diff options
Diffstat (limited to 'missing/crypt.c')
| -rw-r--r-- | missing/crypt.c | 651 |
1 files changed, 324 insertions, 327 deletions
diff --git a/missing/crypt.c b/missing/crypt.c index 486df5050b..f523aa51e6 100644 --- a/missing/crypt.c +++ b/missing/crypt.c @@ -34,6 +34,8 @@ static char sccsid[] = "@(#)crypt.c 8.1 (Berkeley) 6/4/93"; #endif /* LIBC_SCCS and not lint */ +#include "ruby/missing.h" +#include "crypt.h" #ifdef HAVE_UNISTD_H #include <unistd.h> #endif @@ -42,10 +44,15 @@ static char sccsid[] = "@(#)crypt.c 8.1 (Berkeley) 6/4/93"; #include <pwd.h> #endif #include <stdio.h> +#include <string.h> #ifndef _PASSWORD_EFMT1 #define _PASSWORD_EFMT1 '_' #endif +#ifndef numberof +#define numberof(array) (int)(sizeof(array) / sizeof((array)[0])) +#endif + /* * UNIX password, and DES, encryption. * By Tom Truscott, trt@rti.rti.org, @@ -79,175 +86,22 @@ static char sccsid[] = "@(#)crypt.c 8.1 (Berkeley) 6/4/93"; #endif #endif -/* - * define "LONG_IS_32_BITS" only if sizeof(long)==4. - * This avoids use of bit fields (your compiler may be sloppy with them). - */ -#if !defined(cray) -#define LONG_IS_32_BITS -#endif - -/* - * define "B64" to be the declaration for a 64 bit integer. - * XXX this feature is currently unused, see "endian" comment below. - */ -#if defined(cray) -#define B64 long -#endif -#if defined(convex) -#define B64 long long -#endif - -/* - * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes - * of lookup tables. This speeds up des_setkey() and des_cipher(), but has - * little effect on crypt(). - */ -#if defined(notdef) -#define LARGEDATA -#endif - -/* compile with "-DSTATIC=int" when profiling */ -#ifndef STATIC -#define STATIC static -#endif -STATIC init_des(), init_perm(), permute(); -#ifdef DEBUG -STATIC prtab(); -#endif - -/* ==================================== */ - -/* - * Cipher-block representation (Bob Baldwin): - * - * DES operates on groups of 64 bits, numbered 1..64 (sigh). One - * representation is to store one bit per byte in an array of bytes. Bit N of - * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array. - * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the - * first byte, 9..16 in the second, and so on. The DES spec apparently has - * bit 1 in the MSB of the first byte, but that is particularly noxious so we - * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is - * the MSB of the first byte. Specifically, the 64-bit input data and key are - * converted to LSB format, and the output 64-bit block is converted back into - * MSB format. - * - * DES operates internally on groups of 32 bits which are expanded to 48 bits - * by permutation E and shrunk back to 32 bits by the S boxes. To speed up - * the computation, the expansion is applied only once, the expanded - * representation is maintained during the encryption, and a compression - * permutation is applied only at the end. To speed up the S-box lookups, - * the 48 bits are maintained as eight 6 bit groups, one per byte, which - * directly feed the eight S-boxes. Within each byte, the 6 bits are the - * most significant ones. The low two bits of each byte are zero. (Thus, - * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the - * first byte in the eight byte representation, bit 2 of the 48 bit value is - * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is - * used, in which the output is the 64 bit result of an S-box lookup which - * has been permuted by P and expanded by E, and is ready for use in the next - * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this - * lookup. Since each byte in the 48 bit path is a multiple of four, indexed - * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and - * "salt" are also converted to this 8*(6+2) format. The SPE table size is - * 8*64*8 = 4K bytes. - * - * To speed up bit-parallel operations (such as XOR), the 8 byte - * representation is "union"ed with 32 bit values "i0" and "i1", and, on - * machines which support it, a 64 bit value "b64". This data structure, - * "C_block", has two problems. First, alignment restrictions must be - * honored. Second, the byte-order (e.g. little-endian or big-endian) of - * the architecture becomes visible. - * - * The byte-order problem is unfortunate, since on the one hand it is good - * to have a machine-independent C_block representation (bits 1..8 in the - * first byte, etc.), and on the other hand it is good for the LSB of the - * first byte to be the LSB of i0. We cannot have both these things, so we - * currently use the "little-endian" representation and avoid any multi-byte - * operations that depend on byte order. This largely precludes use of the - * 64-bit datatype since the relative order of i0 and i1 are unknown. It - * also inhibits grouping the SPE table to look up 12 bits at a time. (The - * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1 - * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the - * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup - * requires a 128 kilobyte table, so perhaps this is not a big loss. - * - * Permutation representation (Jim Gillogly): - * - * A transformation is defined by its effect on each of the 8 bytes of the - * 64-bit input. For each byte we give a 64-bit output that has the bits in - * the input distributed appropriately. The transformation is then the OR - * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for - * each transformation. Unless LARGEDATA is defined, however, a more compact - * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks. - * The smaller table uses 16*16*8 = 2K bytes for each transformation. This - * is slower but tolerable, particularly for password encryption in which - * the SPE transformation is iterated many times. The small tables total 9K - * bytes, the large tables total 72K bytes. - * - * The transformations used are: - * IE3264: MSB->LSB conversion, initial permutation, and expansion. - * This is done by collecting the 32 even-numbered bits and applying - * a 32->64 bit transformation, and then collecting the 32 odd-numbered - * bits and applying the same transformation. Since there are only - * 32 input bits, the IE3264 transformation table is half the size of - * the usual table. - * CF6464: Compression, final permutation, and LSB->MSB conversion. - * This is done by two trivial 48->32 bit compressions to obtain - * a 64-bit block (the bit numbering is given in the "CIFP" table) - * followed by a 64->64 bit "cleanup" transformation. (It would - * be possible to group the bits in the 64-bit block so that 2 - * identical 32->32 bit transformations could be used instead, - * saving a factor of 4 in space and possibly 2 in time, but - * byte-ordering and other complications rear their ugly head. - * Similar opportunities/problems arise in the key schedule - * transforms.) - * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation. - * This admittedly baroque 64->64 bit transformation is used to - * produce the first code (in 8*(6+2) format) of the key schedule. - * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation. - * It would be possible to define 15 more transformations, each - * with a different rotation, to generate the entire key schedule. - * To save space, however, we instead permute each code into the - * next by using a transformation that "undoes" the PC2 permutation, - * rotates the code, and then applies PC2. Unfortunately, PC2 - * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not - * invertible. We get around that problem by using a modified PC2 - * which retains the 8 otherwise-lost bits in the unused low-order - * bits of each byte. The low-order bits are cleared when the - * codes are stored into the key schedule. - * PC2ROT[1]: Same as PC2ROT[0], but with two rotations. - * This is faster than applying PC2ROT[0] twice, - * - * The Bell Labs "salt" (Bob Baldwin): - * - * The salting is a simple permutation applied to the 48-bit result of E. - * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and - * i+24 of the result are swapped. The salt is thus a 24 bit number, with - * 16777216 possible values. (The original salt was 12 bits and could not - * swap bits 13..24 with 36..48.) - * - * It is possible, but ugly, to warp the SPE table to account for the salt - * permutation. Fortunately, the conditional bit swapping requires only - * about four machine instructions and can be done on-the-fly with about an - * 8% performance penalty. - */ - -typedef union { - unsigned char b[8]; - struct { -#if defined(LONG_IS_32_BITS) - /* long is often faster than a 32-bit bit field */ - long i0; - long i1; -#else - long i0: 32; - long i1: 32; +#ifndef INIT_DES +# if defined DUMP || defined NO_DES_TABLES +# define INIT_DES 1 +# else +# define INIT_DES 0 +# endif #endif - } b32; -#if defined(B64) - B64 b64; +#if !INIT_DES +# include "des_tables.c" +# ifdef HAVE_DES_TABLES +# define init_des() ((void)0) +# else +# undef INIT_DES +# define INIT_DES 1 +# endif #endif -} C_block; /* * Convert twenty-four-bit long in host-order @@ -255,59 +109,51 @@ typedef union { */ #define TO_SIX_BIT(rslt, src) { \ C_block cvt; \ - cvt.b[0] = src; src >>= 6; \ - cvt.b[1] = src; src >>= 6; \ - cvt.b[2] = src; src >>= 6; \ - cvt.b[3] = src; \ - rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \ + cvt.b[0] = (unsigned char)(src); (src) >>= 6; \ + cvt.b[1] = (unsigned char)(src); (src) >>= 6; \ + cvt.b[2] = (unsigned char)(src); (src) >>= 6; \ + cvt.b[3] = (unsigned char)(src); \ + (rslt) = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \ } /* * These macros may someday permit efficient use of 64-bit integers. */ -#define ZERO(d,d0,d1) d0 = 0, d1 = 0 -#define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1 -#define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1 -#define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1 -#define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1 +#define ZERO(d,d0,d1) ((d0) = 0, (d1) = 0) +#define LOAD(d,d0,d1,bl) ((d0) = (bl).b32.i0, (d1) = (bl).b32.i1) +#define LOADREG(d,d0,d1,s,s0,s1) ((d0) = (s0), (d1) = (s1)) +#define OR(d,d0,d1,bl) ((d0) |= (bl).b32.i0, (d1) |= (bl).b32.i1) +#define STORE(s,s0,s1,bl) ((bl).b32.i0 = (s0), (bl).b32.i1 = (s1)) #define DCL_BLOCK(d,d0,d1) long d0, d1 #if defined(LARGEDATA) /* Waste memory like crazy. Also, do permutations in line */ -#define LGCHUNKBITS 3 -#define CHUNKBITS (1<<LGCHUNKBITS) #define PERM6464(d,d0,d1,cpp,p) \ - LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \ - OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \ - OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \ - OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \ - OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \ - OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \ - OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \ - OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]); + LOAD((d),(d0),(d1),(p)[(0<<CHUNKBITS)+(cpp)[0]]); \ + OR ((d),(d0),(d1),(p)[(1<<CHUNKBITS)+(cpp)[1]]); \ + OR ((d),(d0),(d1),(p)[(2<<CHUNKBITS)+(cpp)[2]]); \ + OR ((d),(d0),(d1),(p)[(3<<CHUNKBITS)+(cpp)[3]]); \ + OR (d),(d0),(d1),(p)[(4<<CHUNKBITS)+(cpp)[4]]); \ + OR (d),(d0),(d1),(p)[(5<<CHUNKBITS)+(cpp)[5]]); \ + OR (d),(d0),(d1),(p)[(6<<CHUNKBITS)+(cpp)[6]]); \ + OR (d),(d0),(d1),(p)[(7<<CHUNKBITS)+(cpp)[7]]); #define PERM3264(d,d0,d1,cpp,p) \ - LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \ - OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \ - OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \ - OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); + LOAD((d),(d0),(d1),(p)[(0<<CHUNKBITS)+(cpp)[0]]); \ + OR ((d),(d0),(d1),(p)[(1<<CHUNKBITS)+(cpp)[1]]); \ + OR ((d),(d0),(d1),(p)[(2<<CHUNKBITS)+(cpp)[2]]); \ + OR ((d),(d0),(d1),(p)[(3<<CHUNKBITS)+(cpp)[3]]); #else /* "small data" */ -#define LGCHUNKBITS 2 -#define CHUNKBITS (1<<LGCHUNKBITS) #define PERM6464(d,d0,d1,cpp,p) \ - { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); } + { C_block tblk; permute((cpp),&tblk,(p),8); LOAD ((d),(d0),(d1),tblk); } #define PERM3264(d,d0,d1,cpp,p) \ - { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); } - -STATIC -permute(cp, out, p, chars_in) - unsigned char *cp; - C_block *out; - register C_block *p; - int chars_in; + { C_block tblk; permute((cpp),&tblk,(p),4); LOAD ((d),(d0),(d1),tblk); } + +STATIC void +permute(const unsigned char *cp, C_block *out, register const C_block *p, int chars_in) { register DCL_BLOCK(D,D0,D1); - register C_block *tp; + register const C_block *tp; register int t; ZERO(D,D0,D1); @@ -320,10 +166,14 @@ permute(cp, out, p, chars_in) } #endif /* LARGEDATA */ +#ifdef DEBUG +STATIC void prtab(const char *s, const unsigned char *t, int num_rows); +#endif +#if INIT_DES /* ===== (mostly) Standard DES Tables ==================== */ -static unsigned char IP[] = { /* initial permutation */ +static const unsigned char IP[] = { /* initial permutation */ 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, @@ -336,7 +186,7 @@ static unsigned char IP[] = { /* initial permutation */ /* The final permutation is the inverse of IP - no table is necessary */ -static unsigned char ExpandTr[] = { /* expansion operation */ +static const unsigned char ExpandTr[] = { /* expansion operation */ 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, @@ -347,7 +197,7 @@ static unsigned char ExpandTr[] = { /* expansion operation */ 28, 29, 30, 31, 32, 1, }; -static unsigned char PC1[] = { /* permuted choice table 1 */ +static const unsigned char PC1[] = { /* permuted choice table 1 */ 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, @@ -358,13 +208,15 @@ static unsigned char PC1[] = { /* permuted choice table 1 */ 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4, }; +#endif -static unsigned char Rotates[] = { /* PC1 rotation schedule */ +static const unsigned char Rotates[] = { /* PC1 rotation schedule */ 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, }; +#if INIT_DES /* note: each "row" of PC2 is left-padded with bits that make it invertible */ -static unsigned char PC2[] = { /* permuted choice table 2 */ +static const unsigned char PC2[] = { /* permuted choice table 2 */ 9, 18, 14, 17, 11, 24, 1, 5, 22, 25, 3, 28, 15, 6, 21, 10, 35, 38, 23, 19, 12, 4, 26, 8, @@ -376,50 +228,66 @@ static unsigned char PC2[] = { /* permuted choice table 2 */ 0, 0, 46, 42, 50, 36, 29, 32, }; -static unsigned char S[8][64] = { /* 48->32 bit substitution tables */ +static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */ + { /* S[1] */ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13, + }, + { /* S[2] */ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9, + }, + { /* S[3] */ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12, + }, + { /* S[4] */ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14, + }, + { /* S[5] */ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3, + }, + { /* S[6] */ 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13, + }, + { /* S[7] */ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12, + }, + { /* S[8] */ 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11, + }, }; -static unsigned char P32Tr[] = { /* 32-bit permutation function */ +static const unsigned char P32Tr[] = { /* 32-bit permutation function */ 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, @@ -430,7 +298,7 @@ static unsigned char P32Tr[] = { /* 32-bit permutation function */ 22, 11, 4, 25, }; -static unsigned char CIFP[] = { /* compressed/interleaved permutation */ +static const unsigned char CIFP[] = { /* compressed/interleaved permutation */ 1, 2, 3, 4, 17, 18, 19, 20, 5, 6, 7, 8, 21, 22, 23, 24, 9, 10, 11, 12, 25, 26, 27, 28, @@ -441,46 +309,91 @@ static unsigned char CIFP[] = { /* compressed/interleaved permutation */ 41, 42, 43, 44, 57, 58, 59, 60, 45, 46, 47, 48, 61, 62, 63, 64, }; +#endif -static unsigned char itoa64[] = /* 0..63 => ascii-64 */ +static const unsigned char itoa64[] = /* 0..63 => ascii-64 */ "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; +/* table that converts chars "./0-9A-Za-z"to integers 0-63. */ +static const unsigned char a64toi[256] = { +#define A64TOI1(c) \ + ((c) == '.' ? 0 : \ + (c) == '/' ? 1 : \ + ('0' <= (c) && (c) <= '9') ? (c) - '0' + 2 : \ + ('A' <= (c) && (c) <= 'Z') ? (c) - 'A' + 12 : \ + ('a' <= (c) && (c) <= 'z') ? (c) - 'a' + 38 : \ + 0) +#define A64TOI4(base) A64TOI1(base+0), A64TOI1(base+1), A64TOI1(base+2), A64TOI1(base+3) +#define A64TOI16(base) A64TOI4(base+0), A64TOI4(base+4), A64TOI4(base+8), A64TOI4(base+12) +#define A64TOI64(base) A64TOI16(base+0x00), A64TOI16(base+0x10), A64TOI16(base+0x20), A64TOI16(base+0x30) + A64TOI64(0x00), A64TOI64(0x40), + A64TOI64(0x00), A64TOI64(0x40), +}; +#if INIT_DES /* ===== Tables that are initialized at run time ==================== */ +typedef struct { + /* Initial key schedule permutation */ + C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS]; -static unsigned char a64toi[128]; /* ascii-64 => 0..63 */ + /* Subsequent key schedule rotation permutations */ + C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS]; -/* Initial key schedule permutation */ -static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS]; + /* Initial permutation/expansion table */ + C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS]; -/* Subsequent key schedule rotation permutations */ -static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS]; + /* Table that combines the S, P, and E operations. */ + unsigned long SPE[2][8][64]; -/* Initial permutation/expansion table */ -static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS]; + /* compressed/interleaved => final permutation table */ + C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS]; -/* Table that combines the S, P, and E operations. */ -static long SPE[2][8][64]; + int ready; +} des_tables_t; +static des_tables_t des_tables[1]; -/* compressed/interleaved => final permutation table */ -static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS]; +#define des_tables ((const des_tables_t *)des_tables) +#define PC1ROT (des_tables->PC1ROT) +#define PC2ROT (des_tables->PC2ROT) +#define IE3264 (des_tables->IE3264) +#define SPE (des_tables->SPE) +#define CF6464 (des_tables->CF6464) +STATIC void init_des(void); +STATIC void init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS], unsigned char p[64], int chars_in, int chars_out); +#endif -/* ==================================== */ +static const C_block constdatablock = {{0}}; /* encryption constant */ +#define KS (data->KS) +#define cryptresult (data->cryptresult) -static C_block constdatablock; /* encryption constant */ -static char cryptresult[1+4+4+11+1]; /* encrypted result */ +static void des_setkey_r(const unsigned char *key, struct crypt_data *data); +static void des_cipher_r(const unsigned char *in, unsigned char *out, long salt, int num_iter, struct crypt_data *data); +#ifdef USE_NONREENTRANT_CRYPT +static struct crypt_data default_crypt_data; +#endif + +#ifdef USE_NONREENTRANT_CRYPT /* * Return a pointer to static data consisting of the "setting" * followed by an encryption produced by the "key" and "setting". */ char * -crypt(key, setting) - register const char *key; - register const char *setting; +crypt(const char *key, const char *setting) +{ + return crypt_r(key, setting, &default_crypt_data); +} +#endif + +/* + * Return a pointer to data consisting of the "setting" followed by an + * encryption produced by the "key" and "setting". + */ +char * +crypt_r(const char *key, const char *setting, struct crypt_data *data) { register char *encp; register long i; @@ -494,8 +407,7 @@ crypt(key, setting) key++; keyblock.b[i] = t; } - if (des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */ - return (NULL); + des_setkey_r(keyblock.b, data); /* also initializes "a64toi" */ encp = &cryptresult[0]; switch (*setting) { @@ -504,16 +416,13 @@ crypt(key, setting) * Involve the rest of the password 8 characters at a time. */ while (*key) { - if (des_cipher((char *)&keyblock, - (char *)&keyblock, 0L, 1)) - return (NULL); + des_cipher_r(keyblock.b, keyblock.b, 0L, 1, data); for (i = 0; i < 8; i++) { if ((t = 2*(unsigned char)(*key)) != 0) key++; keyblock.b[i] ^= t; } - if (des_setkey((char *)keyblock.b)) - return (NULL); + des_setkey_r(keyblock.b, data); } *encp++ = *setting++; @@ -543,9 +452,7 @@ crypt(key, setting) salt = (salt<<6) | a64toi[t]; } encp += salt_size; - if (des_cipher((char *)&constdatablock, (char *)&rsltblock, - salt, num_iter)) - return (NULL); + des_cipher_r(constdatablock.b, rsltblock.b, salt, num_iter, data); /* * Encode the 64 cipher bits as 11 ascii characters. @@ -570,62 +477,48 @@ crypt(key, setting) return (cryptresult); } - -/* - * The Key Schedule, filled in by des_setkey() or setkey(). - */ -#define KS_SIZE 16 -static C_block KS[KS_SIZE]; - /* * Set up the key schedule from the key. */ -des_setkey(key) - register const char *key; +static void +des_setkey_r(const unsigned char *key, struct crypt_data *data) { register DCL_BLOCK(K, K0, K1); - register C_block *ptabp; + register const C_block *ptabp; register int i; - static int des_ready = 0; - - if (!des_ready) { - init_des(); - des_ready = 1; + C_block *ksp; + + init_des(); + + PERM6464(K,K0,K1,key,PC1ROT[0]); + ksp = &KS[0]; + STORE(K&~0x03030303L, K0&~0x03030303L, K1, *ksp); + for (i = 1; i < numberof(KS); i++) { + ksp++; + STORE(K,K0,K1,*ksp); + ptabp = PC2ROT[Rotates[i]-1][0]; + PERM6464(K,K0,K1,ksp->b,ptabp); + STORE(K&~0x03030303L, K0&~0x03030303L, K1, *ksp); } - - PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT); - key = (char *)&KS[0]; - STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key); - for (i = 1; i < 16; i++) { - key += sizeof(C_block); - STORE(K,K0,K1,*(C_block *)key); - ptabp = (C_block *)PC2ROT[Rotates[i]-1]; - PERM6464(K,K0,K1,(unsigned char *)key,ptabp); - STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key); - } - return (0); } /* * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter) - * iterations of DES, using the the given 24-bit salt and the pre-computed key + * iterations of DES, using the given 24-bit salt and the pre-computed key * schedule, and store the resulting 8 chars at "out" (in == out is permitted). * * NOTE: the performance of this routine is critically dependent on your * compiler and machine architecture. */ -des_cipher(in, out, salt, num_iter) - const char *in; - char *out; - long salt; - int num_iter; +void +des_cipher_r(const unsigned char *in, unsigned char *out, long salt, int num_iter, struct crypt_data *data) { /* variables that we want in registers, most important first */ #if defined(pdp11) register int j; #endif - register long L0, L1, R0, R1, k; - register C_block *kp; + register unsigned long L0, L1, R0, R1, k; + register const C_block *kp; register int ks_inc, loop_count; C_block B; @@ -654,58 +547,58 @@ des_cipher(in, out, salt, num_iter) R1 = (R1 >> 1) & 0x55555555L; L1 = R0 | R1; /* L1 is the odd-numbered input bits */ STORE(L,L0,L1,B); - PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */ - PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */ + PERM3264(L,L0,L1,B.b, IE3264[0]); /* even bits */ + PERM3264(R,R0,R1,B.b+4,IE3264[0]); /* odd bits */ if (num_iter >= 0) { /* encryption */ kp = &KS[0]; - ks_inc = sizeof(*kp); + ks_inc = +1; } else { /* decryption */ num_iter = -num_iter; kp = &KS[KS_SIZE-1]; - ks_inc = -sizeof(*kp); + ks_inc = -1; } while (--num_iter >= 0) { loop_count = 8; do { -#define SPTAB(t, i) (*(long *)((unsigned char *)t + i*(sizeof(long)/4))) +#define SPTAB(t, i) (*(const unsigned long *)((const unsigned char *)(t) + (i)*(sizeof(long)/4))) #if defined(gould) /* use this if B.b[i] is evaluated just once ... */ -#define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]); +#define DOXOR(x,y,i) (x)^=SPTAB(SPE[0][(i)],B.b[(i)]); (y)^=SPTAB(SPE[1][(i)],B.b[(i)]); #else #if defined(pdp11) /* use this if your "long" int indexing is slow */ -#define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j); +#define DOXOR(x,y,i) j=B.b[(i)]; (x)^=SPTAB(SPE[0][(i)],j); (y)^=SPTAB(SPE[1][(i)],j); #else /* use this if "k" is allocated to a register ... */ -#define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k); +#define DOXOR(x,y,i) k=B.b[(i)]; (x)^=SPTAB(SPE[0][(i)],k); (y)^=SPTAB(SPE[1][(i)],k); #endif #endif #define CRUNCH(p0, p1, q0, q1) \ - k = (q0 ^ q1) & SALT; \ - B.b32.i0 = k ^ q0 ^ kp->b32.i0; \ - B.b32.i1 = k ^ q1 ^ kp->b32.i1; \ - kp = (C_block *)((char *)kp+ks_inc); \ + k = ((q0) ^ (q1)) & SALT; \ + B.b32.i0 = k ^ (q0) ^ kp->b32.i0; \ + B.b32.i1 = k ^ (q1) ^ kp->b32.i1; \ + kp += ks_inc; \ \ - DOXOR(p0, p1, 0); \ - DOXOR(p0, p1, 1); \ - DOXOR(p0, p1, 2); \ - DOXOR(p0, p1, 3); \ - DOXOR(p0, p1, 4); \ - DOXOR(p0, p1, 5); \ - DOXOR(p0, p1, 6); \ - DOXOR(p0, p1, 7); + DOXOR((p0), (p1), 0); \ + DOXOR((p0), (p1), 1); \ + DOXOR((p0), (p1), 2); \ + DOXOR((p0), (p1), 3); \ + DOXOR((p0), (p1), 4); \ + DOXOR((p0), (p1), 5); \ + DOXOR((p0), (p1), 6); \ + DOXOR((p0), (p1), 7); CRUNCH(L0, L1, R0, R1); CRUNCH(R0, R1, L0, L1); } while (--loop_count != 0); - kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE)); + kp -= (ks_inc*KS_SIZE); /* swap L and R */ @@ -718,7 +611,7 @@ des_cipher(in, out, salt, num_iter) L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L); L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L); STORE(L,L0,L1,B); - PERM6464(L,L0,L1,B.b, (C_block *)CF6464); + PERM6464(L,L0,L1,B.b, CF6464[0]); #if defined(MUST_ALIGN) STORE(L,L0,L1,B); out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3]; @@ -726,27 +619,26 @@ des_cipher(in, out, salt, num_iter) #else STORE(L,L0,L1,*(C_block *)out); #endif - return (0); } +#undef des_tables +#undef KS +#undef cryptresult +#if INIT_DES /* * Initialize various tables. This need only be done once. It could even be * done at compile time, if the compiler were capable of that sort of thing. */ -STATIC -init_des() +STATIC void +init_des(void) { register int i, j; register long k; register int tableno; - static unsigned char perm[64], tmp32[32]; /* "static" for speed */ + unsigned char perm[64], tmp32[32]; - /* - * table that converts chars "./0-9A-Za-z"to integers 0-63. - */ - for (i = 0; i < 64; i++) - a64toi[itoa64[i]] = i; + if (des_tables->ready) return; /* * PC1ROT - bit reverse, then PC1, then Rotate, then PC2. @@ -764,7 +656,7 @@ init_des() k = (k|07) - (k&07); k++; } - perm[i] = k; + perm[i] = (unsigned char)k; } #ifdef DEBUG prtab("pc1tab", perm, 8); @@ -811,7 +703,7 @@ init_des() k = (k|07) - (k&07); k++; } - perm[i*8+j] = k; + perm[i*8+j] = (unsigned char)k; } } #ifdef DEBUG @@ -857,7 +749,7 @@ init_des() for (i = 0; i < 32; i++) tmp32[i] = 0; for (i = 0; i < 4; i++) - tmp32[4 * tableno + i] = (k >> i) & 01; + tmp32[4 * tableno + i] = (unsigned char)(k >> i) & 01; k = 0; for (i = 24; --i >= 0; ) k = (k<<1) | tmp32[perm[i]-1]; @@ -868,6 +760,8 @@ init_des() TO_SIX_BIT(SPE[1][tableno][j], k); } } + + des_tables->ready = 1; } /* @@ -878,11 +772,9 @@ init_des() * * "perm" must be all-zeroes on entry to this routine. */ -STATIC -init_perm(perm, p, chars_in, chars_out) - C_block perm[64/CHUNKBITS][1<<CHUNKBITS]; - unsigned char p[64]; - int chars_in, chars_out; +STATIC void +init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS], + unsigned char p[64], int chars_in, int chars_out) { register int i, j, k, l; @@ -898,12 +790,21 @@ init_perm(perm, p, chars_in, chars_out) } } } +#endif /* * "setkey" routine (for backwards compatibility) */ -setkey(key) - register const char *key; +#ifdef USE_NONREENTRANT_CRYPT +void +setkey(const char *key) +{ + setkey_r(key, &default_crypt_data); +} +#endif + +void +setkey_r(const char *key, struct crypt_data *data) { register int i, j, k; C_block keyblock; @@ -916,15 +817,22 @@ setkey(key) } keyblock.b[i] = k; } - return (des_setkey((char *)keyblock.b)); + des_setkey_r(keyblock.b, data); } /* * "encrypt" routine (for backwards compatibility) */ -encrypt(block, flag) - register char *block; - int flag; +#ifdef USE_NONREENTRANT_CRYPT +void +encrypt(char *block, int flag) +{ + encrypt_r(block, flag, &default_crypt_data); +} +#endif + +void +encrypt_r(char *block, int flag, struct crypt_data *data) { register int i, j, k; C_block cblock; @@ -937,8 +845,7 @@ encrypt(block, flag) } cblock.b[i] = k; } - if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1))) - return (1); + des_cipher_r(cblock.b, cblock.b, 0L, (flag ? -1: 1), data); for (i = 7; i >= 0; i--) { k = cblock.b[i]; for (j = 7; j >= 0; j--) { @@ -946,15 +853,11 @@ encrypt(block, flag) k >>= 1; } } - return (0); } #ifdef DEBUG -STATIC -prtab(s, t, num_rows) - char *s; - unsigned char *t; - int num_rows; +STATIC void +prtab(const char *s, const unsigned char *t, int num_rows) { register int i, j; @@ -968,3 +871,97 @@ prtab(s, t, num_rows) (void)printf("\n"); } #endif + +#ifdef DUMP +void +dump_block(const C_block *block) +{ + int i; + printf("{{"); + for (i = 0; i < numberof(block->b); ++i) { + printf("%3d,", block->b[i]); + } + printf("}},\n"); +} + +int +main(void) +{ + int i, j, k; + init_des(); + + printf("#ifndef HAVE_DES_TABLES\n\n"); + printf("/* Initial key schedule permutation */\n"); + printf("static const C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS] = {\n"); + for (i = 0; i < numberof(PC1ROT); ++i) { + printf("\t{\n"); + for (j = 0; j < numberof(PC1ROT[0]); ++j) { + printf("\t\t"); + dump_block(&PC1ROT[i][j]); + } + printf("\t},\n"); + } + printf("};\n\n"); + + printf("/* Subsequent key schedule rotation permutations */\n"); + printf("static const C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS] = {\n"); + for (i = 0; i < numberof(PC2ROT); ++i) { + printf("\t{\n"); + for (j = 0; j < numberof(PC2ROT[0]); ++j) { + printf("\t\t{\n"); + for (k = 0; k < numberof(PC2ROT[0][0]); ++k) { + printf("\t\t\t"); + dump_block(&PC2ROT[i][j][k]); + } + printf("\t\t},\n"); + } + printf("\t},\n"); + } + printf("};\n\n"); + + printf("/* Initial permutation/expansion table */\n"); + printf("static const C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS] = {\n"); + for (i = 0; i < numberof(IE3264); ++i) { + printf("\t{\n"); + for (j = 0; j < numberof(IE3264[0]); ++j) { + printf("\t\t"); + dump_block(&IE3264[i][j]); + } + printf("\t},\n"); + } + printf("};\n\n"); + + printf("/* Table that combines the S, P, and E operations. */\n"); + printf("static const unsigned long SPE[2][8][64] = {\n"); + for (i = 0; i < numberof(SPE); ++i) { + printf("\t{\n"); + for (j = 0; j < numberof(SPE[0]); ++j) { + int r = 0; + printf("\t\t{"); + for (k = 0; k < numberof(SPE[0][0]); ++k) { + if (r == 0) printf("\n\t\t\t"); + printf("%#10lx,", SPE[i][j][k]); + if (++r == 4) r = 0; + } + printf("\n\t\t},\n"); + } + printf("\t},\n"); + } + printf("};\n\n"); + + printf("/* compressed/interleaved => final permutation table */\n"); + printf("static const C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS] = {\n"); + for (i = 0; i < numberof(CF6464); ++i) { + printf("\t{\n"); + for (j = 0; j < numberof(CF6464[0]); ++j) { + printf("\t\t"); + dump_block(&CF6464[i][j]); + } + printf("\t},\n"); + } + printf("};\n\n"); + printf("#define HAVE_DES_TABLES 1\n""#endif\n"); + + return 0; +} +#endif |
