summaryrefslogtreecommitdiff
path: root/lib/ruby_vm
diff options
context:
space:
mode:
Diffstat (limited to 'lib/ruby_vm')
-rw-r--r--lib/ruby_vm/rjit/.document1
-rw-r--r--lib/ruby_vm/rjit/assembler.rb1140
-rw-r--r--lib/ruby_vm/rjit/block.rb11
-rw-r--r--lib/ruby_vm/rjit/branch_stub.rb24
-rw-r--r--lib/ruby_vm/rjit/c_pointer.rb394
-rw-r--r--lib/ruby_vm/rjit/c_type.rb99
-rw-r--r--lib/ruby_vm/rjit/code_block.rb91
-rw-r--r--lib/ruby_vm/rjit/compiler.rb518
-rw-r--r--lib/ruby_vm/rjit/context.rb377
-rw-r--r--lib/ruby_vm/rjit/entry_stub.rb7
-rw-r--r--lib/ruby_vm/rjit/exit_compiler.rb164
-rw-r--r--lib/ruby_vm/rjit/hooks.rb36
-rw-r--r--lib/ruby_vm/rjit/insn_compiler.rb5996
-rw-r--r--lib/ruby_vm/rjit/invariants.rb155
-rw-r--r--lib/ruby_vm/rjit/jit_state.rb65
-rw-r--r--lib/ruby_vm/rjit/stats.rb191
-rw-r--r--lib/ruby_vm/rjit/type.rb221
17 files changed, 9490 insertions, 0 deletions
diff --git a/lib/ruby_vm/rjit/.document b/lib/ruby_vm/rjit/.document
new file mode 100644
index 0000000000..0a603afe3d
--- /dev/null
+++ b/lib/ruby_vm/rjit/.document
@@ -0,0 +1 @@
+stats.rb
diff --git a/lib/ruby_vm/rjit/assembler.rb b/lib/ruby_vm/rjit/assembler.rb
new file mode 100644
index 0000000000..645072d11b
--- /dev/null
+++ b/lib/ruby_vm/rjit/assembler.rb
@@ -0,0 +1,1140 @@
+# frozen_string_literal: true
+module RubyVM::RJIT
+ # 8-bit memory access
+ class BytePtr < Data.define(:reg, :disp); end
+
+ # 32-bit memory access
+ class DwordPtr < Data.define(:reg, :disp); end
+
+ # 64-bit memory access
+ QwordPtr = Array
+
+ # SystemV x64 calling convention
+ C_ARGS = [:rdi, :rsi, :rdx, :rcx, :r8, :r9]
+ C_RET = :rax
+
+ # https://cdrdv2.intel.com/v1/dl/getContent/671110
+ # Mostly an x86_64 assembler, but this also has some stuff that is useful for any architecture.
+ class Assembler
+ # rel8 jumps are made with labels
+ class Label < Data.define(:id, :name); end
+
+ # rel32 is inserted as [Rel32, Rel32Pad..] and converted on #resolve_rel32
+ class Rel32 < Data.define(:addr); end
+ Rel32Pad = Object.new
+
+ # A set of ModR/M values encoded on #insn
+ class ModRM < Data.define(:mod, :reg, :rm); end
+ Mod00 = 0b00 # Mod 00: [reg]
+ Mod01 = 0b01 # Mod 01: [reg]+disp8
+ Mod10 = 0b10 # Mod 10: [reg]+disp32
+ Mod11 = 0b11 # Mod 11: reg
+
+ # REX = 0100WR0B
+ REX_B = 0b01000001
+ REX_R = 0b01000100
+ REX_W = 0b01001000
+
+ # Operand matchers
+ R32 = -> (op) { op.is_a?(Symbol) && r32?(op) }
+ R64 = -> (op) { op.is_a?(Symbol) && r64?(op) }
+ IMM8 = -> (op) { op.is_a?(Integer) && imm8?(op) }
+ IMM32 = -> (op) { op.is_a?(Integer) && imm32?(op) }
+ IMM64 = -> (op) { op.is_a?(Integer) && imm64?(op) }
+
+ def initialize
+ @bytes = []
+ @labels = {}
+ @label_id = 0
+ @comments = Hash.new { |h, k| h[k] = [] }
+ @blocks = Hash.new { |h, k| h[k] = [] }
+ @stub_starts = Hash.new { |h, k| h[k] = [] }
+ @stub_ends = Hash.new { |h, k| h[k] = [] }
+ @pos_markers = Hash.new { |h, k| h[k] = [] }
+ end
+
+ def assemble(addr)
+ set_code_addrs(addr)
+ resolve_rel32(addr)
+ resolve_labels
+
+ write_bytes(addr)
+
+ @pos_markers.each do |write_pos, markers|
+ markers.each { |marker| marker.call(addr + write_pos) }
+ end
+ @bytes.size
+ ensure
+ @bytes.clear
+ end
+
+ def size
+ @bytes.size
+ end
+
+ #
+ # Instructions
+ #
+
+ def add(dst, src)
+ case [dst, src]
+ # ADD r/m64, imm8 (Mod 00: [reg])
+ in [QwordPtr[R64 => dst_reg], IMM8 => src_imm]
+ # REX.W + 83 /0 ib
+ # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8/16/32
+ insn(
+ prefix: REX_W,
+ opcode: 0x83,
+ mod_rm: ModRM[mod: Mod00, reg: 0, rm: dst_reg],
+ imm: imm8(src_imm),
+ )
+ # ADD r/m64, imm8 (Mod 11: reg)
+ in [R64 => dst_reg, IMM8 => src_imm]
+ # REX.W + 83 /0 ib
+ # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8/16/32
+ insn(
+ prefix: REX_W,
+ opcode: 0x83,
+ mod_rm: ModRM[mod: Mod11, reg: 0, rm: dst_reg],
+ imm: imm8(src_imm),
+ )
+ # ADD r/m64 imm32 (Mod 11: reg)
+ in [R64 => dst_reg, IMM32 => src_imm]
+ # REX.W + 81 /0 id
+ # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8/16/32
+ insn(
+ prefix: REX_W,
+ opcode: 0x81,
+ mod_rm: ModRM[mod: Mod11, reg: 0, rm: dst_reg],
+ imm: imm32(src_imm),
+ )
+ # ADD r/m64, r64 (Mod 11: reg)
+ in [R64 => dst_reg, R64 => src_reg]
+ # REX.W + 01 /r
+ # MR: Operand 1: ModRM:r/m (r, w), Operand 2: ModRM:reg (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x01,
+ mod_rm: ModRM[mod: Mod11, reg: src_reg, rm: dst_reg],
+ )
+ end
+ end
+
+ def and(dst, src)
+ case [dst, src]
+ # AND r/m64, imm8 (Mod 11: reg)
+ in [R64 => dst_reg, IMM8 => src_imm]
+ # REX.W + 83 /4 ib
+ # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8/16/32
+ insn(
+ prefix: REX_W,
+ opcode: 0x83,
+ mod_rm: ModRM[mod: Mod11, reg: 4, rm: dst_reg],
+ imm: imm8(src_imm),
+ )
+ # AND r/m64, imm32 (Mod 11: reg)
+ in [R64 => dst_reg, IMM32 => src_imm]
+ # REX.W + 81 /4 id
+ # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8/16/32
+ insn(
+ prefix: REX_W,
+ opcode: 0x81,
+ mod_rm: ModRM[mod: Mod11, reg: 4, rm: dst_reg],
+ imm: imm32(src_imm),
+ )
+ # AND r64, r/m64 (Mod 01: [reg]+disp8)
+ in [R64 => dst_reg, QwordPtr[R64 => src_reg, IMM8 => src_disp]]
+ # REX.W + 23 /r
+ # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x23,
+ mod_rm: ModRM[mod: Mod01, reg: dst_reg, rm: src_reg],
+ disp: imm8(src_disp),
+ )
+ end
+ end
+
+ def call(dst)
+ case dst
+ # CALL rel32
+ in Integer => dst_addr
+ # E8 cd
+ # D: Operand 1: Offset
+ insn(opcode: 0xe8, imm: rel32(dst_addr))
+ # CALL r/m64 (Mod 11: reg)
+ in R64 => dst_reg
+ # FF /2
+ # M: Operand 1: ModRM:r/m (r)
+ insn(
+ opcode: 0xff,
+ mod_rm: ModRM[mod: Mod11, reg: 2, rm: dst_reg],
+ )
+ end
+ end
+
+ def cmove(dst, src)
+ case [dst, src]
+ # CMOVE r64, r/m64 (Mod 11: reg)
+ in [R64 => dst_reg, R64 => src_reg]
+ # REX.W + 0F 44 /r
+ # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r)
+ insn(
+ prefix: REX_W,
+ opcode: [0x0f, 0x44],
+ mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg],
+ )
+ end
+ end
+
+ def cmovg(dst, src)
+ case [dst, src]
+ # CMOVG r64, r/m64 (Mod 11: reg)
+ in [R64 => dst_reg, R64 => src_reg]
+ # REX.W + 0F 4F /r
+ # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r)
+ insn(
+ prefix: REX_W,
+ opcode: [0x0f, 0x4f],
+ mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg],
+ )
+ end
+ end
+
+ def cmovge(dst, src)
+ case [dst, src]
+ # CMOVGE r64, r/m64 (Mod 11: reg)
+ in [R64 => dst_reg, R64 => src_reg]
+ # REX.W + 0F 4D /r
+ # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r)
+ insn(
+ prefix: REX_W,
+ opcode: [0x0f, 0x4d],
+ mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg],
+ )
+ end
+ end
+
+ def cmovl(dst, src)
+ case [dst, src]
+ # CMOVL r64, r/m64 (Mod 11: reg)
+ in [R64 => dst_reg, R64 => src_reg]
+ # REX.W + 0F 4C /r
+ # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r)
+ insn(
+ prefix: REX_W,
+ opcode: [0x0f, 0x4c],
+ mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg],
+ )
+ end
+ end
+
+ def cmovle(dst, src)
+ case [dst, src]
+ # CMOVLE r64, r/m64 (Mod 11: reg)
+ in [R64 => dst_reg, R64 => src_reg]
+ # REX.W + 0F 4E /r
+ # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r)
+ insn(
+ prefix: REX_W,
+ opcode: [0x0f, 0x4e],
+ mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg],
+ )
+ end
+ end
+
+ def cmovne(dst, src)
+ case [dst, src]
+ # CMOVNE r64, r/m64 (Mod 11: reg)
+ in [R64 => dst_reg, R64 => src_reg]
+ # REX.W + 0F 45 /r
+ # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r)
+ insn(
+ prefix: REX_W,
+ opcode: [0x0f, 0x45],
+ mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg],
+ )
+ end
+ end
+
+ def cmovnz(dst, src)
+ case [dst, src]
+ # CMOVNZ r64, r/m64 (Mod 11: reg)
+ in [R64 => dst_reg, R64 => src_reg]
+ # REX.W + 0F 45 /r
+ # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r)
+ insn(
+ prefix: REX_W,
+ opcode: [0x0f, 0x45],
+ mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg],
+ )
+ end
+ end
+
+ def cmovz(dst, src)
+ case [dst, src]
+ # CMOVZ r64, r/m64 (Mod 11: reg)
+ in [R64 => dst_reg, R64 => src_reg]
+ # REX.W + 0F 44 /r
+ # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r)
+ insn(
+ prefix: REX_W,
+ opcode: [0x0f, 0x44],
+ mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg],
+ )
+ # CMOVZ r64, r/m64 (Mod 01: [reg]+disp8)
+ in [R64 => dst_reg, QwordPtr[R64 => src_reg, IMM8 => src_disp]]
+ # REX.W + 0F 44 /r
+ # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r)
+ insn(
+ prefix: REX_W,
+ opcode: [0x0f, 0x44],
+ mod_rm: ModRM[mod: Mod01, reg: dst_reg, rm: src_reg],
+ disp: imm8(src_disp),
+ )
+ end
+ end
+
+ def cmp(left, right)
+ case [left, right]
+ # CMP r/m8, imm8 (Mod 01: [reg]+disp8)
+ in [BytePtr[R64 => left_reg, IMM8 => left_disp], IMM8 => right_imm]
+ # 80 /7 ib
+ # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32
+ insn(
+ opcode: 0x80,
+ mod_rm: ModRM[mod: Mod01, reg: 7, rm: left_reg],
+ disp: left_disp,
+ imm: imm8(right_imm),
+ )
+ # CMP r/m32, imm32 (Mod 01: [reg]+disp8)
+ in [DwordPtr[R64 => left_reg, IMM8 => left_disp], IMM32 => right_imm]
+ # 81 /7 id
+ # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32
+ insn(
+ opcode: 0x81,
+ mod_rm: ModRM[mod: Mod01, reg: 7, rm: left_reg],
+ disp: left_disp,
+ imm: imm32(right_imm),
+ )
+ # CMP r/m64, imm8 (Mod 01: [reg]+disp8)
+ in [QwordPtr[R64 => left_reg, IMM8 => left_disp], IMM8 => right_imm]
+ # REX.W + 83 /7 ib
+ # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32
+ insn(
+ prefix: REX_W,
+ opcode: 0x83,
+ mod_rm: ModRM[mod: Mod01, reg: 7, rm: left_reg],
+ disp: left_disp,
+ imm: imm8(right_imm),
+ )
+ # CMP r/m64, imm32 (Mod 01: [reg]+disp8)
+ in [QwordPtr[R64 => left_reg, IMM8 => left_disp], IMM32 => right_imm]
+ # REX.W + 81 /7 id
+ # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32
+ insn(
+ prefix: REX_W,
+ opcode: 0x81,
+ mod_rm: ModRM[mod: Mod01, reg: 7, rm: left_reg],
+ disp: left_disp,
+ imm: imm32(right_imm),
+ )
+ # CMP r/m64, imm8 (Mod 10: [reg]+disp32)
+ in [QwordPtr[R64 => left_reg, IMM32 => left_disp], IMM8 => right_imm]
+ # REX.W + 83 /7 ib
+ # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32
+ insn(
+ prefix: REX_W,
+ opcode: 0x83,
+ mod_rm: ModRM[mod: Mod10, reg: 7, rm: left_reg],
+ disp: imm32(left_disp),
+ imm: imm8(right_imm),
+ )
+ # CMP r/m64, imm8 (Mod 11: reg)
+ in [R64 => left_reg, IMM8 => right_imm]
+ # REX.W + 83 /7 ib
+ # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32
+ insn(
+ prefix: REX_W,
+ opcode: 0x83,
+ mod_rm: ModRM[mod: Mod11, reg: 7, rm: left_reg],
+ imm: imm8(right_imm),
+ )
+ # CMP r/m64, imm32 (Mod 11: reg)
+ in [R64 => left_reg, IMM32 => right_imm]
+ # REX.W + 81 /7 id
+ # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32
+ insn(
+ prefix: REX_W,
+ opcode: 0x81,
+ mod_rm: ModRM[mod: Mod11, reg: 7, rm: left_reg],
+ imm: imm32(right_imm),
+ )
+ # CMP r/m64, r64 (Mod 01: [reg]+disp8)
+ in [QwordPtr[R64 => left_reg, IMM8 => left_disp], R64 => right_reg]
+ # REX.W + 39 /r
+ # MR: Operand 1: ModRM:r/m (r), Operand 2: ModRM:reg (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x39,
+ mod_rm: ModRM[mod: Mod01, reg: right_reg, rm: left_reg],
+ disp: left_disp,
+ )
+ # CMP r/m64, r64 (Mod 10: [reg]+disp32)
+ in [QwordPtr[R64 => left_reg, IMM32 => left_disp], R64 => right_reg]
+ # REX.W + 39 /r
+ # MR: Operand 1: ModRM:r/m (r), Operand 2: ModRM:reg (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x39,
+ mod_rm: ModRM[mod: Mod10, reg: right_reg, rm: left_reg],
+ disp: imm32(left_disp),
+ )
+ # CMP r/m64, r64 (Mod 11: reg)
+ in [R64 => left_reg, R64 => right_reg]
+ # REX.W + 39 /r
+ # MR: Operand 1: ModRM:r/m (r), Operand 2: ModRM:reg (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x39,
+ mod_rm: ModRM[mod: Mod11, reg: right_reg, rm: left_reg],
+ )
+ end
+ end
+
+ def jbe(dst)
+ case dst
+ # JBE rel8
+ in Label => dst_label
+ # 76 cb
+ insn(opcode: 0x76, imm: dst_label)
+ # JBE rel32
+ in Integer => dst_addr
+ # 0F 86 cd
+ insn(opcode: [0x0f, 0x86], imm: rel32(dst_addr))
+ end
+ end
+
+ def je(dst)
+ case dst
+ # JE rel8
+ in Label => dst_label
+ # 74 cb
+ insn(opcode: 0x74, imm: dst_label)
+ # JE rel32
+ in Integer => dst_addr
+ # 0F 84 cd
+ insn(opcode: [0x0f, 0x84], imm: rel32(dst_addr))
+ end
+ end
+
+ def jl(dst)
+ case dst
+ # JL rel32
+ in Integer => dst_addr
+ # 0F 8C cd
+ insn(opcode: [0x0f, 0x8c], imm: rel32(dst_addr))
+ end
+ end
+
+ def jmp(dst)
+ case dst
+ # JZ rel8
+ in Label => dst_label
+ # EB cb
+ insn(opcode: 0xeb, imm: dst_label)
+ # JMP rel32
+ in Integer => dst_addr
+ # E9 cd
+ insn(opcode: 0xe9, imm: rel32(dst_addr))
+ # JMP r/m64 (Mod 01: [reg]+disp8)
+ in QwordPtr[R64 => dst_reg, IMM8 => dst_disp]
+ # FF /4
+ insn(opcode: 0xff, mod_rm: ModRM[mod: Mod01, reg: 4, rm: dst_reg], disp: dst_disp)
+ # JMP r/m64 (Mod 11: reg)
+ in R64 => dst_reg
+ # FF /4
+ insn(opcode: 0xff, mod_rm: ModRM[mod: Mod11, reg: 4, rm: dst_reg])
+ end
+ end
+
+ def jne(dst)
+ case dst
+ # JNE rel8
+ in Label => dst_label
+ # 75 cb
+ insn(opcode: 0x75, imm: dst_label)
+ # JNE rel32
+ in Integer => dst_addr
+ # 0F 85 cd
+ insn(opcode: [0x0f, 0x85], imm: rel32(dst_addr))
+ end
+ end
+
+ def jnz(dst)
+ case dst
+ # JE rel8
+ in Label => dst_label
+ # 75 cb
+ insn(opcode: 0x75, imm: dst_label)
+ # JNZ rel32
+ in Integer => dst_addr
+ # 0F 85 cd
+ insn(opcode: [0x0f, 0x85], imm: rel32(dst_addr))
+ end
+ end
+
+ def jo(dst)
+ case dst
+ # JO rel32
+ in Integer => dst_addr
+ # 0F 80 cd
+ insn(opcode: [0x0f, 0x80], imm: rel32(dst_addr))
+ end
+ end
+
+ def jz(dst)
+ case dst
+ # JZ rel8
+ in Label => dst_label
+ # 74 cb
+ insn(opcode: 0x74, imm: dst_label)
+ # JZ rel32
+ in Integer => dst_addr
+ # 0F 84 cd
+ insn(opcode: [0x0f, 0x84], imm: rel32(dst_addr))
+ end
+ end
+
+ def lea(dst, src)
+ case [dst, src]
+ # LEA r64,m (Mod 01: [reg]+disp8)
+ in [R64 => dst_reg, QwordPtr[R64 => src_reg, IMM8 => src_disp]]
+ # REX.W + 8D /r
+ # RM: Operand 1: ModRM:reg (w), Operand 2: ModRM:r/m (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x8d,
+ mod_rm: ModRM[mod: Mod01, reg: dst_reg, rm: src_reg],
+ disp: imm8(src_disp),
+ )
+ # LEA r64,m (Mod 10: [reg]+disp32)
+ in [R64 => dst_reg, QwordPtr[R64 => src_reg, IMM32 => src_disp]]
+ # REX.W + 8D /r
+ # RM: Operand 1: ModRM:reg (w), Operand 2: ModRM:r/m (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x8d,
+ mod_rm: ModRM[mod: Mod10, reg: dst_reg, rm: src_reg],
+ disp: imm32(src_disp),
+ )
+ end
+ end
+
+ def mov(dst, src)
+ case dst
+ in R32 => dst_reg
+ case src
+ # MOV r32 r/m32 (Mod 01: [reg]+disp8)
+ in DwordPtr[R64 => src_reg, IMM8 => src_disp]
+ # 8B /r
+ # RM: Operand 1: ModRM:reg (w), Operand 2: ModRM:r/m (r)
+ insn(
+ opcode: 0x8b,
+ mod_rm: ModRM[mod: Mod01, reg: dst_reg, rm: src_reg],
+ disp: src_disp,
+ )
+ # MOV r32, imm32 (Mod 11: reg)
+ in IMM32 => src_imm
+ # B8+ rd id
+ # OI: Operand 1: opcode + rd (w), Operand 2: imm8/16/32/64
+ insn(
+ opcode: 0xb8,
+ rd: dst_reg,
+ imm: imm32(src_imm),
+ )
+ end
+ in R64 => dst_reg
+ case src
+ # MOV r64, r/m64 (Mod 00: [reg])
+ in QwordPtr[R64 => src_reg]
+ # REX.W + 8B /r
+ # RM: Operand 1: ModRM:reg (w), Operand 2: ModRM:r/m (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x8b,
+ mod_rm: ModRM[mod: Mod00, reg: dst_reg, rm: src_reg],
+ )
+ # MOV r64, r/m64 (Mod 01: [reg]+disp8)
+ in QwordPtr[R64 => src_reg, IMM8 => src_disp]
+ # REX.W + 8B /r
+ # RM: Operand 1: ModRM:reg (w), Operand 2: ModRM:r/m (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x8b,
+ mod_rm: ModRM[mod: Mod01, reg: dst_reg, rm: src_reg],
+ disp: src_disp,
+ )
+ # MOV r64, r/m64 (Mod 10: [reg]+disp32)
+ in QwordPtr[R64 => src_reg, IMM32 => src_disp]
+ # REX.W + 8B /r
+ # RM: Operand 1: ModRM:reg (w), Operand 2: ModRM:r/m (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x8b,
+ mod_rm: ModRM[mod: Mod10, reg: dst_reg, rm: src_reg],
+ disp: imm32(src_disp),
+ )
+ # MOV r64, r/m64 (Mod 11: reg)
+ in R64 => src_reg
+ # REX.W + 8B /r
+ # RM: Operand 1: ModRM:reg (w), Operand 2: ModRM:r/m (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x8b,
+ mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg],
+ )
+ # MOV r/m64, imm32 (Mod 11: reg)
+ in IMM32 => src_imm
+ # REX.W + C7 /0 id
+ # MI: Operand 1: ModRM:r/m (w), Operand 2: imm8/16/32/64
+ insn(
+ prefix: REX_W,
+ opcode: 0xc7,
+ mod_rm: ModRM[mod: Mod11, reg: 0, rm: dst_reg],
+ imm: imm32(src_imm),
+ )
+ # MOV r64, imm64
+ in IMM64 => src_imm
+ # REX.W + B8+ rd io
+ # OI: Operand 1: opcode + rd (w), Operand 2: imm8/16/32/64
+ insn(
+ prefix: REX_W,
+ opcode: 0xb8,
+ rd: dst_reg,
+ imm: imm64(src_imm),
+ )
+ end
+ in DwordPtr[R64 => dst_reg, IMM8 => dst_disp]
+ case src
+ # MOV r/m32, imm32 (Mod 01: [reg]+disp8)
+ in IMM32 => src_imm
+ # C7 /0 id
+ # MI: Operand 1: ModRM:r/m (w), Operand 2: imm8/16/32/64
+ insn(
+ opcode: 0xc7,
+ mod_rm: ModRM[mod: Mod01, reg: 0, rm: dst_reg],
+ disp: dst_disp,
+ imm: imm32(src_imm),
+ )
+ end
+ in QwordPtr[R64 => dst_reg]
+ case src
+ # MOV r/m64, imm32 (Mod 00: [reg])
+ in IMM32 => src_imm
+ # REX.W + C7 /0 id
+ # MI: Operand 1: ModRM:r/m (w), Operand 2: imm8/16/32/64
+ insn(
+ prefix: REX_W,
+ opcode: 0xc7,
+ mod_rm: ModRM[mod: Mod00, reg: 0, rm: dst_reg],
+ imm: imm32(src_imm),
+ )
+ # MOV r/m64, r64 (Mod 00: [reg])
+ in R64 => src_reg
+ # REX.W + 89 /r
+ # MR: Operand 1: ModRM:r/m (w), Operand 2: ModRM:reg (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x89,
+ mod_rm: ModRM[mod: Mod00, reg: src_reg, rm: dst_reg],
+ )
+ end
+ in QwordPtr[R64 => dst_reg, IMM8 => dst_disp]
+ # Optimize encoding when disp is 0
+ return mov([dst_reg], src) if dst_disp == 0
+
+ case src
+ # MOV r/m64, imm32 (Mod 01: [reg]+disp8)
+ in IMM32 => src_imm
+ # REX.W + C7 /0 id
+ # MI: Operand 1: ModRM:r/m (w), Operand 2: imm8/16/32/64
+ insn(
+ prefix: REX_W,
+ opcode: 0xc7,
+ mod_rm: ModRM[mod: Mod01, reg: 0, rm: dst_reg],
+ disp: dst_disp,
+ imm: imm32(src_imm),
+ )
+ # MOV r/m64, r64 (Mod 01: [reg]+disp8)
+ in R64 => src_reg
+ # REX.W + 89 /r
+ # MR: Operand 1: ModRM:r/m (w), Operand 2: ModRM:reg (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x89,
+ mod_rm: ModRM[mod: Mod01, reg: src_reg, rm: dst_reg],
+ disp: dst_disp,
+ )
+ end
+ in QwordPtr[R64 => dst_reg, IMM32 => dst_disp]
+ case src
+ # MOV r/m64, imm32 (Mod 10: [reg]+disp32)
+ in IMM32 => src_imm
+ # REX.W + C7 /0 id
+ # MI: Operand 1: ModRM:r/m (w), Operand 2: imm8/16/32/64
+ insn(
+ prefix: REX_W,
+ opcode: 0xc7,
+ mod_rm: ModRM[mod: Mod10, reg: 0, rm: dst_reg],
+ disp: imm32(dst_disp),
+ imm: imm32(src_imm),
+ )
+ # MOV r/m64, r64 (Mod 10: [reg]+disp32)
+ in R64 => src_reg
+ # REX.W + 89 /r
+ # MR: Operand 1: ModRM:r/m (w), Operand 2: ModRM:reg (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x89,
+ mod_rm: ModRM[mod: Mod10, reg: src_reg, rm: dst_reg],
+ disp: imm32(dst_disp),
+ )
+ end
+ end
+ end
+
+ def or(dst, src)
+ case [dst, src]
+ # OR r/m64, imm8 (Mod 11: reg)
+ in [R64 => dst_reg, IMM8 => src_imm]
+ # REX.W + 83 /1 ib
+ # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8/16/32
+ insn(
+ prefix: REX_W,
+ opcode: 0x83,
+ mod_rm: ModRM[mod: Mod11, reg: 1, rm: dst_reg],
+ imm: imm8(src_imm),
+ )
+ # OR r/m64, imm32 (Mod 11: reg)
+ in [R64 => dst_reg, IMM32 => src_imm]
+ # REX.W + 81 /1 id
+ # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8/16/32
+ insn(
+ prefix: REX_W,
+ opcode: 0x81,
+ mod_rm: ModRM[mod: Mod11, reg: 1, rm: dst_reg],
+ imm: imm32(src_imm),
+ )
+ # OR r64, r/m64 (Mod 01: [reg]+disp8)
+ in [R64 => dst_reg, QwordPtr[R64 => src_reg, IMM8 => src_disp]]
+ # REX.W + 0B /r
+ # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x0b,
+ mod_rm: ModRM[mod: Mod01, reg: dst_reg, rm: src_reg],
+ disp: imm8(src_disp),
+ )
+ end
+ end
+
+ def push(src)
+ case src
+ # PUSH r64
+ in R64 => src_reg
+ # 50+rd
+ # O: Operand 1: opcode + rd (r)
+ insn(opcode: 0x50, rd: src_reg)
+ end
+ end
+
+ def pop(dst)
+ case dst
+ # POP r64
+ in R64 => dst_reg
+ # 58+ rd
+ # O: Operand 1: opcode + rd (r)
+ insn(opcode: 0x58, rd: dst_reg)
+ end
+ end
+
+ def ret
+ # RET
+ # Near return: A return to a procedure within the current code segment
+ insn(opcode: 0xc3)
+ end
+
+ def sar(dst, src)
+ case [dst, src]
+ in [R64 => dst_reg, IMM8 => src_imm]
+ # REX.W + C1 /7 ib
+ # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8
+ insn(
+ prefix: REX_W,
+ opcode: 0xc1,
+ mod_rm: ModRM[mod: Mod11, reg: 7, rm: dst_reg],
+ imm: imm8(src_imm),
+ )
+ end
+ end
+
+ def sub(dst, src)
+ case [dst, src]
+ # SUB r/m64, imm8 (Mod 11: reg)
+ in [R64 => dst_reg, IMM8 => src_imm]
+ # REX.W + 83 /5 ib
+ # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8/16/32
+ insn(
+ prefix: REX_W,
+ opcode: 0x83,
+ mod_rm: ModRM[mod: Mod11, reg: 5, rm: dst_reg],
+ imm: imm8(src_imm),
+ )
+ # SUB r/m64, r64 (Mod 11: reg)
+ in [R64 => dst_reg, R64 => src_reg]
+ # REX.W + 29 /r
+ # MR: Operand 1: ModRM:r/m (r, w), Operand 2: ModRM:reg (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x29,
+ mod_rm: ModRM[mod: Mod11, reg: src_reg, rm: dst_reg],
+ )
+ end
+ end
+
+ def test(left, right)
+ case [left, right]
+ # TEST r/m8*, imm8 (Mod 01: [reg]+disp8)
+ in [BytePtr[R64 => left_reg, IMM8 => left_disp], IMM8 => right_imm]
+ # REX + F6 /0 ib
+ # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32
+ insn(
+ opcode: 0xf6,
+ mod_rm: ModRM[mod: Mod01, reg: 0, rm: left_reg],
+ disp: left_disp,
+ imm: imm8(right_imm),
+ )
+ # TEST r/m64, imm32 (Mod 01: [reg]+disp8)
+ in [QwordPtr[R64 => left_reg, IMM8 => left_disp], IMM32 => right_imm]
+ # REX.W + F7 /0 id
+ # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32
+ insn(
+ prefix: REX_W,
+ opcode: 0xf7,
+ mod_rm: ModRM[mod: Mod01, reg: 0, rm: left_reg],
+ disp: left_disp,
+ imm: imm32(right_imm),
+ )
+ # TEST r/m64, imm32 (Mod 10: [reg]+disp32)
+ in [QwordPtr[R64 => left_reg, IMM32 => left_disp], IMM32 => right_imm]
+ # REX.W + F7 /0 id
+ # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32
+ insn(
+ prefix: REX_W,
+ opcode: 0xf7,
+ mod_rm: ModRM[mod: Mod10, reg: 0, rm: left_reg],
+ disp: imm32(left_disp),
+ imm: imm32(right_imm),
+ )
+ # TEST r/m64, imm32 (Mod 11: reg)
+ in [R64 => left_reg, IMM32 => right_imm]
+ # REX.W + F7 /0 id
+ # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32
+ insn(
+ prefix: REX_W,
+ opcode: 0xf7,
+ mod_rm: ModRM[mod: Mod11, reg: 0, rm: left_reg],
+ imm: imm32(right_imm),
+ )
+ # TEST r/m32, r32 (Mod 11: reg)
+ in [R32 => left_reg, R32 => right_reg]
+ # 85 /r
+ # MR: Operand 1: ModRM:r/m (r), Operand 2: ModRM:reg (r)
+ insn(
+ opcode: 0x85,
+ mod_rm: ModRM[mod: Mod11, reg: right_reg, rm: left_reg],
+ )
+ # TEST r/m64, r64 (Mod 11: reg)
+ in [R64 => left_reg, R64 => right_reg]
+ # REX.W + 85 /r
+ # MR: Operand 1: ModRM:r/m (r), Operand 2: ModRM:reg (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x85,
+ mod_rm: ModRM[mod: Mod11, reg: right_reg, rm: left_reg],
+ )
+ end
+ end
+
+ def xor(dst, src)
+ case [dst, src]
+ # XOR r/m64, r64 (Mod 11: reg)
+ in [R64 => dst_reg, R64 => src_reg]
+ # REX.W + 31 /r
+ # MR: Operand 1: ModRM:r/m (r, w), Operand 2: ModRM:reg (r)
+ insn(
+ prefix: REX_W,
+ opcode: 0x31,
+ mod_rm: ModRM[mod: Mod11, reg: src_reg, rm: dst_reg],
+ )
+ end
+ end
+
+ #
+ # Utilities
+ #
+
+ attr_reader :comments
+
+ def comment(message)
+ @comments[@bytes.size] << message
+ end
+
+ # Mark the starting address of a block
+ def block(block)
+ @blocks[@bytes.size] << block
+ end
+
+ # Mark the starting/ending addresses of a stub
+ def stub(stub)
+ @stub_starts[@bytes.size] << stub
+ yield
+ ensure
+ @stub_ends[@bytes.size] << stub
+ end
+
+ def pos_marker(&block)
+ @pos_markers[@bytes.size] << block
+ end
+
+ def new_label(name)
+ Label.new(id: @label_id += 1, name:)
+ end
+
+ # @param [RubyVM::RJIT::Assembler::Label] label
+ def write_label(label)
+ @labels[label] = @bytes.size
+ end
+
+ def incr_counter(name)
+ if C.rjit_opts.stats
+ comment("increment counter #{name}")
+ mov(:rax, C.rb_rjit_counters[name].to_i)
+ add([:rax], 1) # TODO: lock
+ end
+ end
+
+ private
+
+ def insn(prefix: 0, opcode:, rd: nil, mod_rm: nil, disp: nil, imm: nil)
+ # Determine prefix
+ if rd
+ prefix |= REX_B if extended_reg?(rd)
+ opcode += reg_code(rd)
+ end
+ if mod_rm
+ prefix |= REX_R if mod_rm.reg.is_a?(Symbol) && extended_reg?(mod_rm.reg)
+ prefix |= REX_B if mod_rm.rm.is_a?(Symbol) && extended_reg?(mod_rm.rm)
+ end
+
+ # Encode insn
+ if prefix > 0
+ @bytes.push(prefix)
+ end
+ @bytes.push(*Array(opcode))
+ if mod_rm
+ mod_rm_byte = encode_mod_rm(
+ mod: mod_rm.mod,
+ reg: mod_rm.reg.is_a?(Symbol) ? reg_code(mod_rm.reg) : mod_rm.reg,
+ rm: mod_rm.rm.is_a?(Symbol) ? reg_code(mod_rm.rm) : mod_rm.rm,
+ )
+ @bytes.push(mod_rm_byte)
+ end
+ if disp
+ @bytes.push(*Array(disp))
+ end
+ if imm
+ @bytes.push(*imm)
+ end
+ end
+
+ def reg_code(reg)
+ reg_code_extended(reg).first
+ end
+
+ # Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte
+ #
+ # 7 6 5 4 3 2 1 0
+ # +--+--+--+--+--+--+--+--+
+ # | Mod | Reg/ | R/M |
+ # | | Opcode | |
+ # +--+--+--+--+--+--+--+--+
+ #
+ # The r/m field can specify a register as an operand or it can be combined
+ # with the mod field to encode an addressing mode.
+ #
+ # /0: R/M is 0 (not used)
+ # /r: R/M is a register
+ def encode_mod_rm(mod:, reg: 0, rm: 0)
+ if mod > 0b11
+ raise ArgumentError, "too large Mod: #{mod}"
+ end
+ if reg > 0b111
+ raise ArgumentError, "too large Reg/Opcode: #{reg}"
+ end
+ if rm > 0b111
+ raise ArgumentError, "too large R/M: #{rm}"
+ end
+ (mod << 6) + (reg << 3) + rm
+ end
+
+ # ib: 1 byte
+ def imm8(imm)
+ unless imm8?(imm)
+ raise ArgumentError, "unexpected imm8: #{imm}"
+ end
+ [imm].pack('c').unpack('c*') # TODO: consider uimm
+ end
+
+ # id: 4 bytes
+ def imm32(imm)
+ unless imm32?(imm)
+ raise ArgumentError, "unexpected imm32: #{imm}"
+ end
+ [imm].pack('l').unpack('c*') # TODO: consider uimm
+ end
+
+ # io: 8 bytes
+ def imm64(imm)
+ unless imm64?(imm)
+ raise ArgumentError, "unexpected imm64: #{imm}"
+ end
+ imm_bytes(imm, 8)
+ end
+
+ def imm_bytes(imm, num_bytes)
+ bytes = []
+ bits = imm
+ num_bytes.times do
+ bytes << (bits & 0xff)
+ bits >>= 8
+ end
+ if bits != 0
+ raise ArgumentError, "unexpected imm with #{num_bytes} bytes: #{imm}"
+ end
+ bytes
+ end
+
+ def rel32(addr)
+ [Rel32.new(addr), Rel32Pad, Rel32Pad, Rel32Pad]
+ end
+
+ def set_code_addrs(write_addr)
+ (@bytes.size + 1).times do |index|
+ @blocks.fetch(index, []).each do |block|
+ block.start_addr = write_addr + index
+ end
+ @stub_starts.fetch(index, []).each do |stub|
+ stub.start_addr = write_addr + index
+ end
+ @stub_ends.fetch(index, []).each do |stub|
+ stub.end_addr = write_addr + index
+ end
+ end
+ end
+
+ def resolve_rel32(write_addr)
+ @bytes.each_with_index do |byte, index|
+ if byte.is_a?(Rel32)
+ src_addr = write_addr + index + 4 # offset 4 bytes for rel32 itself
+ dst_addr = byte.addr
+ rel32 = dst_addr - src_addr
+ raise "unexpected offset: #{rel32}" unless imm32?(rel32)
+ imm32(rel32).each_with_index do |rel_byte, rel_index|
+ @bytes[index + rel_index] = rel_byte
+ end
+ end
+ end
+ end
+
+ def resolve_labels
+ @bytes.each_with_index do |byte, index|
+ if byte.is_a?(Label)
+ src_index = index + 1 # offset 1 byte for rel8 itself
+ dst_index = @labels.fetch(byte)
+ rel8 = dst_index - src_index
+ raise "unexpected offset: #{rel8}" unless imm8?(rel8)
+ @bytes[index] = rel8
+ end
+ end
+ end
+
+ def write_bytes(addr)
+ Fiddle::Pointer.new(addr)[0, @bytes.size] = @bytes.pack('c*')
+ end
+ end
+
+ module OperandMatcher
+ def imm8?(imm)
+ (-0x80..0x7f).include?(imm)
+ end
+
+ def imm32?(imm)
+ (-0x8000_0000..0x7fff_ffff).include?(imm) # TODO: consider uimm
+ end
+
+ def imm64?(imm)
+ (-0x8000_0000_0000_0000..0xffff_ffff_ffff_ffff).include?(imm)
+ end
+
+ def r32?(reg)
+ if extended_reg?(reg)
+ reg.end_with?('d')
+ else
+ reg.start_with?('e')
+ end
+ end
+
+ def r64?(reg)
+ if extended_reg?(reg)
+ reg.match?(/\Ar\d+\z/)
+ else
+ reg.start_with?('r')
+ end
+ end
+
+ def extended_reg?(reg)
+ reg_code_extended(reg).last
+ end
+
+ def reg_code_extended(reg)
+ case reg
+ # Not extended
+ when :al, :ax, :eax, :rax then [0, false]
+ when :cl, :cx, :ecx, :rcx then [1, false]
+ when :dl, :dx, :edx, :rdx then [2, false]
+ when :bl, :bx, :ebx, :rbx then [3, false]
+ when :ah, :sp, :esp, :rsp then [4, false]
+ when :ch, :bp, :ebp, :rbp then [5, false]
+ when :dh, :si, :esi, :rsi then [6, false]
+ when :bh, :di, :edi, :rdi then [7, false]
+ # Extended
+ when :r8b, :r8w, :r8d, :r8 then [0, true]
+ when :r9b, :r9w, :r9d, :r9 then [1, true]
+ when :r10b, :r10w, :r10d, :r10 then [2, true]
+ when :r11b, :r11w, :r11d, :r11 then [3, true]
+ when :r12b, :r12w, :r12d, :r12 then [4, true]
+ when :r13b, :r13w, :r13d, :r13 then [5, true]
+ when :r14b, :r14w, :r14d, :r14 then [6, true]
+ when :r15b, :r15w, :r15d, :r15 then [7, true]
+ else raise ArgumentError, "unexpected reg: #{reg.inspect}"
+ end
+ end
+ end
+
+ class Assembler
+ include OperandMatcher
+ extend OperandMatcher
+ end
+end
diff --git a/lib/ruby_vm/rjit/block.rb b/lib/ruby_vm/rjit/block.rb
new file mode 100644
index 0000000000..cfdaade8b1
--- /dev/null
+++ b/lib/ruby_vm/rjit/block.rb
@@ -0,0 +1,11 @@
+class RubyVM::RJIT::Block < Struct.new(
+ :iseq, # @param ``
+ :pc, # @param [Integer] Starting PC
+ :ctx, # @param [RubyVM::RJIT::Context] **Starting** Context (TODO: freeze?)
+ :start_addr, # @param [Integer] Starting address of this block's JIT code
+ :entry_exit, # @param [Integer] Address of entry exit (optional)
+ :incoming, # @param [Array<RubyVM::RJIT::BranchStub>] Incoming branches
+ :invalidated, # @param [TrueClass,FalseClass] true if already invalidated
+)
+ def initialize(incoming: [], invalidated: false, **) = super
+end
diff --git a/lib/ruby_vm/rjit/branch_stub.rb b/lib/ruby_vm/rjit/branch_stub.rb
new file mode 100644
index 0000000000..b9fe78b744
--- /dev/null
+++ b/lib/ruby_vm/rjit/branch_stub.rb
@@ -0,0 +1,24 @@
+module RubyVM::RJIT
+ # Branch shapes
+ Next0 = :Next0 # target0 is a fallthrough
+ Next1 = :Next1 # target1 is a fallthrough
+ Default = :Default # neither targets is a fallthrough
+
+ class BranchStub < Struct.new(
+ :iseq, # @param [RubyVM::RJIT::CPointer::Struct_rb_iseq_struct] Branch target ISEQ
+ :shape, # @param [Symbol] Next0, Next1, or Default
+ :target0, # @param [RubyVM::RJIT::BranchTarget] First branch target
+ :target1, # @param [RubyVM::RJIT::BranchTarget,NilClass] Second branch target (optional)
+ :compile, # @param [Proc] A callback to (re-)generate this branch stub
+ :start_addr, # @param [Integer] Stub source start address to be re-generated
+ :end_addr, # @param [Integer] Stub source end address to be re-generated
+ )
+ end
+
+ class BranchTarget < Struct.new(
+ :pc,
+ :ctx,
+ :address,
+ )
+ end
+end
diff --git a/lib/ruby_vm/rjit/c_pointer.rb b/lib/ruby_vm/rjit/c_pointer.rb
new file mode 100644
index 0000000000..db00c4cd11
--- /dev/null
+++ b/lib/ruby_vm/rjit/c_pointer.rb
@@ -0,0 +1,394 @@
+module RubyVM::RJIT
+ # Every class under this namespace is a pointer. Even if the type is
+ # immediate, it shouldn't be dereferenced until `*` is called.
+ module CPointer
+ # Note: We'd like to avoid alphabetic method names to avoid a conflict
+ # with member methods. to_i and to_s are considered an exception.
+ class Struct
+ # @param name [String]
+ # @param sizeof [Integer]
+ # @param members [Hash{ Symbol => [RubyVM::RJIT::CType::*, Integer, TrueClass] }]
+ def initialize(addr, sizeof, members)
+ @addr = addr
+ @sizeof = sizeof
+ @members = members
+ end
+
+ # Get a raw address
+ def to_i
+ @addr
+ end
+
+ # Serialized address for generated code
+ def to_s
+ "0x#{@addr.to_s(16)}"
+ end
+
+ # Pointer diff
+ def -(struct)
+ raise ArgumentError if self.class != struct.class
+ (@addr - struct.to_i) / @sizeof
+ end
+
+ # Primitive API that does no automatic dereference
+ # TODO: remove this?
+ # @param member [Symbol]
+ def [](member)
+ type, offset = @members.fetch(member)
+ type.new(@addr + offset / 8)
+ end
+
+ private
+
+ # @param member [Symbol]
+ # @param value [Object]
+ def []=(member, value)
+ type, offset = @members.fetch(member)
+ type[@addr + offset / 8] = value
+ end
+
+ # @param size [Integer]
+ # @param members [Hash{ Symbol => [Integer, RubyVM::RJIT::CType::*] }]
+ def self.define(size, members)
+ Class.new(self) do
+ # Return the size of this type
+ define_singleton_method(:size) { size }
+
+ # Return the offset to a field
+ define_singleton_method(:offsetof) do |field, *fields|
+ member, offset = members.fetch(field)
+ offset /= 8
+ unless fields.empty?
+ offset += member.offsetof(*fields)
+ end
+ offset
+ end
+
+ # Return member names
+ define_singleton_method(:members) { members.keys }
+
+ define_method(:initialize) do |addr = nil|
+ if addr.nil? # TODO: get rid of this feature later
+ addr = Fiddle.malloc(size)
+ end
+ super(addr, size, members)
+ end
+
+ members.each do |member, (type, offset, to_ruby)|
+ # Intelligent API that does automatic dereference
+ define_method(member) do
+ value = self[member]
+ if value.respond_to?(:*)
+ value = value.*
+ end
+ if to_ruby
+ value = C.to_ruby(value)
+ end
+ value
+ end
+
+ define_method("#{member}=") do |value|
+ if to_ruby
+ value = C.to_value(value)
+ end
+ self[member] = value
+ end
+ end
+ end
+ end
+ end
+
+ # Note: We'd like to avoid alphabetic method names to avoid a conflict
+ # with member methods. to_i is considered an exception.
+ class Union
+ # @param _name [String] To be used when it starts defining a union pointer class
+ # @param sizeof [Integer]
+ # @param members [Hash{ Symbol => RubyVM::RJIT::CType::* }]
+ def initialize(addr, sizeof, members)
+ @addr = addr
+ @sizeof = sizeof
+ @members = members
+ end
+
+ # Get a raw address
+ def to_i
+ @addr
+ end
+
+ # Move addr to access this pointer like an array
+ def +(index)
+ raise ArgumentError unless index.is_a?(Integer)
+ self.class.new(@addr + index * @sizeof)
+ end
+
+ # Pointer diff
+ def -(union)
+ raise ArgumentError if self.class != union.class
+ (@addr - union.instance_variable_get(:@addr)) / @sizeof
+ end
+
+ # @param sizeof [Integer]
+ # @param members [Hash{ Symbol => RubyVM::RJIT::CType::* }]
+ def self.define(sizeof, members)
+ Class.new(self) do
+ # Return the size of this type
+ define_singleton_method(:sizeof) { sizeof }
+
+ # Part of Struct's offsetof implementation
+ define_singleton_method(:offsetof) do |field, *fields|
+ member = members.fetch(field)
+ offset = 0
+ unless fields.empty?
+ offset += member.offsetof(*fields)
+ end
+ offset
+ end
+
+ define_method(:initialize) do |addr|
+ super(addr, sizeof, members)
+ end
+
+ members.each do |member, type|
+ # Intelligent API that does automatic dereference
+ define_method(member) do
+ value = type.new(@addr)
+ if value.respond_to?(:*)
+ value = value.*
+ end
+ value
+ end
+ end
+ end
+ end
+ end
+
+ class Immediate
+ # @param addr [Integer]
+ # @param size [Integer]
+ # @param pack [String]
+ def initialize(addr, size, pack)
+ @addr = addr
+ @size = size
+ @pack = pack
+ end
+
+ # Get a raw address
+ def to_i
+ @addr
+ end
+
+ # Move addr to addess this pointer like an array
+ def +(index)
+ Immediate.new(@addr + index * @size, @size, @pack)
+ end
+
+ # Dereference
+ def *
+ self[0]
+ end
+
+ # Array access
+ def [](index)
+ return nil if @addr == 0
+ Fiddle::Pointer.new(@addr + index * @size)[0, @size].unpack1(@pack)
+ end
+
+ # Array set
+ def []=(index, value)
+ Fiddle::Pointer.new(@addr + index * @size)[0, @size] = [value].pack(@pack)
+ end
+
+ # Serialized address for generated code. Used for embedding things like body->iseq_encoded.
+ def to_s
+ "0x#{Integer(@addr).to_s(16)}"
+ end
+
+ # @param fiddle_type [Integer] Fiddle::TYPE_*
+ def self.define(fiddle_type)
+ size = Fiddle::PackInfo::SIZE_MAP.fetch(fiddle_type)
+ pack = Fiddle::PackInfo::PACK_MAP.fetch(fiddle_type)
+
+ Class.new(self) do
+ define_method(:initialize) do |addr|
+ super(addr, size, pack)
+ end
+
+ define_singleton_method(:size) do
+ size
+ end
+
+ # Type-level []=: Used by struct fields
+ define_singleton_method(:[]=) do |addr, value|
+ Fiddle::Pointer.new(addr)[0, size] = [value].pack(pack)
+ end
+ end
+ end
+ end
+
+ # -Fiddle::TYPE_CHAR Immediate with special handling of true/false
+ class Bool < Immediate.define(-Fiddle::TYPE_CHAR)
+ # Dereference
+ def *
+ return nil if @addr == 0
+ super != 0
+ end
+
+ def self.[]=(addr, value)
+ super(addr, value ? 1 : 0)
+ end
+ end
+
+ # Basically Immediate but without #* to skip auto-dereference of structs.
+ class Array
+ attr_reader :type
+
+ # @param addr [Integer]
+ # @param type [Class] RubyVM::RJIT::CType::*
+ def initialize(addr, type)
+ @addr = addr
+ @type = type
+ end
+
+ # Array access
+ def [](index)
+ @type.new(@addr)[index]
+ end
+
+ # Array set
+ # @param index [Integer]
+ # @param value [Integer, RubyVM::RJIT::CPointer::Struct] an address itself or an object that return an address with to_i
+ def []=(index, value)
+ @type.new(@addr)[index] = value
+ end
+
+ private
+
+ def self.define(block)
+ Class.new(self) do
+ define_method(:initialize) do |addr|
+ super(addr, block.call)
+ end
+ end
+ end
+ end
+
+ class Pointer
+ attr_reader :type
+
+ # @param addr [Integer]
+ # @param type [Class] RubyVM::RJIT::CType::*
+ def initialize(addr, type)
+ @addr = addr
+ @type = type
+ end
+
+ # Move addr to addess this pointer like an array
+ def +(index)
+ raise ArgumentError unless index.is_a?(Integer)
+ Pointer.new(@addr + index * Fiddle::SIZEOF_VOIDP, @type)
+ end
+
+ # Dereference
+ def *
+ return nil if dest_addr == 0
+ @type.new(dest_addr)
+ end
+
+ # Array access
+ def [](index)
+ (self + index).*
+ end
+
+ # Array set
+ # @param index [Integer]
+ # @param value [Integer, RubyVM::RJIT::CPointer::Struct] an address itself or an object that return an address with to_i
+ def []=(index, value)
+ Fiddle::Pointer.new(@addr + index * Fiddle::SIZEOF_VOIDP)[0, Fiddle::SIZEOF_VOIDP] =
+ [value.to_i].pack(Fiddle::PackInfo::PACK_MAP[Fiddle::TYPE_VOIDP])
+ end
+
+ # Get a raw address
+ def to_i
+ @addr
+ end
+
+ private
+
+ def dest_addr
+ Fiddle::Pointer.new(@addr)[0, Fiddle::SIZEOF_VOIDP].unpack1(Fiddle::PackInfo::PACK_MAP[Fiddle::TYPE_VOIDP])
+ end
+
+ def self.define(block)
+ Class.new(self) do
+ define_method(:initialize) do |addr|
+ super(addr, block.call)
+ end
+
+ # Type-level []=: Used by struct fields
+ # @param addr [Integer]
+ # @param value [Integer, RubyVM::RJIT::CPointer::Struct] an address itself, or an object that return an address with to_i
+ define_singleton_method(:[]=) do |addr, value|
+ value = value.to_i
+ Fiddle::Pointer.new(addr)[0, Fiddle::SIZEOF_VOIDP] = [value].pack(Fiddle::PackInfo::PACK_MAP[Fiddle::TYPE_VOIDP])
+ end
+ end
+ end
+ end
+
+ class BitField
+ # @param addr [Integer]
+ # @param width [Integer]
+ # @param offset [Integer]
+ def initialize(addr, width, offset)
+ @addr = addr
+ @width = width
+ @offset = offset
+ end
+
+ # Dereference
+ def *
+ byte = Fiddle::Pointer.new(@addr)[0, Fiddle::SIZEOF_CHAR].unpack('c').first
+ if @width == 1
+ bit = (1 & (byte >> @offset))
+ bit == 1
+ elsif @width <= 8 && @offset == 0
+ bitmask = @width.times.map { |i| 1 << i }.sum
+ byte & bitmask
+ else
+ raise NotImplementedError.new("not-implemented bit field access: width=#{@width} offset=#{@offset}")
+ end
+ end
+
+ # @param width [Integer]
+ # @param offset [Integer]
+ def self.define(width, offset)
+ Class.new(self) do
+ define_method(:initialize) do |addr|
+ super(addr, width, offset)
+ end
+ end
+ end
+ end
+
+ # Give a name to a dynamic CPointer class to see it on inspect
+ def self.with_class_name(prefix, name, cache: false, &block)
+ return block.call if !name.nil? && name.empty?
+
+ # Use a cached result only if cache: true
+ class_name = "#{prefix}_#{name}"
+ klass =
+ if cache && self.const_defined?(class_name)
+ self.const_get(class_name)
+ else
+ block.call
+ end
+
+ # Give it a name unless it's already defined
+ unless self.const_defined?(class_name)
+ self.const_set(class_name, klass)
+ end
+
+ klass
+ end
+ end
+end
diff --git a/lib/ruby_vm/rjit/c_type.rb b/lib/ruby_vm/rjit/c_type.rb
new file mode 100644
index 0000000000..3b313a658b
--- /dev/null
+++ b/lib/ruby_vm/rjit/c_type.rb
@@ -0,0 +1,99 @@
+require 'fiddle'
+require 'fiddle/pack'
+require_relative 'c_pointer'
+
+module RubyVM::RJIT
+ module CType
+ module Struct
+ # @param name [String]
+ # @param members [Hash{ Symbol => [Integer, RubyVM::RJIT::CType::*] }]
+ def self.new(name, sizeof, **members)
+ name = members.keys.join('_') if name.empty?
+ CPointer.with_class_name('Struct', name) do
+ CPointer::Struct.define(sizeof, members)
+ end
+ end
+ end
+
+ module Union
+ # @param name [String]
+ # @param members [Hash{ Symbol => RubyVM::RJIT::CType::* }]
+ def self.new(name, sizeof, **members)
+ name = members.keys.join('_') if name.empty?
+ CPointer.with_class_name('Union', name) do
+ CPointer::Union.define(sizeof, members)
+ end
+ end
+ end
+
+ module Immediate
+ # @param fiddle_type [Integer]
+ def self.new(fiddle_type)
+ name = Fiddle.constants.find do |const|
+ const.start_with?('TYPE_') && Fiddle.const_get(const) == fiddle_type.abs
+ end&.to_s
+ name.delete_prefix!('TYPE_')
+ if fiddle_type.negative?
+ name.prepend('U')
+ end
+ CPointer.with_class_name('Immediate', name, cache: true) do
+ CPointer::Immediate.define(fiddle_type)
+ end
+ end
+
+ # @param type [String]
+ def self.parse(ctype)
+ new(Fiddle::Importer.parse_ctype(ctype))
+ end
+
+ def self.find(size, signed)
+ fiddle_type = TYPE_MAP.fetch(size)
+ fiddle_type = -fiddle_type unless signed
+ new(fiddle_type)
+ end
+
+ TYPE_MAP = Fiddle::PackInfo::SIZE_MAP.map { |type, size| [size, type.abs] }.to_h
+ private_constant :TYPE_MAP
+ end
+
+ module Bool
+ def self.new
+ CPointer::Bool
+ end
+ end
+
+ class Array
+ def self.new(&block)
+ CPointer.with_class_name('Array', block.object_id.to_s) do
+ CPointer::Array.define(block)
+ end
+ end
+ end
+
+ class Pointer
+ # This takes a block to avoid "stack level too deep" on a cyclic reference
+ # @param block [Proc]
+ def self.new(&block)
+ CPointer.with_class_name('Pointer', block.object_id.to_s) do
+ CPointer::Pointer.define(block)
+ end
+ end
+ end
+
+ module BitField
+ # @param width [Integer]
+ # @param offset [Integer]
+ def self.new(width, offset)
+ CPointer.with_class_name('BitField', "#{offset}_#{width}") do
+ CPointer::BitField.define(width, offset)
+ end
+ end
+ end
+
+ # Types that are referenced but not part of code generation targets
+ Stub = ::Struct.new(:name)
+
+ # Types that it failed to figure out from the header
+ Unknown = Module.new
+ end
+end
diff --git a/lib/ruby_vm/rjit/code_block.rb b/lib/ruby_vm/rjit/code_block.rb
new file mode 100644
index 0000000000..260bd98671
--- /dev/null
+++ b/lib/ruby_vm/rjit/code_block.rb
@@ -0,0 +1,91 @@
+module RubyVM::RJIT
+ class CodeBlock
+ # @param mem_block [Integer] JIT buffer address
+ # @param mem_size [Integer] JIT buffer size
+ # @param outliend [TrueClass,FalseClass] true for outlined CodeBlock
+ def initialize(mem_block:, mem_size:, outlined: false)
+ @comments = Hash.new { |h, k| h[k] = [] } if dump_disasm?
+ @mem_block = mem_block
+ @mem_size = mem_size
+ @write_pos = 0
+ @outlined = outlined
+ end
+
+ # @param asm [RubyVM::RJIT::Assembler]
+ def write(asm)
+ return 0 if @write_pos + asm.size >= @mem_size
+
+ start_addr = write_addr
+
+ # Write machine code
+ C.mprotect_write(@mem_block, @mem_size)
+ @write_pos += asm.assemble(start_addr)
+ C.mprotect_exec(@mem_block, @mem_size)
+
+ end_addr = write_addr
+
+ # Convert comment indexes to addresses
+ asm.comments.each do |index, comments|
+ @comments[start_addr + index] += comments if dump_disasm?
+ end
+ asm.comments.clear
+
+ # Dump disasm if --rjit-dump-disasm
+ if C.rjit_opts.dump_disasm && start_addr < end_addr
+ dump_disasm(start_addr, end_addr)
+ end
+ start_addr
+ end
+
+ def set_write_addr(addr)
+ @write_pos = addr - @mem_block
+ @comments.delete(addr) if dump_disasm?
+ end
+
+ def with_write_addr(addr)
+ old_write_pos = @write_pos
+ set_write_addr(addr)
+ yield
+ ensure
+ @write_pos = old_write_pos
+ end
+
+ def write_addr
+ @mem_block + @write_pos
+ end
+
+ def include?(addr)
+ (@mem_block...(@mem_block + @mem_size)).include?(addr)
+ end
+
+ def dump_disasm(from, to, io: STDOUT, color: true, test: false)
+ C.dump_disasm(from, to, test:).each do |address, mnemonic, op_str|
+ @comments.fetch(address, []).each do |comment|
+ io.puts colorize(" # #{comment}", bold: true, color:)
+ end
+ io.puts colorize(" 0x#{format("%x", address)}: #{mnemonic} #{op_str}", color:)
+ end
+ io.puts
+ end
+
+ private
+
+ def colorize(text, bold: false, color:)
+ return text unless color
+ buf = +''
+ buf << "\e[1m" if bold
+ buf << "\e[34m" if @outlined
+ buf << text
+ buf << "\e[0m"
+ buf
+ end
+
+ def bold(text)
+ "\e[1m#{text}\e[0m"
+ end
+
+ def dump_disasm?
+ C.rjit_opts.dump_disasm
+ end
+ end
+end
diff --git a/lib/ruby_vm/rjit/compiler.rb b/lib/ruby_vm/rjit/compiler.rb
new file mode 100644
index 0000000000..e5c3adf0ec
--- /dev/null
+++ b/lib/ruby_vm/rjit/compiler.rb
@@ -0,0 +1,518 @@
+require 'ruby_vm/rjit/assembler'
+require 'ruby_vm/rjit/block'
+require 'ruby_vm/rjit/branch_stub'
+require 'ruby_vm/rjit/code_block'
+require 'ruby_vm/rjit/context'
+require 'ruby_vm/rjit/entry_stub'
+require 'ruby_vm/rjit/exit_compiler'
+require 'ruby_vm/rjit/insn_compiler'
+require 'ruby_vm/rjit/instruction'
+require 'ruby_vm/rjit/invariants'
+require 'ruby_vm/rjit/jit_state'
+require 'ruby_vm/rjit/type'
+
+module RubyVM::RJIT
+ # Compilation status
+ KeepCompiling = :KeepCompiling
+ CantCompile = :CantCompile
+ EndBlock = :EndBlock
+
+ # Ruby constants
+ Qtrue = Fiddle::Qtrue
+ Qfalse = Fiddle::Qfalse
+ Qnil = Fiddle::Qnil
+ Qundef = Fiddle::Qundef
+
+ # Callee-saved registers
+ # TODO: support using r12/r13 here
+ EC = :r14
+ CFP = :r15
+ SP = :rbx
+
+ # Scratch registers: rax, rcx, rdx
+
+ # Mark objects in this Array during GC
+ GC_REFS = []
+
+ # Maximum number of versions per block
+ # 1 means always create generic versions
+ MAX_VERSIONS = 4
+
+ class Compiler
+ attr_accessor :write_pos
+
+ def self.decode_insn(encoded)
+ INSNS.fetch(C.rb_vm_insn_decode(encoded))
+ end
+
+ def initialize
+ mem_size = C.rjit_opts.exec_mem_size * 1024 * 1024
+ mem_block = C.mmap(mem_size)
+ @cb = CodeBlock.new(mem_block: mem_block, mem_size: mem_size / 2)
+ @ocb = CodeBlock.new(mem_block: mem_block + mem_size / 2, mem_size: mem_size / 2, outlined: true)
+ @exit_compiler = ExitCompiler.new
+ @insn_compiler = InsnCompiler.new(@cb, @ocb, @exit_compiler)
+ Invariants.initialize(@cb, @ocb, self, @exit_compiler)
+ end
+
+ # Compile an ISEQ from its entry point.
+ # @param iseq `RubyVM::RJIT::CPointer::Struct_rb_iseq_t`
+ # @param cfp `RubyVM::RJIT::CPointer::Struct_rb_control_frame_t`
+ def compile(iseq, cfp)
+ return unless supported_platform?
+ pc = cfp.pc.to_i
+ jit = JITState.new(iseq:, cfp:)
+ asm = Assembler.new
+ compile_prologue(asm, iseq, pc)
+ compile_block(asm, jit:, pc:)
+ iseq.body.jit_entry = @cb.write(asm)
+ rescue Exception => e
+ STDERR.puts "#{e.class}: #{e.message}"
+ STDERR.puts e.backtrace
+ exit 1
+ end
+
+ # Compile an entry.
+ # @param entry [RubyVM::RJIT::EntryStub]
+ def entry_stub_hit(entry_stub, cfp)
+ # Compile a new entry guard as a next entry
+ pc = cfp.pc.to_i
+ next_entry = Assembler.new.then do |asm|
+ compile_entry_chain_guard(asm, cfp.iseq, pc)
+ @cb.write(asm)
+ end
+
+ # Try to find an existing compiled version of this block
+ ctx = Context.new
+ block = find_block(cfp.iseq, pc, ctx)
+ if block
+ # If an existing block is found, generate a jump to the block.
+ asm = Assembler.new
+ asm.jmp(block.start_addr)
+ @cb.write(asm)
+ else
+ # If this block hasn't yet been compiled, generate blocks after the entry guard.
+ asm = Assembler.new
+ jit = JITState.new(iseq: cfp.iseq, cfp:)
+ compile_block(asm, jit:, pc:, ctx:)
+ @cb.write(asm)
+
+ block = jit.block
+ end
+
+ # Regenerate the previous entry
+ @cb.with_write_addr(entry_stub.start_addr) do
+ # The last instruction of compile_entry_chain_guard is jne
+ asm = Assembler.new
+ asm.jne(next_entry)
+ @cb.write(asm)
+ end
+
+ return block.start_addr
+ rescue Exception => e
+ STDERR.puts e.full_message
+ exit 1
+ end
+
+ # Compile a branch stub.
+ # @param branch_stub [RubyVM::RJIT::BranchStub]
+ # @param cfp `RubyVM::RJIT::CPointer::Struct_rb_control_frame_t`
+ # @param target0_p [TrueClass,FalseClass]
+ # @return [Integer] The starting address of the compiled branch stub
+ def branch_stub_hit(branch_stub, cfp, target0_p)
+ # Update cfp->pc for `jit.at_current_insn?`
+ target = target0_p ? branch_stub.target0 : branch_stub.target1
+ cfp.pc = target.pc
+
+ # Reuse an existing block if it already exists
+ block = find_block(branch_stub.iseq, target.pc, target.ctx)
+
+ # If the branch stub's jump is the last code, allow overwriting part of
+ # the old branch code with the new block code.
+ fallthrough = block.nil? && @cb.write_addr == branch_stub.end_addr
+ if fallthrough
+ # If the branch stub's jump is the last code, allow overwriting part of
+ # the old branch code with the new block code.
+ @cb.set_write_addr(branch_stub.start_addr)
+ branch_stub.shape = target0_p ? Next0 : Next1
+ Assembler.new.tap do |branch_asm|
+ branch_stub.compile.call(branch_asm)
+ @cb.write(branch_asm)
+ end
+ end
+
+ # Reuse or generate a block
+ if block
+ target.address = block.start_addr
+ else
+ jit = JITState.new(iseq: branch_stub.iseq, cfp:)
+ target.address = Assembler.new.then do |asm|
+ compile_block(asm, jit:, pc: target.pc, ctx: target.ctx.dup)
+ @cb.write(asm)
+ end
+ block = jit.block
+ end
+ block.incoming << branch_stub # prepare for invalidate_block
+
+ # Re-generate the branch code for non-fallthrough cases
+ unless fallthrough
+ @cb.with_write_addr(branch_stub.start_addr) do
+ branch_asm = Assembler.new
+ branch_stub.compile.call(branch_asm)
+ @cb.write(branch_asm)
+ end
+ end
+
+ return target.address
+ rescue Exception => e
+ STDERR.puts e.full_message
+ exit 1
+ end
+
+ # @param iseq `RubyVM::RJIT::CPointer::Struct_rb_iseq_t`
+ # @param pc [Integer]
+ def invalidate_blocks(iseq, pc)
+ list_blocks(iseq, pc).each do |block|
+ invalidate_block(block)
+ end
+
+ # If they were the ISEQ's first blocks, re-compile RJIT entry as well
+ if iseq.body.iseq_encoded.to_i == pc
+ iseq.body.jit_entry = 0
+ iseq.body.jit_entry_calls = 0
+ end
+ end
+
+ def invalidate_block(block)
+ iseq = block.iseq
+ # Avoid touching GCed ISEQs. We assume it won't be re-entered.
+ return unless C.imemo_type_p(iseq, C.imemo_iseq)
+
+ # Remove this block from the version array
+ remove_block(iseq, block)
+
+ # Invalidate the block with entry exit
+ unless block.invalidated
+ @cb.with_write_addr(block.start_addr) do
+ asm = Assembler.new
+ asm.comment('invalidate_block')
+ asm.jmp(block.entry_exit)
+ @cb.write(asm)
+ end
+ block.invalidated = true
+ end
+
+ # Re-stub incoming branches
+ block.incoming.each do |branch_stub|
+ target = [branch_stub.target0, branch_stub.target1].compact.find do |target|
+ target.pc == block.pc && target.ctx == block.ctx
+ end
+ next if target.nil?
+ # TODO: Could target.address be a stub address? Is invalidation not needed in that case?
+
+ # If the target being re-generated is currently a fallthrough block,
+ # the fallthrough code must be rewritten with a jump to the stub.
+ if target.address == branch_stub.end_addr
+ branch_stub.shape = Default
+ end
+
+ target.address = Assembler.new.then do |ocb_asm|
+ @exit_compiler.compile_branch_stub(block.ctx, ocb_asm, branch_stub, target == branch_stub.target0)
+ @ocb.write(ocb_asm)
+ end
+ @cb.with_write_addr(branch_stub.start_addr) do
+ branch_asm = Assembler.new
+ branch_stub.compile.call(branch_asm)
+ @cb.write(branch_asm)
+ end
+ end
+ end
+
+ private
+
+ # Callee-saved: rbx, rsp, rbp, r12, r13, r14, r15
+ # Caller-saved: rax, rdi, rsi, rdx, rcx, r8, r9, r10, r11
+ #
+ # @param asm [RubyVM::RJIT::Assembler]
+ def compile_prologue(asm, iseq, pc)
+ asm.comment('RJIT entry point')
+
+ # Save callee-saved registers used by JITed code
+ asm.push(CFP)
+ asm.push(EC)
+ asm.push(SP)
+
+ # Move arguments EC and CFP to dedicated registers
+ asm.mov(EC, :rdi)
+ asm.mov(CFP, :rsi)
+
+ # Load sp to a dedicated register
+ asm.mov(SP, [CFP, C.rb_control_frame_t.offsetof(:sp)]) # rbx = cfp->sp
+
+ # Setup cfp->jit_return
+ asm.mov(:rax, leave_exit)
+ asm.mov([CFP, C.rb_control_frame_t.offsetof(:jit_return)], :rax)
+
+ # We're compiling iseqs that we *expect* to start at `insn_idx`. But in
+ # the case of optional parameters, the interpreter can set the pc to a
+ # different location depending on the optional parameters. If an iseq
+ # has optional parameters, we'll add a runtime check that the PC we've
+ # compiled for is the same PC that the interpreter wants us to run with.
+ # If they don't match, then we'll take a side exit.
+ if iseq.body.param.flags.has_opt
+ compile_entry_chain_guard(asm, iseq, pc)
+ end
+ end
+
+ def compile_entry_chain_guard(asm, iseq, pc)
+ entry_stub = EntryStub.new
+ stub_addr = Assembler.new.then do |ocb_asm|
+ @exit_compiler.compile_entry_stub(ocb_asm, entry_stub)
+ @ocb.write(ocb_asm)
+ end
+
+ asm.comment('guard expected PC')
+ asm.mov(:rax, pc)
+ asm.cmp([CFP, C.rb_control_frame_t.offsetof(:pc)], :rax)
+
+ asm.stub(entry_stub) do
+ asm.jne(stub_addr)
+ end
+ end
+
+ # @param asm [RubyVM::RJIT::Assembler]
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ def compile_block(asm, jit:, pc:, ctx: Context.new)
+ # Mark the block start address and prepare an exit code storage
+ ctx = limit_block_versions(jit.iseq, pc, ctx)
+ block = Block.new(iseq: jit.iseq, pc:, ctx: ctx.dup)
+ jit.block = block
+ asm.block(block)
+
+ iseq = jit.iseq
+ asm.comment("Block: #{iseq.body.location.label}@#{C.rb_iseq_path(iseq)}:#{iseq_lineno(iseq, pc)}")
+
+ # Compile each insn
+ index = (pc - iseq.body.iseq_encoded.to_i) / C.VALUE.size
+ while index < iseq.body.iseq_size
+ # Set the current instruction
+ insn = self.class.decode_insn(iseq.body.iseq_encoded[index])
+ jit.pc = (iseq.body.iseq_encoded + index).to_i
+ jit.stack_size_for_pc = ctx.stack_size
+ jit.side_exit_for_pc.clear
+
+ # If previous instruction requested to record the boundary
+ if jit.record_boundary_patch_point
+ # Generate an exit to this instruction and record it
+ exit_pos = Assembler.new.then do |ocb_asm|
+ @exit_compiler.compile_side_exit(jit.pc, ctx, ocb_asm)
+ @ocb.write(ocb_asm)
+ end
+ Invariants.record_global_inval_patch(asm, exit_pos)
+ jit.record_boundary_patch_point = false
+ end
+
+ # In debug mode, verify our existing assumption
+ if C.rjit_opts.verify_ctx && jit.at_current_insn?
+ verify_ctx(jit, ctx)
+ end
+
+ case status = @insn_compiler.compile(jit, ctx, asm, insn)
+ when KeepCompiling
+ # For now, reset the chain depth after each instruction as only the
+ # first instruction in the block can concern itself with the depth.
+ ctx.chain_depth = 0
+
+ index += insn.len
+ when EndBlock
+ # TODO: pad nops if entry exit exists (not needed for x86_64?)
+ break
+ when CantCompile
+ # Rewind stack_size using ctx.with_stack_size to allow stack_size changes
+ # before you return CantCompile.
+ @exit_compiler.compile_side_exit(jit.pc, ctx.with_stack_size(jit.stack_size_for_pc), asm)
+
+ # If this is the first instruction, this block never needs to be invalidated.
+ if block.pc == iseq.body.iseq_encoded.to_i + index * C.VALUE.size
+ block.invalidated = true
+ end
+
+ break
+ else
+ raise "compiling #{insn.name} returned unexpected status: #{status.inspect}"
+ end
+ end
+
+ incr_counter(:compiled_block_count)
+ add_block(iseq, block)
+ end
+
+ def leave_exit
+ @leave_exit ||= Assembler.new.then do |asm|
+ @exit_compiler.compile_leave_exit(asm)
+ @ocb.write(asm)
+ end
+ end
+
+ def incr_counter(name)
+ if C.rjit_opts.stats
+ C.rb_rjit_counters[name][0] += 1
+ end
+ end
+
+ # Produce a generic context when the block version limit is hit for the block
+ def limit_block_versions(iseq, pc, ctx)
+ # Guard chains implement limits separately, do nothing
+ if ctx.chain_depth > 0
+ return ctx.dup
+ end
+
+ # If this block version we're about to add will hit the version limit
+ if list_blocks(iseq, pc).size + 1 >= MAX_VERSIONS
+ # Produce a generic context that stores no type information,
+ # but still respects the stack_size and sp_offset constraints.
+ # This new context will then match all future requests.
+ generic_ctx = Context.new
+ generic_ctx.stack_size = ctx.stack_size
+ generic_ctx.sp_offset = ctx.sp_offset
+
+ if ctx.diff(generic_ctx) == TypeDiff::Incompatible
+ raise 'should substitute a compatible context'
+ end
+
+ return generic_ctx
+ end
+
+ return ctx.dup
+ end
+
+ def list_blocks(iseq, pc)
+ rjit_blocks(iseq)[pc]
+ end
+
+ # @param [Integer] pc
+ # @param [RubyVM::RJIT::Context] ctx
+ # @return [RubyVM::RJIT::Block,NilClass]
+ def find_block(iseq, pc, ctx)
+ versions = rjit_blocks(iseq)[pc]
+
+ best_version = nil
+ best_diff = Float::INFINITY
+
+ versions.each do |block|
+ # Note that we always prefer the first matching
+ # version found because of inline-cache chains
+ case ctx.diff(block.ctx)
+ in TypeDiff::Compatible[diff] if diff < best_diff
+ best_version = block
+ best_diff = diff
+ else
+ end
+ end
+
+ return best_version
+ end
+
+ # @param [RubyVM::RJIT::Block] block
+ def add_block(iseq, block)
+ rjit_blocks(iseq)[block.pc] << block
+ end
+
+ # @param [RubyVM::RJIT::Block] block
+ def remove_block(iseq, block)
+ rjit_blocks(iseq)[block.pc].delete(block)
+ end
+
+ def rjit_blocks(iseq)
+ # Guard against ISEQ GC at random moments
+
+ unless C.imemo_type_p(iseq, C.imemo_iseq)
+ return Hash.new { |h, k| h[k] = [] }
+ end
+
+ unless iseq.body.rjit_blocks
+ iseq.body.rjit_blocks = Hash.new { |blocks, pc| blocks[pc] = [] }
+ # For some reason, rb_rjit_iseq_mark didn't protect this Hash
+ # from being freed. So we rely on GC_REFS to keep the Hash.
+ GC_REFS << iseq.body.rjit_blocks
+ end
+ iseq.body.rjit_blocks
+ end
+
+ def iseq_lineno(iseq, pc)
+ C.rb_iseq_line_no(iseq, (pc - iseq.body.iseq_encoded.to_i) / C.VALUE.size)
+ rescue RangeError # bignum too big to convert into `unsigned long long' (RangeError)
+ -1
+ end
+
+ # Verify the ctx's types and mappings against the compile-time stack, self, and locals.
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ def verify_ctx(jit, ctx)
+ # Only able to check types when at current insn
+ assert(jit.at_current_insn?)
+
+ self_val = jit.peek_at_self
+ self_val_type = Type.from(self_val)
+
+ # Verify self operand type
+ assert_compatible(self_val_type, ctx.get_opnd_type(SelfOpnd))
+
+ # Verify stack operand types
+ [ctx.stack_size, MAX_TEMP_TYPES].min.times do |i|
+ learned_mapping, learned_type = ctx.get_opnd_mapping(StackOpnd[i])
+ stack_val = jit.peek_at_stack(i)
+ val_type = Type.from(stack_val)
+
+ case learned_mapping
+ in MapToSelf
+ if C.to_value(self_val) != C.to_value(stack_val)
+ raise "verify_ctx: stack value was mapped to self, but values did not match:\n"\
+ "stack: #{stack_val.inspect}, self: #{self_val.inspect}"
+ end
+ in MapToLocal[local_idx]
+ local_val = jit.peek_at_local(local_idx)
+ if C.to_value(local_val) != C.to_value(stack_val)
+ raise "verify_ctx: stack value was mapped to local, but values did not match:\n"\
+ "stack: #{stack_val.inspect}, local: #{local_val.inspect}"
+ end
+ in MapToStack
+ # noop
+ end
+
+ # If the actual type differs from the learned type
+ assert_compatible(val_type, learned_type)
+ end
+
+ # Verify local variable types
+ local_table_size = jit.iseq.body.local_table_size
+ [local_table_size, MAX_TEMP_TYPES].min.times do |i|
+ learned_type = ctx.get_local_type(i)
+ local_val = jit.peek_at_local(i)
+ local_type = Type.from(local_val)
+
+ assert_compatible(local_type, learned_type)
+ end
+ end
+
+ def assert_compatible(actual_type, ctx_type)
+ if actual_type.diff(ctx_type) == TypeDiff::Incompatible
+ raise "verify_ctx: ctx type (#{ctx_type.type.inspect}) is incompatible with actual type (#{actual_type.type.inspect})"
+ end
+ end
+
+ def assert(cond)
+ unless cond
+ raise "'#{cond.inspect}' was not true"
+ end
+ end
+
+ def supported_platform?
+ return @supported_platform if defined?(@supported_platform)
+ @supported_platform = RUBY_PLATFORM.match?(/x86_64/).tap do |supported|
+ warn "warning: RJIT does not support #{RUBY_PLATFORM} yet" unless supported
+ end
+ end
+ end
+end
diff --git a/lib/ruby_vm/rjit/context.rb b/lib/ruby_vm/rjit/context.rb
new file mode 100644
index 0000000000..a2a7ecc6dc
--- /dev/null
+++ b/lib/ruby_vm/rjit/context.rb
@@ -0,0 +1,377 @@
+module RubyVM::RJIT
+ # Maximum number of temp value types we keep track of
+ MAX_TEMP_TYPES = 8
+ # Maximum number of local variable types we keep track of
+ MAX_LOCAL_TYPES = 8
+
+ # Operand to a YARV bytecode instruction
+ SelfOpnd = :SelfOpnd # The value is self
+ StackOpnd = Data.define(:index) # Temporary stack operand with stack index
+
+ # Potential mapping of a value on the temporary stack to self,
+ # a local variable, or constant so that we can track its type
+ MapToStack = :MapToStack # Normal stack value
+ MapToSelf = :MapToSelf # Temp maps to the self operand
+ MapToLocal = Data.define(:local_index) # Temp maps to a local variable with index
+
+ class Context < Struct.new(
+ :stack_size, # @param [Integer] The number of values on the stack
+ :sp_offset, # @param [Integer] JIT sp offset relative to the interpreter's sp
+ :chain_depth, # @param [Integer] jit_chain_guard depth
+ :local_types, # @param [Array<RubyVM::RJIT::Type>] Local variable types we keep track of
+ :temp_types, # @param [Array<RubyVM::RJIT::Type>] Temporary variable types we keep track of
+ :self_type, # @param [RubyVM::RJIT::Type] Type we track for self
+ :temp_mapping, # @param [Array<Symbol>] Mapping of temp stack entries to types we track
+ )
+ def initialize(
+ stack_size: 0,
+ sp_offset: 0,
+ chain_depth: 0,
+ local_types: [Type::Unknown] * MAX_LOCAL_TYPES,
+ temp_types: [Type::Unknown] * MAX_TEMP_TYPES,
+ self_type: Type::Unknown,
+ temp_mapping: [MapToStack] * MAX_TEMP_TYPES
+ ) = super
+
+ # Deep dup by default for safety
+ def dup
+ ctx = super
+ ctx.local_types = ctx.local_types.dup
+ ctx.temp_types = ctx.temp_types.dup
+ ctx.temp_mapping = ctx.temp_mapping.dup
+ ctx
+ end
+
+ # Create a new Context instance with a given stack_size and sp_offset adjusted
+ # accordingly. This is useful when you want to virtually rewind a stack_size for
+ # generating a side exit while considering past sp_offset changes on gen_save_sp.
+ def with_stack_size(stack_size)
+ ctx = self.dup
+ ctx.sp_offset -= ctx.stack_size - stack_size
+ ctx.stack_size = stack_size
+ ctx
+ end
+
+ def stack_opnd(depth_from_top)
+ [SP, C.VALUE.size * (self.sp_offset - 1 - depth_from_top)]
+ end
+
+ def sp_opnd(offset_bytes = 0)
+ [SP, (C.VALUE.size * self.sp_offset) + offset_bytes]
+ end
+
+ # Push one new value on the temp stack with an explicit mapping
+ # Return a pointer to the new stack top
+ def stack_push_mapping(mapping_temp_type)
+ stack_size = self.stack_size
+
+ # Keep track of the type and mapping of the value
+ if stack_size < MAX_TEMP_TYPES
+ mapping, temp_type = mapping_temp_type
+ self.temp_mapping[stack_size] = mapping
+ self.temp_types[stack_size] = temp_type
+
+ case mapping
+ in MapToLocal[idx]
+ assert(idx < MAX_LOCAL_TYPES)
+ else
+ end
+ end
+
+ self.stack_size += 1
+ self.sp_offset += 1
+
+ return self.stack_opnd(0)
+ end
+
+ # Push one new value on the temp stack
+ # Return a pointer to the new stack top
+ def stack_push(val_type)
+ return self.stack_push_mapping([MapToStack, val_type])
+ end
+
+ # Push the self value on the stack
+ def stack_push_self
+ return self.stack_push_mapping([MapToStack, Type::Unknown])
+ end
+
+ # Push a local variable on the stack
+ def stack_push_local(local_idx)
+ if local_idx >= MAX_LOCAL_TYPES
+ return self.stack_push(Type::Unknown)
+ end
+
+ return self.stack_push_mapping([MapToLocal[local_idx], Type::Unknown])
+ end
+
+ # Pop N values off the stack
+ # Return a pointer to the stack top before the pop operation
+ def stack_pop(n = 1)
+ assert(n <= self.stack_size)
+
+ top = self.stack_opnd(0)
+
+ # Clear the types of the popped values
+ n.times do |i|
+ idx = self.stack_size - i - 1
+
+ if idx < MAX_TEMP_TYPES
+ self.temp_types[idx] = Type::Unknown
+ self.temp_mapping[idx] = MapToStack
+ end
+ end
+
+ self.stack_size -= n
+ self.sp_offset -= n
+
+ return top
+ end
+
+ def shift_stack(argc)
+ assert(argc < self.stack_size)
+
+ method_name_index = self.stack_size - argc - 1
+
+ (method_name_index...(self.stack_size - 1)).each do |i|
+ if i + 1 < MAX_TEMP_TYPES
+ self.temp_types[i] = self.temp_types[i + 1]
+ self.temp_mapping[i] = self.temp_mapping[i + 1]
+ end
+ end
+ self.stack_pop(1)
+ end
+
+ # Get the type of an instruction operand
+ def get_opnd_type(opnd)
+ case opnd
+ in SelfOpnd
+ self.self_type
+ in StackOpnd[idx]
+ assert(idx < self.stack_size)
+ stack_idx = self.stack_size - 1 - idx
+
+ # If outside of tracked range, do nothing
+ if stack_idx >= MAX_TEMP_TYPES
+ return Type::Unknown
+ end
+
+ mapping = self.temp_mapping[stack_idx]
+
+ case mapping
+ in MapToSelf
+ self.self_type
+ in MapToStack
+ self.temp_types[self.stack_size - 1 - idx]
+ in MapToLocal[idx]
+ assert(idx < MAX_LOCAL_TYPES)
+ self.local_types[idx]
+ end
+ end
+ end
+
+ # Get the currently tracked type for a local variable
+ def get_local_type(idx)
+ self.local_types[idx] || Type::Unknown
+ end
+
+ # Upgrade (or "learn") the type of an instruction operand
+ # This value must be compatible and at least as specific as the previously known type.
+ # If this value originated from self, or an lvar, the learned type will be
+ # propagated back to its source.
+ def upgrade_opnd_type(opnd, opnd_type)
+ case opnd
+ in SelfOpnd
+ self.self_type = self.self_type.upgrade(opnd_type)
+ in StackOpnd[idx]
+ assert(idx < self.stack_size)
+ stack_idx = self.stack_size - 1 - idx
+
+ # If outside of tracked range, do nothing
+ if stack_idx >= MAX_TEMP_TYPES
+ return
+ end
+
+ mapping = self.temp_mapping[stack_idx]
+
+ case mapping
+ in MapToSelf
+ self.self_type = self.self_type.upgrade(opnd_type)
+ in MapToStack
+ self.temp_types[stack_idx] = self.temp_types[stack_idx].upgrade(opnd_type)
+ in MapToLocal[idx]
+ assert(idx < MAX_LOCAL_TYPES)
+ self.local_types[idx] = self.local_types[idx].upgrade(opnd_type)
+ end
+ end
+ end
+
+ # Get both the type and mapping (where the value originates) of an operand.
+ # This is can be used with stack_push_mapping or set_opnd_mapping to copy
+ # a stack value's type while maintaining the mapping.
+ def get_opnd_mapping(opnd)
+ opnd_type = self.get_opnd_type(opnd)
+
+ case opnd
+ in SelfOpnd
+ return [MapToSelf, opnd_type]
+ in StackOpnd[idx]
+ assert(idx < self.stack_size)
+ stack_idx = self.stack_size - 1 - idx
+
+ if stack_idx < MAX_TEMP_TYPES
+ return [self.temp_mapping[stack_idx], opnd_type]
+ else
+ # We can't know the source of this stack operand, so we assume it is
+ # a stack-only temporary. type will be UNKNOWN
+ assert(opnd_type == Type::Unknown)
+ return [MapToStack, opnd_type]
+ end
+ end
+ end
+
+ # Overwrite both the type and mapping of a stack operand.
+ def set_opnd_mapping(opnd, mapping_opnd_type)
+ case opnd
+ in SelfOpnd
+ raise 'self always maps to self'
+ in StackOpnd[idx]
+ assert(idx < self.stack_size)
+ stack_idx = self.stack_size - 1 - idx
+
+ # If outside of tracked range, do nothing
+ if stack_idx >= MAX_TEMP_TYPES
+ return
+ end
+
+ mapping, opnd_type = mapping_opnd_type
+ self.temp_mapping[stack_idx] = mapping
+
+ # Only used when mapping == MAP_STACK
+ self.temp_types[stack_idx] = opnd_type
+ end
+ end
+
+ # Set the type of a local variable
+ def set_local_type(local_idx, local_type)
+ if local_idx >= MAX_LOCAL_TYPES
+ return
+ end
+
+ # If any values on the stack map to this local we must detach them
+ MAX_TEMP_TYPES.times do |stack_idx|
+ case self.temp_mapping[stack_idx]
+ in MapToStack
+ # noop
+ in MapToSelf
+ # noop
+ in MapToLocal[idx]
+ if idx == local_idx
+ self.temp_types[stack_idx] = self.local_types[idx]
+ self.temp_mapping[stack_idx] = MapToStack
+ else
+ # noop
+ end
+ end
+ end
+
+ self.local_types[local_idx] = local_type
+ end
+
+ # Erase local variable type information
+ # eg: because of a call we can't track
+ def clear_local_types
+ # When clearing local types we must detach any stack mappings to those
+ # locals. Even if local values may have changed, stack values will not.
+ MAX_TEMP_TYPES.times do |stack_idx|
+ case self.temp_mapping[stack_idx]
+ in MapToStack
+ # noop
+ in MapToSelf
+ # noop
+ in MapToLocal[local_idx]
+ self.temp_types[stack_idx] = self.local_types[local_idx]
+ self.temp_mapping[stack_idx] = MapToStack
+ end
+ end
+
+ # Clear the local types
+ self.local_types = [Type::Unknown] * MAX_LOCAL_TYPES
+ end
+
+ # Compute a difference score for two context objects
+ def diff(dst)
+ # Self is the source context (at the end of the predecessor)
+ src = self
+
+ # Can only lookup the first version in the chain
+ if dst.chain_depth != 0
+ return TypeDiff::Incompatible
+ end
+
+ # Blocks with depth > 0 always produce new versions
+ # Sidechains cannot overlap
+ if src.chain_depth != 0
+ return TypeDiff::Incompatible
+ end
+
+ if dst.stack_size != src.stack_size
+ return TypeDiff::Incompatible
+ end
+
+ if dst.sp_offset != src.sp_offset
+ return TypeDiff::Incompatible
+ end
+
+ # Difference sum
+ diff = 0
+
+ # Check the type of self
+ diff += case src.self_type.diff(dst.self_type)
+ in TypeDiff::Compatible[diff] then diff
+ in TypeDiff::Incompatible then return TypeDiff::Incompatible
+ end
+
+ # For each local type we track
+ src.local_types.size.times do |i|
+ t_src = src.local_types[i]
+ t_dst = dst.local_types[i]
+ diff += case t_src.diff(t_dst)
+ in TypeDiff::Compatible[diff] then diff
+ in TypeDiff::Incompatible then return TypeDiff::Incompatible
+ end
+ end
+
+ # For each value on the temp stack
+ src.stack_size.times do |i|
+ src_mapping, src_type = src.get_opnd_mapping(StackOpnd[i])
+ dst_mapping, dst_type = dst.get_opnd_mapping(StackOpnd[i])
+
+ # If the two mappings aren't the same
+ if src_mapping != dst_mapping
+ if dst_mapping == MapToStack
+ # We can safely drop information about the source of the temp
+ # stack operand.
+ diff += 1
+ else
+ return TypeDiff::Incompatible
+ end
+ end
+
+ diff += case src_type.diff(dst_type)
+ in TypeDiff::Compatible[diff] then diff
+ in TypeDiff::Incompatible then return TypeDiff::Incompatible
+ end
+ end
+
+ return TypeDiff::Compatible[diff]
+ end
+
+ private
+
+ def assert(cond)
+ unless cond
+ raise "'#{cond.inspect}' was not true"
+ end
+ end
+ end
+end
diff --git a/lib/ruby_vm/rjit/entry_stub.rb b/lib/ruby_vm/rjit/entry_stub.rb
new file mode 100644
index 0000000000..9bcef14053
--- /dev/null
+++ b/lib/ruby_vm/rjit/entry_stub.rb
@@ -0,0 +1,7 @@
+module RubyVM::RJIT
+ class EntryStub < Struct.new(
+ :start_addr, # @param [Integer] Stub source start address to be re-generated
+ :end_addr, # @param [Integer] Stub source end address to be re-generated
+ )
+ end
+end
diff --git a/lib/ruby_vm/rjit/exit_compiler.rb b/lib/ruby_vm/rjit/exit_compiler.rb
new file mode 100644
index 0000000000..1ced2141a4
--- /dev/null
+++ b/lib/ruby_vm/rjit/exit_compiler.rb
@@ -0,0 +1,164 @@
+module RubyVM::RJIT
+ class ExitCompiler
+ def initialize = freeze
+
+ # Used for invalidating a block on entry.
+ # @param pc [Integer]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def compile_entry_exit(pc, ctx, asm, cause:)
+ # Fix pc/sp offsets for the interpreter
+ save_pc_and_sp(pc, ctx, asm, reset_sp_offset: false)
+
+ # Increment per-insn exit counter
+ count_insn_exit(pc, asm)
+
+ # Restore callee-saved registers
+ asm.comment("#{cause}: entry exit")
+ asm.pop(SP)
+ asm.pop(EC)
+ asm.pop(CFP)
+
+ asm.mov(C_RET, Qundef)
+ asm.ret
+ end
+
+ # Set to cfp->jit_return by default for leave insn
+ # @param asm [RubyVM::RJIT::Assembler]
+ def compile_leave_exit(asm)
+ asm.comment('default cfp->jit_return')
+
+ # Restore callee-saved registers
+ asm.pop(SP)
+ asm.pop(EC)
+ asm.pop(CFP)
+
+ # :rax is written by #leave
+ asm.ret
+ end
+
+ # Fire cfunc events on invalidation by TracePoint
+ # @param asm [RubyVM::RJIT::Assembler]
+ def compile_full_cfunc_return(asm)
+ # This chunk of code expects REG_EC to be filled properly and
+ # RAX to contain the return value of the C method.
+
+ asm.comment('full cfunc return')
+ asm.mov(C_ARGS[0], EC)
+ asm.mov(C_ARGS[1], :rax)
+ asm.call(C.rjit_full_cfunc_return)
+
+ # TODO: count the exit
+
+ # Restore callee-saved registers
+ asm.pop(SP)
+ asm.pop(EC)
+ asm.pop(CFP)
+
+ asm.mov(C_RET, Qundef)
+ asm.ret
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def compile_side_exit(pc, ctx, asm)
+ # Fix pc/sp offsets for the interpreter
+ save_pc_and_sp(pc, ctx.dup, asm) # dup to avoid sp_offset update
+
+ # Increment per-insn exit counter
+ count_insn_exit(pc, asm)
+
+ # Restore callee-saved registers
+ asm.comment("exit to interpreter on #{pc_to_insn(pc).name}")
+ asm.pop(SP)
+ asm.pop(EC)
+ asm.pop(CFP)
+
+ asm.mov(C_RET, Qundef)
+ asm.ret
+ end
+
+ # @param asm [RubyVM::RJIT::Assembler]
+ # @param entry_stub [RubyVM::RJIT::EntryStub]
+ def compile_entry_stub(asm, entry_stub)
+ # Call rb_rjit_entry_stub_hit
+ asm.comment('entry stub hit')
+ asm.mov(C_ARGS[0], to_value(entry_stub))
+ asm.call(C.rb_rjit_entry_stub_hit)
+
+ # Jump to the address returned by rb_rjit_entry_stub_hit
+ asm.jmp(:rax)
+ end
+
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ # @param branch_stub [RubyVM::RJIT::BranchStub]
+ # @param target0_p [TrueClass,FalseClass]
+ def compile_branch_stub(ctx, asm, branch_stub, target0_p)
+ # Call rb_rjit_branch_stub_hit
+ iseq = branch_stub.iseq
+ if C.rjit_opts.dump_disasm && C.imemo_type_p(iseq, C.imemo_iseq) # Guard against ISEQ GC at random moments
+ asm.comment("branch stub hit: #{iseq.body.location.label}@#{C.rb_iseq_path(iseq)}:#{iseq_lineno(iseq, target0_p ? branch_stub.target0.pc : branch_stub.target1.pc)}")
+ end
+ asm.mov(:rdi, to_value(branch_stub))
+ asm.mov(:esi, ctx.sp_offset)
+ asm.mov(:edx, target0_p ? 1 : 0)
+ asm.call(C.rb_rjit_branch_stub_hit)
+
+ # Jump to the address returned by rb_rjit_branch_stub_hit
+ asm.jmp(:rax)
+ end
+
+ private
+
+ def pc_to_insn(pc)
+ Compiler.decode_insn(C.VALUE.new(pc).*)
+ end
+
+ # @param pc [Integer]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def count_insn_exit(pc, asm)
+ if C.rjit_opts.stats
+ insn = Compiler.decode_insn(C.VALUE.new(pc).*)
+ asm.comment("increment insn exit: #{insn.name}")
+ asm.mov(:rax, (C.rjit_insn_exits + insn.bin).to_i)
+ asm.add([:rax], 1) # TODO: lock
+ end
+ if C.rjit_opts.trace_exits
+ asm.comment('rjit_record_exit_stack')
+ asm.mov(C_ARGS[0], pc)
+ asm.call(C.rjit_record_exit_stack)
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def save_pc_and_sp(pc, ctx, asm, reset_sp_offset: true)
+ # Update pc (TODO: manage PC offset?)
+ asm.comment("save PC#{' and SP' if ctx.sp_offset != 0} to CFP")
+ asm.mov(:rax, pc) # rax = jit.pc
+ asm.mov([CFP, C.rb_control_frame_t.offsetof(:pc)], :rax) # cfp->pc = rax
+
+ # Update sp
+ if ctx.sp_offset != 0
+ asm.add(SP, C.VALUE.size * ctx.sp_offset) # sp += stack_size
+ asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], SP) # cfp->sp = sp
+ if reset_sp_offset
+ ctx.sp_offset = 0
+ end
+ end
+ end
+
+ def to_value(obj)
+ GC_REFS << obj
+ C.to_value(obj)
+ end
+
+ def iseq_lineno(iseq, pc)
+ C.rb_iseq_line_no(iseq, (pc - iseq.body.iseq_encoded.to_i) / C.VALUE.size)
+ rescue RangeError # bignum too big to convert into `unsigned long long' (RangeError)
+ -1
+ end
+ end
+end
diff --git a/lib/ruby_vm/rjit/hooks.rb b/lib/ruby_vm/rjit/hooks.rb
new file mode 100644
index 0000000000..ea9d7bf5a8
--- /dev/null
+++ b/lib/ruby_vm/rjit/hooks.rb
@@ -0,0 +1,36 @@
+module RubyVM::RJIT
+ module Hooks # :nodoc: all
+ def self.on_bop_redefined(_redefined_flag, _bop)
+ # C.rjit_cancel_all("BOP is redefined")
+ end
+
+ def self.on_cme_invalidate(cme)
+ cme = C.rb_callable_method_entry_struct.new(cme)
+ Invariants.on_cme_invalidate(cme)
+ end
+
+ def self.on_ractor_spawn
+ # C.rjit_cancel_all("Ractor is spawned")
+ end
+
+ # Global constant changes like const_set
+ def self.on_constant_state_changed(id)
+ Invariants.on_constant_state_changed(id)
+ end
+
+ # ISEQ-specific constant invalidation
+ def self.on_constant_ic_update(iseq, ic, insn_idx)
+ iseq = C.rb_iseq_t.new(iseq)
+ ic = C.IC.new(ic)
+ Invariants.on_constant_ic_update(iseq, ic, insn_idx)
+ end
+
+ def self.on_tracing_invalidate_all(_new_iseq_events)
+ Invariants.on_tracing_invalidate_all
+ end
+
+ def self.on_update_references
+ Invariants.on_update_references
+ end
+ end
+end
diff --git a/lib/ruby_vm/rjit/insn_compiler.rb b/lib/ruby_vm/rjit/insn_compiler.rb
new file mode 100644
index 0000000000..2346c92bd1
--- /dev/null
+++ b/lib/ruby_vm/rjit/insn_compiler.rb
@@ -0,0 +1,5996 @@
+# frozen_string_literal: true
+module RubyVM::RJIT
+ class InsnCompiler
+ # struct rb_calling_info. Storing flags instead of ci.
+ CallingInfo = Struct.new(:argc, :flags, :kwarg, :ci_addr, :send_shift, :block_handler) do
+ def kw_splat = flags & C::VM_CALL_KW_SPLAT != 0
+ end
+
+ # @param ocb [CodeBlock]
+ # @param exit_compiler [RubyVM::RJIT::ExitCompiler]
+ def initialize(cb, ocb, exit_compiler)
+ @ocb = ocb
+ @exit_compiler = exit_compiler
+
+ @cfunc_codegen_table = {}
+ register_cfunc_codegen_funcs
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ # @param insn `RubyVM::RJIT::Instruction`
+ def compile(jit, ctx, asm, insn)
+ asm.incr_counter(:rjit_insns_count)
+
+ stack = ctx.stack_size.times.map do |stack_idx|
+ ctx.get_opnd_type(StackOpnd[ctx.stack_size - stack_idx - 1]).type
+ end
+ locals = jit.iseq.body.local_table_size.times.map do |local_idx|
+ (ctx.local_types[local_idx] || Type::Unknown).type
+ end
+
+ insn_idx = format('%04d', (jit.pc.to_i - jit.iseq.body.iseq_encoded.to_i) / C.VALUE.size)
+ asm.comment("Insn: #{insn_idx} #{insn.name} (stack: [#{stack.join(', ')}], locals: [#{locals.join(', ')}])")
+
+ # 83/102
+ case insn.name
+ when :nop then nop(jit, ctx, asm)
+ when :getlocal then getlocal(jit, ctx, asm)
+ when :setlocal then setlocal(jit, ctx, asm)
+ when :getblockparam then getblockparam(jit, ctx, asm)
+ # setblockparam
+ when :getblockparamproxy then getblockparamproxy(jit, ctx, asm)
+ when :getspecial then getspecial(jit, ctx, asm)
+ # setspecial
+ when :getinstancevariable then getinstancevariable(jit, ctx, asm)
+ when :setinstancevariable then setinstancevariable(jit, ctx, asm)
+ when :getclassvariable then getclassvariable(jit, ctx, asm)
+ when :setclassvariable then setclassvariable(jit, ctx, asm)
+ when :opt_getconstant_path then opt_getconstant_path(jit, ctx, asm)
+ when :getconstant then getconstant(jit, ctx, asm)
+ # setconstant
+ when :getglobal then getglobal(jit, ctx, asm)
+ # setglobal
+ when :putnil then putnil(jit, ctx, asm)
+ when :putself then putself(jit, ctx, asm)
+ when :putobject then putobject(jit, ctx, asm)
+ when :putspecialobject then putspecialobject(jit, ctx, asm)
+ when :putstring then putstring(jit, ctx, asm)
+ when :putchilledstring then putchilledstring(jit, ctx, asm)
+ when :concatstrings then concatstrings(jit, ctx, asm)
+ when :anytostring then anytostring(jit, ctx, asm)
+ when :toregexp then toregexp(jit, ctx, asm)
+ when :intern then intern(jit, ctx, asm)
+ when :newarray then newarray(jit, ctx, asm)
+ # newarraykwsplat
+ when :duparray then duparray(jit, ctx, asm)
+ # duphash
+ when :expandarray then expandarray(jit, ctx, asm)
+ when :concatarray then concatarray(jit, ctx, asm)
+ when :splatarray then splatarray(jit, ctx, asm)
+ when :newhash then newhash(jit, ctx, asm)
+ when :newrange then newrange(jit, ctx, asm)
+ when :pop then pop(jit, ctx, asm)
+ when :dup then dup(jit, ctx, asm)
+ when :dupn then dupn(jit, ctx, asm)
+ when :swap then swap(jit, ctx, asm)
+ # opt_reverse
+ when :topn then topn(jit, ctx, asm)
+ when :setn then setn(jit, ctx, asm)
+ when :adjuststack then adjuststack(jit, ctx, asm)
+ when :defined then defined(jit, ctx, asm)
+ when :definedivar then definedivar(jit, ctx, asm)
+ # checkmatch
+ when :checkkeyword then checkkeyword(jit, ctx, asm)
+ # checktype
+ # defineclass
+ # definemethod
+ # definesmethod
+ when :send then send(jit, ctx, asm)
+ when :opt_send_without_block then opt_send_without_block(jit, ctx, asm)
+ when :objtostring then objtostring(jit, ctx, asm)
+ when :opt_str_freeze then opt_str_freeze(jit, ctx, asm)
+ when :opt_nil_p then opt_nil_p(jit, ctx, asm)
+ # opt_str_uminus
+ when :opt_newarray_send then opt_newarray_send(jit, ctx, asm)
+ when :invokesuper then invokesuper(jit, ctx, asm)
+ when :invokeblock then invokeblock(jit, ctx, asm)
+ when :leave then leave(jit, ctx, asm)
+ when :throw then throw(jit, ctx, asm)
+ when :jump then jump(jit, ctx, asm)
+ when :branchif then branchif(jit, ctx, asm)
+ when :branchunless then branchunless(jit, ctx, asm)
+ when :branchnil then branchnil(jit, ctx, asm)
+ # once
+ when :opt_case_dispatch then opt_case_dispatch(jit, ctx, asm)
+ when :opt_plus then opt_plus(jit, ctx, asm)
+ when :opt_minus then opt_minus(jit, ctx, asm)
+ when :opt_mult then opt_mult(jit, ctx, asm)
+ when :opt_div then opt_div(jit, ctx, asm)
+ when :opt_mod then opt_mod(jit, ctx, asm)
+ when :opt_eq then opt_eq(jit, ctx, asm)
+ when :opt_neq then opt_neq(jit, ctx, asm)
+ when :opt_lt then opt_lt(jit, ctx, asm)
+ when :opt_le then opt_le(jit, ctx, asm)
+ when :opt_gt then opt_gt(jit, ctx, asm)
+ when :opt_ge then opt_ge(jit, ctx, asm)
+ when :opt_ltlt then opt_ltlt(jit, ctx, asm)
+ when :opt_and then opt_and(jit, ctx, asm)
+ when :opt_or then opt_or(jit, ctx, asm)
+ when :opt_aref then opt_aref(jit, ctx, asm)
+ when :opt_aset then opt_aset(jit, ctx, asm)
+ # opt_aset_with
+ # opt_aref_with
+ when :opt_length then opt_length(jit, ctx, asm)
+ when :opt_size then opt_size(jit, ctx, asm)
+ when :opt_empty_p then opt_empty_p(jit, ctx, asm)
+ when :opt_succ then opt_succ(jit, ctx, asm)
+ when :opt_not then opt_not(jit, ctx, asm)
+ when :opt_regexpmatch2 then opt_regexpmatch2(jit, ctx, asm)
+ # invokebuiltin
+ when :opt_invokebuiltin_delegate then opt_invokebuiltin_delegate(jit, ctx, asm)
+ when :opt_invokebuiltin_delegate_leave then opt_invokebuiltin_delegate_leave(jit, ctx, asm)
+ when :getlocal_WC_0 then getlocal_WC_0(jit, ctx, asm)
+ when :getlocal_WC_1 then getlocal_WC_1(jit, ctx, asm)
+ when :setlocal_WC_0 then setlocal_WC_0(jit, ctx, asm)
+ when :setlocal_WC_1 then setlocal_WC_1(jit, ctx, asm)
+ when :putobject_INT2FIX_0_ then putobject_INT2FIX_0_(jit, ctx, asm)
+ when :putobject_INT2FIX_1_ then putobject_INT2FIX_1_(jit, ctx, asm)
+ else CantCompile
+ end
+ end
+
+ private
+
+ #
+ # Insns
+ #
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def nop(jit, ctx, asm)
+ # Do nothing
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def getlocal(jit, ctx, asm)
+ idx = jit.operand(0)
+ level = jit.operand(1)
+ jit_getlocal_generic(jit, ctx, asm, idx:, level:)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def getlocal_WC_0(jit, ctx, asm)
+ idx = jit.operand(0)
+ jit_getlocal_generic(jit, ctx, asm, idx:, level: 0)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def getlocal_WC_1(jit, ctx, asm)
+ idx = jit.operand(0)
+ jit_getlocal_generic(jit, ctx, asm, idx:, level: 1)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def setlocal(jit, ctx, asm)
+ idx = jit.operand(0)
+ level = jit.operand(1)
+ jit_setlocal_generic(jit, ctx, asm, idx:, level:)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def setlocal_WC_0(jit, ctx, asm)
+ idx = jit.operand(0)
+ jit_setlocal_generic(jit, ctx, asm, idx:, level: 0)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def setlocal_WC_1(jit, ctx, asm)
+ idx = jit.operand(0)
+ jit_setlocal_generic(jit, ctx, asm, idx:, level: 1)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def getblockparam(jit, ctx, asm)
+ # EP level
+ level = jit.operand(1)
+
+ # Save the PC and SP because we might allocate
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ # A mirror of the interpreter code. Checking for the case
+ # where it's pushing rb_block_param_proxy.
+ side_exit = side_exit(jit, ctx)
+
+ # Load environment pointer EP from CFP
+ ep_reg = :rax
+ jit_get_ep(asm, level, reg: ep_reg)
+
+ # Bail when VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) is non zero
+ # FIXME: This is testing bits in the same place that the WB check is testing.
+ # We should combine these at some point
+ asm.test([ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS], C::VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM)
+
+ # If the frame flag has been modified, then the actual proc value is
+ # already in the EP and we should just use the value.
+ frame_flag_modified = asm.new_label('frame_flag_modified')
+ asm.jnz(frame_flag_modified)
+
+ # This instruction writes the block handler to the EP. If we need to
+ # fire a write barrier for the write, then exit (we'll let the
+ # interpreter handle it so it can fire the write barrier).
+ # flags & VM_ENV_FLAG_WB_REQUIRED
+ asm.test([ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS], C::VM_ENV_FLAG_WB_REQUIRED)
+
+ # if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
+ asm.jnz(side_exit)
+
+ # Convert the block handler in to a proc
+ # call rb_vm_bh_to_procval(const rb_execution_context_t *ec, VALUE block_handler)
+ asm.mov(C_ARGS[0], EC)
+ # The block handler for the current frame
+ # note, VM_ASSERT(VM_ENV_LOCAL_P(ep))
+ asm.mov(C_ARGS[1], [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL])
+ asm.call(C.rb_vm_bh_to_procval)
+
+ # Load environment pointer EP from CFP (again)
+ ep_reg = :rcx
+ jit_get_ep(asm, level, reg: ep_reg)
+
+ # Write the value at the environment pointer
+ idx = jit.operand(0)
+ offs = -(C.VALUE.size * idx)
+ asm.mov([ep_reg, offs], C_RET);
+
+ # Set the frame modified flag
+ asm.mov(:rax, [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS]) # flag_check
+ asm.or(:rax, C::VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) # modified_flag
+ asm.mov([ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS], :rax)
+
+ asm.write_label(frame_flag_modified)
+
+ # Push the proc on the stack
+ stack_ret = ctx.stack_push(Type::Unknown)
+ ep_reg = :rax
+ jit_get_ep(asm, level, reg: ep_reg)
+ asm.mov(:rax, [ep_reg, offs])
+ asm.mov(stack_ret, :rax)
+
+ KeepCompiling
+ end
+
+ # setblockparam
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def getblockparamproxy(jit, ctx, asm)
+ # To get block_handler
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ starting_context = ctx.dup # make a copy for use with jit_chain_guard
+
+ # A mirror of the interpreter code. Checking for the case
+ # where it's pushing rb_block_param_proxy.
+ side_exit = side_exit(jit, ctx)
+
+ # EP level
+ level = jit.operand(1)
+
+ # Peek at the block handler so we can check whether it's nil
+ comptime_handler = jit.peek_at_block_handler(level)
+
+ # When a block handler is present, it should always be a GC-guarded
+ # pointer (VM_BH_ISEQ_BLOCK_P)
+ if comptime_handler != 0 && comptime_handler & 0x3 != 0x1
+ asm.incr_counter(:getblockpp_not_gc_guarded)
+ return CantCompile
+ end
+
+ # Load environment pointer EP from CFP
+ ep_reg = :rax
+ jit_get_ep(asm, level, reg: ep_reg)
+
+ # Bail when VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) is non zero
+ asm.test([ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS], C::VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM)
+ asm.jnz(counted_exit(side_exit, :getblockpp_block_param_modified))
+
+ # Load the block handler for the current frame
+ # note, VM_ASSERT(VM_ENV_LOCAL_P(ep))
+ block_handler = :rax
+ asm.mov(block_handler, [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL])
+
+ # Specialize compilation for the case where no block handler is present
+ if comptime_handler == 0
+ # Bail if there is a block handler
+ asm.cmp(block_handler, 0)
+
+ jit_chain_guard(:jnz, jit, starting_context, asm, counted_exit(side_exit, :getblockpp_block_handler_none))
+
+ putobject(jit, ctx, asm, val: Qnil)
+ else
+ # Block handler is a tagged pointer. Look at the tag. 0x03 is from VM_BH_ISEQ_BLOCK_P().
+ asm.and(block_handler, 0x3)
+
+ # Bail unless VM_BH_ISEQ_BLOCK_P(bh). This also checks for null.
+ asm.cmp(block_handler, 0x1)
+
+ jit_chain_guard(:jnz, jit, starting_context, asm, counted_exit(side_exit, :getblockpp_not_iseq_block))
+
+ # Push rb_block_param_proxy. It's a root, so no need to use jit_mov_gc_ptr.
+ top = ctx.stack_push(Type::BlockParamProxy)
+ asm.mov(:rax, C.rb_block_param_proxy)
+ asm.mov(top, :rax)
+ end
+
+ jump_to_next_insn(jit, ctx, asm)
+
+ EndBlock
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def getspecial(jit, ctx, asm)
+ # This takes two arguments, key and type
+ # key is only used when type == 0
+ # A non-zero type determines which type of backref to fetch
+ #rb_num_t key = jit.jit_get_arg(0);
+ rtype = jit.operand(1)
+
+ if rtype == 0
+ # not yet implemented
+ return CantCompile;
+ elsif rtype & 0x01 != 0
+ # Fetch a "special" backref based on a char encoded by shifting by 1
+
+ # Can raise if matchdata uninitialized
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ # call rb_backref_get()
+ asm.comment('rb_backref_get')
+ asm.call(C.rb_backref_get)
+
+ asm.mov(C_ARGS[0], C_RET) # backref
+ case [rtype >> 1].pack('c')
+ in ?&
+ asm.comment("rb_reg_last_match")
+ asm.call(C.rb_reg_last_match)
+ in ?`
+ asm.comment("rb_reg_match_pre")
+ asm.call(C.rb_reg_match_pre)
+ in ?'
+ asm.comment("rb_reg_match_post")
+ asm.call(C.rb_reg_match_post)
+ in ?+
+ asm.comment("rb_reg_match_last")
+ asm.call(C.rb_reg_match_last)
+ end
+
+ stack_ret = ctx.stack_push(Type::Unknown)
+ asm.mov(stack_ret, C_RET)
+
+ KeepCompiling
+ else
+ # Fetch the N-th match from the last backref based on type shifted by 1
+
+ # Can raise if matchdata uninitialized
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ # call rb_backref_get()
+ asm.comment('rb_backref_get')
+ asm.call(C.rb_backref_get)
+
+ # rb_reg_nth_match((int)(type >> 1), backref);
+ asm.comment('rb_reg_nth_match')
+ asm.mov(C_ARGS[0], rtype >> 1)
+ asm.mov(C_ARGS[1], C_RET) # backref
+ asm.call(C.rb_reg_nth_match)
+
+ stack_ret = ctx.stack_push(Type::Unknown)
+ asm.mov(stack_ret, C_RET)
+
+ KeepCompiling
+ end
+ end
+
+ # setspecial
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def getinstancevariable(jit, ctx, asm)
+ # Specialize on a compile-time receiver, and split a block for chain guards
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ id = jit.operand(0)
+ comptime_obj = jit.peek_at_self
+
+ jit_getivar(jit, ctx, asm, comptime_obj, id, nil, SelfOpnd)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def setinstancevariable(jit, ctx, asm)
+ starting_context = ctx.dup # make a copy for use with jit_chain_guard
+
+ # Defer compilation so we can specialize on a runtime `self`
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ ivar_name = jit.operand(0)
+ comptime_receiver = jit.peek_at_self
+
+ # If the comptime receiver is frozen, writing an IV will raise an exception
+ # and we don't want to JIT code to deal with that situation.
+ if C.rb_obj_frozen_p(comptime_receiver)
+ asm.incr_counter(:setivar_frozen)
+ return CantCompile
+ end
+
+ # Check if the comptime receiver is a T_OBJECT
+ receiver_t_object = C::BUILTIN_TYPE(comptime_receiver) == C::T_OBJECT
+
+ # If the receiver isn't a T_OBJECT, or uses a custom allocator,
+ # then just write out the IV write as a function call.
+ # too-complex shapes can't use index access, so we use rb_ivar_get for them too.
+ if !receiver_t_object || shape_too_complex?(comptime_receiver) || ctx.chain_depth >= 10
+ asm.comment('call rb_vm_setinstancevariable')
+
+ ic = jit.operand(1)
+
+ # The function could raise exceptions.
+ # Note that this modifies REG_SP, which is why we do it first
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ # Get the operands from the stack
+ val_opnd = ctx.stack_pop(1)
+
+ # Call rb_vm_setinstancevariable(iseq, obj, id, val, ic);
+ asm.mov(:rdi, jit.iseq.to_i)
+ asm.mov(:rsi, [CFP, C.rb_control_frame_t.offsetof(:self)])
+ asm.mov(:rdx, ivar_name)
+ asm.mov(:rcx, val_opnd)
+ asm.mov(:r8, ic)
+ asm.call(C.rb_vm_setinstancevariable)
+ else
+ # Get the iv index
+ shape_id = C.rb_shape_get_shape_id(comptime_receiver)
+ ivar_index = C.rb_shape_get_iv_index(shape_id, ivar_name)
+
+ # Get the receiver
+ asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)])
+
+ # Generate a side exit
+ side_exit = side_exit(jit, ctx)
+
+ # Upgrade type
+ guard_object_is_heap(jit, ctx, asm, :rax, SelfOpnd, :setivar_not_heap)
+
+ asm.comment('guard shape')
+ asm.cmp(DwordPtr[:rax, C.rb_shape_id_offset], shape_id)
+ megamorphic_side_exit = counted_exit(side_exit, :setivar_megamorphic)
+ jit_chain_guard(:jne, jit, starting_context, asm, megamorphic_side_exit)
+
+ # If we don't have an instance variable index, then we need to
+ # transition out of the current shape.
+ if ivar_index.nil?
+ shape = C.rb_shape_get_shape_by_id(shape_id)
+
+ current_capacity = shape.capacity
+ dest_shape = C.rb_shape_get_next(shape, comptime_receiver, ivar_name)
+ new_shape_id = C.rb_shape_id(dest_shape)
+
+ if new_shape_id == C::OBJ_TOO_COMPLEX_SHAPE_ID
+ asm.incr_counter(:setivar_too_complex)
+ return CantCompile
+ end
+
+ ivar_index = shape.next_iv_index
+
+ # If the new shape has a different capacity, we need to
+ # reallocate the object.
+ needs_extension = dest_shape.capacity != shape.capacity
+
+ if needs_extension
+ # Generate the C call so that runtime code will increase
+ # the capacity and set the buffer.
+ asm.mov(C_ARGS[0], :rax)
+ asm.mov(C_ARGS[1], current_capacity)
+ asm.mov(C_ARGS[2], dest_shape.capacity)
+ asm.call(C.rb_ensure_iv_list_size)
+
+ # Load the receiver again after the function call
+ asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)])
+ end
+
+ write_val = ctx.stack_pop(1)
+ jit_write_iv(asm, comptime_receiver, :rax, :rcx, ivar_index, write_val, needs_extension)
+
+ # Store the new shape
+ asm.comment('write shape')
+ asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)]) # reload after jit_write_iv
+ asm.mov(DwordPtr[:rax, C.rb_shape_id_offset], new_shape_id)
+ else
+ # If the iv index already exists, then we don't need to
+ # transition to a new shape. The reason is because we find
+ # the iv index by searching up the shape tree. If we've
+ # made the transition already, then there's no reason to
+ # update the shape on the object. Just set the IV.
+ write_val = ctx.stack_pop(1)
+ jit_write_iv(asm, comptime_receiver, :rax, :rcx, ivar_index, write_val, false)
+ end
+
+ skip_wb = asm.new_label('skip_wb')
+ # If the value we're writing is an immediate, we don't need to WB
+ asm.test(write_val, C::RUBY_IMMEDIATE_MASK)
+ asm.jnz(skip_wb)
+
+ # If the value we're writing is nil or false, we don't need to WB
+ asm.cmp(write_val, Qnil)
+ asm.jbe(skip_wb)
+
+ asm.comment('write barrier')
+ asm.mov(C_ARGS[0], [CFP, C.rb_control_frame_t.offsetof(:self)]) # reload after jit_write_iv
+ asm.mov(C_ARGS[1], write_val)
+ asm.call(C.rb_gc_writebarrier)
+
+ asm.write_label(skip_wb)
+ end
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def getclassvariable(jit, ctx, asm)
+ # rb_vm_getclassvariable can raise exceptions.
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ asm.mov(C_ARGS[0], [CFP, C.rb_control_frame_t.offsetof(:iseq)])
+ asm.mov(C_ARGS[1], CFP)
+ asm.mov(C_ARGS[2], jit.operand(0))
+ asm.mov(C_ARGS[3], jit.operand(1))
+ asm.call(C.rb_vm_getclassvariable)
+
+ top = ctx.stack_push(Type::Unknown)
+ asm.mov(top, C_RET)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def setclassvariable(jit, ctx, asm)
+ # rb_vm_setclassvariable can raise exceptions.
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ asm.mov(C_ARGS[0], [CFP, C.rb_control_frame_t.offsetof(:iseq)])
+ asm.mov(C_ARGS[1], CFP)
+ asm.mov(C_ARGS[2], jit.operand(0))
+ asm.mov(C_ARGS[3], ctx.stack_pop(1))
+ asm.mov(C_ARGS[4], jit.operand(1))
+ asm.call(C.rb_vm_setclassvariable)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_getconstant_path(jit, ctx, asm)
+ # Cut the block for invalidation
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ ic = C.iseq_inline_constant_cache.new(jit.operand(0))
+ idlist = ic.segments
+
+ # Make sure there is an exit for this block as the interpreter might want
+ # to invalidate this block from rb_rjit_constant_ic_update().
+ # For now, we always take an entry exit even if it was a side exit.
+ Invariants.ensure_block_entry_exit(jit, cause: 'opt_getconstant_path')
+
+ # See vm_ic_hit_p(). The same conditions are checked in yjit_constant_ic_update().
+ ice = ic.entry
+ if ice.nil?
+ # In this case, leave a block that unconditionally side exits
+ # for the interpreter to invalidate.
+ asm.incr_counter(:optgetconst_not_cached)
+ return CantCompile
+ end
+
+ if ice.ic_cref # with cref
+ # Cache is keyed on a certain lexical scope. Use the interpreter's cache.
+ side_exit = side_exit(jit, ctx)
+
+ # Call function to verify the cache. It doesn't allocate or call methods.
+ asm.mov(C_ARGS[0], ic.to_i)
+ asm.mov(C_ARGS[1], [CFP, C.rb_control_frame_t.offsetof(:ep)])
+ asm.call(C.rb_vm_ic_hit_p)
+
+ # Check the result. SysV only specifies one byte for _Bool return values,
+ # so it's important we only check one bit to ignore the higher bits in the register.
+ asm.test(C_RET, 1)
+ asm.jz(counted_exit(side_exit, :optgetconst_cache_miss))
+
+ asm.mov(:rax, ic.to_i) # inline_cache
+ asm.mov(:rax, [:rax, C.iseq_inline_constant_cache.offsetof(:entry)]) # ic_entry
+ asm.mov(:rax, [:rax, C.iseq_inline_constant_cache_entry.offsetof(:value)]) # ic_entry_val
+
+ # Push ic->entry->value
+ stack_top = ctx.stack_push(Type::Unknown)
+ asm.mov(stack_top, :rax)
+ else # without cref
+ # TODO: implement this
+ # Optimize for single ractor mode.
+ # if !assume_single_ractor_mode(jit, ocb)
+ # return CantCompile
+ # end
+
+ # Invalidate output code on any constant writes associated with
+ # constants referenced within the current block.
+ Invariants.assume_stable_constant_names(jit, idlist)
+
+ putobject(jit, ctx, asm, val: ice.value)
+ end
+
+ jump_to_next_insn(jit, ctx, asm)
+ EndBlock
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def getconstant(jit, ctx, asm)
+ id = jit.operand(0)
+
+ # vm_get_ev_const can raise exceptions.
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ allow_nil_opnd = ctx.stack_pop(1)
+ klass_opnd = ctx.stack_pop(1)
+
+ asm.mov(C_ARGS[0], EC)
+ asm.mov(C_ARGS[1], klass_opnd)
+ asm.mov(C_ARGS[2], id)
+ asm.mov(C_ARGS[3], allow_nil_opnd)
+ asm.call(C.rb_vm_get_ev_const)
+
+ top = ctx.stack_push(Type::Unknown)
+ asm.mov(top, C_RET)
+
+ KeepCompiling
+ end
+
+ # setconstant
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def getglobal(jit, ctx, asm)
+ gid = jit.operand(0)
+
+ # Save the PC and SP because we might make a Ruby call for warning
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ asm.mov(C_ARGS[0], gid)
+ asm.call(C.rb_gvar_get)
+
+ top = ctx.stack_push(Type::Unknown)
+ asm.mov(top, C_RET)
+
+ KeepCompiling
+ end
+
+ # setglobal
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def putnil(jit, ctx, asm)
+ putobject(jit, ctx, asm, val: Qnil)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def putself(jit, ctx, asm)
+ stack_top = ctx.stack_push_self
+ asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)])
+ asm.mov(stack_top, :rax)
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def putobject(jit, ctx, asm, val: jit.operand(0))
+ # Push it to the stack
+ val_type = Type.from(C.to_ruby(val))
+ stack_top = ctx.stack_push(val_type)
+ if asm.imm32?(val)
+ asm.mov(stack_top, val)
+ else # 64-bit immediates can't be directly written to memory
+ asm.mov(:rax, val)
+ asm.mov(stack_top, :rax)
+ end
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def putspecialobject(jit, ctx, asm)
+ object_type = jit.operand(0)
+ if object_type == C::VM_SPECIAL_OBJECT_VMCORE
+ stack_top = ctx.stack_push(Type::UnknownHeap)
+ asm.mov(:rax, C.rb_mRubyVMFrozenCore)
+ asm.mov(stack_top, :rax)
+ KeepCompiling
+ else
+ # TODO: implement for VM_SPECIAL_OBJECT_CBASE and
+ # VM_SPECIAL_OBJECT_CONST_BASE
+ CantCompile
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def putstring(jit, ctx, asm)
+ put_val = jit.operand(0, ruby: true)
+
+ # Save the PC and SP because the callee will allocate
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ asm.mov(C_ARGS[0], EC)
+ asm.mov(C_ARGS[1], to_value(put_val))
+ asm.mov(C_ARGS[2], 0)
+ asm.call(C.rb_ec_str_resurrect)
+
+ stack_top = ctx.stack_push(Type::TString)
+ asm.mov(stack_top, C_RET)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def putchilledstring(jit, ctx, asm)
+ put_val = jit.operand(0, ruby: true)
+
+ # Save the PC and SP because the callee will allocate
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ asm.mov(C_ARGS[0], EC)
+ asm.mov(C_ARGS[1], to_value(put_val))
+ asm.mov(C_ARGS[2], 1)
+ asm.call(C.rb_ec_str_resurrect)
+
+ stack_top = ctx.stack_push(Type::TString)
+ asm.mov(stack_top, C_RET)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def concatstrings(jit, ctx, asm)
+ n = jit.operand(0)
+
+ # Save the PC and SP because we are allocating
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ asm.lea(:rax, ctx.sp_opnd(-C.VALUE.size * n))
+
+ # call rb_str_concat_literals(size_t n, const VALUE *strings);
+ asm.mov(C_ARGS[0], n)
+ asm.mov(C_ARGS[1], :rax)
+ asm.call(C.rb_str_concat_literals)
+
+ ctx.stack_pop(n)
+ stack_ret = ctx.stack_push(Type::TString)
+ asm.mov(stack_ret, C_RET)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def anytostring(jit, ctx, asm)
+ # Save the PC and SP since we might call #to_s
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ str = ctx.stack_pop(1)
+ val = ctx.stack_pop(1)
+
+ asm.mov(C_ARGS[0], str)
+ asm.mov(C_ARGS[1], val)
+ asm.call(C.rb_obj_as_string_result)
+
+ # Push the return value
+ stack_ret = ctx.stack_push(Type::TString)
+ asm.mov(stack_ret, C_RET)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def toregexp(jit, ctx, asm)
+ opt = jit.operand(0, signed: true)
+ cnt = jit.operand(1)
+
+ # Save the PC and SP because this allocates an object and could
+ # raise an exception.
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ asm.lea(:rax, ctx.sp_opnd(-C.VALUE.size * cnt)) # values_ptr
+ ctx.stack_pop(cnt)
+
+ asm.mov(C_ARGS[0], 0)
+ asm.mov(C_ARGS[1], cnt)
+ asm.mov(C_ARGS[2], :rax) # values_ptr
+ asm.call(C.rb_ary_tmp_new_from_values)
+
+ # Save the array so we can clear it later
+ asm.push(C_RET)
+ asm.push(C_RET) # Alignment
+
+ asm.mov(C_ARGS[0], C_RET)
+ asm.mov(C_ARGS[1], opt)
+ asm.call(C.rb_reg_new_ary)
+
+ # The actual regex is in RAX now. Pop the temp array from
+ # rb_ary_tmp_new_from_values into C arg regs so we can clear it
+ asm.pop(:rcx) # Alignment
+ asm.pop(:rcx) # ary
+
+ # The value we want to push on the stack is in RAX right now
+ stack_ret = ctx.stack_push(Type::UnknownHeap)
+ asm.mov(stack_ret, C_RET)
+
+ # Clear the temp array.
+ asm.mov(C_ARGS[0], :rcx) # ary
+ asm.call(C.rb_ary_clear)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def intern(jit, ctx, asm)
+ # Save the PC and SP because we might allocate
+ jit_prepare_routine_call(jit, ctx, asm);
+
+ str = ctx.stack_pop(1)
+ asm.mov(C_ARGS[0], str)
+ asm.call(C.rb_str_intern)
+
+ # Push the return value
+ stack_ret = ctx.stack_push(Type::Unknown)
+ asm.mov(stack_ret, C_RET)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def newarray(jit, ctx, asm)
+ n = jit.operand(0)
+
+ # Save the PC and SP because we are allocating
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ # If n is 0, then elts is never going to be read, so we can just pass null
+ if n == 0
+ values_ptr = 0
+ else
+ asm.comment('load pointer to array elts')
+ offset_magnitude = C.VALUE.size * n
+ values_opnd = ctx.sp_opnd(-(offset_magnitude))
+ asm.lea(:rax, values_opnd)
+ values_ptr = :rax
+ end
+
+ # call rb_ec_ary_new_from_values(struct rb_execution_context_struct *ec, long n, const VALUE *elts);
+ asm.mov(C_ARGS[0], EC)
+ asm.mov(C_ARGS[1], n)
+ asm.mov(C_ARGS[2], values_ptr)
+ asm.call(C.rb_ec_ary_new_from_values)
+
+ ctx.stack_pop(n)
+ stack_ret = ctx.stack_push(Type::TArray)
+ asm.mov(stack_ret, C_RET)
+
+ KeepCompiling
+ end
+
+ # newarraykwsplat
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def duparray(jit, ctx, asm)
+ ary = jit.operand(0)
+
+ # Save the PC and SP because we are allocating
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ # call rb_ary_resurrect(VALUE ary);
+ asm.comment('call rb_ary_resurrect')
+ asm.mov(C_ARGS[0], ary)
+ asm.call(C.rb_ary_resurrect)
+
+ stack_ret = ctx.stack_push(Type::TArray)
+ asm.mov(stack_ret, C_RET)
+
+ KeepCompiling
+ end
+
+ # duphash
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def expandarray(jit, ctx, asm)
+ # Both arguments are rb_num_t which is unsigned
+ num = jit.operand(0)
+ flag = jit.operand(1)
+
+ # If this instruction has the splat flag, then bail out.
+ if flag & 0x01 != 0
+ asm.incr_counter(:expandarray_splat)
+ return CantCompile
+ end
+
+ # If this instruction has the postarg flag, then bail out.
+ if flag & 0x02 != 0
+ asm.incr_counter(:expandarray_postarg)
+ return CantCompile
+ end
+
+ side_exit = side_exit(jit, ctx)
+
+ array_opnd = ctx.stack_opnd(0)
+ array_stack_opnd = StackOpnd[0]
+
+ # num is the number of requested values. If there aren't enough in the
+ # array then we're going to push on nils.
+ if ctx.get_opnd_type(array_stack_opnd) == Type::Nil
+ ctx.stack_pop(1) # pop after using the type info
+ # special case for a, b = nil pattern
+ # push N nils onto the stack
+ num.times do
+ push_opnd = ctx.stack_push(Type::Nil)
+ asm.mov(push_opnd, Qnil)
+ end
+ return KeepCompiling
+ end
+
+ # Move the array from the stack and check that it's an array.
+ asm.mov(:rax, array_opnd)
+ guard_object_is_array(jit, ctx, asm, :rax, :rcx, array_stack_opnd, :expandarray_not_array)
+ ctx.stack_pop(1) # pop after using the type info
+
+ # If we don't actually want any values, then just return.
+ if num == 0
+ return KeepCompiling
+ end
+
+ jit_array_len(asm, :rax, :rcx)
+
+ # Only handle the case where the number of values in the array is greater
+ # than or equal to the number of values requested.
+ asm.cmp(:rcx, num)
+ asm.jl(counted_exit(side_exit, :expandarray_rhs_too_small))
+
+ # Conditionally load the address of the heap array into REG1.
+ # (struct RArray *)(obj)->as.heap.ptr
+ #asm.mov(:rax, array_opnd)
+ asm.mov(:rcx, [:rax, C.RBasic.offsetof(:flags)])
+ asm.test(:rcx, C::RARRAY_EMBED_FLAG);
+ asm.mov(:rcx, [:rax, C.RArray.offsetof(:as, :heap, :ptr)])
+
+ # Load the address of the embedded array into REG1.
+ # (struct RArray *)(obj)->as.ary
+ asm.lea(:rax, [:rax, C.RArray.offsetof(:as, :ary)])
+
+ asm.cmovnz(:rcx, :rax)
+
+ # Loop backward through the array and push each element onto the stack.
+ (num - 1).downto(0).each do |i|
+ top = ctx.stack_push(Type::Unknown)
+ asm.mov(:rax, [:rcx, i * C.VALUE.size])
+ asm.mov(top, :rax)
+ end
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def concatarray(jit, ctx, asm)
+ # Save the PC and SP because the callee may allocate
+ # Note that this modifies REG_SP, which is why we do it first
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ # Get the operands from the stack
+ ary2st_opnd = ctx.stack_pop(1)
+ ary1_opnd = ctx.stack_pop(1)
+
+ # Call rb_vm_concat_array(ary1, ary2st)
+ asm.mov(C_ARGS[0], ary1_opnd)
+ asm.mov(C_ARGS[1], ary2st_opnd)
+ asm.call(C.rb_vm_concat_array)
+
+ stack_ret = ctx.stack_push(Type::TArray)
+ asm.mov(stack_ret, C_RET)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def splatarray(jit, ctx, asm)
+ flag = jit.operand(0)
+
+ # Save the PC and SP because the callee may allocate
+ # Note that this modifies REG_SP, which is why we do it first
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ # Get the operands from the stack
+ ary_opnd = ctx.stack_pop(1)
+
+ # Call rb_vm_splat_array(flag, ary)
+ asm.mov(C_ARGS[0], flag)
+ asm.mov(C_ARGS[1], ary_opnd)
+ asm.call(C.rb_vm_splat_array)
+
+ stack_ret = ctx.stack_push(Type::TArray)
+ asm.mov(stack_ret, C_RET)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def newhash(jit, ctx, asm)
+ num = jit.operand(0)
+
+ # Save the PC and SP because we are allocating
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ if num != 0
+ # val = rb_hash_new_with_size(num / 2);
+ asm.mov(C_ARGS[0], num / 2)
+ asm.call(C.rb_hash_new_with_size)
+
+ # Save the allocated hash as we want to push it after insertion
+ asm.push(C_RET)
+ asm.push(C_RET) # x86 alignment
+
+ # Get a pointer to the values to insert into the hash
+ asm.lea(:rcx, ctx.stack_opnd(num - 1))
+
+ # rb_hash_bulk_insert(num, STACK_ADDR_FROM_TOP(num), val);
+ asm.mov(C_ARGS[0], num)
+ asm.mov(C_ARGS[1], :rcx)
+ asm.mov(C_ARGS[2], C_RET)
+ asm.call(C.rb_hash_bulk_insert)
+
+ asm.pop(:rax)
+ asm.pop(:rax)
+
+ ctx.stack_pop(num)
+ stack_ret = ctx.stack_push(Type::Hash)
+ asm.mov(stack_ret, :rax)
+ else
+ # val = rb_hash_new();
+ asm.call(C.rb_hash_new)
+ stack_ret = ctx.stack_push(Type::Hash)
+ asm.mov(stack_ret, C_RET)
+ end
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def newrange(jit, ctx, asm)
+ flag = jit.operand(0)
+
+ # rb_range_new() allocates and can raise
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ # val = rb_range_new(low, high, (int)flag);
+ asm.mov(C_ARGS[0], ctx.stack_opnd(1))
+ asm.mov(C_ARGS[1], ctx.stack_opnd(0))
+ asm.mov(C_ARGS[2], flag)
+ asm.call(C.rb_range_new)
+
+ ctx.stack_pop(2)
+ stack_ret = ctx.stack_push(Type::UnknownHeap)
+ asm.mov(stack_ret, C_RET)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def pop(jit, ctx, asm)
+ ctx.stack_pop
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def dup(jit, ctx, asm)
+ dup_val = ctx.stack_opnd(0)
+ mapping, tmp_type = ctx.get_opnd_mapping(StackOpnd[0])
+
+ loc0 = ctx.stack_push_mapping([mapping, tmp_type])
+ asm.mov(:rax, dup_val)
+ asm.mov(loc0, :rax)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def dupn(jit, ctx, asm)
+ n = jit.operand(0)
+
+ # In practice, seems to be only used for n==2
+ if n != 2
+ return CantCompile
+ end
+
+ opnd1 = ctx.stack_opnd(1)
+ opnd0 = ctx.stack_opnd(0)
+
+ mapping1 = ctx.get_opnd_mapping(StackOpnd[1])
+ mapping0 = ctx.get_opnd_mapping(StackOpnd[0])
+
+ dst1 = ctx.stack_push_mapping(mapping1)
+ asm.mov(:rax, opnd1)
+ asm.mov(dst1, :rax)
+
+ dst0 = ctx.stack_push_mapping(mapping0)
+ asm.mov(:rax, opnd0)
+ asm.mov(dst0, :rax)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def swap(jit, ctx, asm)
+ stack_swap(jit, ctx, asm, 0, 1)
+ KeepCompiling
+ end
+
+ # opt_reverse
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def topn(jit, ctx, asm)
+ n = jit.operand(0)
+
+ top_n_val = ctx.stack_opnd(n)
+ mapping = ctx.get_opnd_mapping(StackOpnd[n])
+ loc0 = ctx.stack_push_mapping(mapping)
+ asm.mov(:rax, top_n_val)
+ asm.mov(loc0, :rax)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def setn(jit, ctx, asm)
+ n = jit.operand(0)
+
+ top_val = ctx.stack_pop(0)
+ dst_opnd = ctx.stack_opnd(n)
+ asm.mov(:rax, top_val)
+ asm.mov(dst_opnd, :rax)
+
+ mapping = ctx.get_opnd_mapping(StackOpnd[0])
+ ctx.set_opnd_mapping(StackOpnd[n], mapping)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def adjuststack(jit, ctx, asm)
+ n = jit.operand(0)
+ ctx.stack_pop(n)
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def defined(jit, ctx, asm)
+ op_type = jit.operand(0)
+ obj = jit.operand(1, ruby: true)
+ pushval = jit.operand(2, ruby: true)
+
+ # Save the PC and SP because the callee may allocate
+ # Note that this modifies REG_SP, which is why we do it first
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ # Get the operands from the stack
+ v_opnd = ctx.stack_pop(1)
+
+ # Call vm_defined(ec, reg_cfp, op_type, obj, v)
+ asm.mov(C_ARGS[0], EC)
+ asm.mov(C_ARGS[1], CFP)
+ asm.mov(C_ARGS[2], op_type)
+ asm.mov(C_ARGS[3], to_value(obj))
+ asm.mov(C_ARGS[4], v_opnd)
+ asm.call(C.rb_vm_defined)
+
+ asm.test(C_RET, 255)
+ asm.mov(:rax, Qnil)
+ asm.mov(:rcx, to_value(pushval))
+ asm.cmovnz(:rax, :rcx)
+
+ # Push the return value onto the stack
+ out_type = if C::SPECIAL_CONST_P(pushval)
+ Type::UnknownImm
+ else
+ Type::Unknown
+ end
+ stack_ret = ctx.stack_push(out_type)
+ asm.mov(stack_ret, :rax)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def definedivar(jit, ctx, asm)
+ # Defer compilation so we can specialize base on a runtime receiver
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ ivar_name = jit.operand(0)
+ # Value that will be pushed on the stack if the ivar is defined. In practice this is always the
+ # string "instance-variable". If the ivar is not defined, nil will be pushed instead.
+ pushval = jit.operand(2, ruby: true)
+
+ # Get the receiver
+ recv = :rcx
+ asm.mov(recv, [CFP, C.rb_control_frame_t.offsetof(:self)])
+
+ # Specialize base on compile time values
+ comptime_receiver = jit.peek_at_self
+
+ if shape_too_complex?(comptime_receiver)
+ # Fall back to calling rb_ivar_defined
+
+ # Save the PC and SP because the callee may allocate
+ # Note that this modifies REG_SP, which is why we do it first
+ jit_prepare_routine_call(jit, ctx, asm) # clobbers :rax
+
+ # Call rb_ivar_defined(recv, ivar_name)
+ asm.mov(C_ARGS[0], recv)
+ asm.mov(C_ARGS[1], ivar_name)
+ asm.call(C.rb_ivar_defined)
+
+ # if (rb_ivar_defined(recv, ivar_name)) {
+ # val = pushval;
+ # }
+ asm.test(C_RET, 255)
+ asm.mov(:rax, Qnil)
+ asm.mov(:rcx, to_value(pushval))
+ asm.cmovnz(:rax, :rcx)
+
+ # Push the return value onto the stack
+ out_type = C::SPECIAL_CONST_P(pushval) ? Type::UnknownImm : Type::Unknown
+ stack_ret = ctx.stack_push(out_type)
+ asm.mov(stack_ret, :rax)
+
+ return KeepCompiling
+ end
+
+ shape_id = C.rb_shape_get_shape_id(comptime_receiver)
+ ivar_exists = C.rb_shape_get_iv_index(shape_id, ivar_name)
+
+ side_exit = side_exit(jit, ctx)
+
+ # Guard heap object (recv_opnd must be used before stack_pop)
+ guard_object_is_heap(jit, ctx, asm, recv, SelfOpnd)
+
+ shape_opnd = DwordPtr[recv, C.rb_shape_id_offset]
+
+ asm.comment('guard shape')
+ asm.cmp(shape_opnd, shape_id)
+ jit_chain_guard(:jne, jit, ctx, asm, side_exit)
+
+ result = ivar_exists ? C.to_value(pushval) : Qnil
+ putobject(jit, ctx, asm, val: result)
+
+ # Jump to next instruction. This allows guard chains to share the same successor.
+ jump_to_next_insn(jit, ctx, asm)
+
+ return EndBlock
+ end
+
+ # checkmatch
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def checkkeyword(jit, ctx, asm)
+ # When a keyword is unspecified past index 32, a hash will be used
+ # instead. This can only happen in iseqs taking more than 32 keywords.
+ if jit.iseq.body.param.keyword.num >= 32
+ return CantCompile
+ end
+
+ # The EP offset to the undefined bits local
+ bits_offset = jit.operand(0)
+
+ # The index of the keyword we want to check
+ index = jit.operand(1, signed: true)
+
+ # Load environment pointer EP
+ ep_reg = :rax
+ jit_get_ep(asm, 0, reg: ep_reg)
+
+ # VALUE kw_bits = *(ep - bits)
+ bits_opnd = [ep_reg, C.VALUE.size * -bits_offset]
+
+ # unsigned int b = (unsigned int)FIX2ULONG(kw_bits);
+ # if ((b & (0x01 << idx))) {
+ #
+ # We can skip the FIX2ULONG conversion by shifting the bit we test
+ bit_test = 0x01 << (index + 1)
+ asm.test(bits_opnd, bit_test)
+ asm.mov(:rax, Qfalse)
+ asm.mov(:rcx, Qtrue)
+ asm.cmovz(:rax, :rcx)
+
+ stack_ret = ctx.stack_push(Type::UnknownImm)
+ asm.mov(stack_ret, :rax)
+
+ KeepCompiling
+ end
+
+ # checktype
+ # defineclass
+ # definemethod
+ # definesmethod
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def send(jit, ctx, asm)
+ # Specialize on a compile-time receiver, and split a block for chain guards
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ cd = C.rb_call_data.new(jit.operand(0))
+ blockiseq = jit.operand(1)
+
+ # calling->ci
+ mid = C.vm_ci_mid(cd.ci)
+ calling = build_calling(ci: cd.ci, block_handler: blockiseq)
+
+ # vm_sendish
+ cme, comptime_recv_klass = jit_search_method(jit, ctx, asm, mid, calling)
+ if cme == CantCompile
+ return CantCompile
+ end
+ jit_call_general(jit, ctx, asm, mid, calling, cme, comptime_recv_klass)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_send_without_block(jit, ctx, asm, cd: C.rb_call_data.new(jit.operand(0)))
+ # Specialize on a compile-time receiver, and split a block for chain guards
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ # calling->ci
+ mid = C.vm_ci_mid(cd.ci)
+ calling = build_calling(ci: cd.ci, block_handler: C::VM_BLOCK_HANDLER_NONE)
+
+ # vm_sendish
+ cme, comptime_recv_klass = jit_search_method(jit, ctx, asm, mid, calling)
+ if cme == CantCompile
+ return CantCompile
+ end
+ jit_call_general(jit, ctx, asm, mid, calling, cme, comptime_recv_klass)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def objtostring(jit, ctx, asm)
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ recv = ctx.stack_opnd(0)
+ comptime_recv = jit.peek_at_stack(0)
+
+ if C.RB_TYPE_P(comptime_recv, C::RUBY_T_STRING)
+ side_exit = side_exit(jit, ctx)
+
+ jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_recv), recv, StackOpnd[0], comptime_recv, side_exit)
+ # No work needed. The string value is already on the top of the stack.
+ KeepCompiling
+ else
+ cd = C.rb_call_data.new(jit.operand(0))
+ opt_send_without_block(jit, ctx, asm, cd:)
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_str_freeze(jit, ctx, asm)
+ unless Invariants.assume_bop_not_redefined(jit, C::STRING_REDEFINED_OP_FLAG, C::BOP_FREEZE)
+ return CantCompile;
+ end
+
+ str = jit.operand(0, ruby: true)
+
+ # Push the return value onto the stack
+ stack_ret = ctx.stack_push(Type::CString)
+ asm.mov(:rax, to_value(str))
+ asm.mov(stack_ret, :rax)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_nil_p(jit, ctx, asm)
+ opt_send_without_block(jit, ctx, asm)
+ end
+
+ # opt_str_uminus
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_newarray_send(jit, ctx, asm)
+ type = C.ID2SYM jit.operand(1)
+
+ case type
+ when :min then opt_newarray_min(jit, ctx, asm)
+ when :max then opt_newarray_max(jit, ctx, asm)
+ when :hash then opt_newarray_hash(jit, ctx, asm)
+ else
+ return CantCompile
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_newarray_min(jit, ctx, asm)
+ num = jit.operand(0)
+
+ # Save the PC and SP because we may allocate
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ offset_magnitude = C.VALUE.size * num
+ values_opnd = ctx.sp_opnd(-offset_magnitude)
+ asm.lea(:rax, values_opnd)
+
+ asm.mov(C_ARGS[0], EC)
+ asm.mov(C_ARGS[1], num)
+ asm.mov(C_ARGS[2], :rax)
+ asm.call(C.rb_vm_opt_newarray_min)
+
+ ctx.stack_pop(num)
+ stack_ret = ctx.stack_push(Type::Unknown)
+ asm.mov(stack_ret, C_RET)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_newarray_max(jit, ctx, asm)
+ num = jit.operand(0)
+
+ # Save the PC and SP because we may allocate
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ offset_magnitude = C.VALUE.size * num
+ values_opnd = ctx.sp_opnd(-offset_magnitude)
+ asm.lea(:rax, values_opnd)
+
+ asm.mov(C_ARGS[0], EC)
+ asm.mov(C_ARGS[1], num)
+ asm.mov(C_ARGS[2], :rax)
+ asm.call(C.rb_vm_opt_newarray_max)
+
+ ctx.stack_pop(num)
+ stack_ret = ctx.stack_push(Type::Unknown)
+ asm.mov(stack_ret, C_RET)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_newarray_hash(jit, ctx, asm)
+ num = jit.operand(0)
+
+ # Save the PC and SP because we may allocate
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ offset_magnitude = C.VALUE.size * num
+ values_opnd = ctx.sp_opnd(-offset_magnitude)
+ asm.lea(:rax, values_opnd)
+
+ asm.mov(C_ARGS[0], EC)
+ asm.mov(C_ARGS[1], num)
+ asm.mov(C_ARGS[2], :rax)
+ asm.call(C.rb_vm_opt_newarray_hash)
+
+ ctx.stack_pop(num)
+ stack_ret = ctx.stack_push(Type::Unknown)
+ asm.mov(stack_ret, C_RET)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def invokesuper(jit, ctx, asm)
+ cd = C.rb_call_data.new(jit.operand(0))
+ block = jit.operand(1)
+
+ # Defer compilation so we can specialize on class of receiver
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ me = C.rb_vm_frame_method_entry(jit.cfp)
+ if me.nil?
+ return CantCompile
+ end
+
+ # FIXME: We should track and invalidate this block when this cme is invalidated
+ current_defined_class = me.defined_class
+ mid = me.def.original_id
+
+ if me.to_i != C.rb_callable_method_entry(current_defined_class, me.called_id).to_i
+ # Though we likely could generate this call, as we are only concerned
+ # with the method entry remaining valid, assume_method_lookup_stable
+ # below requires that the method lookup matches as well
+ return CantCompile
+ end
+
+ # vm_search_normal_superclass
+ rbasic_klass = C.to_ruby(C.RBasic.new(C.to_value(current_defined_class)).klass)
+ if C::BUILTIN_TYPE(current_defined_class) == C::RUBY_T_ICLASS && C::BUILTIN_TYPE(rbasic_klass) == C::RUBY_T_MODULE && \
+ C::FL_TEST_RAW(rbasic_klass, C::RMODULE_IS_REFINEMENT)
+ return CantCompile
+ end
+ comptime_superclass = C.rb_class_get_superclass(C.RCLASS_ORIGIN(current_defined_class))
+
+ ci = cd.ci
+ argc = C.vm_ci_argc(ci)
+
+ ci_flags = C.vm_ci_flag(ci)
+
+ # Don't JIT calls that aren't simple
+ # Note, not using VM_CALL_ARGS_SIMPLE because sometimes we pass a block.
+
+ if ci_flags & C::VM_CALL_KWARG != 0
+ asm.incr_counter(:send_keywords)
+ return CantCompile
+ end
+ if ci_flags & C::VM_CALL_KW_SPLAT != 0
+ asm.incr_counter(:send_kw_splat)
+ return CantCompile
+ end
+ if ci_flags & C::VM_CALL_ARGS_BLOCKARG != 0
+ asm.incr_counter(:send_block_arg)
+ return CantCompile
+ end
+
+ # Ensure we haven't rebound this method onto an incompatible class.
+ # In the interpreter we try to avoid making this check by performing some
+ # cheaper calculations first, but since we specialize on the method entry
+ # and so only have to do this once at compile time this is fine to always
+ # check and side exit.
+ comptime_recv = jit.peek_at_stack(argc)
+ unless C.obj_is_kind_of(comptime_recv, current_defined_class)
+ return CantCompile
+ end
+
+ # Do method lookup
+ cme = C.rb_callable_method_entry(comptime_superclass, mid)
+
+ if cme.nil?
+ return CantCompile
+ end
+
+ # Check that we'll be able to write this method dispatch before generating checks
+ cme_def_type = cme.def.type
+ if cme_def_type != C::VM_METHOD_TYPE_ISEQ && cme_def_type != C::VM_METHOD_TYPE_CFUNC
+ # others unimplemented
+ return CantCompile
+ end
+
+ asm.comment('guard known me')
+ lep_opnd = :rax
+ jit_get_lep(jit, asm, reg: lep_opnd)
+ ep_me_opnd = [lep_opnd, C.VALUE.size * C::VM_ENV_DATA_INDEX_ME_CREF]
+
+ asm.mov(:rcx, me.to_i)
+ asm.cmp(ep_me_opnd, :rcx)
+ asm.jne(counted_exit(side_exit(jit, ctx), :invokesuper_me_changed))
+
+ if block == C::VM_BLOCK_HANDLER_NONE
+ # Guard no block passed
+ # rb_vm_frame_block_handler(GET_EC()->cfp) == VM_BLOCK_HANDLER_NONE
+ # note, we assume VM_ASSERT(VM_ENV_LOCAL_P(ep))
+ #
+ # TODO: this could properly forward the current block handler, but
+ # would require changes to gen_send_*
+ asm.comment('guard no block given')
+ ep_specval_opnd = [lep_opnd, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]
+ asm.cmp(ep_specval_opnd, C::VM_BLOCK_HANDLER_NONE)
+ asm.jne(counted_exit(side_exit(jit, ctx), :invokesuper_block))
+ end
+
+ # We need to assume that both our current method entry and the super
+ # method entry we invoke remain stable
+ Invariants.assume_method_lookup_stable(jit, me)
+ Invariants.assume_method_lookup_stable(jit, cme)
+
+ # Method calls may corrupt types
+ ctx.clear_local_types
+
+ calling = build_calling(ci:, block_handler: block)
+ case cme_def_type
+ in C::VM_METHOD_TYPE_ISEQ
+ iseq = def_iseq_ptr(cme.def)
+ frame_type = C::VM_FRAME_MAGIC_METHOD | C::VM_ENV_FLAG_LOCAL
+ jit_call_iseq(jit, ctx, asm, cme, calling, iseq, frame_type:)
+ in C::VM_METHOD_TYPE_CFUNC
+ jit_call_cfunc(jit, ctx, asm, cme, calling)
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def invokeblock(jit, ctx, asm)
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ # Get call info
+ cd = C.rb_call_data.new(jit.operand(0))
+ calling = build_calling(ci: cd.ci, block_handler: :captured)
+
+ # Get block_handler
+ cfp = jit.cfp
+ lep = C.rb_vm_ep_local_ep(cfp.ep)
+ comptime_handler = lep[C::VM_ENV_DATA_INDEX_SPECVAL]
+
+ # Handle each block_handler type
+ if comptime_handler == C::VM_BLOCK_HANDLER_NONE # no block given
+ asm.incr_counter(:invokeblock_none)
+ CantCompile
+ elsif comptime_handler & 0x3 == 0x1 # VM_BH_ISEQ_BLOCK_P
+ asm.comment('get local EP')
+ ep_reg = :rax
+ jit_get_lep(jit, asm, reg: ep_reg)
+ asm.mov(:rax, [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # block_handler_opnd
+
+ asm.comment('guard block_handler type')
+ side_exit = side_exit(jit, ctx)
+ asm.mov(:rcx, :rax)
+ asm.and(:rcx, 0x3) # block_handler is a tagged pointer
+ asm.cmp(:rcx, 0x1) # VM_BH_ISEQ_BLOCK_P
+ tag_changed_exit = counted_exit(side_exit, :invokeblock_tag_changed)
+ jit_chain_guard(:jne, jit, ctx, asm, tag_changed_exit)
+
+ comptime_captured = C.rb_captured_block.new(comptime_handler & ~0x3)
+ comptime_iseq = comptime_captured.code.iseq
+
+ asm.comment('guard known ISEQ')
+ asm.and(:rax, ~0x3) # captured
+ asm.mov(:rax, [:rax, C.VALUE.size * 2]) # captured->iseq
+ asm.mov(:rcx, comptime_iseq.to_i)
+ asm.cmp(:rax, :rcx)
+ block_changed_exit = counted_exit(side_exit, :invokeblock_iseq_block_changed)
+ jit_chain_guard(:jne, jit, ctx, asm, block_changed_exit)
+
+ jit_call_iseq(jit, ctx, asm, nil, calling, comptime_iseq, frame_type: C::VM_FRAME_MAGIC_BLOCK)
+ elsif comptime_handler & 0x3 == 0x3 # VM_BH_IFUNC_P
+ # We aren't handling CALLER_SETUP_ARG and CALLER_REMOVE_EMPTY_KW_SPLAT yet.
+ if calling.flags & C::VM_CALL_ARGS_SPLAT != 0
+ asm.incr_counter(:invokeblock_ifunc_args_splat)
+ return CantCompile
+ end
+ if calling.flags & C::VM_CALL_KW_SPLAT != 0
+ asm.incr_counter(:invokeblock_ifunc_kw_splat)
+ return CantCompile
+ end
+
+ asm.comment('get local EP')
+ jit_get_lep(jit, asm, reg: :rax)
+ asm.mov(:rcx, [:rax, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # block_handler_opnd
+
+ asm.comment('guard block_handler type');
+ side_exit = side_exit(jit, ctx)
+ asm.mov(:rax, :rcx) # block_handler_opnd
+ asm.and(:rax, 0x3) # tag_opnd: block_handler is a tagged pointer
+ asm.cmp(:rax, 0x3) # VM_BH_IFUNC_P
+ tag_changed_exit = counted_exit(side_exit, :invokeblock_tag_changed)
+ jit_chain_guard(:jne, jit, ctx, asm, tag_changed_exit)
+
+ # The cfunc may not be leaf
+ jit_prepare_routine_call(jit, ctx, asm) # clobbers :rax
+
+ asm.comment('call ifunc')
+ asm.and(:rcx, ~0x3) # captured_opnd
+ asm.lea(:rax, ctx.sp_opnd(-calling.argc * C.VALUE.size)) # argv
+ asm.mov(C_ARGS[0], EC)
+ asm.mov(C_ARGS[1], :rcx) # captured_opnd
+ asm.mov(C_ARGS[2], calling.argc)
+ asm.mov(C_ARGS[3], :rax) # argv
+ asm.call(C.rb_vm_yield_with_cfunc)
+
+ ctx.stack_pop(calling.argc)
+ stack_ret = ctx.stack_push(Type::Unknown)
+ asm.mov(stack_ret, C_RET)
+
+ # cfunc calls may corrupt types
+ ctx.clear_local_types
+
+ # Share the successor with other chains
+ jump_to_next_insn(jit, ctx, asm)
+ EndBlock
+ elsif symbol?(comptime_handler)
+ asm.incr_counter(:invokeblock_symbol)
+ CantCompile
+ else # Proc
+ asm.incr_counter(:invokeblock_proc)
+ CantCompile
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def leave(jit, ctx, asm)
+ assert_equal(ctx.stack_size, 1)
+
+ jit_check_ints(jit, ctx, asm)
+
+ asm.comment('pop stack frame')
+ asm.lea(:rax, [CFP, C.rb_control_frame_t.size])
+ asm.mov(CFP, :rax)
+ asm.mov([EC, C.rb_execution_context_t.offsetof(:cfp)], :rax)
+
+ # Return a value (for compile_leave_exit)
+ ret_opnd = ctx.stack_pop
+ asm.mov(:rax, ret_opnd)
+
+ # Set caller's SP and push a value to its stack (for JIT)
+ asm.mov(SP, [CFP, C.rb_control_frame_t.offsetof(:sp)]) # Note: SP is in the position after popping a receiver and arguments
+ asm.mov([SP], :rax)
+
+ # Jump to cfp->jit_return
+ asm.jmp([CFP, -C.rb_control_frame_t.size + C.rb_control_frame_t.offsetof(:jit_return)])
+
+ EndBlock
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def throw(jit, ctx, asm)
+ throw_state = jit.operand(0)
+ asm.mov(:rcx, ctx.stack_pop(1)) # throwobj
+
+ # THROW_DATA_NEW allocates. Save SP for GC and PC for allocation tracing as
+ # well as handling the catch table. However, not using jit_prepare_routine_call
+ # since we don't need a patch point for this implementation.
+ jit_save_pc(jit, asm) # clobbers rax
+ jit_save_sp(ctx, asm)
+
+ # rb_vm_throw verifies it's a valid throw, sets ec->tag->state, and returns throw
+ # data, which is throwobj or a vm_throw_data wrapping it. When ec->tag->state is
+ # set, JIT code callers will handle the throw with vm_exec_handle_exception.
+ asm.mov(C_ARGS[0], EC)
+ asm.mov(C_ARGS[1], CFP)
+ asm.mov(C_ARGS[2], throw_state)
+ # asm.mov(C_ARGS[3], :rcx) # same reg
+ asm.call(C.rb_vm_throw)
+
+ asm.comment('exit from throw')
+ asm.pop(SP)
+ asm.pop(EC)
+ asm.pop(CFP)
+
+ # return C_RET as C_RET
+ asm.ret
+ EndBlock
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jump(jit, ctx, asm)
+ # Check for interrupts, but only on backward branches that may create loops
+ jump_offset = jit.operand(0, signed: true)
+ if jump_offset < 0
+ jit_check_ints(jit, ctx, asm)
+ end
+
+ pc = jit.pc + C.VALUE.size * (jit.insn.len + jump_offset)
+ jit_direct_jump(jit.iseq, pc, ctx, asm)
+ EndBlock
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def branchif(jit, ctx, asm)
+ # Check for interrupts, but only on backward branches that may create loops
+ jump_offset = jit.operand(0, signed: true)
+ if jump_offset < 0
+ jit_check_ints(jit, ctx, asm)
+ end
+
+ # Get the branch target instruction offsets
+ next_pc = jit.pc + C.VALUE.size * jit.insn.len
+ jump_pc = jit.pc + C.VALUE.size * (jit.insn.len + jump_offset)
+
+ val_type = ctx.get_opnd_type(StackOpnd[0])
+ val_opnd = ctx.stack_pop(1)
+
+ if (result = val_type.known_truthy) != nil
+ target_pc = result ? jump_pc : next_pc
+ jit_direct_jump(jit.iseq, target_pc, ctx, asm)
+ else
+ # This `test` sets ZF only for Qnil and Qfalse, which let jz jump.
+ asm.test(val_opnd, ~Qnil)
+
+ # Set stubs
+ branch_stub = BranchStub.new(
+ iseq: jit.iseq,
+ shape: Default,
+ target0: BranchTarget.new(ctx:, pc: jump_pc), # branch target
+ target1: BranchTarget.new(ctx:, pc: next_pc), # fallthrough
+ )
+ branch_stub.target0.address = Assembler.new.then do |ocb_asm|
+ @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true)
+ @ocb.write(ocb_asm)
+ end
+ branch_stub.target1.address = Assembler.new.then do |ocb_asm|
+ @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, false)
+ @ocb.write(ocb_asm)
+ end
+
+ # Jump to target0 on jnz
+ branch_stub.compile = compile_branchif(branch_stub)
+ branch_stub.compile.call(asm)
+ end
+
+ EndBlock
+ end
+
+ def compile_branchif(branch_stub) # Proc escapes arguments in memory
+ proc do |branch_asm|
+ branch_asm.comment("branchif #{branch_stub.shape}")
+ branch_asm.stub(branch_stub) do
+ case branch_stub.shape
+ in Default
+ branch_asm.jnz(branch_stub.target0.address)
+ branch_asm.jmp(branch_stub.target1.address)
+ in Next0
+ branch_asm.jz(branch_stub.target1.address)
+ in Next1
+ branch_asm.jnz(branch_stub.target0.address)
+ end
+ end
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def branchunless(jit, ctx, asm)
+ # Check for interrupts, but only on backward branches that may create loops
+ jump_offset = jit.operand(0, signed: true)
+ if jump_offset < 0
+ jit_check_ints(jit, ctx, asm)
+ end
+
+ # Get the branch target instruction offsets
+ next_pc = jit.pc + C.VALUE.size * jit.insn.len
+ jump_pc = jit.pc + C.VALUE.size * (jit.insn.len + jump_offset)
+
+ val_type = ctx.get_opnd_type(StackOpnd[0])
+ val_opnd = ctx.stack_pop(1)
+
+ if (result = val_type.known_truthy) != nil
+ target_pc = result ? next_pc : jump_pc
+ jit_direct_jump(jit.iseq, target_pc, ctx, asm)
+ else
+ # This `test` sets ZF only for Qnil and Qfalse, which let jz jump.
+ asm.test(val_opnd, ~Qnil)
+
+ # Set stubs
+ branch_stub = BranchStub.new(
+ iseq: jit.iseq,
+ shape: Default,
+ target0: BranchTarget.new(ctx:, pc: jump_pc), # branch target
+ target1: BranchTarget.new(ctx:, pc: next_pc), # fallthrough
+ )
+ branch_stub.target0.address = Assembler.new.then do |ocb_asm|
+ @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true)
+ @ocb.write(ocb_asm)
+ end
+ branch_stub.target1.address = Assembler.new.then do |ocb_asm|
+ @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, false)
+ @ocb.write(ocb_asm)
+ end
+
+ # Jump to target0 on jz
+ branch_stub.compile = compile_branchunless(branch_stub)
+ branch_stub.compile.call(asm)
+ end
+
+ EndBlock
+ end
+
+ def compile_branchunless(branch_stub) # Proc escapes arguments in memory
+ proc do |branch_asm|
+ branch_asm.comment("branchunless #{branch_stub.shape}")
+ branch_asm.stub(branch_stub) do
+ case branch_stub.shape
+ in Default
+ branch_asm.jz(branch_stub.target0.address)
+ branch_asm.jmp(branch_stub.target1.address)
+ in Next0
+ branch_asm.jnz(branch_stub.target1.address)
+ in Next1
+ branch_asm.jz(branch_stub.target0.address)
+ end
+ end
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def branchnil(jit, ctx, asm)
+ # Check for interrupts, but only on backward branches that may create loops
+ jump_offset = jit.operand(0, signed: true)
+ if jump_offset < 0
+ jit_check_ints(jit, ctx, asm)
+ end
+
+ # Get the branch target instruction offsets
+ next_pc = jit.pc + C.VALUE.size * jit.insn.len
+ jump_pc = jit.pc + C.VALUE.size * (jit.insn.len + jump_offset)
+
+ val_type = ctx.get_opnd_type(StackOpnd[0])
+ val_opnd = ctx.stack_pop(1)
+
+ if (result = val_type.known_nil) != nil
+ target_pc = result ? jump_pc : next_pc
+ jit_direct_jump(jit.iseq, target_pc, ctx, asm)
+ else
+ asm.cmp(val_opnd, Qnil)
+
+ # Set stubs
+ branch_stub = BranchStub.new(
+ iseq: jit.iseq,
+ shape: Default,
+ target0: BranchTarget.new(ctx:, pc: jump_pc), # branch target
+ target1: BranchTarget.new(ctx:, pc: next_pc), # fallthrough
+ )
+ branch_stub.target0.address = Assembler.new.then do |ocb_asm|
+ @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true)
+ @ocb.write(ocb_asm)
+ end
+ branch_stub.target1.address = Assembler.new.then do |ocb_asm|
+ @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, false)
+ @ocb.write(ocb_asm)
+ end
+
+ # Jump to target0 on je
+ branch_stub.compile = compile_branchnil(branch_stub)
+ branch_stub.compile.call(asm)
+ end
+
+ EndBlock
+ end
+
+ def compile_branchnil(branch_stub) # Proc escapes arguments in memory
+ proc do |branch_asm|
+ branch_asm.comment("branchnil #{branch_stub.shape}")
+ branch_asm.stub(branch_stub) do
+ case branch_stub.shape
+ in Default
+ branch_asm.je(branch_stub.target0.address)
+ branch_asm.jmp(branch_stub.target1.address)
+ in Next0
+ branch_asm.jne(branch_stub.target1.address)
+ in Next1
+ branch_asm.je(branch_stub.target0.address)
+ end
+ end
+ end
+ end
+
+ # once
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_case_dispatch(jit, ctx, asm)
+ # Normally this instruction would lookup the key in a hash and jump to an
+ # offset based on that.
+ # Instead we can take the fallback case and continue with the next
+ # instruction.
+ # We'd hope that our jitted code will be sufficiently fast without the
+ # hash lookup, at least for small hashes, but it's worth revisiting this
+ # assumption in the future.
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+ starting_context = ctx.dup
+
+ case_hash = jit.operand(0, ruby: true)
+ else_offset = jit.operand(1)
+
+ # Try to reorder case/else branches so that ones that are actually used come first.
+ # Supporting only Fixnum for now so that the implementation can be an equality check.
+ key_opnd = ctx.stack_pop(1)
+ comptime_key = jit.peek_at_stack(0)
+
+ # Check that all cases are fixnums to avoid having to register BOP assumptions on
+ # all the types that case hashes support. This spends compile time to save memory.
+ if fixnum?(comptime_key) && comptime_key <= 2**32 && C.rb_hash_keys(case_hash).all? { |key| fixnum?(key) }
+ unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_EQQ)
+ return CantCompile
+ end
+
+ # Check if the key is the same value
+ asm.cmp(key_opnd, to_value(comptime_key))
+ side_exit = side_exit(jit, starting_context)
+ jit_chain_guard(:jne, jit, starting_context, asm, side_exit)
+
+ # Get the offset for the compile-time key
+ offset = C.rb_hash_stlike_lookup(case_hash, comptime_key)
+ # NOTE: If we hit the else branch with various values, it could negatively impact the performance.
+ jump_offset = offset || else_offset
+
+ # Jump to the offset of case or else
+ target_pc = jit.pc + (jit.insn.len + jump_offset) * C.VALUE.size
+ jit_direct_jump(jit.iseq, target_pc, ctx, asm)
+ EndBlock
+ else
+ KeepCompiling # continue with === branches
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_plus(jit, ctx, asm)
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ comptime_recv = jit.peek_at_stack(1)
+ comptime_obj = jit.peek_at_stack(0)
+
+ if fixnum?(comptime_recv) && fixnum?(comptime_obj)
+ unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_PLUS)
+ return CantCompile
+ end
+
+ # Check that both operands are fixnums
+ guard_two_fixnums(jit, ctx, asm)
+
+ obj_opnd = ctx.stack_pop
+ recv_opnd = ctx.stack_pop
+
+ asm.mov(:rax, recv_opnd)
+ asm.sub(:rax, 1) # untag
+ asm.mov(:rcx, obj_opnd)
+ asm.add(:rax, :rcx)
+ asm.jo(side_exit(jit, ctx))
+
+ dst_opnd = ctx.stack_push(Type::Fixnum)
+ asm.mov(dst_opnd, :rax)
+
+ KeepCompiling
+ else
+ opt_send_without_block(jit, ctx, asm)
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_minus(jit, ctx, asm)
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ comptime_recv = jit.peek_at_stack(1)
+ comptime_obj = jit.peek_at_stack(0)
+
+ if fixnum?(comptime_recv) && fixnum?(comptime_obj)
+ unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_MINUS)
+ return CantCompile
+ end
+
+ # Check that both operands are fixnums
+ guard_two_fixnums(jit, ctx, asm)
+
+ obj_opnd = ctx.stack_pop
+ recv_opnd = ctx.stack_pop
+
+ asm.mov(:rax, recv_opnd)
+ asm.mov(:rcx, obj_opnd)
+ asm.sub(:rax, :rcx)
+ asm.jo(side_exit(jit, ctx))
+ asm.add(:rax, 1) # re-tag
+
+ dst_opnd = ctx.stack_push(Type::Fixnum)
+ asm.mov(dst_opnd, :rax)
+
+ KeepCompiling
+ else
+ opt_send_without_block(jit, ctx, asm)
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_mult(jit, ctx, asm)
+ opt_send_without_block(jit, ctx, asm)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_div(jit, ctx, asm)
+ opt_send_without_block(jit, ctx, asm)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_mod(jit, ctx, asm)
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ if two_fixnums_on_stack?(jit)
+ unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_MOD)
+ return CantCompile
+ end
+
+ # Check that both operands are fixnums
+ guard_two_fixnums(jit, ctx, asm)
+
+ # Get the operands and destination from the stack
+ arg1 = ctx.stack_pop(1)
+ arg0 = ctx.stack_pop(1)
+
+ # Check for arg0 % 0
+ asm.cmp(arg1, 0)
+ asm.je(side_exit(jit, ctx))
+
+ # Call rb_fix_mod_fix(VALUE recv, VALUE obj)
+ asm.mov(C_ARGS[0], arg0)
+ asm.mov(C_ARGS[1], arg1)
+ asm.call(C.rb_fix_mod_fix)
+
+ # Push the return value onto the stack
+ stack_ret = ctx.stack_push(Type::Fixnum)
+ asm.mov(stack_ret, C_RET)
+
+ KeepCompiling
+ else
+ opt_send_without_block(jit, ctx, asm)
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_eq(jit, ctx, asm)
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ if jit_equality_specialized(jit, ctx, asm, true)
+ jump_to_next_insn(jit, ctx, asm)
+ EndBlock
+ else
+ opt_send_without_block(jit, ctx, asm)
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_neq(jit, ctx, asm)
+ # opt_neq is passed two rb_call_data as arguments:
+ # first for ==, second for !=
+ neq_cd = C.rb_call_data.new(jit.operand(1))
+ opt_send_without_block(jit, ctx, asm, cd: neq_cd)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_lt(jit, ctx, asm)
+ jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovl, bop: C::BOP_LT)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_le(jit, ctx, asm)
+ jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovle, bop: C::BOP_LE)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_gt(jit, ctx, asm)
+ jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovg, bop: C::BOP_GT)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_ge(jit, ctx, asm)
+ jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovge, bop: C::BOP_GE)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_ltlt(jit, ctx, asm)
+ opt_send_without_block(jit, ctx, asm)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_and(jit, ctx, asm)
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ if two_fixnums_on_stack?(jit)
+ unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_AND)
+ return CantCompile
+ end
+
+ # Check that both operands are fixnums
+ guard_two_fixnums(jit, ctx, asm)
+
+ # Get the operands and destination from the stack
+ arg1 = ctx.stack_pop(1)
+ arg0 = ctx.stack_pop(1)
+
+ asm.comment('bitwise and')
+ asm.mov(:rax, arg0)
+ asm.and(:rax, arg1)
+
+ # Push the return value onto the stack
+ dst = ctx.stack_push(Type::Fixnum)
+ asm.mov(dst, :rax)
+
+ KeepCompiling
+ else
+ opt_send_without_block(jit, ctx, asm)
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_or(jit, ctx, asm)
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ if two_fixnums_on_stack?(jit)
+ unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_OR)
+ return CantCompile
+ end
+
+ # Check that both operands are fixnums
+ guard_two_fixnums(jit, ctx, asm)
+
+ # Get the operands and destination from the stack
+ asm.comment('bitwise or')
+ arg1 = ctx.stack_pop(1)
+ arg0 = ctx.stack_pop(1)
+
+ # Do the bitwise or arg0 | arg1
+ asm.mov(:rax, arg0)
+ asm.or(:rax, arg1)
+
+ # Push the return value onto the stack
+ dst = ctx.stack_push(Type::Fixnum)
+ asm.mov(dst, :rax)
+
+ KeepCompiling
+ else
+ opt_send_without_block(jit, ctx, asm)
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_aref(jit, ctx, asm)
+ cd = C.rb_call_data.new(jit.operand(0))
+ argc = C.vm_ci_argc(cd.ci)
+
+ if argc != 1
+ asm.incr_counter(:optaref_argc_not_one)
+ return CantCompile
+ end
+
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ comptime_recv = jit.peek_at_stack(1)
+ comptime_obj = jit.peek_at_stack(0)
+
+ side_exit = side_exit(jit, ctx)
+
+ if C.rb_class_of(comptime_recv) == Array && fixnum?(comptime_obj)
+ unless Invariants.assume_bop_not_redefined(jit, C::ARRAY_REDEFINED_OP_FLAG, C::BOP_AREF)
+ return CantCompile
+ end
+
+ idx_opnd = ctx.stack_opnd(0)
+ recv_opnd = ctx.stack_opnd(1)
+
+ not_array_exit = counted_exit(side_exit, :optaref_recv_not_array)
+ jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_recv), recv_opnd, StackOpnd[1], comptime_recv, not_array_exit)
+
+ # Bail if idx is not a FIXNUM
+ asm.mov(:rax, idx_opnd)
+ asm.test(:rax, C::RUBY_FIXNUM_FLAG)
+ asm.jz(counted_exit(side_exit, :optaref_arg_not_fixnum))
+
+ # Call VALUE rb_ary_entry_internal(VALUE ary, long offset).
+ # It never raises or allocates, so we don't need to write to cfp->pc.
+ asm.sar(:rax, 1) # Convert fixnum to int
+ asm.mov(C_ARGS[0], recv_opnd)
+ asm.mov(C_ARGS[1], :rax)
+ asm.call(C.rb_ary_entry_internal)
+
+ # Pop the argument and the receiver
+ ctx.stack_pop(2)
+
+ # Push the return value onto the stack
+ stack_ret = ctx.stack_push(Type::Unknown)
+ asm.mov(stack_ret, C_RET)
+
+ # Let guard chains share the same successor
+ jump_to_next_insn(jit, ctx, asm)
+ EndBlock
+ elsif C.rb_class_of(comptime_recv) == Hash
+ unless Invariants.assume_bop_not_redefined(jit, C::HASH_REDEFINED_OP_FLAG, C::BOP_AREF)
+ return CantCompile
+ end
+
+ recv_opnd = ctx.stack_opnd(1)
+
+ # Guard that the receiver is a Hash
+ not_hash_exit = counted_exit(side_exit, :optaref_recv_not_hash)
+ jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_recv), recv_opnd, StackOpnd[1], comptime_recv, not_hash_exit)
+
+ # Prepare to call rb_hash_aref(). It might call #hash on the key.
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ asm.comment('call rb_hash_aref')
+ key_opnd = ctx.stack_opnd(0)
+ recv_opnd = ctx.stack_opnd(1)
+ asm.mov(:rdi, recv_opnd)
+ asm.mov(:rsi, key_opnd)
+ asm.call(C.rb_hash_aref)
+
+ # Pop the key and the receiver
+ ctx.stack_pop(2)
+
+ stack_ret = ctx.stack_push(Type::Unknown)
+ asm.mov(stack_ret, C_RET)
+
+ # Let guard chains share the same successor
+ jump_to_next_insn(jit, ctx, asm)
+ EndBlock
+ else
+ opt_send_without_block(jit, ctx, asm)
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_aset(jit, ctx, asm)
+ # Defer compilation so we can specialize on a runtime `self`
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ comptime_recv = jit.peek_at_stack(2)
+ comptime_key = jit.peek_at_stack(1)
+
+ # Get the operands from the stack
+ recv = ctx.stack_opnd(2)
+ key = ctx.stack_opnd(1)
+ _val = ctx.stack_opnd(0)
+
+ if C.rb_class_of(comptime_recv) == Array && fixnum?(comptime_key)
+ side_exit = side_exit(jit, ctx)
+
+ # Guard receiver is an Array
+ jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_recv), recv, StackOpnd[2], comptime_recv, side_exit)
+
+ # Guard key is a fixnum
+ jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_key), key, StackOpnd[1], comptime_key, side_exit)
+
+ # We might allocate or raise
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ asm.comment('call rb_ary_store')
+ recv = ctx.stack_opnd(2)
+ key = ctx.stack_opnd(1)
+ val = ctx.stack_opnd(0)
+ asm.mov(:rax, key)
+ asm.sar(:rax, 1) # FIX2LONG(key)
+ asm.mov(C_ARGS[0], recv)
+ asm.mov(C_ARGS[1], :rax)
+ asm.mov(C_ARGS[2], val)
+ asm.call(C.rb_ary_store)
+
+ # rb_ary_store returns void
+ # stored value should still be on stack
+ val = ctx.stack_opnd(0)
+
+ # Push the return value onto the stack
+ ctx.stack_pop(3)
+ stack_ret = ctx.stack_push(Type::Unknown)
+ asm.mov(:rax, val)
+ asm.mov(stack_ret, :rax)
+
+ jump_to_next_insn(jit, ctx, asm)
+ EndBlock
+ elsif C.rb_class_of(comptime_recv) == Hash
+ side_exit = side_exit(jit, ctx)
+
+ # Guard receiver is a Hash
+ jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_recv), recv, StackOpnd[2], comptime_recv, side_exit)
+
+ # We might allocate or raise
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ # Call rb_hash_aset
+ recv = ctx.stack_opnd(2)
+ key = ctx.stack_opnd(1)
+ val = ctx.stack_opnd(0)
+ asm.mov(C_ARGS[0], recv)
+ asm.mov(C_ARGS[1], key)
+ asm.mov(C_ARGS[2], val)
+ asm.call(C.rb_hash_aset)
+
+ # Push the return value onto the stack
+ ctx.stack_pop(3)
+ stack_ret = ctx.stack_push(Type::Unknown)
+ asm.mov(stack_ret, C_RET)
+
+ jump_to_next_insn(jit, ctx, asm)
+ EndBlock
+ else
+ opt_send_without_block(jit, ctx, asm)
+ end
+ end
+
+ # opt_aset_with
+ # opt_aref_with
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_length(jit, ctx, asm)
+ opt_send_without_block(jit, ctx, asm)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_size(jit, ctx, asm)
+ opt_send_without_block(jit, ctx, asm)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_empty_p(jit, ctx, asm)
+ opt_send_without_block(jit, ctx, asm)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_succ(jit, ctx, asm)
+ opt_send_without_block(jit, ctx, asm)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_not(jit, ctx, asm)
+ opt_send_without_block(jit, ctx, asm)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_regexpmatch2(jit, ctx, asm)
+ opt_send_without_block(jit, ctx, asm)
+ end
+
+ # invokebuiltin
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_invokebuiltin_delegate(jit, ctx, asm)
+ bf = C.rb_builtin_function.new(jit.operand(0))
+ bf_argc = bf.argc
+ start_index = jit.operand(1)
+
+ # ec, self, and arguments
+ if bf_argc + 2 > C_ARGS.size
+ return CantCompile
+ end
+
+ # If the calls don't allocate, do they need up to date PC, SP?
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ # Call the builtin func (ec, recv, arg1, arg2, ...)
+ asm.comment('call builtin func')
+ asm.mov(C_ARGS[0], EC)
+ asm.mov(C_ARGS[1], [CFP, C.rb_control_frame_t.offsetof(:self)])
+
+ # Copy arguments from locals
+ if bf_argc > 0
+ # Load environment pointer EP from CFP
+ asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:ep)])
+
+ bf_argc.times do |i|
+ table_size = jit.iseq.body.local_table_size
+ offs = -table_size - C::VM_ENV_DATA_SIZE + 1 + start_index + i
+ asm.mov(C_ARGS[2 + i], [:rax, offs * C.VALUE.size])
+ end
+ end
+ asm.call(bf.func_ptr)
+
+ # Push the return value
+ stack_ret = ctx.stack_push(Type::Unknown)
+ asm.mov(stack_ret, C_RET)
+
+ KeepCompiling
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def opt_invokebuiltin_delegate_leave(jit, ctx, asm)
+ opt_invokebuiltin_delegate(jit, ctx, asm)
+ # opt_invokebuiltin_delegate is always followed by leave insn
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def putobject_INT2FIX_0_(jit, ctx, asm)
+ putobject(jit, ctx, asm, val: C.to_value(0))
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def putobject_INT2FIX_1_(jit, ctx, asm)
+ putobject(jit, ctx, asm, val: C.to_value(1))
+ end
+
+ #
+ # C func
+ #
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_true(jit, ctx, asm, argc, _known_recv_class)
+ return false if argc != 0
+ asm.comment('nil? == true')
+ ctx.stack_pop(1)
+ stack_ret = ctx.stack_push(Type::True)
+ asm.mov(stack_ret, Qtrue)
+ true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_false(jit, ctx, asm, argc, _known_recv_class)
+ return false if argc != 0
+ asm.comment('nil? == false')
+ ctx.stack_pop(1)
+ stack_ret = ctx.stack_push(Type::False)
+ asm.mov(stack_ret, Qfalse)
+ true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_kernel_is_a(jit, ctx, asm, argc, known_recv_class)
+ if argc != 1
+ return false
+ end
+
+ # If this is a super call we might not know the class
+ if known_recv_class.nil?
+ return false
+ end
+
+ # Important note: The output code will simply `return true/false`.
+ # Correctness follows from:
+ # - `known_recv_class` implies there is a guard scheduled before here
+ # for a particular `CLASS_OF(lhs)`.
+ # - We guard that rhs is identical to the compile-time sample
+ # - In general, for any two Class instances A, B, `A < B` does not change at runtime.
+ # Class#superclass is stable.
+
+ sample_rhs = jit.peek_at_stack(0)
+ sample_lhs = jit.peek_at_stack(1)
+
+ # We are not allowing module here because the module hierarchy can change at runtime.
+ if C.RB_TYPE_P(sample_rhs, C::RUBY_T_CLASS)
+ return false
+ end
+ sample_is_a = C.obj_is_kind_of(sample_lhs, sample_rhs)
+
+ side_exit = side_exit(jit, ctx)
+ asm.comment('Kernel#is_a?')
+ asm.mov(:rax, to_value(sample_rhs))
+ asm.cmp(ctx.stack_opnd(0), :rax)
+ asm.jne(counted_exit(side_exit, :send_is_a_class_mismatch))
+
+ ctx.stack_pop(2)
+
+ if sample_is_a
+ stack_ret = ctx.stack_push(Type::True)
+ asm.mov(stack_ret, Qtrue)
+ else
+ stack_ret = ctx.stack_push(Type::False)
+ asm.mov(stack_ret, Qfalse)
+ end
+ return true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_kernel_instance_of(jit, ctx, asm, argc, known_recv_class)
+ if argc != 1
+ return false
+ end
+
+ # If this is a super call we might not know the class
+ if known_recv_class.nil?
+ return false
+ end
+
+ # Important note: The output code will simply `return true/false`.
+ # Correctness follows from:
+ # - `known_recv_class` implies there is a guard scheduled before here
+ # for a particular `CLASS_OF(lhs)`.
+ # - We guard that rhs is identical to the compile-time sample
+ # - For a particular `CLASS_OF(lhs)`, `rb_obj_class(lhs)` does not change.
+ # (because for any singleton class `s`, `s.superclass.equal?(s.attached_object.class)`)
+
+ sample_rhs = jit.peek_at_stack(0)
+ sample_lhs = jit.peek_at_stack(1)
+
+ # Filters out cases where the C implementation raises
+ unless C.RB_TYPE_P(sample_rhs, C::RUBY_T_CLASS) || C.RB_TYPE_P(sample_rhs, C::RUBY_T_MODULE)
+ return false
+ end
+
+ # We need to grab the class here to deal with singleton classes.
+ # Instance of grabs the "real class" of the object rather than the
+ # singleton class.
+ sample_lhs_real_class = C.rb_obj_class(sample_lhs)
+
+ sample_instance_of = (sample_lhs_real_class == sample_rhs)
+
+ side_exit = side_exit(jit, ctx)
+ asm.comment('Kernel#instance_of?')
+ asm.mov(:rax, to_value(sample_rhs))
+ asm.cmp(ctx.stack_opnd(0), :rax)
+ asm.jne(counted_exit(side_exit, :send_instance_of_class_mismatch))
+
+ ctx.stack_pop(2)
+
+ if sample_instance_of
+ stack_ret = ctx.stack_push(Type::True)
+ asm.mov(stack_ret, Qtrue)
+ else
+ stack_ret = ctx.stack_push(Type::False)
+ asm.mov(stack_ret, Qfalse)
+ end
+ return true;
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_obj_not(jit, ctx, asm, argc, _known_recv_class)
+ return false if argc != 0
+ recv_type = ctx.get_opnd_type(StackOpnd[0])
+
+ case recv_type.known_truthy
+ in false
+ asm.comment('rb_obj_not(nil_or_false)')
+ ctx.stack_pop(1)
+ out_opnd = ctx.stack_push(Type::True)
+ asm.mov(out_opnd, Qtrue)
+ in true
+ # Note: recv_type != Type::Nil && recv_type != Type::False.
+ asm.comment('rb_obj_not(truthy)')
+ ctx.stack_pop(1)
+ out_opnd = ctx.stack_push(Type::False)
+ asm.mov(out_opnd, Qfalse)
+ in nil
+ asm.comment('rb_obj_not')
+
+ recv = ctx.stack_pop
+ # This `test` sets ZF only for Qnil and Qfalse, which let cmovz set.
+ asm.test(recv, ~Qnil)
+ asm.mov(:rax, Qfalse)
+ asm.mov(:rcx, Qtrue)
+ asm.cmovz(:rax, :rcx)
+
+ stack_ret = ctx.stack_push(Type::UnknownImm)
+ asm.mov(stack_ret, :rax)
+ end
+ true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_obj_equal(jit, ctx, asm, argc, _known_recv_class)
+ return false if argc != 1
+ asm.comment('equal?')
+ obj1 = ctx.stack_pop(1)
+ obj2 = ctx.stack_pop(1)
+
+ asm.mov(:rax, obj1)
+ asm.mov(:rcx, obj2)
+ asm.cmp(:rax, :rcx)
+ asm.mov(:rax, Qfalse)
+ asm.mov(:rcx, Qtrue)
+ asm.cmove(:rax, :rcx)
+
+ stack_ret = ctx.stack_push(Type::UnknownImm)
+ asm.mov(stack_ret, :rax)
+ true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_obj_not_equal(jit, ctx, asm, argc, _known_recv_class)
+ return false if argc != 1
+ jit_equality_specialized(jit, ctx, asm, false)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_mod_eqq(jit, ctx, asm, argc, _known_recv_class)
+ return false if argc != 1
+
+ asm.comment('Module#===')
+ # By being here, we know that the receiver is a T_MODULE or a T_CLASS, because Module#=== can
+ # only live on these objects. With that, we can call rb_obj_is_kind_of() without
+ # jit_prepare_routine_call() or a control frame push because it can't raise, allocate, or call
+ # Ruby methods with these inputs.
+ # Note the difference in approach from Kernel#is_a? because we don't get a free guard for the
+ # right hand side.
+ lhs = ctx.stack_opnd(1) # the module
+ rhs = ctx.stack_opnd(0)
+ asm.mov(C_ARGS[0], rhs);
+ asm.mov(C_ARGS[1], lhs);
+ asm.call(C.rb_obj_is_kind_of)
+
+ # Return the result
+ ctx.stack_pop(2)
+ stack_ret = ctx.stack_push(Type::UnknownImm)
+ asm.mov(stack_ret, C_RET)
+
+ return true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_int_equal(jit, ctx, asm, argc, _known_recv_class)
+ return false if argc != 1
+ return false unless two_fixnums_on_stack?(jit)
+
+ guard_two_fixnums(jit, ctx, asm)
+
+ # Compare the arguments
+ asm.comment('rb_int_equal')
+ arg1 = ctx.stack_pop(1)
+ arg0 = ctx.stack_pop(1)
+ asm.mov(:rax, arg1)
+ asm.cmp(arg0, :rax)
+ asm.mov(:rax, Qfalse)
+ asm.mov(:rcx, Qtrue)
+ asm.cmove(:rax, :rcx)
+
+ stack_ret = ctx.stack_push(Type::UnknownImm)
+ asm.mov(stack_ret, :rax)
+ true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_int_mul(jit, ctx, asm, argc, _known_recv_class)
+ return false if argc != 1
+ return false unless two_fixnums_on_stack?(jit)
+
+ guard_two_fixnums(jit, ctx, asm)
+
+ asm.comment('rb_int_mul')
+ y_opnd = ctx.stack_pop
+ x_opnd = ctx.stack_pop
+ asm.mov(C_ARGS[0], x_opnd)
+ asm.mov(C_ARGS[1], y_opnd)
+ asm.call(C.rb_fix_mul_fix)
+
+ ret_opnd = ctx.stack_push(Type::Unknown)
+ asm.mov(ret_opnd, C_RET)
+ true
+ end
+
+ def jit_rb_int_div(jit, ctx, asm, argc, _known_recv_class)
+ return false if argc != 1
+ return false unless two_fixnums_on_stack?(jit)
+
+ guard_two_fixnums(jit, ctx, asm)
+
+ asm.comment('rb_int_div')
+ y_opnd = ctx.stack_pop
+ x_opnd = ctx.stack_pop
+ asm.mov(:rax, y_opnd)
+ asm.cmp(:rax, C.to_value(0))
+ asm.je(side_exit(jit, ctx))
+
+ asm.mov(C_ARGS[0], x_opnd)
+ asm.mov(C_ARGS[1], :rax)
+ asm.call(C.rb_fix_div_fix)
+
+ ret_opnd = ctx.stack_push(Type::Unknown)
+ asm.mov(ret_opnd, C_RET)
+ true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_int_aref(jit, ctx, asm, argc, _known_recv_class)
+ return false if argc != 1
+ return false unless two_fixnums_on_stack?(jit)
+
+ guard_two_fixnums(jit, ctx, asm)
+
+ asm.comment('rb_int_aref')
+ y_opnd = ctx.stack_pop
+ x_opnd = ctx.stack_pop
+
+ asm.mov(C_ARGS[0], x_opnd)
+ asm.mov(C_ARGS[1], y_opnd)
+ asm.call(C.rb_fix_aref)
+
+ ret_opnd = ctx.stack_push(Type::UnknownImm)
+ asm.mov(ret_opnd, C_RET)
+ true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_str_empty_p(jit, ctx, asm, argc, known_recv_class)
+ recv_opnd = ctx.stack_pop(1)
+ out_opnd = ctx.stack_push(Type::UnknownImm)
+
+ asm.comment('get string length')
+ asm.mov(:rax, recv_opnd)
+ str_len_opnd = [:rax, C.RString.offsetof(:len)]
+
+ asm.cmp(str_len_opnd, 0)
+ asm.mov(:rax, Qfalse)
+ asm.mov(:rcx, Qtrue)
+ asm.cmove(:rax, :rcx)
+ asm.mov(out_opnd, :rax)
+
+ return true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_str_to_s(jit, ctx, asm, argc, known_recv_class)
+ return false if argc != 0
+ if known_recv_class == String
+ asm.comment('to_s on plain string')
+ # The method returns the receiver, which is already on the stack.
+ # No stack movement.
+ return true
+ end
+ false
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_str_bytesize(jit, ctx, asm, argc, known_recv_class)
+ asm.comment('String#bytesize')
+
+ recv = ctx.stack_pop(1)
+ asm.mov(C_ARGS[0], recv)
+ asm.call(C.rb_str_bytesize)
+
+ out_opnd = ctx.stack_push(Type::Fixnum)
+ asm.mov(out_opnd, C_RET)
+
+ true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_str_concat(jit, ctx, asm, argc, known_recv_class)
+ # The << operator can accept integer codepoints for characters
+ # as the argument. We only specially optimise string arguments.
+ # If the peeked-at compile time argument is something other than
+ # a string, assume it won't be a string later either.
+ comptime_arg = jit.peek_at_stack(0)
+ unless C.RB_TYPE_P(comptime_arg, C::RUBY_T_STRING)
+ return false
+ end
+
+ # Guard that the concat argument is a string
+ asm.mov(:rax, ctx.stack_opnd(0))
+ guard_object_is_string(jit, ctx, asm, :rax, :rcx, StackOpnd[0])
+
+ # Guard buffers from GC since rb_str_buf_append may allocate. During the VM lock on GC,
+ # other Ractors may trigger global invalidation, so we need ctx.clear_local_types.
+ # PC is used on errors like Encoding::CompatibilityError raised by rb_str_buf_append.
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ concat_arg = ctx.stack_pop(1)
+ recv = ctx.stack_pop(1)
+
+ # Test if string encodings differ. If different, use rb_str_append. If the same,
+ # use rb_yjit_str_simple_append, which calls rb_str_cat.
+ asm.comment('<< on strings')
+
+ # Take receiver's object flags XOR arg's flags. If any
+ # string-encoding flags are different between the two,
+ # the encodings don't match.
+ recv_reg = :rax
+ asm.mov(recv_reg, recv)
+ concat_arg_reg = :rcx
+ asm.mov(concat_arg_reg, concat_arg)
+ asm.mov(recv_reg, [recv_reg, C.RBasic.offsetof(:flags)])
+ asm.mov(concat_arg_reg, [concat_arg_reg, C.RBasic.offsetof(:flags)])
+ asm.xor(recv_reg, concat_arg_reg)
+ asm.test(recv_reg, C::RUBY_ENCODING_MASK)
+
+ # Push once, use the resulting operand in both branches below.
+ stack_ret = ctx.stack_push(Type::TString)
+
+ enc_mismatch = asm.new_label('enc_mismatch')
+ asm.jnz(enc_mismatch)
+
+ # If encodings match, call the simple append function and jump to return
+ asm.mov(C_ARGS[0], recv)
+ asm.mov(C_ARGS[1], concat_arg)
+ asm.call(C.rjit_str_simple_append)
+ ret_label = asm.new_label('func_return')
+ asm.mov(stack_ret, C_RET)
+ asm.jmp(ret_label)
+
+ # If encodings are different, use a slower encoding-aware concatenate
+ asm.write_label(enc_mismatch)
+ asm.mov(C_ARGS[0], recv)
+ asm.mov(C_ARGS[1], concat_arg)
+ asm.call(C.rb_str_buf_append)
+ asm.mov(stack_ret, C_RET)
+ # Drop through to return
+
+ asm.write_label(ret_label)
+
+ true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_str_uplus(jit, ctx, asm, argc, _known_recv_class)
+ if argc != 0
+ return false
+ end
+
+ # We allocate when we dup the string
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ asm.comment('Unary plus on string')
+ asm.mov(:rax, ctx.stack_pop(1)) # recv_opnd
+ asm.mov(:rcx, [:rax, C.RBasic.offsetof(:flags)]) # flags_opnd
+ asm.test(:rcx, C::RUBY_FL_FREEZE)
+
+ ret_label = asm.new_label('stack_ret')
+
+ # String#+@ can only exist on T_STRING
+ stack_ret = ctx.stack_push(Type::TString)
+
+ # If the string isn't frozen, we just return it.
+ asm.mov(stack_ret, :rax) # recv_opnd
+ asm.jz(ret_label)
+
+ # Str is frozen - duplicate it
+ asm.mov(C_ARGS[0], :rax) # recv_opnd
+ asm.call(C.rb_str_dup)
+ asm.mov(stack_ret, C_RET)
+
+ asm.write_label(ret_label)
+
+ true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_str_getbyte(jit, ctx, asm, argc, _known_recv_class)
+ return false if argc != 1
+ asm.comment('rb_str_getbyte')
+
+ index_opnd = ctx.stack_pop
+ str_opnd = ctx.stack_pop
+ asm.mov(C_ARGS[0], str_opnd)
+ asm.mov(C_ARGS[1], index_opnd)
+ asm.call(C.rb_str_getbyte)
+
+ ret_opnd = ctx.stack_push(Type::Fixnum)
+ asm.mov(ret_opnd, C_RET)
+ true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_ary_empty_p(jit, ctx, asm, argc, _known_recv_class)
+ array_reg = :rax
+ asm.mov(array_reg, ctx.stack_pop(1))
+ jit_array_len(asm, array_reg, :rcx)
+
+ asm.test(:rcx, :rcx)
+ asm.mov(:rax, Qfalse)
+ asm.mov(:rcx, Qtrue)
+ asm.cmovz(:rax, :rcx)
+
+ out_opnd = ctx.stack_push(Type::UnknownImm)
+ asm.mov(out_opnd, :rax)
+
+ return true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_ary_push(jit, ctx, asm, argc, _known_recv_class)
+ return false if argc != 1
+ asm.comment('rb_ary_push')
+
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ item_opnd = ctx.stack_pop
+ ary_opnd = ctx.stack_pop
+ asm.mov(C_ARGS[0], ary_opnd)
+ asm.mov(C_ARGS[1], item_opnd)
+ asm.call(C.rb_ary_push)
+
+ ret_opnd = ctx.stack_push(Type::TArray)
+ asm.mov(ret_opnd, C_RET)
+ true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_obj_respond_to(jit, ctx, asm, argc, known_recv_class)
+ # respond_to(:sym) or respond_to(:sym, true)
+ if argc != 1 && argc != 2
+ return false
+ end
+
+ if known_recv_class.nil?
+ return false
+ end
+
+ recv_class = known_recv_class
+
+ # Get the method_id from compile time. We will later add a guard against it.
+ mid_sym = jit.peek_at_stack(argc - 1)
+ unless static_symbol?(mid_sym)
+ return false
+ end
+ mid = C.rb_sym2id(mid_sym)
+
+ # This represents the value of the "include_all" argument and whether it's known
+ allow_priv = if argc == 1
+ # Default is false
+ false
+ else
+ # Get value from type information (may or may not be known)
+ ctx.get_opnd_type(StackOpnd[0]).known_truthy
+ end
+
+ target_cme = C.rb_callable_method_entry_or_negative(recv_class, mid)
+
+ # Should never be null, as in that case we will be returned a "negative CME"
+ assert_equal(false, target_cme.nil?)
+
+ cme_def_type = C.UNDEFINED_METHOD_ENTRY_P(target_cme) ? C::VM_METHOD_TYPE_UNDEF : target_cme.def.type
+
+ if cme_def_type == C::VM_METHOD_TYPE_REFINED
+ return false
+ end
+
+ visibility = if cme_def_type == C::VM_METHOD_TYPE_UNDEF
+ C::METHOD_VISI_UNDEF
+ else
+ C.METHOD_ENTRY_VISI(target_cme)
+ end
+
+ result =
+ case [visibility, allow_priv]
+ in C::METHOD_VISI_UNDEF, _ then Qfalse # No method => false
+ in C::METHOD_VISI_PUBLIC, _ then Qtrue # Public method => true regardless of include_all
+ in _, true then Qtrue # include_all => always true
+ else return false # not public and include_all not known, can't compile
+ end
+
+ if result != Qtrue
+ # Only if respond_to_missing? hasn't been overridden
+ # In the future, we might want to jit the call to respond_to_missing?
+ unless Invariants.assume_method_basic_definition(jit, recv_class, C.idRespond_to_missing)
+ return false
+ end
+ end
+
+ # Invalidate this block if method lookup changes for the method being queried. This works
+ # both for the case where a method does or does not exist, as for the latter we asked for a
+ # "negative CME" earlier.
+ Invariants.assume_method_lookup_stable(jit, target_cme)
+
+ # Generate a side exit
+ side_exit = side_exit(jit, ctx)
+
+ if argc == 2
+ # pop include_all argument (we only use its type info)
+ ctx.stack_pop(1)
+ end
+
+ sym_opnd = ctx.stack_pop(1)
+ _recv_opnd = ctx.stack_pop(1)
+
+ # This is necessary because we have no guarantee that sym_opnd is a constant
+ asm.comment('guard known mid')
+ asm.mov(:rax, to_value(mid_sym))
+ asm.cmp(sym_opnd, :rax)
+ asm.jne(side_exit)
+
+ putobject(jit, ctx, asm, val: result)
+
+ true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_rb_f_block_given_p(jit, ctx, asm, argc, _known_recv_class)
+ asm.comment('block_given?')
+
+ # Same as rb_vm_frame_block_handler
+ jit_get_lep(jit, asm, reg: :rax)
+ asm.mov(:rax, [:rax, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # block_handler
+
+ ctx.stack_pop(1)
+ out_opnd = ctx.stack_push(Type::UnknownImm)
+
+ # Return `block_handler != VM_BLOCK_HANDLER_NONE`
+ asm.cmp(:rax, C::VM_BLOCK_HANDLER_NONE)
+ asm.mov(:rax, Qfalse)
+ asm.mov(:rcx, Qtrue)
+ asm.cmovne(:rax, :rcx) # block_given
+ asm.mov(out_opnd, :rax)
+
+ true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_thread_s_current(jit, ctx, asm, argc, _known_recv_class)
+ return false if argc != 0
+ asm.comment('Thread.current')
+ ctx.stack_pop(1)
+
+ # ec->thread_ptr
+ asm.mov(:rax, [EC, C.rb_execution_context_t.offsetof(:thread_ptr)])
+
+ # thread->self
+ asm.mov(:rax, [:rax, C.rb_thread_struct.offsetof(:self)])
+
+ stack_ret = ctx.stack_push(Type::UnknownHeap)
+ asm.mov(stack_ret, :rax)
+ true
+ end
+
+ #
+ # Helpers
+ #
+
+ def register_cfunc_codegen_funcs
+ # Specialization for C methods. See register_cfunc_method for details.
+ register_cfunc_method(BasicObject, :!, :jit_rb_obj_not)
+
+ register_cfunc_method(NilClass, :nil?, :jit_rb_true)
+ register_cfunc_method(Kernel, :nil?, :jit_rb_false)
+ register_cfunc_method(Kernel, :is_a?, :jit_rb_kernel_is_a)
+ register_cfunc_method(Kernel, :kind_of?, :jit_rb_kernel_is_a)
+ register_cfunc_method(Kernel, :instance_of?, :jit_rb_kernel_instance_of)
+
+ register_cfunc_method(BasicObject, :==, :jit_rb_obj_equal)
+ register_cfunc_method(BasicObject, :equal?, :jit_rb_obj_equal)
+ register_cfunc_method(BasicObject, :!=, :jit_rb_obj_not_equal)
+ register_cfunc_method(Kernel, :eql?, :jit_rb_obj_equal)
+ register_cfunc_method(Module, :==, :jit_rb_obj_equal)
+ register_cfunc_method(Module, :===, :jit_rb_mod_eqq)
+ register_cfunc_method(Symbol, :==, :jit_rb_obj_equal)
+ register_cfunc_method(Symbol, :===, :jit_rb_obj_equal)
+ register_cfunc_method(Integer, :==, :jit_rb_int_equal)
+ register_cfunc_method(Integer, :===, :jit_rb_int_equal)
+
+ # rb_str_to_s() methods in string.c
+ register_cfunc_method(String, :empty?, :jit_rb_str_empty_p)
+ register_cfunc_method(String, :to_s, :jit_rb_str_to_s)
+ register_cfunc_method(String, :to_str, :jit_rb_str_to_s)
+ register_cfunc_method(String, :bytesize, :jit_rb_str_bytesize)
+ register_cfunc_method(String, :<<, :jit_rb_str_concat)
+ register_cfunc_method(String, :+@, :jit_rb_str_uplus)
+
+ # rb_ary_empty_p() method in array.c
+ register_cfunc_method(Array, :empty?, :jit_rb_ary_empty_p)
+
+ register_cfunc_method(Kernel, :respond_to?, :jit_obj_respond_to)
+ register_cfunc_method(Kernel, :block_given?, :jit_rb_f_block_given_p)
+
+ # Thread.current
+ register_cfunc_method(C.rb_singleton_class(Thread), :current, :jit_thread_s_current)
+
+ #---
+ register_cfunc_method(Array, :<<, :jit_rb_ary_push)
+ register_cfunc_method(Integer, :*, :jit_rb_int_mul)
+ register_cfunc_method(Integer, :/, :jit_rb_int_div)
+ register_cfunc_method(Integer, :[], :jit_rb_int_aref)
+ register_cfunc_method(String, :getbyte, :jit_rb_str_getbyte)
+ end
+
+ def register_cfunc_method(klass, mid_sym, func)
+ mid = C.rb_intern(mid_sym.to_s)
+ me = C.rb_method_entry_at(klass, mid)
+
+ assert_equal(false, me.nil?)
+
+ # Only cfuncs are supported
+ method_serial = me.def.method_serial
+
+ @cfunc_codegen_table[method_serial] = method(func)
+ end
+
+ def lookup_cfunc_codegen(cme_def)
+ @cfunc_codegen_table[cme_def.method_serial]
+ end
+
+ def stack_swap(_jit, ctx, asm, offset0, offset1)
+ stack0_mem = ctx.stack_opnd(offset0)
+ stack1_mem = ctx.stack_opnd(offset1)
+
+ mapping0 = ctx.get_opnd_mapping(StackOpnd[offset0])
+ mapping1 = ctx.get_opnd_mapping(StackOpnd[offset1])
+
+ asm.mov(:rax, stack0_mem)
+ asm.mov(:rcx, stack1_mem)
+ asm.mov(stack0_mem, :rcx)
+ asm.mov(stack1_mem, :rax)
+
+ ctx.set_opnd_mapping(StackOpnd[offset0], mapping1)
+ ctx.set_opnd_mapping(StackOpnd[offset1], mapping0)
+ end
+
+ def jit_getlocal_generic(jit, ctx, asm, idx:, level:)
+ # Load environment pointer EP (level 0) from CFP
+ ep_reg = :rax
+ jit_get_ep(asm, level, reg: ep_reg)
+
+ # Load the local from the block
+ # val = *(vm_get_ep(GET_EP(), level) - idx);
+ asm.mov(:rax, [ep_reg, -idx * C.VALUE.size])
+
+ # Write the local at SP
+ stack_top = if level == 0
+ local_idx = ep_offset_to_local_idx(jit.iseq, idx)
+ ctx.stack_push_local(local_idx)
+ else
+ ctx.stack_push(Type::Unknown)
+ end
+
+ asm.mov(stack_top, :rax)
+ KeepCompiling
+ end
+
+ def jit_setlocal_generic(jit, ctx, asm, idx:, level:)
+ value_type = ctx.get_opnd_type(StackOpnd[0])
+
+ # Load environment pointer EP at level
+ ep_reg = :rax
+ jit_get_ep(asm, level, reg: ep_reg)
+
+ # Write barriers may be required when VM_ENV_FLAG_WB_REQUIRED is set, however write barriers
+ # only affect heap objects being written. If we know an immediate value is being written we
+ # can skip this check.
+ unless value_type.imm?
+ # flags & VM_ENV_FLAG_WB_REQUIRED
+ flags_opnd = [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS]
+ asm.test(flags_opnd, C::VM_ENV_FLAG_WB_REQUIRED)
+
+ # if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
+ asm.jnz(side_exit(jit, ctx))
+ end
+
+ if level == 0
+ local_idx = ep_offset_to_local_idx(jit.iseq, idx)
+ ctx.set_local_type(local_idx, value_type)
+ end
+
+ # Pop the value to write from the stack
+ stack_top = ctx.stack_pop(1)
+
+ # Write the value at the environment pointer
+ asm.mov(:rcx, stack_top)
+ asm.mov([ep_reg, -(C.VALUE.size * idx)], :rcx)
+
+ KeepCompiling
+ end
+
+ # Compute the index of a local variable from its slot index
+ def ep_offset_to_local_idx(iseq, ep_offset)
+ # Layout illustration
+ # This is an array of VALUE
+ # | VM_ENV_DATA_SIZE |
+ # v v
+ # low addr <+-------+-------+-------+-------+------------------+
+ # |local 0|local 1| ... |local n| .... |
+ # +-------+-------+-------+-------+------------------+
+ # ^ ^ ^ ^
+ # +-------+---local_table_size----+ cfp->ep--+
+ # | |
+ # +------------------ep_offset---------------+
+ #
+ # See usages of local_var_name() from iseq.c for similar calculation.
+
+ # Equivalent of iseq->body->local_table_size
+ local_table_size = iseq.body.local_table_size
+ op = ep_offset - C::VM_ENV_DATA_SIZE
+ local_idx = local_table_size - op - 1
+ assert_equal(true, local_idx >= 0 && local_idx < local_table_size)
+ local_idx
+ end
+
+ # Compute the index of a local variable from its slot index
+ def slot_to_local_idx(iseq, slot_idx)
+ # Layout illustration
+ # This is an array of VALUE
+ # | VM_ENV_DATA_SIZE |
+ # v v
+ # low addr <+-------+-------+-------+-------+------------------+
+ # |local 0|local 1| ... |local n| .... |
+ # +-------+-------+-------+-------+------------------+
+ # ^ ^ ^ ^
+ # +-------+---local_table_size----+ cfp->ep--+
+ # | |
+ # +------------------slot_idx----------------+
+ #
+ # See usages of local_var_name() from iseq.c for similar calculation.
+
+ local_table_size = iseq.body.local_table_size
+ op = slot_idx - C::VM_ENV_DATA_SIZE
+ local_table_size - op - 1
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def guard_object_is_heap(jit, ctx, asm, object, object_opnd, counter = nil)
+ object_type = ctx.get_opnd_type(object_opnd)
+ if object_type.heap?
+ return
+ end
+
+ side_exit = side_exit(jit, ctx)
+ side_exit = counted_exit(side_exit, counter) if counter
+
+ asm.comment('guard object is heap')
+ # Test that the object is not an immediate
+ asm.test(object, C::RUBY_IMMEDIATE_MASK)
+ asm.jnz(side_exit)
+
+ # Test that the object is not false
+ asm.cmp(object, Qfalse)
+ asm.je(side_exit)
+
+ if object_type.diff(Type::UnknownHeap) != TypeDiff::Incompatible
+ ctx.upgrade_opnd_type(object_opnd, Type::UnknownHeap)
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def guard_object_is_array(jit, ctx, asm, object_reg, flags_reg, object_opnd, counter = nil)
+ object_type = ctx.get_opnd_type(object_opnd)
+ if object_type.array?
+ return
+ end
+
+ guard_object_is_heap(jit, ctx, asm, object_reg, object_opnd, counter)
+
+ side_exit = side_exit(jit, ctx)
+ side_exit = counted_exit(side_exit, counter) if counter
+
+ asm.comment('guard object is array')
+ # Pull out the type mask
+ asm.mov(flags_reg, [object_reg, C.RBasic.offsetof(:flags)])
+ asm.and(flags_reg, C::RUBY_T_MASK)
+
+ # Compare the result with T_ARRAY
+ asm.cmp(flags_reg, C::RUBY_T_ARRAY)
+ asm.jne(side_exit)
+
+ if object_type.diff(Type::TArray) != TypeDiff::Incompatible
+ ctx.upgrade_opnd_type(object_opnd, Type::TArray)
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def guard_object_is_string(jit, ctx, asm, object_reg, flags_reg, object_opnd, counter = nil)
+ object_type = ctx.get_opnd_type(object_opnd)
+ if object_type.string?
+ return
+ end
+
+ guard_object_is_heap(jit, ctx, asm, object_reg, object_opnd, counter)
+
+ side_exit = side_exit(jit, ctx)
+ side_exit = counted_exit(side_exit, counter) if counter
+
+ asm.comment('guard object is string')
+ # Pull out the type mask
+ asm.mov(flags_reg, [object_reg, C.RBasic.offsetof(:flags)])
+ asm.and(flags_reg, C::RUBY_T_MASK)
+
+ # Compare the result with T_STRING
+ asm.cmp(flags_reg, C::RUBY_T_STRING)
+ asm.jne(side_exit)
+
+ if object_type.diff(Type::TString) != TypeDiff::Incompatible
+ ctx.upgrade_opnd_type(object_opnd, Type::TString)
+ end
+ end
+
+ # clobbers object_reg
+ def guard_object_is_not_ruby2_keyword_hash(asm, object_reg, flags_reg, side_exit)
+ asm.comment('guard object is not ruby2 keyword hash')
+
+ not_ruby2_keyword = asm.new_label('not_ruby2_keyword')
+ asm.test(object_reg, C::RUBY_IMMEDIATE_MASK)
+ asm.jnz(not_ruby2_keyword)
+
+ asm.cmp(object_reg, Qfalse)
+ asm.je(not_ruby2_keyword)
+
+ asm.mov(flags_reg, [object_reg, C.RBasic.offsetof(:flags)])
+ type_reg = object_reg
+ asm.mov(type_reg, flags_reg)
+ asm.and(type_reg, C::RUBY_T_MASK)
+
+ asm.cmp(type_reg, C::RUBY_T_HASH)
+ asm.jne(not_ruby2_keyword)
+
+ asm.test(flags_reg, C::RHASH_PASS_AS_KEYWORDS)
+ asm.jnz(side_exit)
+
+ asm.write_label(not_ruby2_keyword)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_chain_guard(opcode, jit, ctx, asm, side_exit, limit: 20)
+ opcode => :je | :jne | :jnz | :jz
+
+ if ctx.chain_depth < limit
+ deeper = ctx.dup
+ deeper.chain_depth += 1
+
+ branch_stub = BranchStub.new(
+ iseq: jit.iseq,
+ shape: Default,
+ target0: BranchTarget.new(ctx: deeper, pc: jit.pc),
+ )
+ branch_stub.target0.address = Assembler.new.then do |ocb_asm|
+ @exit_compiler.compile_branch_stub(deeper, ocb_asm, branch_stub, true)
+ @ocb.write(ocb_asm)
+ end
+ branch_stub.compile = compile_jit_chain_guard(branch_stub, opcode:)
+ branch_stub.compile.call(asm)
+ else
+ asm.public_send(opcode, side_exit)
+ end
+ end
+
+ def compile_jit_chain_guard(branch_stub, opcode:) # Proc escapes arguments in memory
+ proc do |branch_asm|
+ # Not using `asm.comment` here since it's usually put before cmp/test before this.
+ branch_asm.stub(branch_stub) do
+ case branch_stub.shape
+ in Default
+ branch_asm.public_send(opcode, branch_stub.target0.address)
+ end
+ end
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_guard_known_klass(jit, ctx, asm, known_klass, obj_opnd, insn_opnd, comptime_obj, side_exit, limit: 10)
+ # Only memory operand is supported for now
+ assert_equal(true, obj_opnd.is_a?(Array))
+
+ known_klass = C.to_value(known_klass)
+ val_type = ctx.get_opnd_type(insn_opnd)
+ if val_type.known_class == known_klass
+ # We already know from type information that this is a match
+ return
+ end
+
+ # Touching this as Ruby could crash for FrozenCore
+ if known_klass == C.rb_cNilClass
+ assert(!val_type.heap?)
+ assert(val_type.unknown?)
+
+ asm.comment('guard object is nil')
+ asm.cmp(obj_opnd, Qnil)
+ jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:)
+
+ ctx.upgrade_opnd_type(insn_opnd, Type::Nil)
+ elsif known_klass == C.rb_cTrueClass
+ assert(!val_type.heap?)
+ assert(val_type.unknown?)
+
+ asm.comment('guard object is true')
+ asm.cmp(obj_opnd, Qtrue)
+ jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:)
+
+ ctx.upgrade_opnd_type(insn_opnd, Type::True)
+ elsif known_klass == C.rb_cFalseClass
+ assert(!val_type.heap?)
+ assert(val_type.unknown?)
+
+ asm.comment('guard object is false')
+ asm.cmp(obj_opnd, Qfalse)
+ jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:)
+
+ ctx.upgrade_opnd_type(insn_opnd, Type::False)
+ elsif known_klass == C.rb_cInteger && fixnum?(comptime_obj)
+ # We will guard fixnum and bignum as though they were separate classes
+ # BIGNUM can be handled by the general else case below
+ assert(val_type.unknown?)
+
+ asm.comment('guard object is fixnum')
+ asm.test(obj_opnd, C::RUBY_FIXNUM_FLAG)
+ jit_chain_guard(:jz, jit, ctx, asm, side_exit, limit:)
+
+ ctx.upgrade_opnd_type(insn_opnd, Type::Fixnum)
+ elsif known_klass == C.rb_cSymbol && static_symbol?(comptime_obj)
+ assert(!val_type.heap?)
+ # We will guard STATIC vs DYNAMIC as though they were separate classes
+ # DYNAMIC symbols can be handled by the general else case below
+ if val_type != Type::ImmSymbol || !val_type.imm?
+ assert(val_type.unknown?)
+
+ asm.comment('guard object is static symbol')
+ assert_equal(8, C::RUBY_SPECIAL_SHIFT)
+ asm.cmp(BytePtr[*obj_opnd], C::RUBY_SYMBOL_FLAG)
+ jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:)
+
+ ctx.upgrade_opnd_type(insn_opnd, Type::ImmSymbol)
+ end
+ elsif known_klass == C.rb_cFloat && flonum?(comptime_obj)
+ assert(!val_type.heap?)
+ if val_type != Type::Flonum || !val_type.imm?
+ assert(val_type.unknown?)
+
+ # We will guard flonum vs heap float as though they were separate classes
+ asm.comment('guard object is flonum')
+ asm.mov(:rax, obj_opnd)
+ asm.and(:rax, C::RUBY_FLONUM_MASK)
+ asm.cmp(:rax, C::RUBY_FLONUM_FLAG)
+ jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:)
+
+ ctx.upgrade_opnd_type(insn_opnd, Type::Flonum)
+ end
+ elsif C.RCLASS_SINGLETON_P(known_klass) && comptime_obj == C.rb_class_attached_object(known_klass)
+ # Singleton classes are attached to one specific object, so we can
+ # avoid one memory access (and potentially the is_heap check) by
+ # looking for the expected object directly.
+ # Note that in case the sample instance has a singleton class that
+ # doesn't attach to the sample instance, it means the sample instance
+ # has an empty singleton class that hasn't been materialized yet. In
+ # this case, comparing against the sample instance doesn't guarantee
+ # that its singleton class is empty, so we can't avoid the memory
+ # access. As an example, `Object.new.singleton_class` is an object in
+ # this situation.
+ asm.comment('guard known object with singleton class')
+ asm.mov(:rax, to_value(comptime_obj))
+ asm.cmp(obj_opnd, :rax)
+ jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:)
+ elsif val_type == Type::CString && known_klass == C.rb_cString
+ # guard elided because the context says we've already checked
+ assert_equal(C.to_value(C.rb_class_of(comptime_obj)), C.rb_cString)
+ else
+ assert(!val_type.imm?)
+
+ # Load memory to a register
+ asm.mov(:rax, obj_opnd)
+ obj_opnd = :rax
+
+ # Check that the receiver is a heap object
+ # Note: if we get here, the class doesn't have immediate instances.
+ unless val_type.heap?
+ asm.comment('guard not immediate')
+ asm.test(obj_opnd, C::RUBY_IMMEDIATE_MASK)
+ jit_chain_guard(:jnz, jit, ctx, asm, side_exit, limit:)
+ asm.cmp(obj_opnd, Qfalse)
+ jit_chain_guard(:je, jit, ctx, asm, side_exit, limit:)
+ end
+
+ # Bail if receiver class is different from known_klass
+ klass_opnd = [obj_opnd, C.RBasic.offsetof(:klass)]
+ asm.comment("guard known class #{known_klass}")
+ asm.mov(:rcx, known_klass)
+ asm.cmp(klass_opnd, :rcx)
+ jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:)
+
+ if known_klass == C.rb_cString
+ # Upgrading to Type::CString here is incorrect.
+ # The guard we put only checks RBASIC_CLASS(obj),
+ # which adding a singleton class can change. We
+ # additionally need to know the string is frozen
+ # to claim Type::CString.
+ ctx.upgrade_opnd_type(insn_opnd, Type::TString)
+ elsif known_klass == C.rb_cArray
+ ctx.upgrade_opnd_type(insn_opnd, Type::TArray)
+ end
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ def two_fixnums_on_stack?(jit)
+ comptime_recv = jit.peek_at_stack(1)
+ comptime_arg = jit.peek_at_stack(0)
+ return fixnum?(comptime_recv) && fixnum?(comptime_arg)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def guard_two_fixnums(jit, ctx, asm)
+ # Get stack operands without popping them
+ arg1 = ctx.stack_opnd(0)
+ arg0 = ctx.stack_opnd(1)
+
+ # Get the stack operand types
+ arg1_type = ctx.get_opnd_type(StackOpnd[0])
+ arg0_type = ctx.get_opnd_type(StackOpnd[1])
+
+ if arg0_type.heap? || arg1_type.heap?
+ asm.comment('arg is heap object')
+ asm.jmp(side_exit(jit, ctx))
+ return
+ end
+
+ if arg0_type != Type::Fixnum && arg0_type.specific?
+ asm.comment('arg0 not fixnum')
+ asm.jmp(side_exit(jit, ctx))
+ return
+ end
+
+ if arg1_type != Type::Fixnum && arg1_type.specific?
+ asm.comment('arg1 not fixnum')
+ asm.jmp(side_exit(jit, ctx))
+ return
+ end
+
+ assert(!arg0_type.heap?)
+ assert(!arg1_type.heap?)
+ assert(arg0_type == Type::Fixnum || arg0_type.unknown?)
+ assert(arg1_type == Type::Fixnum || arg1_type.unknown?)
+
+ # If not fixnums at run-time, fall back
+ if arg0_type != Type::Fixnum
+ asm.comment('guard arg0 fixnum')
+ asm.test(arg0, C::RUBY_FIXNUM_FLAG)
+ jit_chain_guard(:jz, jit, ctx, asm, side_exit(jit, ctx))
+ end
+ if arg1_type != Type::Fixnum
+ asm.comment('guard arg1 fixnum')
+ asm.test(arg1, C::RUBY_FIXNUM_FLAG)
+ jit_chain_guard(:jz, jit, ctx, asm, side_exit(jit, ctx))
+ end
+
+ # Set stack types in context
+ ctx.upgrade_opnd_type(StackOpnd[0], Type::Fixnum)
+ ctx.upgrade_opnd_type(StackOpnd[1], Type::Fixnum)
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_fixnum_cmp(jit, ctx, asm, opcode:, bop:)
+ opcode => :cmovl | :cmovle | :cmovg | :cmovge
+
+ unless jit.at_current_insn?
+ defer_compilation(jit, ctx, asm)
+ return EndBlock
+ end
+
+ comptime_recv = jit.peek_at_stack(1)
+ comptime_obj = jit.peek_at_stack(0)
+
+ if fixnum?(comptime_recv) && fixnum?(comptime_obj)
+ unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, bop)
+ return CantCompile
+ end
+
+ # Check that both operands are fixnums
+ guard_two_fixnums(jit, ctx, asm)
+
+ obj_opnd = ctx.stack_pop
+ recv_opnd = ctx.stack_pop
+
+ asm.mov(:rax, obj_opnd)
+ asm.cmp(recv_opnd, :rax)
+ asm.mov(:rax, Qfalse)
+ asm.mov(:rcx, Qtrue)
+ asm.public_send(opcode, :rax, :rcx)
+
+ dst_opnd = ctx.stack_push(Type::UnknownImm)
+ asm.mov(dst_opnd, :rax)
+
+ KeepCompiling
+ else
+ opt_send_without_block(jit, ctx, asm)
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_equality_specialized(jit, ctx, asm, gen_eq)
+ # Create a side-exit to fall back to the interpreter
+ side_exit = side_exit(jit, ctx)
+
+ a_opnd = ctx.stack_opnd(1)
+ b_opnd = ctx.stack_opnd(0)
+
+ comptime_a = jit.peek_at_stack(1)
+ comptime_b = jit.peek_at_stack(0)
+
+ if two_fixnums_on_stack?(jit)
+ unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_EQ)
+ return false
+ end
+
+ guard_two_fixnums(jit, ctx, asm)
+
+ asm.comment('check fixnum equality')
+ asm.mov(:rax, a_opnd)
+ asm.mov(:rcx, b_opnd)
+ asm.cmp(:rax, :rcx)
+ asm.mov(:rax, gen_eq ? Qfalse : Qtrue)
+ asm.mov(:rcx, gen_eq ? Qtrue : Qfalse)
+ asm.cmove(:rax, :rcx)
+
+ # Push the output on the stack
+ ctx.stack_pop(2)
+ dst = ctx.stack_push(Type::UnknownImm)
+ asm.mov(dst, :rax)
+
+ true
+ elsif C.rb_class_of(comptime_a) == String && C.rb_class_of(comptime_b) == String
+ unless Invariants.assume_bop_not_redefined(jit, C::STRING_REDEFINED_OP_FLAG, C::BOP_EQ)
+ # if overridden, emit the generic version
+ return false
+ end
+
+ # Guard that a is a String
+ jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_a), a_opnd, StackOpnd[1], comptime_a, side_exit)
+
+ equal_label = asm.new_label(:equal)
+ ret_label = asm.new_label(:ret)
+
+ # If they are equal by identity, return true
+ asm.mov(:rax, a_opnd)
+ asm.mov(:rcx, b_opnd)
+ asm.cmp(:rax, :rcx)
+ asm.je(equal_label)
+
+ # Otherwise guard that b is a T_STRING (from type info) or String (from runtime guard)
+ btype = ctx.get_opnd_type(StackOpnd[0])
+ unless btype.string?
+ # Note: any T_STRING is valid here, but we check for a ::String for simplicity
+ # To pass a mutable static variable (rb_cString) requires an unsafe block
+ jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_b), b_opnd, StackOpnd[0], comptime_b, side_exit)
+ end
+
+ asm.comment('call rb_str_eql_internal')
+ asm.mov(C_ARGS[0], a_opnd)
+ asm.mov(C_ARGS[1], b_opnd)
+ asm.call(gen_eq ? C.rb_str_eql_internal : C.rjit_str_neq_internal)
+
+ # Push the output on the stack
+ ctx.stack_pop(2)
+ dst = ctx.stack_push(Type::UnknownImm)
+ asm.mov(dst, C_RET)
+ asm.jmp(ret_label)
+
+ asm.write_label(equal_label)
+ asm.mov(dst, gen_eq ? Qtrue : Qfalse)
+
+ asm.write_label(ret_label)
+
+ true
+ else
+ false
+ end
+ end
+
+ # NOTE: This clobbers :rax
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_prepare_routine_call(jit, ctx, asm)
+ jit.record_boundary_patch_point = true
+ jit_save_pc(jit, asm)
+ jit_save_sp(ctx, asm)
+
+ # In case the routine calls Ruby methods, it can set local variables
+ # through Kernel#binding and other means.
+ ctx.clear_local_types
+ end
+
+ # NOTE: This clobbers :rax
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_save_pc(jit, asm, comment: 'save PC to CFP')
+ next_pc = jit.pc + jit.insn.len * C.VALUE.size # Use the next one for backtrace and side exits
+ asm.comment(comment)
+ asm.mov(:rax, next_pc)
+ asm.mov([CFP, C.rb_control_frame_t.offsetof(:pc)], :rax)
+ end
+
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_save_sp(ctx, asm)
+ if ctx.sp_offset != 0
+ asm.comment('save SP to CFP')
+ asm.lea(SP, ctx.sp_opnd)
+ asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], SP)
+ ctx.sp_offset = 0
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jump_to_next_insn(jit, ctx, asm)
+ reset_depth = ctx.dup
+ reset_depth.chain_depth = 0
+
+ next_pc = jit.pc + jit.insn.len * C.VALUE.size
+
+ # We are at the end of the current instruction. Record the boundary.
+ if jit.record_boundary_patch_point
+ exit_pos = Assembler.new.then do |ocb_asm|
+ @exit_compiler.compile_side_exit(next_pc, ctx, ocb_asm)
+ @ocb.write(ocb_asm)
+ end
+ Invariants.record_global_inval_patch(asm, exit_pos)
+ jit.record_boundary_patch_point = false
+ end
+
+ jit_direct_jump(jit.iseq, next_pc, reset_depth, asm, comment: 'jump_to_next_insn')
+ end
+
+ # rb_vm_check_ints
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_check_ints(jit, ctx, asm)
+ asm.comment('RUBY_VM_CHECK_INTS(ec)')
+ asm.mov(:eax, DwordPtr[EC, C.rb_execution_context_t.offsetof(:interrupt_flag)])
+ asm.test(:eax, :eax)
+ asm.jnz(side_exit(jit, ctx))
+ end
+
+ # See get_lvar_level in compile.c
+ def get_lvar_level(iseq)
+ level = 0
+ while iseq.to_i != iseq.body.local_iseq.to_i
+ level += 1
+ iseq = iseq.body.parent_iseq
+ end
+ return level
+ end
+
+ # GET_LEP
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_get_lep(jit, asm, reg:)
+ level = get_lvar_level(jit.iseq)
+ jit_get_ep(asm, level, reg:)
+ end
+
+ # vm_get_ep
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_get_ep(asm, level, reg:)
+ asm.mov(reg, [CFP, C.rb_control_frame_t.offsetof(:ep)])
+ level.times do
+ # GET_PREV_EP: ep[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03
+ asm.mov(reg, [reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL])
+ asm.and(reg, ~0x03)
+ end
+ end
+
+ # vm_getivar
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_getivar(jit, ctx, asm, comptime_obj, ivar_id, obj_opnd, obj_yarv_opnd)
+ side_exit = side_exit(jit, ctx)
+ starting_ctx = ctx.dup # copy for jit_chain_guard
+
+ # Guard not special const
+ if C::SPECIAL_CONST_P(comptime_obj)
+ asm.incr_counter(:getivar_special_const)
+ return CantCompile
+ end
+
+ case C::BUILTIN_TYPE(comptime_obj)
+ when C::T_OBJECT
+ # This is the only supported case for now (ROBJECT_IVPTR)
+ else
+ # General case. Call rb_ivar_get().
+ # VALUE rb_ivar_get(VALUE obj, ID id)
+ asm.comment('call rb_ivar_get()')
+ asm.mov(C_ARGS[0], obj_opnd ? obj_opnd : [CFP, C.rb_control_frame_t.offsetof(:self)])
+ asm.mov(C_ARGS[1], ivar_id)
+
+ # The function could raise exceptions.
+ jit_prepare_routine_call(jit, ctx, asm) # clobbers obj_opnd and :rax
+
+ asm.call(C.rb_ivar_get)
+
+ if obj_opnd # attr_reader
+ ctx.stack_pop
+ end
+
+ # Push the ivar on the stack
+ out_opnd = ctx.stack_push(Type::Unknown)
+ asm.mov(out_opnd, C_RET)
+
+ # Jump to next instruction. This allows guard chains to share the same successor.
+ jump_to_next_insn(jit, ctx, asm)
+ return EndBlock
+ end
+
+ asm.mov(:rax, obj_opnd ? obj_opnd : [CFP, C.rb_control_frame_t.offsetof(:self)])
+ guard_object_is_heap(jit, ctx, asm, :rax, obj_yarv_opnd, :getivar_not_heap)
+
+ shape_id = C.rb_shape_get_shape_id(comptime_obj)
+ if shape_id == C::OBJ_TOO_COMPLEX_SHAPE_ID
+ asm.incr_counter(:getivar_too_complex)
+ return CantCompile
+ end
+
+ asm.comment('guard shape')
+ asm.cmp(DwordPtr[:rax, C.rb_shape_id_offset], shape_id)
+ jit_chain_guard(:jne, jit, starting_ctx, asm, counted_exit(side_exit, :getivar_megamorphic))
+
+ if obj_opnd
+ ctx.stack_pop # pop receiver for attr_reader
+ end
+
+ index = C.rb_shape_get_iv_index(shape_id, ivar_id)
+ # If there is no IVAR index, then the ivar was undefined
+ # when we entered the compiler. That means we can just return
+ # nil for this shape + iv name
+ if index.nil?
+ stack_opnd = ctx.stack_push(Type::Nil)
+ val_opnd = Qnil
+ else
+ asm.comment('ROBJECT_IVPTR')
+ if C::FL_TEST_RAW(comptime_obj, C::ROBJECT_EMBED)
+ # Access embedded array
+ asm.mov(:rax, [:rax, C.RObject.offsetof(:as, :ary) + (index * C.VALUE.size)])
+ else
+ # Pull out an ivar table on heap
+ asm.mov(:rax, [:rax, C.RObject.offsetof(:as, :heap, :ivptr)])
+ # Read the table
+ asm.mov(:rax, [:rax, index * C.VALUE.size])
+ end
+ stack_opnd = ctx.stack_push(Type::Unknown)
+ val_opnd = :rax
+ end
+ asm.mov(stack_opnd, val_opnd)
+
+ # Let guard chains share the same successor
+ jump_to_next_insn(jit, ctx, asm)
+ EndBlock
+ end
+
+ def jit_write_iv(asm, comptime_receiver, recv_reg, temp_reg, ivar_index, set_value, needs_extension)
+ # Compile time self is embedded and the ivar index lands within the object
+ embed_test_result = C::FL_TEST_RAW(comptime_receiver, C::ROBJECT_EMBED) && !needs_extension
+
+ if embed_test_result
+ # Find the IV offset
+ offs = C.RObject.offsetof(:as, :ary) + ivar_index * C.VALUE.size
+
+ # Write the IV
+ asm.comment('write IV')
+ asm.mov(temp_reg, set_value)
+ asm.mov([recv_reg, offs], temp_reg)
+ else
+ # Compile time value is *not* embedded.
+
+ # Get a pointer to the extended table
+ asm.mov(recv_reg, [recv_reg, C.RObject.offsetof(:as, :heap, :ivptr)])
+
+ # Write the ivar in to the extended table
+ asm.comment("write IV");
+ asm.mov(temp_reg, set_value)
+ asm.mov([recv_reg, C.VALUE.size * ivar_index], temp_reg)
+ end
+ end
+
+ # vm_caller_setup_arg_block: Handle VM_CALL_ARGS_BLOCKARG cases.
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def guard_block_arg(jit, ctx, asm, calling)
+ if calling.flags & C::VM_CALL_ARGS_BLOCKARG != 0
+ block_arg_type = ctx.get_opnd_type(StackOpnd[0])
+ case block_arg_type
+ in Type::Nil
+ calling.block_handler = C::VM_BLOCK_HANDLER_NONE
+ in Type::BlockParamProxy
+ calling.block_handler = C.rb_block_param_proxy
+ else
+ asm.incr_counter(:send_block_arg)
+ return CantCompile
+ end
+ end
+ end
+
+ # vm_search_method
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_search_method(jit, ctx, asm, mid, calling)
+ assert_equal(true, jit.at_current_insn?)
+
+ # Generate a side exit
+ side_exit = side_exit(jit, ctx)
+
+ # kw_splat is not supported yet
+ if calling.flags & C::VM_CALL_KW_SPLAT != 0
+ asm.incr_counter(:send_kw_splat)
+ return CantCompile
+ end
+
+ # Get a compile-time receiver and its class
+ recv_idx = calling.argc + (calling.flags & C::VM_CALL_ARGS_BLOCKARG != 0 ? 1 : 0) # blockarg is not popped yet
+ recv_idx += calling.send_shift
+ comptime_recv = jit.peek_at_stack(recv_idx)
+ comptime_recv_klass = C.rb_class_of(comptime_recv)
+
+ # Guard the receiver class (part of vm_search_method_fastpath)
+ recv_opnd = ctx.stack_opnd(recv_idx)
+ megamorphic_exit = counted_exit(side_exit, :send_klass_megamorphic)
+ jit_guard_known_klass(jit, ctx, asm, comptime_recv_klass, recv_opnd, StackOpnd[recv_idx], comptime_recv, megamorphic_exit)
+
+ # Do method lookup (vm_cc_cme(cc) != NULL)
+ cme = C.rb_callable_method_entry(comptime_recv_klass, mid)
+ if cme.nil?
+ asm.incr_counter(:send_missing_cme)
+ return CantCompile # We don't support vm_call_method_name
+ end
+
+ # Invalidate on redefinition (part of vm_search_method_fastpath)
+ Invariants.assume_method_lookup_stable(jit, cme)
+
+ return cme, comptime_recv_klass
+ end
+
+ # vm_call_general
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_call_general(jit, ctx, asm, mid, calling, cme, known_recv_class)
+ jit_call_method(jit, ctx, asm, mid, calling, cme, known_recv_class)
+ end
+
+ # vm_call_method
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ # @param send_shift [Integer] The number of shifts needed for VM_CALL_OPT_SEND
+ def jit_call_method(jit, ctx, asm, mid, calling, cme, known_recv_class)
+ # The main check of vm_call_method before vm_call_method_each_type
+ case C::METHOD_ENTRY_VISI(cme)
+ in C::METHOD_VISI_PUBLIC
+ # You can always call public methods
+ in C::METHOD_VISI_PRIVATE
+ # Allow only callsites without a receiver
+ if calling.flags & C::VM_CALL_FCALL == 0
+ asm.incr_counter(:send_private)
+ return CantCompile
+ end
+ in C::METHOD_VISI_PROTECTED
+ # If the method call is an FCALL, it is always valid
+ if calling.flags & C::VM_CALL_FCALL == 0
+ # otherwise we need an ancestry check to ensure the receiver is valid to be called as protected
+ jit_protected_callee_ancestry_guard(asm, cme, side_exit(jit, ctx))
+ end
+ end
+
+ # Get a compile-time receiver
+ recv_idx = calling.argc + (calling.flags & C::VM_CALL_ARGS_BLOCKARG != 0 ? 1 : 0) # blockarg is not popped yet
+ recv_idx += calling.send_shift
+ comptime_recv = jit.peek_at_stack(recv_idx)
+ recv_opnd = ctx.stack_opnd(recv_idx)
+
+ jit_call_method_each_type(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class)
+ end
+
+ # Generate ancestry guard for protected callee.
+ # Calls to protected callees only go through when self.is_a?(klass_that_defines_the_callee).
+ def jit_protected_callee_ancestry_guard(asm, cme, side_exit)
+ # See vm_call_method().
+ def_class = cme.defined_class
+ # Note: PC isn't written to current control frame as rb_is_kind_of() shouldn't raise.
+ # VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass);
+
+ asm.mov(C_ARGS[0], [CFP, C.rb_control_frame_t.offsetof(:self)])
+ asm.mov(C_ARGS[1], to_value(def_class))
+ asm.call(C.rb_obj_is_kind_of)
+ asm.test(C_RET, C_RET)
+ asm.jz(counted_exit(side_exit, :send_protected_check_failed))
+ end
+
+ # vm_call_method_each_type
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_call_method_each_type(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class)
+ case cme.def.type
+ in C::VM_METHOD_TYPE_ISEQ
+ iseq = def_iseq_ptr(cme.def)
+ jit_call_iseq(jit, ctx, asm, cme, calling, iseq)
+ in C::VM_METHOD_TYPE_NOTIMPLEMENTED
+ asm.incr_counter(:send_notimplemented)
+ return CantCompile
+ in C::VM_METHOD_TYPE_CFUNC
+ jit_call_cfunc(jit, ctx, asm, cme, calling, known_recv_class:)
+ in C::VM_METHOD_TYPE_ATTRSET
+ jit_call_attrset(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd)
+ in C::VM_METHOD_TYPE_IVAR
+ jit_call_ivar(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd)
+ in C::VM_METHOD_TYPE_MISSING
+ asm.incr_counter(:send_missing)
+ return CantCompile
+ in C::VM_METHOD_TYPE_BMETHOD
+ jit_call_bmethod(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class)
+ in C::VM_METHOD_TYPE_ALIAS
+ jit_call_alias(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class)
+ in C::VM_METHOD_TYPE_OPTIMIZED
+ jit_call_optimized(jit, ctx, asm, cme, calling, known_recv_class)
+ in C::VM_METHOD_TYPE_UNDEF
+ asm.incr_counter(:send_undef)
+ return CantCompile
+ in C::VM_METHOD_TYPE_ZSUPER
+ asm.incr_counter(:send_zsuper)
+ return CantCompile
+ in C::VM_METHOD_TYPE_REFINED
+ asm.incr_counter(:send_refined)
+ return CantCompile
+ end
+ end
+
+ # vm_call_iseq_setup
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_call_iseq(jit, ctx, asm, cme, calling, iseq, frame_type: nil, prev_ep: nil)
+ argc = calling.argc
+ flags = calling.flags
+ send_shift = calling.send_shift
+
+ # When you have keyword arguments, there is an extra object that gets
+ # placed on the stack the represents a bitmap of the keywords that were not
+ # specified at the call site. We need to keep track of the fact that this
+ # value is present on the stack in order to properly set up the callee's
+ # stack pointer.
+ doing_kw_call = iseq.body.param.flags.has_kw
+ supplying_kws = flags & C::VM_CALL_KWARG != 0
+
+ if flags & C::VM_CALL_TAILCALL != 0
+ # We can't handle tailcalls
+ asm.incr_counter(:send_tailcall)
+ return CantCompile
+ end
+
+ # No support for callees with these parameters yet as they require allocation
+ # or complex handling.
+ if iseq.body.param.flags.has_post
+ asm.incr_counter(:send_iseq_has_opt)
+ return CantCompile
+ end
+ if iseq.body.param.flags.has_kwrest
+ asm.incr_counter(:send_iseq_has_kwrest)
+ return CantCompile
+ end
+
+ # In order to handle backwards compatibility between ruby 3 and 2
+ # ruby2_keywords was introduced. It is called only on methods
+ # with splat and changes they way they handle them.
+ # We are just going to not compile these.
+ # https://www.rubydoc.info/stdlib/core/Proc:ruby2_keywords
+ if iseq.body.param.flags.ruby2_keywords && flags & C::VM_CALL_ARGS_SPLAT != 0
+ asm.incr_counter(:send_iseq_ruby2_keywords)
+ return CantCompile
+ end
+
+ iseq_has_rest = iseq.body.param.flags.has_rest
+ if iseq_has_rest && calling.block_handler == :captured
+ asm.incr_counter(:send_iseq_has_rest_and_captured)
+ return CantCompile
+ end
+
+ if iseq_has_rest && iseq.body.param.flags.has_kw && supplying_kws
+ asm.incr_counter(:send_iseq_has_rest_and_kw_supplied)
+ return CantCompile
+ end
+
+ # If we have keyword arguments being passed to a callee that only takes
+ # positionals, then we need to allocate a hash. For now we're going to
+ # call that too complex and bail.
+ if supplying_kws && !iseq.body.param.flags.has_kw
+ asm.incr_counter(:send_iseq_has_no_kw)
+ return CantCompile
+ end
+
+ # If we have a method accepting no kwargs (**nil), exit if we have passed
+ # it any kwargs.
+ if supplying_kws && iseq.body.param.flags.accepts_no_kwarg
+ asm.incr_counter(:send_iseq_accepts_no_kwarg)
+ return CantCompile
+ end
+
+ # For computing number of locals to set up for the callee
+ num_params = iseq.body.param.size
+
+ # Block parameter handling. This mirrors setup_parameters_complex().
+ if iseq.body.param.flags.has_block
+ if iseq.body.local_iseq.to_i == iseq.to_i
+ num_params -= 1
+ else
+ # In this case (param.flags.has_block && local_iseq != iseq),
+ # the block argument is setup as a local variable and requires
+ # materialization (allocation). Bail.
+ asm.incr_counter(:send_iseq_materialized_block)
+ return CantCompile
+ end
+ end
+
+ if flags & C::VM_CALL_ARGS_SPLAT != 0 && flags & C::VM_CALL_ZSUPER != 0
+ # zsuper methods are super calls without any arguments.
+ # They are also marked as splat, but don't actually have an array
+ # they pull arguments from, instead we need to change to call
+ # a different method with the current stack.
+ asm.incr_counter(:send_iseq_zsuper)
+ return CantCompile
+ end
+
+ start_pc_offset = 0
+ required_num = iseq.body.param.lead_num
+
+ # This struct represents the metadata about the caller-specified
+ # keyword arguments.
+ kw_arg = calling.kwarg
+ kw_arg_num = if kw_arg.nil?
+ 0
+ else
+ kw_arg.keyword_len
+ end
+
+ # Arity handling and optional parameter setup
+ opts_filled = argc - required_num - kw_arg_num
+ opt_num = iseq.body.param.opt_num
+ opts_missing = opt_num - opts_filled
+
+ if doing_kw_call && flags & C::VM_CALL_ARGS_SPLAT != 0
+ asm.incr_counter(:send_iseq_splat_with_kw)
+ return CantCompile
+ end
+
+ if flags & C::VM_CALL_KW_SPLAT != 0
+ asm.incr_counter(:send_iseq_kw_splat)
+ return CantCompile
+ end
+
+ if iseq_has_rest && opt_num != 0
+ asm.incr_counter(:send_iseq_has_rest_and_optional)
+ return CantCompile
+ end
+
+ if opts_filled < 0 && flags & C::VM_CALL_ARGS_SPLAT == 0
+ # Too few arguments and no splat to make up for it
+ asm.incr_counter(:send_iseq_arity_error)
+ return CantCompile
+ end
+
+ if opts_filled > opt_num && !iseq_has_rest
+ # Too many arguments and no place to put them (i.e. rest arg)
+ asm.incr_counter(:send_iseq_arity_error)
+ return CantCompile
+ end
+
+ block_arg = flags & C::VM_CALL_ARGS_BLOCKARG != 0
+
+ # Guard block_arg_type
+ if guard_block_arg(jit, ctx, asm, calling) == CantCompile
+ return CantCompile
+ end
+
+ # If we have unfilled optional arguments and keyword arguments then we
+ # would need to adjust the arguments location to account for that.
+ # For now we aren't handling this case.
+ if doing_kw_call && opts_missing > 0
+ asm.incr_counter(:send_iseq_missing_optional_kw)
+ return CantCompile
+ end
+
+ # We will handle splat case later
+ if opt_num > 0 && flags & C::VM_CALL_ARGS_SPLAT == 0
+ num_params -= opts_missing
+ start_pc_offset = iseq.body.param.opt_table[opts_filled]
+ end
+
+ if doing_kw_call
+ # Here we're calling a method with keyword arguments and specifying
+ # keyword arguments at this call site.
+
+ # This struct represents the metadata about the callee-specified
+ # keyword parameters.
+ keyword = iseq.body.param.keyword
+ keyword_num = keyword.num
+ keyword_required_num = keyword.required_num
+
+ required_kwargs_filled = 0
+
+ if keyword_num > 30
+ # We have so many keywords that (1 << num) encoded as a FIXNUM
+ # (which shifts it left one more) no longer fits inside a 32-bit
+ # immediate.
+ asm.incr_counter(:send_iseq_too_many_kwargs)
+ return CantCompile
+ end
+
+ # Check that the kwargs being passed are valid
+ if supplying_kws
+ # This is the list of keyword arguments that the callee specified
+ # in its initial declaration.
+ # SAFETY: see compile.c for sizing of this slice.
+ callee_kwargs = keyword_num.times.map { |i| keyword.table[i] }
+
+ # Here we're going to build up a list of the IDs that correspond to
+ # the caller-specified keyword arguments. If they're not in the
+ # same order as the order specified in the callee declaration, then
+ # we're going to need to generate some code to swap values around
+ # on the stack.
+ caller_kwargs = []
+ kw_arg.keyword_len.times do |kwarg_idx|
+ sym = C.to_ruby(kw_arg[:keywords][kwarg_idx])
+ caller_kwargs << C.rb_sym2id(sym)
+ end
+
+ # First, we're going to be sure that the names of every
+ # caller-specified keyword argument correspond to a name in the
+ # list of callee-specified keyword parameters.
+ caller_kwargs.each do |caller_kwarg|
+ search_result = callee_kwargs.map.with_index.find { |kwarg, _| kwarg == caller_kwarg }
+
+ case search_result
+ in nil
+ # If the keyword was never found, then we know we have a
+ # mismatch in the names of the keyword arguments, so we need to
+ # bail.
+ asm.incr_counter(:send_iseq_kwargs_mismatch)
+ return CantCompile
+ in _, callee_idx if callee_idx < keyword_required_num
+ # Keep a count to ensure all required kwargs are specified
+ required_kwargs_filled += 1
+ else
+ end
+ end
+ end
+ assert_equal(true, required_kwargs_filled <= keyword_required_num)
+ if required_kwargs_filled != keyword_required_num
+ asm.incr_counter(:send_iseq_kwargs_mismatch)
+ return CantCompile
+ end
+ end
+
+ # Check if we need the arg0 splat handling of vm_callee_setup_block_arg
+ arg_setup_block = (calling.block_handler == :captured) # arg_setup_type: arg_setup_block (invokeblock)
+ block_arg0_splat = arg_setup_block && argc == 1 &&
+ (iseq.body.param.flags.has_lead || opt_num > 1) &&
+ !iseq.body.param.flags.ambiguous_param0
+ if block_arg0_splat
+ # If block_arg0_splat, we still need side exits after splat, but
+ # doing push_splat_args here disallows it. So bail out.
+ if flags & C::VM_CALL_ARGS_SPLAT != 0 && !iseq_has_rest
+ asm.incr_counter(:invokeblock_iseq_arg0_args_splat)
+ return CantCompile
+ end
+ # The block_arg0_splat implementation is for the rb_simple_iseq_p case,
+ # but doing_kw_call means it's not a simple ISEQ.
+ if doing_kw_call
+ asm.incr_counter(:invokeblock_iseq_arg0_has_kw)
+ return CantCompile
+ end
+ # The block_arg0_splat implementation cannot deal with optional parameters.
+ # This is a setup_parameters_complex() situation and interacts with the
+ # starting position of the callee.
+ if opt_num > 1
+ asm.incr_counter(:invokeblock_iseq_arg0_optional)
+ return CantCompile
+ end
+ end
+ if flags & C::VM_CALL_ARGS_SPLAT != 0 && !iseq_has_rest
+ array = jit.peek_at_stack(block_arg ? 1 : 0)
+ splat_array_length = if array.nil?
+ 0
+ else
+ array.length
+ end
+
+ if opt_num == 0 && required_num != splat_array_length + argc - 1
+ asm.incr_counter(:send_iseq_splat_arity_error)
+ return CantCompile
+ end
+ end
+
+ # We will not have CantCompile from here.
+
+ if block_arg
+ ctx.stack_pop(1)
+ end
+
+ if calling.block_handler == C::VM_BLOCK_HANDLER_NONE && iseq.body.builtin_attrs & C::BUILTIN_ATTR_LEAF != 0
+ if jit_leaf_builtin_func(jit, ctx, asm, flags, iseq)
+ return KeepCompiling
+ end
+ end
+
+ # Number of locals that are not parameters
+ num_locals = iseq.body.local_table_size - num_params
+
+ # Stack overflow check
+ # Note that vm_push_frame checks it against a decremented cfp, hence the multiply by 2.
+ # #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
+ asm.comment('stack overflow check')
+ locals_offs = C.VALUE.size * (num_locals + iseq.body.stack_max) + 2 * C.rb_control_frame_t.size
+ asm.lea(:rax, ctx.sp_opnd(locals_offs))
+ asm.cmp(CFP, :rax)
+ asm.jbe(counted_exit(side_exit(jit, ctx), :send_stackoverflow))
+
+ # push_splat_args does stack manipulation so we can no longer side exit
+ if splat_array_length
+ remaining_opt = (opt_num + required_num) - (splat_array_length + (argc - 1))
+
+ if opt_num > 0
+ # We are going to jump to the correct offset based on how many optional
+ # params are remaining.
+ offset = opt_num - remaining_opt
+ start_pc_offset = iseq.body.param.opt_table[offset]
+ end
+ # We are going to assume that the splat fills
+ # all the remaining arguments. In the generated code
+ # we test if this is true and if not side exit.
+ argc = argc - 1 + splat_array_length + remaining_opt
+ push_splat_args(splat_array_length, jit, ctx, asm)
+
+ remaining_opt.times do
+ # We need to push nil for the optional arguments
+ stack_ret = ctx.stack_push(Type::Unknown)
+ asm.mov(stack_ret, Qnil)
+ end
+ end
+
+ # This is a .send call and we need to adjust the stack
+ if flags & C::VM_CALL_OPT_SEND != 0
+ handle_opt_send_shift_stack(asm, argc, ctx, send_shift:)
+ end
+
+ if iseq_has_rest
+ # We are going to allocate so setting pc and sp.
+ jit_save_pc(jit, asm) # clobbers rax
+ jit_save_sp(ctx, asm)
+
+ if flags & C::VM_CALL_ARGS_SPLAT != 0
+ non_rest_arg_count = argc - 1
+ # We start by dupping the array because someone else might have
+ # a reference to it.
+ array = ctx.stack_pop(1)
+ asm.mov(C_ARGS[0], array)
+ asm.call(C.rb_ary_dup)
+ array = C_RET
+ if non_rest_arg_count > required_num
+ # If we have more arguments than required, we need to prepend
+ # the items from the stack onto the array.
+ diff = (non_rest_arg_count - required_num)
+
+ # diff is >0 so no need to worry about null pointer
+ asm.comment('load pointer to array elements')
+ offset_magnitude = C.VALUE.size * diff
+ values_opnd = ctx.sp_opnd(-offset_magnitude)
+ values_ptr = :rcx
+ asm.lea(values_ptr, values_opnd)
+
+ asm.comment('prepend stack values to rest array')
+ asm.mov(C_ARGS[0], diff)
+ asm.mov(C_ARGS[1], values_ptr)
+ asm.mov(C_ARGS[2], array)
+ asm.call(C.rb_ary_unshift_m)
+ ctx.stack_pop(diff)
+
+ stack_ret = ctx.stack_push(Type::TArray)
+ asm.mov(stack_ret, C_RET)
+ # We now should have the required arguments
+ # and an array of all the rest arguments
+ argc = required_num + 1
+ elsif non_rest_arg_count < required_num
+ # If we have fewer arguments than required, we need to take some
+ # from the array and move them to the stack.
+ diff = (required_num - non_rest_arg_count)
+ # This moves the arguments onto the stack. But it doesn't modify the array.
+ move_rest_args_to_stack(array, diff, jit, ctx, asm)
+
+ # We will now slice the array to give us a new array of the correct size
+ asm.mov(C_ARGS[0], array)
+ asm.mov(C_ARGS[1], diff)
+ asm.call(C.rjit_rb_ary_subseq_length)
+ stack_ret = ctx.stack_push(Type::TArray)
+ asm.mov(stack_ret, C_RET)
+
+ # We now should have the required arguments
+ # and an array of all the rest arguments
+ argc = required_num + 1
+ else
+ # The arguments are equal so we can just push to the stack
+ assert_equal(non_rest_arg_count, required_num)
+ stack_ret = ctx.stack_push(Type::TArray)
+ asm.mov(stack_ret, array)
+ end
+ else
+ assert_equal(true, argc >= required_num)
+ n = (argc - required_num)
+ argc = required_num + 1
+ # If n is 0, then elts is never going to be read, so we can just pass null
+ if n == 0
+ values_ptr = 0
+ else
+ asm.comment('load pointer to array elements')
+ offset_magnitude = C.VALUE.size * n
+ values_opnd = ctx.sp_opnd(-offset_magnitude)
+ values_ptr = :rcx
+ asm.lea(values_ptr, values_opnd)
+ end
+
+ asm.mov(C_ARGS[0], EC)
+ asm.mov(C_ARGS[1], n)
+ asm.mov(C_ARGS[2], values_ptr)
+ asm.call(C.rb_ec_ary_new_from_values)
+
+ ctx.stack_pop(n)
+ stack_ret = ctx.stack_push(Type::TArray)
+ asm.mov(stack_ret, C_RET)
+ end
+ end
+
+ if doing_kw_call
+ # Here we're calling a method with keyword arguments and specifying
+ # keyword arguments at this call site.
+
+ # Number of positional arguments the callee expects before the first
+ # keyword argument
+ args_before_kw = required_num + opt_num
+
+ # This struct represents the metadata about the caller-specified
+ # keyword arguments.
+ ci_kwarg = calling.kwarg
+ caller_keyword_len = if ci_kwarg.nil?
+ 0
+ else
+ ci_kwarg.keyword_len
+ end
+
+ # This struct represents the metadata about the callee-specified
+ # keyword parameters.
+ keyword = iseq.body.param.keyword
+
+ asm.comment('keyword args')
+
+ # This is the list of keyword arguments that the callee specified
+ # in its initial declaration.
+ callee_kwargs = keyword.table
+ total_kwargs = keyword.num
+
+ # Here we're going to build up a list of the IDs that correspond to
+ # the caller-specified keyword arguments. If they're not in the
+ # same order as the order specified in the callee declaration, then
+ # we're going to need to generate some code to swap values around
+ # on the stack.
+ caller_kwargs = []
+
+ caller_keyword_len.times do |kwarg_idx|
+ sym = C.to_ruby(ci_kwarg[:keywords][kwarg_idx])
+ caller_kwargs << C.rb_sym2id(sym)
+ end
+ kwarg_idx = caller_keyword_len
+
+ unspecified_bits = 0
+
+ keyword_required_num = keyword.required_num
+ (keyword_required_num...total_kwargs).each do |callee_idx|
+ already_passed = false
+ callee_kwarg = callee_kwargs[callee_idx]
+
+ caller_keyword_len.times do |caller_idx|
+ if caller_kwargs[caller_idx] == callee_kwarg
+ already_passed = true
+ break
+ end
+ end
+
+ unless already_passed
+ # Reserve space on the stack for each default value we'll be
+ # filling in (which is done in the next loop). Also increments
+ # argc so that the callee's SP is recorded correctly.
+ argc += 1
+ default_arg = ctx.stack_push(Type::Unknown)
+
+ # callee_idx - keyword->required_num is used in a couple of places below.
+ req_num = keyword.required_num
+ extra_args = callee_idx - req_num
+
+ # VALUE default_value = keyword->default_values[callee_idx - keyword->required_num];
+ default_value = keyword.default_values[extra_args]
+
+ if default_value == Qundef
+ # Qundef means that this value is not constant and must be
+ # recalculated at runtime, so we record it in unspecified_bits
+ # (Qnil is then used as a placeholder instead of Qundef).
+ unspecified_bits |= 0x01 << extra_args
+ default_value = Qnil
+ end
+
+ asm.mov(:rax, default_value)
+ asm.mov(default_arg, :rax)
+
+ caller_kwargs[kwarg_idx] = callee_kwarg
+ kwarg_idx += 1
+ end
+ end
+
+ assert_equal(kwarg_idx, total_kwargs)
+
+ # Next, we're going to loop through every keyword that was
+ # specified by the caller and make sure that it's in the correct
+ # place. If it's not we're going to swap it around with another one.
+ total_kwargs.times do |kwarg_idx|
+ callee_kwarg = callee_kwargs[kwarg_idx]
+
+ # If the argument is already in the right order, then we don't
+ # need to generate any code since the expected value is already
+ # in the right place on the stack.
+ if callee_kwarg == caller_kwargs[kwarg_idx]
+ next
+ end
+
+ # In this case the argument is not in the right place, so we
+ # need to find its position where it _should_ be and swap with
+ # that location.
+ ((kwarg_idx + 1)...total_kwargs).each do |swap_idx|
+ if callee_kwarg == caller_kwargs[swap_idx]
+ # First we're going to generate the code that is going
+ # to perform the actual swapping at runtime.
+ offset0 = argc - 1 - swap_idx - args_before_kw
+ offset1 = argc - 1 - kwarg_idx - args_before_kw
+ stack_swap(jit, ctx, asm, offset0, offset1)
+
+ # Next we're going to do some bookkeeping on our end so
+ # that we know the order that the arguments are
+ # actually in now.
+ caller_kwargs[kwarg_idx], caller_kwargs[swap_idx] =
+ caller_kwargs[swap_idx], caller_kwargs[kwarg_idx]
+
+ break
+ end
+ end
+ end
+
+ # Keyword arguments cause a special extra local variable to be
+ # pushed onto the stack that represents the parameters that weren't
+ # explicitly given a value and have a non-constant default.
+ asm.mov(ctx.stack_opnd(-1), C.to_value(unspecified_bits))
+ end
+
+ # Same as vm_callee_setup_block_arg_arg0_check and vm_callee_setup_block_arg_arg0_splat
+ # on vm_callee_setup_block_arg for arg_setup_block. This is done after CALLER_SETUP_ARG
+ # and CALLER_REMOVE_EMPTY_KW_SPLAT, so this implementation is put here. This may need
+ # side exits, so you still need to allow side exits here if block_arg0_splat is true.
+ # Note that you can't have side exits after this arg0 splat.
+ if block_arg0_splat
+ asm.incr_counter(:send_iseq_block_arg0_splat)
+ return CantCompile
+ end
+
+ # Create a context for the callee
+ callee_ctx = Context.new
+
+ # Set the argument types in the callee's context
+ argc.times do |arg_idx|
+ stack_offs = argc - arg_idx - 1
+ arg_type = ctx.get_opnd_type(StackOpnd[stack_offs])
+ callee_ctx.set_local_type(arg_idx, arg_type)
+ end
+
+ recv_type = if calling.block_handler == :captured
+ Type::Unknown # we don't track the type information of captured->self for now
+ else
+ ctx.get_opnd_type(StackOpnd[argc])
+ end
+ callee_ctx.upgrade_opnd_type(SelfOpnd, recv_type)
+
+ # Setup the new frame
+ frame_type ||= C::VM_FRAME_MAGIC_METHOD | C::VM_ENV_FLAG_LOCAL
+ jit_push_frame(
+ jit, ctx, asm, cme, flags, argc, frame_type, calling.block_handler,
+ iseq: iseq,
+ local_size: num_locals,
+ stack_max: iseq.body.stack_max,
+ prev_ep:,
+ doing_kw_call:,
+ )
+
+ # Directly jump to the entry point of the callee
+ pc = (iseq.body.iseq_encoded + start_pc_offset).to_i
+ jit_direct_jump(iseq, pc, callee_ctx, asm)
+
+ EndBlock
+ end
+
+ def jit_leaf_builtin_func(jit, ctx, asm, flags, iseq)
+ builtin_func = builtin_function(iseq)
+ if builtin_func.nil?
+ return false
+ end
+
+ # this is a .send call not currently supported for builtins
+ if flags & C::VM_CALL_OPT_SEND != 0
+ return false
+ end
+
+ builtin_argc = builtin_func.argc
+ if builtin_argc + 1 >= C_ARGS.size
+ return false
+ end
+
+ asm.comment('inlined leaf builtin')
+
+ # The callee may allocate, e.g. Integer#abs on a Bignum.
+ # Save SP for GC, save PC for allocation tracing, and prepare
+ # for global invalidation after GC's VM lock contention.
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ # Call the builtin func (ec, recv, arg1, arg2, ...)
+ asm.mov(C_ARGS[0], EC)
+
+ # Copy self and arguments
+ (0..builtin_argc).each do |i|
+ stack_opnd = ctx.stack_opnd(builtin_argc - i)
+ asm.mov(C_ARGS[i + 1], stack_opnd)
+ end
+ ctx.stack_pop(builtin_argc + 1)
+ asm.call(builtin_func.func_ptr)
+
+ # Push the return value
+ stack_ret = ctx.stack_push(Type::Unknown)
+ asm.mov(stack_ret, C_RET)
+ return true
+ end
+
+ # vm_call_cfunc
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_call_cfunc(jit, ctx, asm, cme, calling, known_recv_class: nil)
+ argc = calling.argc
+ flags = calling.flags
+
+ cfunc = cme.def.body.cfunc
+ cfunc_argc = cfunc.argc
+
+ # If the function expects a Ruby array of arguments
+ if cfunc_argc < 0 && cfunc_argc != -1
+ asm.incr_counter(:send_cfunc_ruby_array_varg)
+ return CantCompile
+ end
+
+ # We aren't handling a vararg cfuncs with splat currently.
+ if flags & C::VM_CALL_ARGS_SPLAT != 0 && cfunc_argc == -1
+ asm.incr_counter(:send_args_splat_cfunc_var_args)
+ return CantCompile
+ end
+
+ if flags & C::VM_CALL_ARGS_SPLAT != 0 && flags & C::VM_CALL_ZSUPER != 0
+ # zsuper methods are super calls without any arguments.
+ # They are also marked as splat, but don't actually have an array
+ # they pull arguments from, instead we need to change to call
+ # a different method with the current stack.
+ asm.incr_counter(:send_args_splat_cfunc_zuper)
+ return CantCompile;
+ end
+
+ # In order to handle backwards compatibility between ruby 3 and 2
+ # ruby2_keywords was introduced. It is called only on methods
+ # with splat and changes they way they handle them.
+ # We are just going to not compile these.
+ # https://docs.ruby-lang.org/en/3.2/Module.html#method-i-ruby2_keywords
+ if jit.iseq.body.param.flags.ruby2_keywords && flags & C::VM_CALL_ARGS_SPLAT != 0
+ asm.incr_counter(:send_args_splat_cfunc_ruby2_keywords)
+ return CantCompile;
+ end
+
+ kw_arg = calling.kwarg
+ kw_arg_num = if kw_arg.nil?
+ 0
+ else
+ kw_arg.keyword_len
+ end
+
+ if kw_arg_num != 0 && flags & C::VM_CALL_ARGS_SPLAT != 0
+ asm.incr_counter(:send_cfunc_splat_with_kw)
+ return CantCompile
+ end
+
+ if c_method_tracing_currently_enabled?
+ # Don't JIT if tracing c_call or c_return
+ asm.incr_counter(:send_cfunc_tracing)
+ return CantCompile
+ end
+
+ # Delegate to codegen for C methods if we have it.
+ if kw_arg.nil? && flags & C::VM_CALL_OPT_SEND == 0 && flags & C::VM_CALL_ARGS_SPLAT == 0 && (cfunc_argc == -1 || argc == cfunc_argc)
+ known_cfunc_codegen = lookup_cfunc_codegen(cme.def)
+ if known_cfunc_codegen&.call(jit, ctx, asm, argc, known_recv_class)
+ # cfunc codegen generated code. Terminate the block so
+ # there isn't multiple calls in the same block.
+ jump_to_next_insn(jit, ctx, asm)
+ return EndBlock
+ end
+ end
+
+ # Check for interrupts
+ jit_check_ints(jit, ctx, asm)
+
+ # Stack overflow check
+ # #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
+ # REG_CFP <= REG_SP + 4 * SIZEOF_VALUE + sizeof(rb_control_frame_t)
+ asm.comment('stack overflow check')
+ asm.lea(:rax, ctx.sp_opnd(C.VALUE.size * 4 + 2 * C.rb_control_frame_t.size))
+ asm.cmp(CFP, :rax)
+ asm.jbe(counted_exit(side_exit(jit, ctx), :send_stackoverflow))
+
+ # Number of args which will be passed through to the callee
+ # This is adjusted by the kwargs being combined into a hash.
+ passed_argc = if kw_arg.nil?
+ argc
+ else
+ argc - kw_arg_num + 1
+ end
+
+ # If the argument count doesn't match
+ if cfunc_argc >= 0 && cfunc_argc != passed_argc && flags & C::VM_CALL_ARGS_SPLAT == 0
+ asm.incr_counter(:send_cfunc_argc_mismatch)
+ return CantCompile
+ end
+
+ # Don't JIT functions that need C stack arguments for now
+ if cfunc_argc >= 0 && passed_argc + 1 > C_ARGS.size
+ asm.incr_counter(:send_cfunc_toomany_args)
+ return CantCompile
+ end
+
+ block_arg = flags & C::VM_CALL_ARGS_BLOCKARG != 0
+
+ # Guard block_arg_type
+ if guard_block_arg(jit, ctx, asm, calling) == CantCompile
+ return CantCompile
+ end
+
+ if block_arg
+ ctx.stack_pop(1)
+ end
+
+ # push_splat_args does stack manipulation so we can no longer side exit
+ if flags & C::VM_CALL_ARGS_SPLAT != 0
+ assert_equal(true, cfunc_argc >= 0)
+ required_args = cfunc_argc - (argc - 1)
+ # + 1 because we pass self
+ if required_args + 1 >= C_ARGS.size
+ asm.incr_counter(:send_cfunc_toomany_args)
+ return CantCompile
+ end
+
+ # We are going to assume that the splat fills
+ # all the remaining arguments. So the number of args
+ # should just equal the number of args the cfunc takes.
+ # In the generated code we test if this is true
+ # and if not side exit.
+ argc = cfunc_argc
+ passed_argc = argc
+ push_splat_args(required_args, jit, ctx, asm)
+ end
+
+ # This is a .send call and we need to adjust the stack
+ if flags & C::VM_CALL_OPT_SEND != 0
+ handle_opt_send_shift_stack(asm, argc, ctx, send_shift: calling.send_shift)
+ end
+
+ # Points to the receiver operand on the stack
+
+ # Store incremented PC into current control frame in case callee raises.
+ jit_save_pc(jit, asm)
+
+ # Increment the stack pointer by 3 (in the callee)
+ # sp += 3
+
+ frame_type = C::VM_FRAME_MAGIC_CFUNC | C::VM_FRAME_FLAG_CFRAME | C::VM_ENV_FLAG_LOCAL
+ if kw_arg
+ frame_type |= C::VM_FRAME_FLAG_CFRAME_KW
+ end
+
+ jit_push_frame(jit, ctx, asm, cme, flags, argc, frame_type, calling.block_handler)
+
+ if kw_arg
+ # Build a hash from all kwargs passed
+ asm.comment('build_kwhash')
+ imemo_ci = calling.ci_addr
+ # we assume all callinfos with kwargs are on the GC heap
+ assert_equal(true, C.imemo_type_p(imemo_ci, C.imemo_callinfo))
+ asm.mov(C_ARGS[0], imemo_ci)
+ asm.lea(C_ARGS[1], ctx.sp_opnd(0))
+ asm.call(C.rjit_build_kwhash)
+
+ # Replace the stack location at the start of kwargs with the new hash
+ stack_opnd = ctx.stack_opnd(argc - passed_argc)
+ asm.mov(stack_opnd, C_RET)
+ end
+
+ # Copy SP because REG_SP will get overwritten
+ sp = :rax
+ asm.lea(sp, ctx.sp_opnd(0))
+
+ # Pop the C function arguments from the stack (in the caller)
+ ctx.stack_pop(argc + 1)
+
+ # Write interpreter SP into CFP.
+ # Needed in case the callee yields to the block.
+ jit_save_sp(ctx, asm)
+
+ # Non-variadic method
+ case cfunc_argc
+ in (0..) # Non-variadic method
+ # Copy the arguments from the stack to the C argument registers
+ # self is the 0th argument and is at index argc from the stack top
+ (0..passed_argc).each do |i|
+ asm.mov(C_ARGS[i], [sp, -(argc + 1 - i) * C.VALUE.size])
+ end
+ in -1 # Variadic method: rb_f_puts(int argc, VALUE *argv, VALUE recv)
+ # The method gets a pointer to the first argument
+ # rb_f_puts(int argc, VALUE *argv, VALUE recv)
+ asm.mov(C_ARGS[0], passed_argc)
+ asm.lea(C_ARGS[1], [sp, -argc * C.VALUE.size]) # argv
+ asm.mov(C_ARGS[2], [sp, -(argc + 1) * C.VALUE.size]) # recv
+ end
+
+ # Call the C function
+ # VALUE ret = (cfunc->func)(recv, argv[0], argv[1]);
+ # cfunc comes from compile-time cme->def, which we assume to be stable.
+ # Invalidation logic is in yjit_method_lookup_change()
+ asm.comment('call C function')
+ asm.mov(:rax, cfunc.func)
+ asm.call(:rax) # TODO: use rel32 if close enough
+
+ # Record code position for TracePoint patching. See full_cfunc_return().
+ Invariants.record_global_inval_patch(asm, full_cfunc_return)
+
+ # Push the return value on the Ruby stack
+ stack_ret = ctx.stack_push(Type::Unknown)
+ asm.mov(stack_ret, C_RET)
+
+ # Pop the stack frame (ec->cfp++)
+ # Instead of recalculating, we can reuse the previous CFP, which is stored in a callee-saved
+ # register
+ asm.mov([EC, C.rb_execution_context_t.offsetof(:cfp)], CFP)
+
+ # cfunc calls may corrupt types
+ ctx.clear_local_types
+
+ # Note: the return block of jit_call_iseq has ctx->sp_offset == 1
+ # which allows for sharing the same successor.
+
+ # Jump (fall through) to the call continuation block
+ # We do this to end the current block after the call
+ assert_equal(1, ctx.sp_offset)
+ jump_to_next_insn(jit, ctx, asm)
+ EndBlock
+ end
+
+ # vm_call_attrset
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_call_attrset(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd)
+ argc = calling.argc
+ flags = calling.flags
+ send_shift = calling.send_shift
+
+ if flags & C::VM_CALL_ARGS_SPLAT != 0
+ asm.incr_counter(:send_attrset_splat)
+ return CantCompile
+ end
+ if flags & C::VM_CALL_KWARG != 0
+ asm.incr_counter(:send_attrset_kwarg)
+ return CantCompile
+ elsif argc != 1 || !C.RB_TYPE_P(comptime_recv, C::RUBY_T_OBJECT)
+ asm.incr_counter(:send_attrset_method)
+ return CantCompile
+ elsif c_method_tracing_currently_enabled?
+ # Can't generate code for firing c_call and c_return events
+ # See :attr-tracing:
+ asm.incr_counter(:send_c_tracingg)
+ return CantCompile
+ elsif flags & C::VM_CALL_ARGS_BLOCKARG != 0
+ asm.incr_counter(:send_block_arg)
+ return CantCompile
+ end
+
+ ivar_name = cme.def.body.attr.id
+
+ # This is a .send call and we need to adjust the stack
+ if flags & C::VM_CALL_OPT_SEND != 0
+ handle_opt_send_shift_stack(asm, argc, ctx, send_shift:)
+ end
+
+ # Save the PC and SP because the callee may allocate
+ # Note that this modifies REG_SP, which is why we do it first
+ jit_prepare_routine_call(jit, ctx, asm)
+
+ # Get the operands from the stack
+ val_opnd = ctx.stack_pop(1)
+ recv_opnd = ctx.stack_pop(1)
+
+ # Call rb_vm_set_ivar_id with the receiver, the ivar name, and the value
+ asm.mov(C_ARGS[0], recv_opnd)
+ asm.mov(C_ARGS[1], ivar_name)
+ asm.mov(C_ARGS[2], val_opnd)
+ asm.call(C.rb_vm_set_ivar_id)
+
+ out_opnd = ctx.stack_push(Type::Unknown)
+ asm.mov(out_opnd, C_RET)
+
+ KeepCompiling
+ end
+
+ # vm_call_ivar (+ part of vm_call_method_each_type)
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_call_ivar(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd)
+ argc = calling.argc
+ flags = calling.flags
+
+ if flags & C::VM_CALL_ARGS_SPLAT != 0
+ asm.incr_counter(:send_ivar_splat)
+ return CantCompile
+ end
+
+ if argc != 0
+ asm.incr_counter(:send_arity)
+ return CantCompile
+ end
+
+ # We don't support handle_opt_send_shift_stack for this yet.
+ if flags & C::VM_CALL_OPT_SEND != 0
+ asm.incr_counter(:send_ivar_opt_send)
+ return CantCompile
+ end
+
+ ivar_id = cme.def.body.attr.id
+
+ # Not handling block_handler
+ if flags & C::VM_CALL_ARGS_BLOCKARG != 0
+ asm.incr_counter(:send_block_arg)
+ return CantCompile
+ end
+
+ jit_getivar(jit, ctx, asm, comptime_recv, ivar_id, recv_opnd, StackOpnd[0])
+ end
+
+ # vm_call_bmethod
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_call_bmethod(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class)
+ proc_addr = cme.def.body.bmethod.proc
+
+ proc_t = C.rb_yjit_get_proc_ptr(proc_addr)
+ proc_block = proc_t.block
+
+ if proc_block.type != C.block_type_iseq
+ asm.incr_counter(:send_bmethod_not_iseq)
+ return CantCompile
+ end
+
+ capture = proc_block.as.captured
+ iseq = capture.code.iseq
+
+ # TODO: implement this
+ # Optimize for single ractor mode and avoid runtime check for
+ # "defined with an un-shareable Proc in a different Ractor"
+ # if !assume_single_ractor_mode(jit, ocb)
+ # return CantCompile;
+ # end
+
+ # Passing a block to a block needs logic different from passing
+ # a block to a method and sometimes requires allocation. Bail for now.
+ if calling.block_handler != C::VM_BLOCK_HANDLER_NONE
+ asm.incr_counter(:send_bmethod_blockarg)
+ return CantCompile
+ end
+
+ jit_call_iseq(
+ jit, ctx, asm, cme, calling, iseq,
+ frame_type: C::VM_FRAME_MAGIC_BLOCK | C::VM_FRAME_FLAG_BMETHOD | C::VM_FRAME_FLAG_LAMBDA,
+ prev_ep: capture.ep,
+ )
+ end
+
+ # vm_call_alias
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_call_alias(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class)
+ cme = C.rb_aliased_callable_method_entry(cme)
+ jit_call_method_each_type(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class)
+ end
+
+ # vm_call_optimized
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_call_optimized(jit, ctx, asm, cme, calling, known_recv_class)
+ if calling.flags & C::VM_CALL_ARGS_BLOCKARG != 0
+ # Not working yet
+ asm.incr_counter(:send_block_arg)
+ return CantCompile
+ end
+
+ case cme.def.body.optimized.type
+ in C::OPTIMIZED_METHOD_TYPE_SEND
+ jit_call_opt_send(jit, ctx, asm, cme, calling, known_recv_class)
+ in C::OPTIMIZED_METHOD_TYPE_CALL
+ jit_call_opt_call(jit, ctx, asm, cme, calling.flags, calling.argc, calling.block_handler, known_recv_class, send_shift: calling.send_shift)
+ in C::OPTIMIZED_METHOD_TYPE_BLOCK_CALL
+ asm.incr_counter(:send_optimized_block_call)
+ return CantCompile
+ in C::OPTIMIZED_METHOD_TYPE_STRUCT_AREF
+ jit_call_opt_struct_aref(jit, ctx, asm, cme, calling.flags, calling.argc, calling.block_handler, known_recv_class, send_shift: calling.send_shift)
+ in C::OPTIMIZED_METHOD_TYPE_STRUCT_ASET
+ asm.incr_counter(:send_optimized_struct_aset)
+ return CantCompile
+ end
+ end
+
+ # vm_call_opt_send
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_call_opt_send(jit, ctx, asm, cme, calling, known_recv_class)
+ if jit_caller_setup_arg(jit, ctx, asm, calling.flags) == CantCompile
+ return CantCompile
+ end
+
+ if calling.argc == 0
+ asm.incr_counter(:send_optimized_send_no_args)
+ return CantCompile
+ end
+
+ calling.argc -= 1
+ # We aren't handling `send(:send, ...)` yet. This might work, but not tested yet.
+ if calling.send_shift > 0
+ asm.incr_counter(:send_optimized_send_send)
+ return CantCompile
+ end
+ # Lazily handle stack shift in handle_opt_send_shift_stack
+ calling.send_shift += 1
+
+ jit_call_symbol(jit, ctx, asm, cme, calling, known_recv_class, C::VM_CALL_FCALL)
+ end
+
+ # vm_call_opt_call
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_call_opt_call(jit, ctx, asm, cme, flags, argc, block_handler, known_recv_class, send_shift:)
+ if block_handler != C::VM_BLOCK_HANDLER_NONE
+ asm.incr_counter(:send_optimized_call_block)
+ return CantCompile
+ end
+
+ if flags & C::VM_CALL_KWARG != 0
+ asm.incr_counter(:send_optimized_call_kwarg)
+ return CantCompile
+ end
+
+ if flags & C::VM_CALL_ARGS_SPLAT != 0
+ asm.incr_counter(:send_optimized_call_splat)
+ return CantCompile
+ end
+
+ # TODO: implement this
+ # Optimize for single ractor mode and avoid runtime check for
+ # "defined with an un-shareable Proc in a different Ractor"
+ # if !assume_single_ractor_mode(jit, ocb)
+ # return CantCompile
+ # end
+
+ # If this is a .send call we need to adjust the stack
+ if flags & C::VM_CALL_OPT_SEND != 0
+ handle_opt_send_shift_stack(asm, argc, ctx, send_shift:)
+ end
+
+ # About to reset the SP, need to load this here
+ recv_idx = argc # blockarg is not supported. send_shift is already handled.
+ asm.mov(:rcx, ctx.stack_opnd(recv_idx)) # recv
+
+ # Save the PC and SP because the callee can make Ruby calls
+ jit_prepare_routine_call(jit, ctx, asm) # NOTE: clobbers rax
+
+ asm.lea(:rax, ctx.sp_opnd(0)) # sp
+
+ kw_splat = flags & C::VM_CALL_KW_SPLAT
+
+ asm.mov(C_ARGS[0], :rcx)
+ asm.mov(C_ARGS[1], EC)
+ asm.mov(C_ARGS[2], argc)
+ asm.lea(C_ARGS[3], [:rax, -argc * C.VALUE.size]) # stack_argument_pointer. NOTE: C_ARGS[3] is rcx
+ asm.mov(C_ARGS[4], kw_splat)
+ asm.mov(C_ARGS[5], C::VM_BLOCK_HANDLER_NONE)
+ asm.call(C.rjit_optimized_call)
+
+ ctx.stack_pop(argc + 1)
+
+ stack_ret = ctx.stack_push(Type::Unknown)
+ asm.mov(stack_ret, C_RET)
+ return KeepCompiling
+ end
+
+ # vm_call_opt_struct_aref
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_call_opt_struct_aref(jit, ctx, asm, cme, flags, argc, block_handler, known_recv_class, send_shift:)
+ if argc != 0
+ asm.incr_counter(:send_optimized_struct_aref_error)
+ return CantCompile
+ end
+
+ off = cme.def.body.optimized.index
+
+ recv_idx = argc # blockarg is not supported
+ recv_idx += send_shift
+ comptime_recv = jit.peek_at_stack(recv_idx)
+
+ # This is a .send call and we need to adjust the stack
+ if flags & C::VM_CALL_OPT_SEND != 0
+ handle_opt_send_shift_stack(asm, argc, ctx, send_shift:)
+ end
+
+ # All structs from the same Struct class should have the same
+ # length. So if our comptime_recv is embedded all runtime
+ # structs of the same class should be as well, and the same is
+ # true of the converse.
+ embedded = C::FL_TEST_RAW(comptime_recv, C::RSTRUCT_EMBED_LEN_MASK)
+
+ asm.comment('struct aref')
+ asm.mov(:rax, ctx.stack_pop(1)) # recv
+
+ if embedded
+ asm.mov(:rax, [:rax, C.RStruct.offsetof(:as, :ary) + (C.VALUE.size * off)])
+ else
+ asm.mov(:rax, [:rax, C.RStruct.offsetof(:as, :heap, :ptr)])
+ asm.mov(:rax, [:rax, C.VALUE.size * off])
+ end
+
+ ret = ctx.stack_push(Type::Unknown)
+ asm.mov(ret, :rax)
+
+ jump_to_next_insn(jit, ctx, asm)
+ EndBlock
+ end
+
+ # vm_call_opt_send (lazy part)
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def handle_opt_send_shift_stack(asm, argc, ctx, send_shift:)
+ # We don't support `send(:send, ...)` for now.
+ assert_equal(1, send_shift)
+
+ asm.comment('shift stack')
+ (0...argc).reverse_each do |i|
+ opnd = ctx.stack_opnd(i)
+ opnd2 = ctx.stack_opnd(i + 1)
+ asm.mov(:rax, opnd)
+ asm.mov(opnd2, :rax)
+ end
+
+ ctx.shift_stack(argc)
+ end
+
+ # vm_call_symbol
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_call_symbol(jit, ctx, asm, cme, calling, known_recv_class, flags)
+ flags |= C::VM_CALL_OPT_SEND | (calling.kw_splat ? C::VM_CALL_KW_SPLAT : 0)
+
+ comptime_symbol = jit.peek_at_stack(calling.argc)
+ if comptime_symbol.class != String && !static_symbol?(comptime_symbol)
+ asm.incr_counter(:send_optimized_send_not_sym_or_str)
+ return CantCompile
+ end
+
+ mid = C.get_symbol_id(comptime_symbol)
+ if mid == 0
+ asm.incr_counter(:send_optimized_send_null_mid)
+ return CantCompile
+ end
+
+ asm.comment("Guard #{comptime_symbol.inspect} is on stack")
+ class_changed_exit = counted_exit(side_exit(jit, ctx), :send_optimized_send_mid_class_changed)
+ jit_guard_known_klass(
+ jit, ctx, asm, C.rb_class_of(comptime_symbol), ctx.stack_opnd(calling.argc),
+ StackOpnd[calling.argc], comptime_symbol, class_changed_exit,
+ )
+ asm.mov(C_ARGS[0], ctx.stack_opnd(calling.argc))
+ asm.call(C.rb_get_symbol_id)
+ asm.cmp(C_RET, mid)
+ id_changed_exit = counted_exit(side_exit(jit, ctx), :send_optimized_send_mid_id_changed)
+ jit_chain_guard(:jne, jit, ctx, asm, id_changed_exit)
+
+ # rb_callable_method_entry_with_refinements
+ calling.flags = flags
+ cme, _ = jit_search_method(jit, ctx, asm, mid, calling)
+ if cme == CantCompile
+ return CantCompile
+ end
+
+ if flags & C::VM_CALL_FCALL != 0
+ return jit_call_method(jit, ctx, asm, mid, calling, cme, known_recv_class)
+ end
+
+ raise NotImplementedError # unreachable for now
+ end
+
+ # vm_push_frame
+ #
+ # Frame structure:
+ # | args | locals | cme/cref | block_handler/prev EP | frame type (EP here) | stack bottom (SP here)
+ #
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_push_frame(jit, ctx, asm, cme, flags, argc, frame_type, block_handler, iseq: nil, local_size: 0, stack_max: 0, prev_ep: nil, doing_kw_call: nil)
+ # Save caller SP and PC before pushing a callee frame for backtrace and side exits
+ asm.comment('save SP to caller CFP')
+ recv_idx = argc # blockarg is already popped
+ recv_idx += (block_handler == :captured) ? 0 : 1 # receiver is not on stack when captured->self is used
+ if iseq
+ # Skip setting this to SP register. This cfp->sp will be copied to SP on leave insn.
+ asm.lea(:rax, ctx.sp_opnd(C.VALUE.size * -recv_idx)) # Pop receiver and arguments to prepare for side exits
+ asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], :rax)
+ else
+ asm.lea(SP, ctx.sp_opnd(C.VALUE.size * -recv_idx))
+ asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], SP)
+ ctx.sp_offset = recv_idx
+ end
+ jit_save_pc(jit, asm, comment: 'save PC to caller CFP')
+
+ sp_offset = ctx.sp_offset + 3 + local_size + (doing_kw_call ? 1 : 0) # callee_sp
+ local_size.times do |i|
+ asm.comment('set local variables') if i == 0
+ local_index = sp_offset + i - local_size - 3
+ asm.mov([SP, C.VALUE.size * local_index], Qnil)
+ end
+
+ asm.comment('set up EP with managing data')
+ ep_offset = sp_offset - 1
+ # ep[-2]: cref_or_me
+ asm.mov(:rax, cme.to_i)
+ asm.mov([SP, C.VALUE.size * (ep_offset - 2)], :rax)
+ # ep[-1]: block handler or prev env ptr (specval)
+ if prev_ep
+ asm.mov(:rax, prev_ep.to_i | 1) # tagged prev ep
+ asm.mov([SP, C.VALUE.size * (ep_offset - 1)], :rax)
+ elsif block_handler == :captured
+ # Set captured->ep, saving captured in :rcx for captured->self
+ ep_reg = :rcx
+ jit_get_lep(jit, asm, reg: ep_reg)
+ asm.mov(:rcx, [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # block_handler
+ asm.and(:rcx, ~0x3) # captured
+ asm.mov(:rax, [:rcx, C.VALUE.size]) # captured->ep
+ asm.or(:rax, 0x1) # GC_GUARDED_PTR
+ asm.mov([SP, C.VALUE.size * (ep_offset - 1)], :rax)
+ elsif block_handler == C::VM_BLOCK_HANDLER_NONE
+ asm.mov([SP, C.VALUE.size * (ep_offset - 1)], C::VM_BLOCK_HANDLER_NONE)
+ elsif block_handler == C.rb_block_param_proxy
+ # vm_caller_setup_arg_block: block_code == rb_block_param_proxy
+ jit_get_lep(jit, asm, reg: :rax) # VM_CF_BLOCK_HANDLER: VM_CF_LEP
+ asm.mov(:rax, [:rax, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # VM_CF_BLOCK_HANDLER: VM_ENV_BLOCK_HANDLER
+ asm.mov([CFP, C.rb_control_frame_t.offsetof(:block_code)], :rax) # reg_cfp->block_code = handler
+ asm.mov([SP, C.VALUE.size * (ep_offset - 1)], :rax) # return handler;
+ else # assume blockiseq
+ asm.mov(:rax, block_handler)
+ asm.mov([CFP, C.rb_control_frame_t.offsetof(:block_code)], :rax)
+ asm.lea(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)]) # VM_CFP_TO_CAPTURED_BLOCK
+ asm.or(:rax, 1) # VM_BH_FROM_ISEQ_BLOCK
+ asm.mov([SP, C.VALUE.size * (ep_offset - 1)], :rax)
+ end
+ # ep[-0]: ENV_FLAGS
+ asm.mov([SP, C.VALUE.size * (ep_offset - 0)], frame_type)
+
+ asm.comment('set up new frame')
+ cfp_offset = -C.rb_control_frame_t.size # callee CFP
+ # For ISEQ, JIT code will set it as needed. However, C func needs 0 there for svar frame detection.
+ if iseq.nil?
+ asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:pc)], 0)
+ end
+ asm.mov(:rax, iseq.to_i)
+ asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:iseq)], :rax)
+ if block_handler == :captured
+ asm.mov(:rax, [:rcx]) # captured->self
+ else
+ self_index = ctx.sp_offset - (1 + argc) # blockarg has been popped
+ asm.mov(:rax, [SP, C.VALUE.size * self_index])
+ end
+ asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:self)], :rax)
+ asm.lea(:rax, [SP, C.VALUE.size * ep_offset])
+ asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:ep)], :rax)
+ asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:block_code)], 0)
+ # Update SP register only for ISEQ calls. SP-relative operations should be done above this.
+ sp_reg = iseq ? SP : :rax
+ asm.lea(sp_reg, [SP, C.VALUE.size * sp_offset])
+ asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:sp)], sp_reg)
+
+ # cfp->jit_return is used only for ISEQs
+ if iseq
+ # The callee might change locals through Kernel#binding and other means.
+ ctx.clear_local_types
+
+ # Stub cfp->jit_return
+ return_ctx = ctx.dup
+ return_ctx.stack_pop(argc + ((block_handler == :captured) ? 0 : 1)) # Pop args and receiver. blockarg has been popped
+ return_ctx.stack_push(Type::Unknown) # push callee's return value
+ return_ctx.sp_offset = 1 # SP is in the position after popping a receiver and arguments
+ return_ctx.chain_depth = 0
+ branch_stub = BranchStub.new(
+ iseq: jit.iseq,
+ shape: Default,
+ target0: BranchTarget.new(ctx: return_ctx, pc: jit.pc + jit.insn.len * C.VALUE.size),
+ )
+ branch_stub.target0.address = Assembler.new.then do |ocb_asm|
+ @exit_compiler.compile_branch_stub(return_ctx, ocb_asm, branch_stub, true)
+ @ocb.write(ocb_asm)
+ end
+ branch_stub.compile = compile_jit_return(branch_stub, cfp_offset:)
+ branch_stub.compile.call(asm)
+ end
+
+ asm.comment('switch to callee CFP')
+ # Update CFP register only for ISEQ calls
+ cfp_reg = iseq ? CFP : :rax
+ asm.lea(cfp_reg, [CFP, cfp_offset])
+ asm.mov([EC, C.rb_execution_context_t.offsetof(:cfp)], cfp_reg)
+ end
+
+ def compile_jit_return(branch_stub, cfp_offset:) # Proc escapes arguments in memory
+ proc do |branch_asm|
+ branch_asm.comment('set jit_return to callee CFP')
+ branch_asm.stub(branch_stub) do
+ case branch_stub.shape
+ in Default
+ branch_asm.mov(:rax, branch_stub.target0.address)
+ branch_asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:jit_return)], :rax)
+ end
+ end
+ end
+ end
+
+ # CALLER_SETUP_ARG: Return CantCompile if not supported
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def jit_caller_setup_arg(jit, ctx, asm, flags)
+ if flags & C::VM_CALL_ARGS_SPLAT != 0 && flags & C::VM_CALL_KW_SPLAT != 0
+ asm.incr_counter(:send_args_splat_kw_splat)
+ return CantCompile
+ elsif flags & C::VM_CALL_ARGS_SPLAT != 0
+ # splat is not supported in this path
+ asm.incr_counter(:send_args_splat)
+ return CantCompile
+ elsif flags & C::VM_CALL_KW_SPLAT != 0
+ asm.incr_counter(:send_args_kw_splat)
+ return CantCompile
+ elsif flags & C::VM_CALL_KWARG != 0
+ asm.incr_counter(:send_kwarg)
+ return CantCompile
+ end
+ end
+
+ # Pushes arguments from an array to the stack. Differs from push splat because
+ # the array can have items left over.
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def move_rest_args_to_stack(array, num_args, jit, ctx, asm)
+ side_exit = side_exit(jit, ctx)
+
+ asm.comment('move_rest_args_to_stack')
+
+ # array is :rax
+ array_len_opnd = :rcx
+ jit_array_len(asm, array, array_len_opnd)
+
+ asm.comment('Side exit if length is less than required')
+ asm.cmp(array_len_opnd, num_args)
+ asm.jl(counted_exit(side_exit, :send_iseq_has_rest_and_splat_not_equal))
+
+ asm.comment('Push arguments from array')
+
+ # Load the address of the embedded array
+ # (struct RArray *)(obj)->as.ary
+ array_reg = array
+
+ # Conditionally load the address of the heap array
+ # (struct RArray *)(obj)->as.heap.ptr
+ flags_opnd = [array_reg, C.RBasic.offsetof(:flags)]
+ asm.test(flags_opnd, C::RARRAY_EMBED_FLAG)
+ heap_ptr_opnd = [array_reg, C.RArray.offsetof(:as, :heap, :ptr)]
+ # Load the address of the embedded array
+ # (struct RArray *)(obj)->as.ary
+ ary_opnd = :rdx # NOTE: array :rax is used after move_rest_args_to_stack too
+ asm.lea(:rcx, [array_reg, C.RArray.offsetof(:as, :ary)])
+ asm.mov(ary_opnd, heap_ptr_opnd)
+ asm.cmovnz(ary_opnd, :rcx)
+
+ num_args.times do |i|
+ top = ctx.stack_push(Type::Unknown)
+ asm.mov(:rcx, [ary_opnd, i * C.VALUE.size])
+ asm.mov(top, :rcx)
+ end
+ end
+
+ # vm_caller_setup_arg_splat (+ CALLER_SETUP_ARG):
+ # Pushes arguments from an array to the stack that are passed with a splat (i.e. *args).
+ # It optimistically compiles to a static size that is the exact number of arguments needed for the function.
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def push_splat_args(required_args, jit, ctx, asm)
+ side_exit = side_exit(jit, ctx)
+
+ asm.comment('push_splat_args')
+
+ array_opnd = ctx.stack_opnd(0)
+ array_stack_opnd = StackOpnd[0]
+ array_reg = :rax
+ asm.mov(array_reg, array_opnd)
+
+ guard_object_is_array(jit, ctx, asm, array_reg, :rcx, array_stack_opnd, :send_args_splat_not_array)
+
+ array_len_opnd = :rcx
+ jit_array_len(asm, array_reg, array_len_opnd)
+
+ asm.comment('Side exit if length is not equal to remaining args')
+ asm.cmp(array_len_opnd, required_args)
+ asm.jne(counted_exit(side_exit, :send_args_splat_length_not_equal))
+
+ asm.comment('Check last argument is not ruby2keyword hash')
+
+ ary_opnd = :rcx
+ jit_array_ptr(asm, array_reg, ary_opnd) # clobbers array_reg
+
+ last_array_value = :rax
+ asm.mov(last_array_value, [ary_opnd, (required_args - 1) * C.VALUE.size])
+
+ ruby2_exit = counted_exit(side_exit, :send_args_splat_ruby2_hash);
+ guard_object_is_not_ruby2_keyword_hash(asm, last_array_value, :rcx, ruby2_exit) # clobbers :rax
+
+ asm.comment('Push arguments from array')
+ array_opnd = ctx.stack_pop(1)
+
+ if required_args > 0
+ # Load the address of the embedded array
+ # (struct RArray *)(obj)->as.ary
+ array_reg = :rax
+ asm.mov(array_reg, array_opnd)
+
+ # Conditionally load the address of the heap array
+ # (struct RArray *)(obj)->as.heap.ptr
+ flags_opnd = [array_reg, C.RBasic.offsetof(:flags)]
+ asm.test(flags_opnd, C::RARRAY_EMBED_FLAG)
+ heap_ptr_opnd = [array_reg, C.RArray.offsetof(:as, :heap, :ptr)]
+ # Load the address of the embedded array
+ # (struct RArray *)(obj)->as.ary
+ asm.lea(:rcx, [array_reg, C.RArray.offsetof(:as, :ary)])
+ asm.mov(:rax, heap_ptr_opnd)
+ asm.cmovnz(:rax, :rcx)
+ ary_opnd = :rax
+
+ (0...required_args).each do |i|
+ top = ctx.stack_push(Type::Unknown)
+ asm.mov(:rcx, [ary_opnd, i * C.VALUE.size])
+ asm.mov(top, :rcx)
+ end
+
+ asm.comment('end push_each')
+ end
+ end
+
+ # Generate RARRAY_LEN. For array_opnd, use Opnd::Reg to reduce memory access,
+ # and use Opnd::Mem to save registers.
+ def jit_array_len(asm, array_reg, len_reg)
+ asm.comment('get array length for embedded or heap')
+
+ # Pull out the embed flag to check if it's an embedded array.
+ asm.mov(len_reg, [array_reg, C.RBasic.offsetof(:flags)])
+
+ # Get the length of the array
+ asm.and(len_reg, C::RARRAY_EMBED_LEN_MASK)
+ asm.sar(len_reg, C::RARRAY_EMBED_LEN_SHIFT)
+
+ # Conditionally move the length of the heap array
+ asm.test([array_reg, C.RBasic.offsetof(:flags)], C::RARRAY_EMBED_FLAG)
+
+ # Select the array length value
+ asm.cmovz(len_reg, [array_reg, C.RArray.offsetof(:as, :heap, :len)])
+ end
+
+ # Generate RARRAY_CONST_PTR (part of RARRAY_AREF)
+ def jit_array_ptr(asm, array_reg, ary_opnd) # clobbers array_reg
+ asm.comment('get array pointer for embedded or heap')
+
+ flags_opnd = [array_reg, C.RBasic.offsetof(:flags)]
+ asm.test(flags_opnd, C::RARRAY_EMBED_FLAG)
+ # Load the address of the embedded array
+ # (struct RArray *)(obj)->as.ary
+ asm.mov(ary_opnd, [array_reg, C.RArray.offsetof(:as, :heap, :ptr)])
+ asm.lea(array_reg, [array_reg, C.RArray.offsetof(:as, :ary)]) # clobbers array_reg
+ asm.cmovnz(ary_opnd, array_reg)
+ end
+
+ def assert(cond)
+ assert_equal(cond, true)
+ end
+
+ def assert_equal(left, right)
+ if left != right
+ raise "'#{left.inspect}' was not '#{right.inspect}'"
+ end
+ end
+
+ def fixnum?(obj)
+ (C.to_value(obj) & C::RUBY_FIXNUM_FLAG) == C::RUBY_FIXNUM_FLAG
+ end
+
+ def flonum?(obj)
+ (C.to_value(obj) & C::RUBY_FLONUM_MASK) == C::RUBY_FLONUM_FLAG
+ end
+
+ def symbol?(obj)
+ static_symbol?(obj) || dynamic_symbol?(obj)
+ end
+
+ def static_symbol?(obj)
+ (C.to_value(obj) & 0xff) == C::RUBY_SYMBOL_FLAG
+ end
+
+ def dynamic_symbol?(obj)
+ return false if C::SPECIAL_CONST_P(obj)
+ C.RB_TYPE_P(obj, C::RUBY_T_SYMBOL)
+ end
+
+ def shape_too_complex?(obj)
+ C.rb_shape_get_shape_id(obj) == C::OBJ_TOO_COMPLEX_SHAPE_ID
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ # @param asm [RubyVM::RJIT::Assembler]
+ def defer_compilation(jit, ctx, asm)
+ # Make a stub to compile the current insn
+ if ctx.chain_depth != 0
+ raise "double defer!"
+ end
+ ctx.chain_depth += 1
+ jit_direct_jump(jit.iseq, jit.pc, ctx, asm, comment: 'defer_compilation')
+ end
+
+ def jit_direct_jump(iseq, pc, ctx, asm, comment: 'jit_direct_jump')
+ branch_stub = BranchStub.new(
+ iseq:,
+ shape: Default,
+ target0: BranchTarget.new(ctx:, pc:),
+ )
+ branch_stub.target0.address = Assembler.new.then do |ocb_asm|
+ @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true)
+ @ocb.write(ocb_asm)
+ end
+ branch_stub.compile = compile_jit_direct_jump(branch_stub, comment:)
+ branch_stub.compile.call(asm)
+ end
+
+ def compile_jit_direct_jump(branch_stub, comment:) # Proc escapes arguments in memory
+ proc do |branch_asm|
+ branch_asm.comment(comment)
+ branch_asm.stub(branch_stub) do
+ case branch_stub.shape
+ in Default
+ branch_asm.jmp(branch_stub.target0.address)
+ in Next0
+ # Just write the block without a jump
+ end
+ end
+ end
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param ctx [RubyVM::RJIT::Context]
+ def side_exit(jit, ctx)
+ # We use the latest ctx.sp_offset to generate a side exit to tolerate sp_offset changes by jit_save_sp.
+ # However, we want to simulate an old stack_size when we take a side exit. We do that by adjusting the
+ # sp_offset because gen_outlined_exit uses ctx.sp_offset to move SP.
+ ctx = ctx.with_stack_size(jit.stack_size_for_pc)
+
+ jit.side_exit_for_pc[ctx.sp_offset] ||= Assembler.new.then do |asm|
+ @exit_compiler.compile_side_exit(jit.pc, ctx, asm)
+ @ocb.write(asm)
+ end
+ end
+
+ def counted_exit(side_exit, name)
+ asm = Assembler.new
+ asm.incr_counter(name)
+ asm.jmp(side_exit)
+ @ocb.write(asm)
+ end
+
+ def def_iseq_ptr(cme_def)
+ C.rb_iseq_check(cme_def.body.iseq.iseqptr)
+ end
+
+ def to_value(obj)
+ GC_REFS << obj
+ C.to_value(obj)
+ end
+
+ def full_cfunc_return
+ @full_cfunc_return ||= Assembler.new.then do |asm|
+ @exit_compiler.compile_full_cfunc_return(asm)
+ @ocb.write(asm)
+ end
+ end
+
+ def c_method_tracing_currently_enabled?
+ C.rb_rjit_global_events & (C::RUBY_EVENT_C_CALL | C::RUBY_EVENT_C_RETURN) != 0
+ end
+
+ # Return a builtin function if a given iseq consists of only that builtin function
+ def builtin_function(iseq)
+ opt_invokebuiltin_delegate_leave = INSNS.values.find { |i| i.name == :opt_invokebuiltin_delegate_leave }
+ leave = INSNS.values.find { |i| i.name == :leave }
+ if iseq.body.iseq_size == opt_invokebuiltin_delegate_leave.len + leave.len &&
+ C.rb_vm_insn_decode(iseq.body.iseq_encoded[0]) == opt_invokebuiltin_delegate_leave.bin &&
+ C.rb_vm_insn_decode(iseq.body.iseq_encoded[opt_invokebuiltin_delegate_leave.len]) == leave.bin
+ C.rb_builtin_function.new(iseq.body.iseq_encoded[1])
+ end
+ end
+
+ def build_calling(ci:, block_handler:)
+ CallingInfo.new(
+ argc: C.vm_ci_argc(ci),
+ flags: C.vm_ci_flag(ci),
+ kwarg: C.vm_ci_kwarg(ci),
+ ci_addr: ci.to_i,
+ send_shift: 0,
+ block_handler:,
+ )
+ end
+ end
+end
diff --git a/lib/ruby_vm/rjit/invariants.rb b/lib/ruby_vm/rjit/invariants.rb
new file mode 100644
index 0000000000..5b061d1994
--- /dev/null
+++ b/lib/ruby_vm/rjit/invariants.rb
@@ -0,0 +1,155 @@
+require 'set'
+
+module RubyVM::RJIT
+ class Invariants
+ class << self
+ # Called by RubyVM::RJIT::Compiler to lazily initialize this
+ # @param cb [CodeBlock]
+ # @param ocb [CodeBlock]
+ # @param compiler [RubyVM::RJIT::Compiler]
+ # @param exit_compiler [RubyVM::RJIT::ExitCompiler]
+ def initialize(cb, ocb, compiler, exit_compiler)
+ @cb = cb
+ @ocb = ocb
+ @compiler = compiler
+ @exit_compiler = exit_compiler
+ @bop_blocks = Set.new # TODO: actually invalidate this
+ @cme_blocks = Hash.new { |h, k| h[k] = Set.new }
+ @const_blocks = Hash.new { |h, k| h[k] = Set.new }
+ @patches = {}
+
+ # freeze # workaround a binding.irb issue. TODO: resurrect this
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param klass [Integer]
+ # @param op [Integer]
+ def assume_bop_not_redefined(jit, klass, op)
+ return false unless C.BASIC_OP_UNREDEFINED_P(klass, op)
+
+ ensure_block_entry_exit(jit, cause: 'assume_bop_not_redefined')
+ @bop_blocks << jit.block
+ true
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ def assume_method_lookup_stable(jit, cme)
+ ensure_block_entry_exit(jit, cause: 'assume_method_lookup_stable')
+ @cme_blocks[cme.to_i] << jit.block
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ def assume_method_basic_definition(jit, klass, mid)
+ if C.rb_method_basic_definition_p(klass, mid)
+ cme = C.rb_callable_method_entry(klass, mid)
+ assume_method_lookup_stable(jit, cme)
+ true
+ else
+ false
+ end
+ end
+
+ def assume_stable_constant_names(jit, idlist)
+ (0..).each do |i|
+ break if (id = idlist[i]) == 0
+ @const_blocks[id] << jit.block
+ end
+ end
+
+ # @param asm [RubyVM::RJIT::Assembler]
+ def record_global_inval_patch(asm, target)
+ asm.pos_marker do |address|
+ if @patches.key?(address)
+ raise 'multiple patches in the same address'
+ end
+ @patches[address] = target
+ end
+ end
+
+ def on_cme_invalidate(cme)
+ @cme_blocks.fetch(cme.to_i, []).each do |block|
+ @cb.with_write_addr(block.start_addr) do
+ asm = Assembler.new
+ asm.comment('on_cme_invalidate')
+ asm.jmp(block.entry_exit)
+ @cb.write(asm)
+ end
+ # TODO: re-generate branches that refer to this block
+ end
+ @cme_blocks.delete(cme.to_i)
+ end
+
+ def on_constant_ic_update(iseq, ic, insn_idx)
+ # TODO: check multi ractor as well
+ if ic.entry.ic_cref
+ # No need to recompile the slowpath
+ return
+ end
+
+ pc = iseq.body.iseq_encoded + insn_idx
+ insn_name = Compiler.decode_insn(pc.*).name
+ if insn_name != :opt_getconstant_path && insn_name != :trace_opt_getconstant_path
+ raise 'insn_idx was not at opt_getconstant_path'
+ end
+ if ic.to_i != pc[1]
+ raise 'insn_idx + 1 was not at the updated IC'
+ end
+ @compiler.invalidate_blocks(iseq, pc.to_i)
+ end
+
+ def on_constant_state_changed(id)
+ @const_blocks.fetch(id, []).each do |block|
+ @compiler.invalidate_block(block)
+ end
+ end
+
+ def on_tracing_invalidate_all
+ invalidate_all
+ end
+
+ def on_update_references
+ # Give up. In order to support GC.compact, you'd have to update ISEQ
+ # addresses in BranchStub, etc. Ideally, we'd need to update moved
+ # pointers in JITed code here, but we just invalidate all for now.
+ invalidate_all
+ end
+
+ # @param jit [RubyVM::RJIT::JITState]
+ # @param block [RubyVM::RJIT::Block]
+ def ensure_block_entry_exit(jit, cause:)
+ block = jit.block
+ if block.entry_exit.nil?
+ block.entry_exit = Assembler.new.then do |asm|
+ @exit_compiler.compile_entry_exit(block.pc, block.ctx, asm, cause:)
+ @ocb.write(asm)
+ end
+ end
+ end
+
+ private
+
+ def invalidate_all
+ # On-Stack Replacement
+ @patches.each do |address, target|
+ # TODO: assert patches don't overlap each other
+ @cb.with_write_addr(address) do
+ asm = Assembler.new
+ asm.comment('on_tracing_invalidate_all')
+ asm.jmp(target)
+ @cb.write(asm)
+ end
+ end
+ @patches.clear
+
+ C.rjit_for_each_iseq do |iseq|
+ # Avoid entering past code
+ iseq.body.jit_entry = 0
+ # Avoid reusing past code
+ iseq.body.rjit_blocks.clear if iseq.body.rjit_blocks
+ # Compile this again if not converted to trace_* insns
+ iseq.body.jit_entry_calls = 0
+ end
+ end
+ end
+ end
+end
diff --git a/lib/ruby_vm/rjit/jit_state.rb b/lib/ruby_vm/rjit/jit_state.rb
new file mode 100644
index 0000000000..02a713474e
--- /dev/null
+++ b/lib/ruby_vm/rjit/jit_state.rb
@@ -0,0 +1,65 @@
+module RubyVM::RJIT
+ class JITState < Struct.new(
+ :iseq, # @param `RubyVM::RJIT::CPointer::Struct_rb_iseq_t`
+ :pc, # @param [Integer] The JIT target PC
+ :cfp, # @param `RubyVM::RJIT::CPointer::Struct_rb_control_frame_t` The JIT source CFP (before RJIT is called)
+ :block, # @param [RubyVM::RJIT::Block]
+ :stack_size_for_pc, # @param [Integer]
+ :side_exit_for_pc, # @param [Hash{ Integer => Integer }] { sp_offset => address }
+ :record_boundary_patch_point, # @param [TrueClass,FalseClass]
+ )
+ def initialize(side_exit_for_pc: {}, record_boundary_patch_point: false, **) = super
+
+ def insn
+ Compiler.decode_insn(C.VALUE.new(pc).*)
+ end
+
+ def operand(index, signed: false, ruby: false)
+ addr = pc + (index + 1) * Fiddle::SIZEOF_VOIDP
+ value = Fiddle::Pointer.new(addr)[0, Fiddle::SIZEOF_VOIDP].unpack(signed ? 'q' : 'Q')[0]
+ if ruby
+ value = C.to_ruby(value)
+ end
+ value
+ end
+
+ def at_current_insn?
+ pc == cfp.pc.to_i
+ end
+
+ def peek_at_local(n)
+ local_table_size = iseq.body.local_table_size
+ offset = -C::VM_ENV_DATA_SIZE - local_table_size + n + 1
+ value = (cfp.ep + offset).*
+ C.to_ruby(value)
+ end
+
+ def peek_at_stack(depth_from_top)
+ raise 'not at current insn' unless at_current_insn?
+ offset = -(1 + depth_from_top)
+ # rb_rjit_branch_stub_hit updates SP, so you don't need to worry about sp_offset
+ value = (cfp.sp + offset).*
+ C.to_ruby(value)
+ end
+
+ def peek_at_self
+ C.to_ruby(cfp.self)
+ end
+
+ def peek_at_block_handler(level)
+ ep = ep_at_level(cfp, level:)
+ ep[C::VM_ENV_DATA_INDEX_SPECVAL]
+ end
+
+ private
+
+ def ep_at_level(cfp, level:)
+ ep = cfp.ep
+ level.times do
+ # VM_ENV_PREV_EP
+ ep = C.VALUE.new(ep[C::VM_ENV_DATA_INDEX_SPECVAL] & ~0x03)
+ end
+ ep
+ end
+ end
+end
diff --git a/lib/ruby_vm/rjit/stats.rb b/lib/ruby_vm/rjit/stats.rb
new file mode 100644
index 0000000000..7e353c698e
--- /dev/null
+++ b/lib/ruby_vm/rjit/stats.rb
@@ -0,0 +1,191 @@
+# frozen_string_literal: true
+module RubyVM::RJIT
+ # Return a Hash for \RJIT statistics. \--rjit-stats makes more information available.
+ def self.runtime_stats
+ stats = {}
+
+ # Insn exits
+ INSNS.each_value do |insn|
+ exits = C.rjit_insn_exits[insn.bin]
+ if exits > 0
+ stats[:"exit_#{insn.name}"] = exits
+ end
+ end
+
+ # Runtime stats
+ C.rb_rjit_runtime_counters.members.each do |member|
+ stats[member] = C.rb_rjit_counters.public_send(member)
+ end
+ stats[:vm_insns_count] = C.rb_vm_insns_count
+
+ # Other stats are calculated here
+ stats[:side_exit_count] = stats.select { |name, _count| name.start_with?('exit_') }.sum(&:last)
+ if stats[:vm_insns_count] > 0
+ retired_in_rjit = stats[:rjit_insns_count] - stats[:side_exit_count]
+ stats[:total_insns_count] = retired_in_rjit + stats[:vm_insns_count]
+ stats[:ratio_in_rjit] = 100.0 * retired_in_rjit / stats[:total_insns_count]
+ else
+ stats.delete(:vm_insns_count)
+ end
+
+ stats
+ end
+
+ # :nodoc: all
+ class << self
+ private
+
+ # --yjit-stats at_exit
+ def print_stats
+ stats = runtime_stats
+ $stderr.puts("***RJIT: Printing RJIT statistics on exit***")
+
+ print_counters(stats, prefix: 'send_', prompt: 'method call exit reasons')
+ print_counters(stats, prefix: 'invokeblock_', prompt: 'invokeblock exit reasons')
+ print_counters(stats, prefix: 'invokesuper_', prompt: 'invokesuper exit reasons')
+ print_counters(stats, prefix: 'getblockpp_', prompt: 'getblockparamproxy exit reasons')
+ print_counters(stats, prefix: 'getivar_', prompt: 'getinstancevariable exit reasons')
+ print_counters(stats, prefix: 'setivar_', prompt: 'setinstancevariable exit reasons')
+ print_counters(stats, prefix: 'optaref_', prompt: 'opt_aref exit reasons')
+ print_counters(stats, prefix: 'optgetconst_', prompt: 'opt_getconstant_path exit reasons')
+ print_counters(stats, prefix: 'expandarray_', prompt: 'expandarray exit reasons')
+
+ $stderr.puts "compiled_block_count: #{format_number(13, stats[:compiled_block_count])}"
+ $stderr.puts "side_exit_count: #{format_number(13, stats[:side_exit_count])}"
+ $stderr.puts "total_insns_count: #{format_number(13, stats[:total_insns_count])}" if stats.key?(:total_insns_count)
+ $stderr.puts "vm_insns_count: #{format_number(13, stats[:vm_insns_count])}" if stats.key?(:vm_insns_count)
+ $stderr.puts "rjit_insns_count: #{format_number(13, stats[:rjit_insns_count])}"
+ $stderr.puts "ratio_in_rjit: #{format('%12.1f', stats[:ratio_in_rjit])}%" if stats.key?(:ratio_in_rjit)
+
+ print_exit_counts(stats)
+ end
+
+ def print_counters(stats, prefix:, prompt:)
+ $stderr.puts("#{prompt}: ")
+ counters = stats.filter { |key, _| key.start_with?(prefix) }
+ counters.filter! { |_, value| value != 0 }
+ counters.transform_keys! { |key| key.to_s.delete_prefix(prefix) }
+
+ if counters.empty?
+ $stderr.puts(" (all relevant counters are zero)")
+ return
+ end
+
+ counters = counters.to_a
+ counters.sort_by! { |(_, counter_value)| counter_value }
+ longest_name_length = counters.max_by { |(name, _)| name.length }.first.length
+ total = counters.sum { |(_, counter_value)| counter_value }
+
+ counters.reverse_each do |(name, value)|
+ percentage = value.fdiv(total) * 100
+ $stderr.printf(" %*s %s (%4.1f%%)\n", longest_name_length, name, format_number(10, value), percentage)
+ end
+ end
+
+ def print_exit_counts(stats, how_many: 20, padding: 2)
+ exits = stats.filter_map { |name, count| [name.to_s.delete_prefix('exit_'), count] if name.start_with?('exit_') }.to_h
+ return if exits.empty?
+
+ top_exits = exits.sort_by { |_name, count| -count }.first(how_many).to_h
+ total_exits = exits.values.sum
+ $stderr.puts "Top-#{top_exits.size} most frequent exit ops (#{format("%.1f", 100.0 * top_exits.values.sum / total_exits)}% of exits):"
+
+ name_width = top_exits.map { |name, _count| name.length }.max + padding
+ count_width = top_exits.map { |_name, count| format_number(10, count).length }.max + padding
+ top_exits.each do |name, count|
+ ratio = 100.0 * count / total_exits
+ $stderr.puts "#{format("%#{name_width}s", name)}: #{format_number(count_width, count)} (#{format('%4.1f', ratio)}%)"
+ end
+ end
+
+ # Format large numbers with comma separators for readability
+ def format_number(pad, number)
+ integer, decimal = number.to_s.split('.')
+ d_groups = integer.chars.reverse.each_slice(3)
+ with_commas = d_groups.map(&:join).join(',').reverse
+ [with_commas, decimal].compact.join('.').rjust(pad, ' ')
+ end
+
+ # --yjit-trace-exits at_exit
+ def dump_trace_exits
+ filename = "#{Dir.pwd}/rjit_exit_locations.dump"
+ File.binwrite(filename, Marshal.dump(exit_traces))
+ $stderr.puts("RJIT exit locations dumped to:\n#{filename}")
+ end
+
+ # Convert rb_rjit_raw_samples and rb_rjit_line_samples into a StackProf format.
+ def exit_traces
+ results = C.rjit_exit_traces
+ raw_samples = results[:raw].dup
+ line_samples = results[:lines].dup
+ frames = results[:frames].dup
+ samples_count = 0
+
+ # Loop through the instructions and set the frame hash with the data.
+ # We use nonexistent.def for the file name, otherwise insns.def will be displayed
+ # and that information isn't useful in this context.
+ RubyVM::INSTRUCTION_NAMES.each_with_index do |name, frame_id|
+ frame_hash = { samples: 0, total_samples: 0, edges: {}, name: name, file: "nonexistent.def", line: nil, lines: {} }
+ results[:frames][frame_id] = frame_hash
+ frames[frame_id] = frame_hash
+ end
+
+ # Loop through the raw_samples and build the hashes for StackProf.
+ # The loop is based off an example in the StackProf documentation and therefore
+ # this functionality can only work with that library.
+ #
+ # Raw Samples:
+ # [ length, frame1, frame2, frameN, ..., instruction, count
+ #
+ # Line Samples
+ # [ length, line_1, line_2, line_n, ..., dummy value, count
+ i = 0
+ while i < raw_samples.length
+ stack_length = raw_samples[i] + 1
+ i += 1 # consume the stack length
+
+ prev_frame_id = nil
+ stack_length.times do |idx|
+ idx += i
+ frame_id = raw_samples[idx]
+
+ if prev_frame_id
+ prev_frame = frames[prev_frame_id]
+ prev_frame[:edges][frame_id] ||= 0
+ prev_frame[:edges][frame_id] += 1
+ end
+
+ frame_info = frames[frame_id]
+ frame_info[:total_samples] += 1
+
+ frame_info[:lines][line_samples[idx]] ||= [0, 0]
+ frame_info[:lines][line_samples[idx]][0] += 1
+
+ prev_frame_id = frame_id
+ end
+
+ i += stack_length # consume the stack
+
+ top_frame_id = prev_frame_id
+ top_frame_line = 1
+
+ sample_count = raw_samples[i]
+
+ frames[top_frame_id][:samples] += sample_count
+ frames[top_frame_id][:lines] ||= {}
+ frames[top_frame_id][:lines][top_frame_line] ||= [0, 0]
+ frames[top_frame_id][:lines][top_frame_line][1] += sample_count
+
+ samples_count += sample_count
+ i += 1
+ end
+
+ results[:samples] = samples_count
+ # Set missed_samples and gc_samples to 0 as their values
+ # don't matter to us in this context.
+ results[:missed_samples] = 0
+ results[:gc_samples] = 0
+ results
+ end
+ end
+end
diff --git a/lib/ruby_vm/rjit/type.rb b/lib/ruby_vm/rjit/type.rb
new file mode 100644
index 0000000000..119692014b
--- /dev/null
+++ b/lib/ruby_vm/rjit/type.rb
@@ -0,0 +1,221 @@
+module RubyVM::RJIT
+ # Represent the type of a value (local/stack/self) in RJIT
+ Type = Data.define(:type) do
+ # Check if the type is an immediate
+ def imm?
+ case self
+ in Type::UnknownImm then true
+ in Type::Nil then true
+ in Type::True then true
+ in Type::False then true
+ in Type::Fixnum then true
+ in Type::Flonum then true
+ in Type::ImmSymbol then true
+ else false
+ end
+ end
+
+ # Returns true when the type is not specific.
+ def unknown?
+ case self
+ in Type::Unknown | Type::UnknownImm | Type::UnknownHeap then true
+ else false
+ end
+ end
+
+ # Returns true when we know the VALUE is a specific handle type,
+ # such as a static symbol ([Type::ImmSymbol], i.e. true from RB_STATIC_SYM_P()).
+ # Opposite of [Self::is_unknown].
+ def specific?
+ !self.unknown?
+ end
+
+ # Check if the type is a heap object
+ def heap?
+ case self
+ in Type::UnknownHeap then true
+ in Type::TArray then true
+ in Type::Hash then true
+ in Type::HeapSymbol then true
+ in Type::TString then true
+ in Type::CString then true
+ in Type::BlockParamProxy then true
+ else false
+ end
+ end
+
+ # Check if it's a T_ARRAY object
+ def array?
+ case self
+ in Type::TArray then true
+ else false
+ end
+ end
+
+ # Check if it's a T_STRING object (both TString and CString are T_STRING)
+ def string?
+ case self
+ in Type::TString then true
+ in Type::CString then true
+ else false
+ end
+ end
+
+ # Returns the class if it is known, otherwise nil
+ def known_class
+ case self
+ in Type::Nil then C.rb_cNilClass
+ in Type::True then C.rb_cTrueClass
+ in Type::False then C.rb_cFalseClass
+ in Type::Fixnum then C.rb_cInteger
+ in Type::Flonum then C.rb_cFloat
+ in Type::ImmSymbol | Type::HeapSymbol then C.rb_cSymbol
+ in Type::CString then C.rb_cString
+ else nil
+ end
+ end
+
+ # Returns a boolean representing whether the value is truthy if known, otherwise nil
+ def known_truthy
+ case self
+ in Type::Nil then false
+ in Type::False then false
+ in Type::UnknownHeap then false
+ in Type::Unknown | Type::UnknownImm then nil
+ else true
+ end
+ end
+
+ # Returns a boolean representing whether the value is equal to nil if known, otherwise nil
+ def known_nil
+ case [self, self.known_truthy]
+ in Type::Nil, _ then true
+ in Type::False, _ then false # Qfalse is not nil
+ in _, true then false # if truthy, can't be nil
+ in _, _ then nil # otherwise unknown
+ end
+ end
+
+ def diff(dst)
+ # Perfect match, difference is zero
+ if self == dst
+ return TypeDiff::Compatible[0]
+ end
+
+ # Any type can flow into an unknown type
+ if dst == Type::Unknown
+ return TypeDiff::Compatible[1]
+ end
+
+ # A CString is also a TString.
+ if self == Type::CString && dst == Type::TString
+ return TypeDiff::Compatible[1]
+ end
+
+ # Specific heap type into unknown heap type is imperfect but valid
+ if self.heap? && dst == Type::UnknownHeap
+ return TypeDiff::Compatible[1]
+ end
+
+ # Specific immediate type into unknown immediate type is imperfect but valid
+ if self.imm? && dst == Type::UnknownImm
+ return TypeDiff::Compatible[1]
+ end
+
+ # Incompatible types
+ return TypeDiff::Incompatible
+ end
+
+ def upgrade(new_type)
+ assert(new_type.diff(self) != TypeDiff::Incompatible)
+ new_type
+ end
+
+ private
+
+ def assert(cond)
+ unless cond
+ raise "'#{cond.inspect}' was not true"
+ end
+ end
+ end
+
+ # This returns an appropriate Type based on a known value
+ class << Type
+ def from(val)
+ if C::SPECIAL_CONST_P(val)
+ if fixnum?(val)
+ Type::Fixnum
+ elsif val.nil?
+ Type::Nil
+ elsif val == true
+ Type::True
+ elsif val == false
+ Type::False
+ elsif static_symbol?(val)
+ Type::ImmSymbol
+ elsif flonum?(val)
+ Type::Flonum
+ else
+ raise "Illegal value: #{val.inspect}"
+ end
+ else
+ val_class = C.to_value(C.rb_class_of(val))
+ if val_class == C.rb_cString && C.rb_obj_frozen_p(val)
+ return Type::CString
+ end
+ if C.to_value(val) == C.rb_block_param_proxy
+ return Type::BlockParamProxy
+ end
+ case C::BUILTIN_TYPE(val)
+ in C::RUBY_T_ARRAY
+ Type::TArray
+ in C::RUBY_T_HASH
+ Type::Hash
+ in C::RUBY_T_STRING
+ Type::TString
+ else
+ Type::UnknownHeap
+ end
+ end
+ end
+
+ private
+
+ def fixnum?(obj)
+ (C.to_value(obj) & C::RUBY_FIXNUM_FLAG) == C::RUBY_FIXNUM_FLAG
+ end
+
+ def flonum?(obj)
+ (C.to_value(obj) & C::RUBY_FLONUM_MASK) == C::RUBY_FLONUM_FLAG
+ end
+
+ def static_symbol?(obj)
+ (C.to_value(obj) & 0xff) == C::RUBY_SYMBOL_FLAG
+ end
+ end
+
+ # List of types
+ Type::Unknown = Type[:Unknown]
+ Type::UnknownImm = Type[:UnknownImm]
+ Type::UnknownHeap = Type[:UnknownHeap]
+ Type::Nil = Type[:Nil]
+ Type::True = Type[:True]
+ Type::False = Type[:False]
+ Type::Fixnum = Type[:Fixnum]
+ Type::Flonum = Type[:Flonum]
+ Type::Hash = Type[:Hash]
+ Type::ImmSymbol = Type[:ImmSymbol]
+ Type::HeapSymbol = Type[:HeapSymbol]
+
+ Type::TString = Type[:TString] # An object with the T_STRING flag set, possibly an rb_cString
+ Type::CString = Type[:CString] # An un-subclassed string of type rb_cString (can have instance vars in some cases)
+ Type::TArray = Type[:TArray] # An object with the T_ARRAY flag set, possibly an rb_cArray
+
+ Type::BlockParamProxy = Type[:BlockParamProxy] # A special sentinel value indicating the block parameter should be read from
+
+ module TypeDiff
+ Compatible = Data.define(:diversion) # The smaller, the more compatible.
+ Incompatible = :Incompatible
+ end
+end