If all the arguments are integers, the loop operates using an integer + * counter. * - * If any of the arguments are floating point numbers, all are converted - * to floats, and the loop is executed - * <i>floor(n + n*Float::EPSILON) + 1</i> times, - * where <i>n = (limit - self)/step</i>. + * If any of the arguments are floating point numbers, all are converted + * to floats, and the loop is executed + * <i>floor(n + n*Float::EPSILON) + 1</i> times, + * where <i>n = (limit - self)/step</i>. * */ @@ -3065,7 +3021,7 @@ num_step(int argc, VALUE *argv, VALUE from) num_step_size, from, to, step, FALSE); } - return SIZED_ENUMERATOR(from, 2, ((VALUE [2]){to, step}), num_step_size); + return SIZED_ENUMERATOR_KW(from, 2, ((VALUE [2]){to, step}), num_step_size, FALSE); } desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE); @@ -3174,7 +3130,7 @@ rb_num2ulong_internal(VALUE val, int *wrap_p) { again: if (NIL_P(val)) { - rb_raise(rb_eTypeError, "no implicit conversion from nil to integer"); + rb_raise(rb_eTypeError, "no implicit conversion of nil into Integer"); } if (FIXNUM_P(val)) { @@ -3219,7 +3175,7 @@ rb_num2ulong(VALUE val) void rb_out_of_int(SIGNED_VALUE num) { - rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `int'", + rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to 'int'", num, num < 0 ? "small" : "big"); } @@ -3238,12 +3194,12 @@ check_uint(unsigned long num, int sign) if (sign) { /* minus */ if (num < (unsigned long)INT_MIN) - rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned int'", (long)num); + rb_raise(rb_eRangeError, "integer %ld too small to convert to 'unsigned int'", (long)num); } else { /* plus */ if (UINT_MAX < num) - rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned int'", num); + rb_raise(rb_eRangeError, "integer %lu too big to convert to 'unsigned int'", num); } } @@ -3318,7 +3274,7 @@ NORETURN(static void rb_out_of_short(SIGNED_VALUE num)); static void rb_out_of_short(SIGNED_VALUE num) { - rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `short'", + rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to 'short'", num, num < 0 ? "small" : "big"); } @@ -3336,12 +3292,12 @@ check_ushort(unsigned long num, int sign) if (sign) { /* minus */ if (num < (unsigned long)SHRT_MIN) - rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned short'", (long)num); + rb_raise(rb_eRangeError, "integer %ld too small to convert to 'unsigned short'", (long)num); } else { /* plus */ if (USHRT_MAX < num) - rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned short'", num); + rb_raise(rb_eRangeError, "integer %lu too big to convert to 'unsigned short'", num); } } @@ -3449,7 +3405,7 @@ unsigned LONG_LONG rb_num2ull(VALUE val) { if (NIL_P(val)) { - rb_raise(rb_eTypeError, "no implicit conversion from nil"); + rb_raise(rb_eTypeError, "no implicit conversion of nil into Integer"); } else if (FIXNUM_P(val)) { return (LONG_LONG)FIX2LONG(val); /* this is FIX2LONG, intended */ @@ -3468,18 +3424,239 @@ rb_num2ull(VALUE val) else if (RB_BIGNUM_TYPE_P(val)) { return rb_big2ull(val); } - else if (RB_TYPE_P(val, T_STRING)) { - rb_raise(rb_eTypeError, "no implicit conversion from string"); + else { + val = rb_to_int(val); + return NUM2ULL(val); } - else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) { - rb_raise(rb_eTypeError, "no implicit conversion from boolean"); +} + +#endif /* HAVE_LONG_LONG */ + +// Conversion functions for unified 128-bit integer structures, +// These work with or without native 128-bit integer support. + +#ifndef HAVE_UINT128_T +// Helper function to build 128-bit value from bignum digits (fallback path). +static inline void +rb_uint128_from_bignum_digits_fallback(rb_uint128_t *result, BDIGIT *digits, size_t length) +{ + // Build the 128-bit value from bignum digits: + for (long i = length - 1; i >= 0; i--) { + // Shift both low and high parts: + uint64_t carry = result->parts.low >> (64 - (SIZEOF_BDIGIT * CHAR_BIT)); + result->parts.low = (result->parts.low << (SIZEOF_BDIGIT * CHAR_BIT)) | digits[i]; + result->parts.high = (result->parts.high << (SIZEOF_BDIGIT * CHAR_BIT)) | carry; } +} - val = rb_to_int(val); - return NUM2ULL(val); +// Helper function to convert absolute value of negative bignum to two's complement. +// Ruby stores negative bignums as absolute values, so we need to convert to two's complement. +static inline void +rb_uint128_twos_complement_negate(rb_uint128_t *value) +{ + if (value->parts.low == 0) { + value->parts.high = ~value->parts.high + 1; + } + else { + value->parts.low = ~value->parts.low + 1; + value->parts.high = ~value->parts.high + (value->parts.low == 0 ? 1 : 0); + } } +#endif -#endif /* HAVE_LONG_LONG */ +rb_uint128_t +rb_numeric_to_uint128(VALUE x) +{ + rb_uint128_t result = {0}; + if (RB_FIXNUM_P(x)) { + long value = RB_FIX2LONG(x); + if (value < 0) { + rb_raise(rb_eRangeError, "negative integer cannot be converted to unsigned 128-bit integer"); + } +#ifdef HAVE_UINT128_T + result.value = (uint128_t)value; +#else + result.parts.low = (uint64_t)value; + result.parts.high = 0; +#endif + return result; + } + else if (RB_BIGNUM_TYPE_P(x)) { + if (BIGNUM_NEGATIVE_P(x)) { + rb_raise(rb_eRangeError, "negative integer cannot be converted to unsigned 128-bit integer"); + } + size_t length = BIGNUM_LEN(x); +#ifdef HAVE_UINT128_T + if (length > roomof(SIZEOF_INT128_T, SIZEOF_BDIGIT)) { + rb_raise(rb_eRangeError, "bignum too big to convert into 'unsigned 128-bit integer'"); + } + BDIGIT *digits = BIGNUM_DIGITS(x); + result.value = 0; + for (long i = length - 1; i >= 0; i--) { + result.value = (result.value << (SIZEOF_BDIGIT * CHAR_BIT)) | digits[i]; + } +#else + // Check if bignum fits in 128 bits (16 bytes) + if (length > roomof(16, SIZEOF_BDIGIT)) { + rb_raise(rb_eRangeError, "bignum too big to convert into 'unsigned 128-bit integer'"); + } + BDIGIT *digits = BIGNUM_DIGITS(x); + rb_uint128_from_bignum_digits_fallback(&result, digits, length); +#endif + return result; + } + else { + rb_raise(rb_eTypeError, "not an integer"); + } +} + +rb_int128_t +rb_numeric_to_int128(VALUE x) +{ + rb_int128_t result = {0}; + if (RB_FIXNUM_P(x)) { + long value = RB_FIX2LONG(x); +#ifdef HAVE_UINT128_T + result.value = (int128_t)value; +#else + if (value < 0) { + // Two's complement representation: for negative values, sign extend + // Convert to unsigned: for -1, we want all bits set + result.parts.low = (uint64_t)value; // This will be the two's complement representation + result.parts.high = UINT64_MAX; // Sign extend: all bits set for negative + } + else { + result.parts.low = (uint64_t)value; + result.parts.high = 0; + } +#endif + return result; + } + else if (RB_BIGNUM_TYPE_P(x)) { + size_t length = BIGNUM_LEN(x); +#ifdef HAVE_UINT128_T + if (length > roomof(SIZEOF_INT128_T, SIZEOF_BDIGIT)) { + rb_raise(rb_eRangeError, "bignum too big to convert into 'signed 128-bit integer'"); + } + BDIGIT *digits = BIGNUM_DIGITS(x); + uint128_t unsigned_result = 0; + for (long i = length - 1; i >= 0; i--) { + unsigned_result = (unsigned_result << (SIZEOF_BDIGIT * CHAR_BIT)) | digits[i]; + } + if (BIGNUM_NEGATIVE_P(x)) { + // Convert from two's complement + // Maximum negative value is 2^127 + if (unsigned_result > ((uint128_t)1 << 127)) { + rb_raise(rb_eRangeError, "bignum too big to convert into 'signed 128-bit integer'"); + } + result.value = -(int128_t)(unsigned_result - 1) - 1; + } + else { + // Maximum positive value is 2^127 - 1 + if (unsigned_result > (((uint128_t)1 << 127) - 1)) { + rb_raise(rb_eRangeError, "bignum too big to convert into 'signed 128-bit integer'"); + } + result.value = (int128_t)unsigned_result; + } +#else + if (length > roomof(16, SIZEOF_BDIGIT)) { + rb_raise(rb_eRangeError, "bignum too big to convert into 'signed 128-bit integer'"); + } + BDIGIT *digits = BIGNUM_DIGITS(x); + rb_uint128_t unsigned_result = {0}; + rb_uint128_from_bignum_digits_fallback(&unsigned_result, digits, length); + if (BIGNUM_NEGATIVE_P(x)) { + // Check if value fits in signed 128-bit (max negative is 2^127) + uint64_t max_neg_high = (uint64_t)1 << 63; + if (unsigned_result.parts.high > max_neg_high || (unsigned_result.parts.high == max_neg_high && unsigned_result.parts.low > 0)) { + rb_raise(rb_eRangeError, "bignum too big to convert into 'signed 128-bit integer'"); + } + // Convert from absolute value to two's complement (Ruby stores negative as absolute value) + rb_uint128_twos_complement_negate(&unsigned_result); + result.parts.low = unsigned_result.parts.low; + result.parts.high = (int64_t)unsigned_result.parts.high; // Sign extend + } + else { + // Check if value fits in signed 128-bit (max positive is 2^127 - 1) + // Max positive: high = 0x7FFFFFFFFFFFFFFF, low = 0xFFFFFFFFFFFFFFFF + uint64_t max_pos_high = ((uint64_t)1 << 63) - 1; + if (unsigned_result.parts.high > max_pos_high) { + rb_raise(rb_eRangeError, "bignum too big to convert into 'signed 128-bit integer'"); + } + result.parts.low = unsigned_result.parts.low; + result.parts.high = unsigned_result.parts.high; + } +#endif + return result; + } + else { + rb_raise(rb_eTypeError, "not an integer"); + } +} + +VALUE +rb_uint128_to_numeric(rb_uint128_t n) +{ +#ifdef HAVE_UINT128_T + if (n.value <= (uint128_t)RUBY_FIXNUM_MAX) { + return LONG2FIX((long)n.value); + } + return rb_uint128t2big(n.value); +#else + // If high part is zero and low part fits in fixnum + if (n.parts.high == 0 && n.parts.low <= (uint64_t)RUBY_FIXNUM_MAX) { + return LONG2FIX((long)n.parts.low); + } + // Convert to bignum by building it from the two 64-bit parts + VALUE bignum = rb_ull2big(n.parts.low); + if (n.parts.high > 0) { + VALUE high_bignum = rb_ull2big(n.parts.high); + // Multiply high part by 2^64 and add to low part + VALUE shifted_value = rb_int_lshift(high_bignum, INT2FIX(64)); + bignum = rb_int_plus(bignum, shifted_value); + } + return bignum; +#endif +} + +VALUE +rb_int128_to_numeric(rb_int128_t n) +{ +#ifdef HAVE_UINT128_T + if (FIXABLE(n.value)) { + return LONG2FIX((long)n.value); + } + return rb_int128t2big(n.value); +#else + int64_t high = (int64_t)n.parts.high; + // If it's a small positive value that fits in fixnum + if (high == 0 && n.parts.low <= (uint64_t)RUBY_FIXNUM_MAX) { + return LONG2FIX((long)n.parts.low); + } + // Check if it's negative (high bit of high part is set) + if (high < 0) { + // Negative value - convert from two's complement to absolute value + rb_uint128_t unsigned_value = {0}; + if (n.parts.low == 0) { + unsigned_value.parts.low = 0; + unsigned_value.parts.high = ~n.parts.high + 1; + } + else { + unsigned_value.parts.low = ~n.parts.low + 1; + unsigned_value.parts.high = ~n.parts.high + (unsigned_value.parts.low == 0 ? 1 : 0); + } + VALUE bignum = rb_uint128_to_numeric(unsigned_value); + return rb_int_uminus(bignum); + } + else { + // Positive value + union uint128_int128_conversion conversion = { + .int128 = n + }; + return rb_uint128_to_numeric(conversion.uint128); + } +#endif +} /******************************************************************** * @@ -3493,16 +3670,19 @@ rb_num2ull(VALUE val) * * You can convert certain objects to Integers with: * - * - \Method #Integer. + * - Method #Integer. * * An attempt to add a singleton method to an instance of this class * causes an exception to be raised. * * == What's Here * - * First, what's elsewhere. \Class \Integer: + * First, what's elsewhere. Class \Integer: * - * - Inherits from {class Numeric}[rdoc-ref:Numeric@What-27s+Here]. + * - Inherits from + * {class Numeric}[rdoc-ref:Numeric@What-27s+Here] + * and {class Object}[rdoc-ref:Object@What-27s+Here]. + * - Includes {module Comparable}[rdoc-ref:Comparable@What-27s+Here]. * * Here, class \Integer provides methods for: * @@ -3543,6 +3723,7 @@ rb_num2ull(VALUE val) * - #>>: Returns the value of +self+ after a rightward bit-shift. * - #[]: Returns a slice of bits from +self+. * - #^: Returns the bitwise EXCLUSIVE OR of +self+ and the given value. + * - #|: Returns the bitwise OR of +self+ and the given value. * - #ceil: Returns the smallest number greater than or equal to +self+. * - #chr: Returns a 1-character string containing the character * represented by the value of +self+. @@ -3562,7 +3743,6 @@ rb_num2ull(VALUE val) * - #to_s (aliased as #inspect): Returns a string containing the place-value * representation of +self+ in the given radix. * - #truncate: Returns +self+ truncated to the given precision. - * - #|: Returns the bitwise OR of +self+ and the given value. * * === Other * @@ -3582,7 +3762,7 @@ rb_int_odd_p(VALUE num) return RBOOL(num & 2); } else { - assert(RB_BIGNUM_TYPE_P(num)); + RUBY_ASSERT(RB_BIGNUM_TYPE_P(num)); return rb_big_odd_p(num); } } @@ -3594,7 +3774,7 @@ int_even_p(VALUE num) return RBOOL((num & 2) == 0); } else { - assert(RB_BIGNUM_TYPE_P(num)); + RUBY_ASSERT(RB_BIGNUM_TYPE_P(num)); return rb_big_even_p(num); } } @@ -3704,8 +3884,6 @@ int_nobits_p(VALUE num, VALUE mask) * 1.succ #=> 2 * -1.succ #=> 0 * - * Integer#next is an alias for Integer#succ. - * * Related: Integer#pred (predecessor value). */ @@ -3853,7 +4031,7 @@ rb_int_uminus(VALUE num) return fix_uminus(num); } else { - assert(RB_BIGNUM_TYPE_P(num)); + RUBY_ASSERT(RB_BIGNUM_TYPE_P(num)); return rb_big_uminus(num); } } @@ -3902,7 +4080,7 @@ rb_fix2str(VALUE x, int base) static VALUE rb_fix_to_s_static[10]; -MJIT_FUNC_EXPORTED VALUE +VALUE rb_fix_to_s(VALUE x) { long i = FIX2LONG(x); @@ -3928,12 +4106,9 @@ rb_fix_to_s(VALUE x) * 78546939656932.to_s(36) # => "rubyrules" * * Raises an exception if +base+ is out of range. - * - * Integer#inspect is an alias for Integer#to_s. - * */ -MJIT_FUNC_EXPORTED VALUE +VALUE rb_int_to_s(int argc, VALUE *argv, VALUE x) { int base; @@ -3986,17 +4161,20 @@ rb_fix_plus(VALUE x, VALUE y) /* * call-seq: - * self + numeric -> numeric_result + * self + other -> numeric + * + * Returns the sum of +self+ and +other+: * - * Performs addition: + * 1 + 1 # => 2 + * 1 + -1 # => 0 + * 1 + 0 # => 1 + * 1 + -2 # => -1 + * 1 + Complex(1, 0) # => (2+0i) + * 1 + Rational(1, 1) # => (2/1) * - * 2 + 2 # => 4 - * -2 + 2 # => 0 - * -2 + -2 # => -4 - * 2 + 2.0 # => 4.0 - * 2 + Rational(2, 1) # => (4/1) - * 2 + Complex(2, 0) # => (4+0i) + * For a computation involving Floats, the result may be inexact (see Float#+): * + * 1 + 3.14 # => 4.140000000000001 */ VALUE @@ -4031,9 +4209,9 @@ fix_minus(VALUE x, VALUE y) /* * call-seq: - * self - numeric -> numeric_result + * self - other -> numeric * - * Performs subtraction: + * Returns the difference of +self+ and +other+: * * 4 - 2 # => 2 * -4 - 2 # => -6 @@ -4087,16 +4265,17 @@ fix_mul(VALUE x, VALUE y) /* * call-seq: - * self * numeric -> numeric_result + * self * other -> numeric * - * Performs multiplication: + * Returns the numeric product of +self+ and +other+: * * 4 * 2 # => 8 - * 4 * -2 # => -8 * -4 * 2 # => -8 + * 4 * -2 # => -8 * 4 * 2.0 # => 8.0 * 4 * Rational(1, 3) # => (4/3) * 4 * Complex(2, 0) # => (8+0i) + * */ VALUE @@ -4115,7 +4294,13 @@ static double fix_fdiv_double(VALUE x, VALUE y) { if (FIXNUM_P(y)) { - return double_div_double(FIX2LONG(x), FIX2LONG(y)); + long iy = FIX2LONG(y); +#if SIZEOF_LONG * CHAR_BIT > DBL_MANT_DIG + if ((iy < 0 ? -iy : iy) >= (1L << DBL_MANT_DIG)) { + return rb_big_fdiv_double(rb_int2big(FIX2LONG(x)), rb_int2big(iy)); + } +#endif + return double_div_double(FIX2LONG(x), iy); } else if (RB_BIGNUM_TYPE_P(y)) { return rb_big_fdiv_double(rb_int2big(FIX2LONG(x)), y); @@ -4133,7 +4318,7 @@ rb_int_fdiv_double(VALUE x, VALUE y) { if (RB_INTEGER_TYPE_P(y) && !FIXNUM_ZERO_P(y)) { VALUE gcd = rb_gcd(x, y); - if (!FIXNUM_ZERO_P(gcd)) { + if (!FIXNUM_ZERO_P(gcd) && gcd != INT2FIX(1)) { x = rb_int_idiv(x, gcd); y = rb_int_idiv(y, gcd); } @@ -4213,16 +4398,18 @@ fix_div(VALUE x, VALUE y) /* * call-seq: - * self / numeric -> numeric_result + * self / other -> numeric + * + * Returns the quotient of +self+ and +other+. * - * Performs division; for integer +numeric+, truncates the result to an integer: + * For integer +other+, truncates the result to an integer: * * 4 / 3 # => 1 * 4 / -3 # => -2 * -4 / 3 # => -2 * -4 / -3 # => 1 * - * For other +numeric+, returns non-integer result: + * For non-integer +other+, returns a non-integer result: * * 4 / 3.0 # => 1.3333333333333333 * 4 / Rational(3, 1) # => (4/3) @@ -4255,14 +4442,14 @@ fix_idiv(VALUE x, VALUE y) * Performs integer division; returns the integer result of dividing +self+ * by +numeric+: * - * 4.div(3) # => 1 - * 4.div(-3) # => -2 - * -4.div(3) # => -2 - * -4.div(-3) # => 1 - * 4.div(3.0) # => 1 - * 4.div(Rational(3, 1)) # => 1 + * 4.div(3) # => 1 + * 4.div(-3) # => -2 + * -4.div(3) # => -2 + * -4.div(-3) # => 1 + * 4.div(3.0) # => 1 + * 4.div(Rational(3, 1)) # => 1 * - * Raises an exception if +numeric+ does not have method +div+. + * Raises an exception if +numeric+ does not have method +div+. * */ @@ -4299,9 +4486,9 @@ fix_mod(VALUE x, VALUE y) /* * call-seq: - * self % other -> real_number + * self % other -> real_numeric * - * Returns +self+ modulo +other+ as a real number. + * Returns +self+ modulo +other+ as a real numeric (\Integer, \Float, or \Rational). * * For integer +n+ and real number +r+, these expressions are equivalent: * @@ -4324,8 +4511,6 @@ fix_mod(VALUE x, VALUE y) * 10 % 3.0 # => 1.0 * 10 % Rational(3, 1) # => (1/1) * - * Integer#modulo is an alias for Integer#%. - * */ VALUE rb_int_modulo(VALUE x, VALUE y) @@ -4368,7 +4553,7 @@ int_remainder(VALUE x, VALUE y) if (FIXNUM_P(x)) { if (FIXNUM_P(y)) { VALUE z = fix_mod(x, y); - assert(FIXNUM_P(z)); + RUBY_ASSERT(FIXNUM_P(z)); if (z != INT2FIX(0) && (SIGNED_VALUE)(x ^ y) < 0) z = fix_minus(z, y); return z; @@ -4452,9 +4637,9 @@ rb_int_divmod(VALUE x, VALUE y) /* * call-seq: - * self ** numeric -> numeric_result + * self ** exponent -> numeric * - * Raises +self+ to the power of +numeric+: + * Returns +self+ raised to the power +exponent+: * * 2 ** 3 # => 8 * 2 ** -3 # => (1/8) @@ -4575,17 +4760,47 @@ fix_pow(VALUE x, VALUE y) /* * call-seq: - * self ** numeric -> numeric_result - * - * Raises +self+ to the power of +numeric+: - * - * 2 ** 3 # => 8 - * 2 ** -3 # => (1/8) - * -2 ** 3 # => -8 - * -2 ** -3 # => (-1/8) - * 2 ** 3.3 # => 9.849155306759329 - * 2 ** Rational(3, 1) # => (8/1) - * 2 ** Complex(3, 0) # => (8+0i) + * self ** exponent -> numeric + * + * Returns +self+ raised to the power +exponent+: + * + * # Result for non-negative Integer exponent is Integer. + * 2 ** 0 # => 1 + * 2 ** 1 # => 2 + * 2 ** 2 # => 4 + * 2 ** 3 # => 8 + * -2 ** 3 # => -8 + * # Result for negative Integer exponent is Rational, not Float. + * 2 ** -3 # => (1/8) + * -2 ** -3 # => (-1/8) + * + * # Result for Float exponent is Float. + * 2 ** 0.0 # => 1.0 + * 2 ** 1.0 # => 2.0 + * 2 ** 2.0 # => 4.0 + * 2 ** 3.0 # => 8.0 + * -2 ** 3.0 # => -8.0 + * 2 ** -3.0 # => 0.125 + * -2 ** -3.0 # => -0.125 + * + * # Result for non-negative Complex exponent is Complex with Integer parts. + * 2 ** Complex(0, 0) # => (1+0i) + * 2 ** Complex(1, 0) # => (2+0i) + * 2 ** Complex(2, 0) # => (4+0i) + * 2 ** Complex(3, 0) # => (8+0i) + * -2 ** Complex(3, 0) # => (-8+0i) + * # Result for negative Complex exponent is Complex with Rational parts. + * 2 ** Complex(-3, 0) # => ((1/8)+(0/1)*i) + * -2 ** Complex(-3, 0) # => ((-1/8)+(0/1)*i) + * + * # Result for Rational exponent is Rational. + * 2 ** Rational(0, 1) # => (1/1) + * 2 ** Rational(1, 1) # => (2/1) + * 2 ** Rational(2, 1) # => (4/1) + * 2 ** Rational(3, 1) # => (8/1) + * -2 ** Rational(3, 1) # => (-8/1) + * 2 ** Rational(-3, 1) # => (1/8) + * -2 ** Rational(-3, 1) # => (-1/8) * */ VALUE @@ -4638,15 +4853,12 @@ fix_equal(VALUE x, VALUE y) * call-seq: * self == other -> true or false * - * Returns +true+ if +self+ is numerically equal to +other+; +false+ otherwise. + * Returns whether +self+ is numerically equal to +other+: * * 1 == 2 #=> false * 1 == 1.0 #=> true * * Related: Integer#eql? (requires +other+ to be an \Integer). - * - * Integer#=== is an alias for Integer#==. - * */ VALUE @@ -4687,28 +4899,29 @@ fix_cmp(VALUE x, VALUE y) /* * call-seq: - * self <=> other -> -1, 0, +1, or nil + * self <=> other -> -1, 0, 1, or nil + * + * Compares +self+ and +other+. * * Returns: * - * - -1, if +self+ is less than +other+. - * - 0, if +self+ is equal to +other+. - * - 1, if +self+ is greater then +other+. + * - +-1+, if +self+ is less than +other+. + * - +0+, if +self+ is equal to +other+. + * - +1+, if +self+ is greater then +other+. * - +nil+, if +self+ and +other+ are incomparable. * * Examples: * * 1 <=> 2 # => -1 * 1 <=> 1 # => 0 - * 1 <=> 0 # => 1 - * 1 <=> 'foo' # => nil - * * 1 <=> 1.0 # => 0 * 1 <=> Rational(1, 1) # => 0 * 1 <=> Complex(1, 0) # => 0 + * 1 <=> 0 # => 1 + * 1 <=> 'foo' # => nil * - * This method is the basis for comparisons in module Comparable. - * + * \Class \Integer includes module Comparable, + * each of whose methods uses Integer#<=> for comparison. */ VALUE @@ -4721,7 +4934,7 @@ rb_int_cmp(VALUE x, VALUE y) return rb_big_cmp(x, y); } else { - rb_raise(rb_eNotImpError, "need to define `<=>' in %s", rb_obj_classname(x)); + rb_raise(rb_eNotImpError, "need to define '<=>' in %s", rb_obj_classname(x)); } } @@ -4746,7 +4959,8 @@ fix_gt(VALUE x, VALUE y) * call-seq: * self > other -> true or false * - * Returns +true+ if the value of +self+ is greater than that of +other+: + * Returns whether the value of +self+ is greater than the value of +other+; + * +other+ must be numeric, but may not be Complex: * * 1 > 0 # => true * 1 > 1 # => false @@ -4790,10 +5004,10 @@ fix_ge(VALUE x, VALUE y) /* * call-seq: - * self >= real -> true or false + * self >= other -> true or false * - * Returns +true+ if the value of +self+ is greater than or equal to - * that of +other+: + * Returns whether the value of +self+ is greater than or equal to the value of +other+; + * +other+ must be numeric, but may not be Complex: * * 1 >= 0 # => true * 1 >= 1 # => true @@ -4838,7 +5052,8 @@ fix_lt(VALUE x, VALUE y) * call-seq: * self < other -> true or false * - * Returns +true+ if the value of +self+ is less than that of +other+: + * Returns whether the value of +self+ is less than the value of +other+; + * +other+ must be numeric, but may not be Complex: * * 1 < 0 # => false * 1 < 1 # => false @@ -4846,8 +5061,6 @@ fix_lt(VALUE x, VALUE y) * 1 < 0.5 # => false * 1 < Rational(1, 2) # => false * - * Raises an exception if the comparison cannot be made. - * */ static VALUE @@ -4882,10 +5095,10 @@ fix_le(VALUE x, VALUE y) /* * call-seq: - * self <= real -> true or false + * self <= other -> true or false * - * Returns +true+ if the value of +self+ is less than or equal to - * that of +other+: + * Returns whether the value of +self+ is less than or equal to the value of +other+; + * +other+ must be numeric, but may not be Complex: * * 1 <= 0 # => false * 1 <= 1 # => true @@ -5070,8 +5283,8 @@ fix_xor(VALUE x, VALUE y) * */ -static VALUE -int_xor(VALUE x, VALUE y) +VALUE +rb_int_xor(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_xor(x, y); @@ -5181,7 +5394,7 @@ fix_rshift(long val, unsigned long i) * */ -static VALUE +VALUE rb_int_rshift(VALUE x, VALUE y) { if (FIXNUM_P(x)) { @@ -5193,7 +5406,7 @@ rb_int_rshift(VALUE x, VALUE y) return Qnil; } -MJIT_FUNC_EXPORTED VALUE +VALUE rb_fix_aref(VALUE fix, VALUE idx) { long val = FIX2LONG(fix); @@ -5244,9 +5457,22 @@ generate_mask(VALUE len) } static VALUE +int_aref2(VALUE num, VALUE beg, VALUE len) +{ + if (RB_TYPE_P(num, T_BIGNUM)) { + return rb_big_aref2(num, beg, len); + } + else { + num = rb_int_rshift(num, beg); + VALUE mask = generate_mask(len); + return rb_int_and(num, mask); + } +} + +static VALUE int_aref1(VALUE num, VALUE arg) { - VALUE orig_num = num, beg, end; + VALUE beg, end; int excl; if (rb_range_values(arg, &beg, &end, &excl)) { @@ -5266,22 +5492,19 @@ int_aref1(VALUE num, VALUE arg) return INT2FIX(0); } } - num = rb_int_rshift(num, beg); int cmp = compare_indexes(beg, end); if (!NIL_P(end) && cmp < 0) { VALUE len = rb_int_minus(end, beg); if (!excl) len = rb_int_plus(len, INT2FIX(1)); - VALUE mask = generate_mask(len); - num = rb_int_and(num, mask); + return int_aref2(num, beg, len); } else if (cmp == 0) { if (excl) return INT2FIX(0); - num = orig_num; arg = beg; goto one_bit; } - return num; + return rb_int_rshift(num, beg); } one_bit: @@ -5294,15 +5517,6 @@ one_bit: return Qnil; } -static VALUE -int_aref2(VALUE num, VALUE beg, VALUE len) -{ - num = rb_int_rshift(num, beg); - VALUE mask = generate_mask(len); - num = rb_int_and(num, mask); - return num; -} - /* * call-seq: * self[offset] -> 0 or 1 @@ -5363,7 +5577,7 @@ int_aref(int const argc, VALUE * const argv, VALUE const num) * 1.to_f # => 1.0 * -1.to_f # => -1.0 * - * If the value of +self+ does not fit in a \Float, + * If the value of +self+ does not fit in a Float, * the result is infinity: * * (10**400).to_f # => Infinity @@ -5417,7 +5631,7 @@ fix_size(VALUE fix) return INT2FIX(sizeof(long)); } -MJIT_FUNC_EXPORTED VALUE +VALUE rb_int_size(VALUE num) { if (FIXNUM_P(num)) { @@ -5456,7 +5670,7 @@ rb_fix_digits(VALUE fix, long base) VALUE digits; long x = FIX2LONG(fix); - assert(x >= 0); + RUBY_ASSERT(x >= 0); if (base < 2) rb_raise(rb_eArgError, "invalid radix %ld", base); @@ -5465,11 +5679,12 @@ rb_fix_digits(VALUE fix, long base) return rb_ary_new_from_args(1, INT2FIX(0)); digits = rb_ary_new(); - while (x > 0) { + while (x >= base) { long q = x % base; rb_ary_push(digits, LONG2NUM(q)); x /= base; } + rb_ary_push(digits, LONG2NUM(x)); return digits; } @@ -5479,7 +5694,7 @@ rb_int_digits_bigbase(VALUE num, VALUE base) { VALUE digits, bases; - assert(!rb_num_negative_p(num)); + RUBY_ASSERT(!rb_num_negative_p(num)); if (RB_BIGNUM_TYPE_P(base)) base = rb_big_norm(base); @@ -5506,7 +5721,7 @@ rb_int_digits_bigbase(VALUE num, VALUE base) } bases = rb_ary_new(); - for (VALUE b = base; int_lt(b, num) == Qtrue; b = rb_int_mul(b, b)) { + for (VALUE b = base; int_le(b, num) == Qtrue; b = rb_int_mul(b, b)) { rb_ary_push(bases, b); } digits = rb_ary_new_from_args(1, num); @@ -5679,53 +5894,7 @@ int_downto(VALUE from, VALUE to) static VALUE int_dotimes_size(VALUE num, VALUE args, VALUE eobj) { - if (FIXNUM_P(num)) { - if (NUM2LONG(num) <= 0) return INT2FIX(0); - } - else { - if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) return INT2FIX(0); - } - return num; -} - -/* - * call-seq: - * times {|i| ... } -> self - * times -> enumerator - * - * Calls the given block +self+ times with each integer in <tt>(0..self-1)</tt>: - * - * a = [] - * 5.times {|i| a.push(i) } # => 5 - * a # => [0, 1, 2, 3, 4] - * - * With no block given, returns an Enumerator. - * - */ - -static VALUE -int_dotimes(VALUE num) -{ - RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size); - - if (FIXNUM_P(num)) { - long i, end; - - end = FIX2LONG(num); - for (i=0; i<end; i++) { - rb_yield_1(LONG2FIX(i)); - } - } - else { - VALUE i = INT2FIX(0); - - for (;;) { - if (!RTEST(int_le(i, num))) break; - rb_yield(i); - i = rb_int_plus(i, INT2FIX(1)); - } - } - return num; + return int_neg_p(num) ? INT2FIX(0) : num; } /* @@ -5794,24 +5963,56 @@ int_round(int argc, VALUE* argv, VALUE num) } /* + * :markup: markdown + * * call-seq: * floor(ndigits = 0) -> integer * - * Returns the largest number less than or equal to +self+ with - * a precision of +ndigits+ decimal digits. + * Returns an integer that is a "floor" value for `self`, + * as specified by the given `ndigits`, + * which must be an + * [integer-convertible object](rdoc-ref:implicit_conversion.rdoc@Integer-Convertible+Objects). * - * When +ndigits+ is negative, the returned value - * has at least <tt>ndigits.abs</tt> trailing zeros: + * - When `self` is zero, returns zero (regardless of the value of `ndigits`): * - * 555.floor(-1) # => 550 - * 555.floor(-2) # => 500 - * -555.floor(-2) # => -600 - * 555.floor(-3) # => 0 + * ``` + * 0.floor(2) # => 0 + * 0.floor(-2) # => 0 + * ``` * - * Returns +self+ when +ndigits+ is zero or positive. + * - When `self` is non-zero and `ndigits` is non-negative, returns `self`: + * + * ``` + * 555.floor # => 555 + * 555.floor(50) # => 555 + * ``` * - * 555.floor # => 555 - * 555.floor(50) # => 555 + * - When `self` is non-zero and `ndigits` is negative, + * returns a value based on a computed granularity: + * + * - The granularity is `10 ** ndigits.abs`. + * - The returned value is the largest multiple of the granularity + * that is less than or equal to `self`. + * + * Examples with positive `self`: + * + * | ndigits | Granularity | 1234.floor(ndigits) | + * |--------:|------------:|--------------------:| + * | -1 | 10 | 1230 | + * | -2 | 100 | 1200 | + * | -3 | 1000 | 1000 | + * | -4 | 10000 | 0 | + * | -5 | 100000 | 0 | + * + * Examples with negative `self`: + * + * | ndigits | Granularity | -1234.floor(ndigits) | + * |--------:|------------:|---------------------:| + * | -1 | 10 | -1240 | + * | -2 | 100 | -1300 | + * | -3 | 1000 | -2000 | + * | -4 | 10000 | -10000 | + * | -5 | 100000 | -100000 | * * Related: Integer#ceil. * @@ -5831,27 +6032,58 @@ int_floor(int argc, VALUE* argv, VALUE num) } /* + * :markup: markdown + * * call-seq: * ceil(ndigits = 0) -> integer * - * Returns the smallest number greater than or equal to +self+ with - * a precision of +ndigits+ decimal digits. + * Returns an integer that is a "ceiling" value for `self`, + * as specified by the given `ndigits`, + * which must be an + * [integer-convertible object](rdoc-ref:implicit_conversion.rdoc@Integer-Convertible+Objects). * - * When the precision is negative, the returned value is an integer - * with at least <code>ndigits.abs</code> trailing zeros: + * - When `self` is zero, returns zero (regardless of the value of `ndigits`): * - * 555.ceil(-1) # => 560 - * 555.ceil(-2) # => 600 - * -555.ceil(-2) # => -500 - * 555.ceil(-3) # => 1000 + * ``` + * 0.ceil(2) # => 0 + * 0.ceil(-2) # => 0 + * ``` * - * Returns +self+ when +ndigits+ is zero or positive. + * - When `self` is non-zero and `ndigits` is non-negative, returns `self`: * - * 555.ceil # => 555 - * 555.ceil(50) # => 555 + * ``` + * 555.ceil # => 555 + * 555.ceil(50) # => 555 + * ``` * - * Related: Integer#floor. + * - When `self` is non-zero and `ndigits` is negative, + * returns a value based on a computed granularity: + * + * - The granularity is `10 ** ndigits.abs`. + * - The returned value is the smallest multiple of the granularity + * that is greater than or equal to `self`. + * + * Examples with positive `self`: + * + * | ndigits | Granularity | 1234.ceil(ndigits) | + * |--------:|------------:|-------------------:| + * | -1 | 10 | 1240 | + * | -2 | 100 | 1300 | + * | -3 | 1000 | 2000 | + * | -4 | 10000 | 10000 | + * | -5 | 100000 | 100000 | * + * Examples with negative `self`: + * + * | ndigits | Granularity | -1234.ceil(ndigits) | + * |--------:|------------:|--------------------:| + * | -1 | 10 | -1230 | + * | -2 | 100 | -1200 | + * | -3 | 1000 | -1000 | + * | -4 | 10000 | 0 | + * | -5 | 100000 | 0 | + * + * Related: Integer#floor. */ static VALUE @@ -5915,7 +6147,11 @@ prefix##_isqrt(argtype n) \ while ((t = n/x) < (argtype)x) x = (rettype)((x + t) >> 1); \ return x; \ } \ - return (rettype)sqrt(argtype##_TO_DOUBLE(n)); \ + rettype x = (rettype)sqrt(argtype##_TO_DOUBLE(n)); \ + /* libm sqrt may returns a larger approximation than actual. */ \ + /* Our isqrt always returns a smaller approximation. */ \ + if (x * x > n) x--; \ + return x; \ } #if SIZEOF_LONG*CHAR_BIT > DBL_MANT_DIG @@ -6008,7 +6244,22 @@ rb_int_s_isqrt(VALUE self, VALUE num) } } -/* :nodoc: */ +/* + * call-seq: + * Integer.try_convert(object) -> object, integer, or nil + * + * If +object+ is an \Integer object, returns +object+. + * Integer.try_convert(1) # => 1 + * + * Otherwise if +object+ responds to <tt>:to_int</tt>, + * calls <tt>object.to_int</tt> and returns the result. + * Integer.try_convert(1.25) # => 1 + * + * Returns +nil+ if +object+ does not respond to <tt>:to_int</tt> + * Integer.try_convert([]) # => nil + * + * Raises an exception unless <tt>object.to_int</tt> returns an \Integer object. + */ static VALUE int_s_try_convert(VALUE self, VALUE num) { @@ -6041,9 +6292,9 @@ int_s_try_convert(VALUE self, VALUE num) /* * Document-class: Numeric * - * Numeric is the class from which all higher-level numeric classes should inherit. + * \Numeric is the class from which all higher-level numeric classes should inherit. * - * Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as + * \Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as * Integer are implemented as immediates, which means that each Integer is a single immutable * object which is always passed by value. * @@ -6057,9 +6308,9 @@ int_s_try_convert(VALUE self, VALUE num) * 1.dup #=> 1 * 1.object_id == 1.dup.object_id #=> true * - * For this reason, Numeric should be used when defining other numeric classes. + * For this reason, \Numeric should be used when defining other numeric classes. * - * Classes which inherit from Numeric must implement +coerce+, which returns a two-member + * Classes which inherit from \Numeric must implement +coerce+, which returns a two-member * Array containing an object that has been coerced into an instance of the new class * and +self+ (see #coerce). * @@ -6112,7 +6363,7 @@ int_s_try_convert(VALUE self, VALUE num) * * == What's Here * - * First, what's elsewhere. \Class \Numeric: + * First, what's elsewhere. Class \Numeric: * * - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here]. * - Includes {module Comparable}[rdoc-ref:Comparable@What-27s+Here]. @@ -6211,10 +6462,8 @@ Init_Numeric(void) rb_include_module(rb_cNumeric, rb_mComparable); rb_define_method(rb_cNumeric, "coerce", num_coerce, 1); rb_define_method(rb_cNumeric, "clone", num_clone, -1); - rb_define_method(rb_cNumeric, "dup", num_dup, 0); rb_define_method(rb_cNumeric, "i", num_imaginary, 0); - rb_define_method(rb_cNumeric, "+@", num_uplus, 0); rb_define_method(rb_cNumeric, "-@", num_uminus, 0); rb_define_method(rb_cNumeric, "<=>", num_cmp, 1); rb_define_method(rb_cNumeric, "eql?", num_eql, 1); @@ -6252,7 +6501,6 @@ Init_Numeric(void) rb_define_method(rb_cInteger, "nobits?", int_nobits_p, 1); rb_define_method(rb_cInteger, "upto", int_upto, 1); rb_define_method(rb_cInteger, "downto", int_downto, 1); - rb_define_method(rb_cInteger, "times", int_dotimes, 0); rb_define_method(rb_cInteger, "succ", int_succ, 0); rb_define_method(rb_cInteger, "next", int_succ, 0); rb_define_method(rb_cInteger, "pred", int_pred, 0); @@ -6287,7 +6535,7 @@ Init_Numeric(void) rb_define_method(rb_cInteger, "&", rb_int_and, 1); rb_define_method(rb_cInteger, "|", int_or, 1); - rb_define_method(rb_cInteger, "^", int_xor, 1); + rb_define_method(rb_cInteger, "^", rb_int_xor, 1); rb_define_method(rb_cInteger, "[]", int_aref, -1); rb_define_method(rb_cInteger, "<<", rb_int_lshift, 1); @@ -6295,19 +6543,25 @@ Init_Numeric(void) rb_define_method(rb_cInteger, "digits", rb_int_digits, -1); - rb_fix_to_s_static[0] = rb_fstring_literal("0"); - rb_fix_to_s_static[1] = rb_fstring_literal("1"); - rb_fix_to_s_static[2] = rb_fstring_literal("2"); - rb_fix_to_s_static[3] = rb_fstring_literal("3"); - rb_fix_to_s_static[4] = rb_fstring_literal("4"); - rb_fix_to_s_static[5] = rb_fstring_literal("5"); - rb_fix_to_s_static[6] = rb_fstring_literal("6"); - rb_fix_to_s_static[7] = rb_fstring_literal("7"); - rb_fix_to_s_static[8] = rb_fstring_literal("8"); - rb_fix_to_s_static[9] = rb_fstring_literal("9"); - for(int i = 0; i < 10; i++) { - rb_gc_register_mark_object(rb_fix_to_s_static[i]); - } +#define fix_to_s_static(n) do { \ + VALUE lit = rb_fstring_literal(#n); \ + rb_fix_to_s_static[n] = lit; \ + rb_vm_register_global_object(lit); \ + RB_GC_GUARD(lit); \ + } while (0) + + fix_to_s_static(0); + fix_to_s_static(1); + fix_to_s_static(2); + fix_to_s_static(3); + fix_to_s_static(4); + fix_to_s_static(5); + fix_to_s_static(6); + fix_to_s_static(7); + fix_to_s_static(8); + fix_to_s_static(9); + +#undef fix_to_s_static rb_cFloat = rb_define_class("Float", rb_cNumeric); @@ -6369,7 +6623,7 @@ Init_Numeric(void) * * If the platform supports denormalized numbers, * there are numbers between zero and Float::MIN. - * 0.0.next_float returns the smallest positive floating point number + * +0.0.next_float+ returns the smallest positive floating point number * including denormalized numbers. */ rb_define_const(rb_cFloat, "MIN", DBL2NUM(DBL_MIN)); |
