summaryrefslogtreecommitdiff
path: root/enum.c
diff options
context:
space:
mode:
Diffstat (limited to 'enum.c')
-rw-r--r--enum.c5453
1 files changed, 4894 insertions, 559 deletions
diff --git a/enum.c b/enum.c
index 6f69c79737..765c093da7 100644
--- a/enum.c
+++ b/enum.c
@@ -3,943 +3,5278 @@
enum.c -
$Author$
- $Date$
created at: Fri Oct 1 15:15:19 JST 1993
- Copyright (C) 1993-2003 Yukihiro Matsumoto
+ Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
-#include "ruby.h"
-#include "node.h"
-#include "util.h"
+#include "id.h"
+#include "internal.h"
+#include "internal/compar.h"
+#include "internal/enum.h"
+#include "internal/hash.h"
+#include "internal/imemo.h"
+#include "internal/numeric.h"
+#include "internal/object.h"
+#include "internal/proc.h"
+#include "internal/rational.h"
+#include "internal/re.h"
+#include "ruby/util.h"
+#include "ruby_assert.h"
+#include "symbol.h"
VALUE rb_mEnumerable;
-static ID id_each, id_eqq, id_cmp;
+
+static ID id_next;
+static ID id__alone;
+static ID id__separator;
+static ID id_chunk_categorize;
+static ID id_chunk_enumerable;
+static ID id_sliceafter_enum;
+static ID id_sliceafter_pat;
+static ID id_sliceafter_pred;
+static ID id_slicebefore_enumerable;
+static ID id_slicebefore_sep_pat;
+static ID id_slicebefore_sep_pred;
+static ID id_slicewhen_enum;
+static ID id_slicewhen_inverted;
+static ID id_slicewhen_pred;
+
+#define id_div idDiv
+#define id_each idEach
+#define id_eqq idEqq
+#define id_cmp idCmp
+#define id_lshift idLTLT
+#define id_call idCall
+#define id_size idSize
VALUE
-rb_each(obj)
- VALUE obj;
+rb_enum_values_pack(int argc, const VALUE *argv)
+{
+ if (argc == 0) return Qnil;
+ if (argc == 1) return argv[0];
+ return rb_ary_new4(argc, argv);
+}
+
+#define ENUM_WANT_SVALUE() do { \
+ i = rb_enum_values_pack(argc, argv); \
+} while (0)
+
+static VALUE
+enum_yield(int argc, VALUE ary)
+{
+ if (argc > 1)
+ return rb_yield_force_blockarg(ary);
+ if (argc == 1)
+ return rb_yield(ary);
+ return rb_yield_values2(0, 0);
+}
+
+static VALUE
+enum_yield_array(VALUE ary)
{
- return rb_funcall(obj, id_each, 0, 0);
+ long len = RARRAY_LEN(ary);
+
+ if (len > 1)
+ return rb_yield_force_blockarg(ary);
+ if (len == 1)
+ return rb_yield(RARRAY_AREF(ary, 0));
+ return rb_yield_values2(0, 0);
+}
+
+static VALUE
+grep_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ struct MEMO *memo = MEMO_CAST(args);
+ ENUM_WANT_SVALUE();
+
+ if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) {
+ rb_ary_push(memo->v2, i);
+ }
+ return Qnil;
}
static VALUE
-grep_i(i, arg)
- VALUE i, *arg;
+grep_regexp_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
- if (RTEST(rb_funcall(arg[0], id_eqq, 1, i))) {
- rb_ary_push(arg[1], i);
+ struct MEMO *memo = MEMO_CAST(args);
+ VALUE converted_element, match;
+ ENUM_WANT_SVALUE();
+
+ /* In case element can't be converted to a Symbol or String: not a match (don't raise) */
+ converted_element = SYMBOL_P(i) ? i : rb_check_string_type(i);
+ match = NIL_P(converted_element) ? Qfalse : rb_reg_match_p(memo->v1, i, 0);
+ if (match == memo->u3.value) {
+ rb_ary_push(memo->v2, i);
}
return Qnil;
}
static VALUE
-grep_iter_i(i, arg)
- VALUE i, *arg;
+grep_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
- if (RTEST(rb_funcall(arg[0], id_eqq, 1, i))) {
- rb_ary_push(arg[1], rb_yield(i));
+ struct MEMO *memo = MEMO_CAST(args);
+ ENUM_WANT_SVALUE();
+
+ if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) {
+ rb_ary_push(memo->v2, enum_yield(argc, i));
}
return Qnil;
}
+static VALUE
+enum_grep0(VALUE obj, VALUE pat, VALUE test)
+{
+ VALUE ary = rb_ary_new();
+ struct MEMO *memo = rb_imemo_memo_new(pat, ary, test);
+ rb_block_call_func_t fn;
+ if (rb_block_given_p()) {
+ fn = grep_iter_i;
+ }
+ else if (RB_TYPE_P(pat, T_REGEXP) &&
+ LIKELY(rb_method_basic_definition_p(CLASS_OF(pat), idEqq))) {
+ fn = grep_regexp_i;
+ }
+ else {
+ fn = grep_i;
+ }
+ rb_block_call(obj, id_each, 0, 0, fn, (VALUE)memo);
+
+ return ary;
+}
+
/*
- * call-seq:
- * enum.grep(pattern) => array
- * enum.grep(pattern) {| obj | block } => array
- *
- * Returns an array of every element in <i>enum</i> for which
- * <code>Pattern === element</code>. If the optional <em>block</em> is
- * supplied, each matching element is passed to it, and the block's
- * result is stored in the output array.
- *
- * (1..100).grep 38..44 #=> [38, 39, 40, 41, 42, 43, 44]
- * c = IO.constants
- * c.grep(/SEEK/) #=> ["SEEK_END", "SEEK_SET", "SEEK_CUR"]
- * res = c.grep(/SEEK/) {|v| IO.const_get(v) }
- * res #=> [2, 0, 1]
- *
+ * call-seq:
+ * grep(pattern) -> array
+ * grep(pattern) {|element| ... } -> array
+ *
+ * Returns an array of objects based elements of +self+ that match the given pattern.
+ *
+ * With no block given, returns an array containing each element
+ * for which <tt>pattern === element</tt> is +true+:
+ *
+ * a = ['foo', 'bar', 'car', 'moo']
+ * a.grep(/ar/) # => ["bar", "car"]
+ * (1..10).grep(3..8) # => [3, 4, 5, 6, 7, 8]
+ * ['a', 'b', 0, 1].grep(Integer) # => [0, 1]
+ *
+ * With a block given,
+ * calls the block with each matching element and returns an array containing each
+ * object returned by the block:
+ *
+ * a = ['foo', 'bar', 'car', 'moo']
+ * a.grep(/ar/) {|element| element.upcase } # => ["BAR", "CAR"]
+ *
+ * Related: #grep_v.
*/
static VALUE
-enum_grep(obj, pat)
- VALUE obj, pat;
+enum_grep(VALUE obj, VALUE pat)
{
- VALUE ary = rb_ary_new();
- VALUE arg[2];
+ return enum_grep0(obj, pat, Qtrue);
+}
- arg[0] = pat;
- arg[1] = ary;
+/*
+ * call-seq:
+ * grep_v(pattern) -> array
+ * grep_v(pattern) {|element| ... } -> array
+ *
+ * Returns an array of objects based on elements of +self+
+ * that <em>don't</em> match the given pattern.
+ *
+ * With no block given, returns an array containing each element
+ * for which <tt>pattern === element</tt> is +false+:
+ *
+ * a = ['foo', 'bar', 'car', 'moo']
+ * a.grep_v(/ar/) # => ["foo", "moo"]
+ * (1..10).grep_v(3..8) # => [1, 2, 9, 10]
+ * ['a', 'b', 0, 1].grep_v(Integer) # => ["a", "b"]
+ *
+ * With a block given,
+ * calls the block with each non-matching element and returns an array containing each
+ * object returned by the block:
+ *
+ * a = ['foo', 'bar', 'car', 'moo']
+ * a.grep_v(/ar/) {|element| element.upcase } # => ["FOO", "MOO"]
+ *
+ * Related: #grep.
+ */
- rb_iterate(rb_each, obj, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)arg);
-
- return ary;
+static VALUE
+enum_grep_v(VALUE obj, VALUE pat)
+{
+ return enum_grep0(obj, pat, Qfalse);
+}
+
+#define COUNT_BIGNUM IMEMO_FL_USER0
+#define MEMO_V3_SET(m, v) RB_OBJ_WRITE((m), &(m)->u3.value, (v))
+
+static void
+imemo_count_up(struct MEMO *memo)
+{
+ if (memo->flags & COUNT_BIGNUM) {
+ MEMO_V3_SET(memo, rb_int_succ(memo->u3.value));
+ }
+ else if (++memo->u3.cnt == 0) {
+ /* overflow */
+ unsigned long buf[2] = {0, 1};
+ MEMO_V3_SET(memo, rb_big_unpack(buf, 2));
+ memo->flags |= COUNT_BIGNUM;
+ }
}
static VALUE
-find_i(i, memo)
- VALUE i;
- NODE *memo;
+imemo_count_value(struct MEMO *memo)
+{
+ if (memo->flags & COUNT_BIGNUM) {
+ return memo->u3.value;
+ }
+ else {
+ return ULONG2NUM(memo->u3.cnt);
+ }
+}
+
+static VALUE
+count_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
+{
+ struct MEMO *memo = MEMO_CAST(memop);
+
+ ENUM_WANT_SVALUE();
+
+ if (rb_equal(i, memo->v1)) {
+ imemo_count_up(memo);
+ }
+ return Qnil;
+}
+
+static VALUE
+count_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
{
- if (RTEST(rb_yield(i))) {
- memo->u2.value = Qtrue;
- memo->u1.value = i;
- rb_iter_break();
+ struct MEMO *memo = MEMO_CAST(memop);
+
+ if (RTEST(rb_yield_values2(argc, argv))) {
+ imemo_count_up(memo);
}
return Qnil;
}
+static VALUE
+count_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
+{
+ struct MEMO *memo = MEMO_CAST(memop);
+
+ imemo_count_up(memo);
+ return Qnil;
+}
+
/*
- * call-seq:
- * enum.detect(ifnone = nil) {| obj | block } => obj or nil
- * enum.find(ifnone = nil) {| obj | block } => obj or nil
- *
- * Passes each entry in <i>enum</i> to <em>block</em>. Returns the
- * first for which <em>block</em> is not <code>false</code>. If no
- * object matches, calls <i>ifnone</i> and returns its result when it
- * is specified, or returns <code>nil</code>
- *
- * (1..10).detect {|i| i % 5 == 0 and i % 7 == 0 } #=> nil
- * (1..100).detect {|i| i % 5 == 0 and i % 7 == 0 } #=> 35
- *
+ * call-seq:
+ * count -> integer
+ * count(object) -> integer
+ * count {|element| ... } -> integer
+ *
+ * Returns the count of elements, based on an argument or block criterion, if given.
+ *
+ * With no argument and no block given, returns the number of elements:
+ *
+ * [0, 1, 2].count # => 3
+ * {foo: 0, bar: 1, baz: 2}.count # => 3
+ *
+ * With argument +object+ given,
+ * returns the number of elements that are <tt>==</tt> to +object+:
+ *
+ * [0, 1, 2, 1].count(1) # => 2
+ *
+ * With a block given, calls the block with each element
+ * and returns the number of elements for which the block returns a truthy value:
+ *
+ * [0, 1, 2, 3].count {|element| element < 2} # => 2
+ * {foo: 0, bar: 1, baz: 2}.count {|key, value| value < 2} # => 2
+ *
*/
static VALUE
-enum_find(argc, argv, obj)
- int argc;
- VALUE* argv;
- VALUE obj;
+enum_count(int argc, VALUE *argv, VALUE obj)
+{
+ VALUE item = Qnil;
+ struct MEMO *memo;
+ rb_block_call_func *func;
+
+ if (argc == 0) {
+ if (rb_block_given_p()) {
+ func = count_iter_i;
+ }
+ else {
+ func = count_all_i;
+ }
+ }
+ else {
+ rb_scan_args(argc, argv, "1", &item);
+ if (rb_block_given_p()) {
+ rb_warn("given block not used");
+ }
+ func = count_i;
+ }
+
+ memo = rb_imemo_memo_new(item, 0, 0);
+ rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
+ return imemo_count_value(memo);
+}
+
+NORETURN(static void found(VALUE i, VALUE memop));
+static void
+found(VALUE i, VALUE memop)
+{
+ struct MEMO *memo = MEMO_CAST(memop);
+ MEMO_V1_SET(memo, i);
+ memo->u3.cnt = 1;
+ rb_iter_break();
+}
+
+static VALUE
+find_i_fast(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
+{
+ if (RTEST(rb_yield_values2(argc, argv))) {
+ ENUM_WANT_SVALUE();
+ found(i, memop);
+ }
+ return Qnil;
+}
+
+static VALUE
+find_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
+{
+ ENUM_WANT_SVALUE();
+
+ if (RTEST(enum_yield(argc, i))) {
+ found(i, memop);
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * find(if_none_proc = nil) {|element| ... } -> object or nil
+ * find(if_none_proc = nil) -> enumerator
+ *
+ * Returns the first element for which the block returns a truthy value.
+ *
+ * With a block given, calls the block with successive elements of the collection;
+ * returns the first element for which the block returns a truthy value:
+ *
+ * (0..9).find {|element| element > 2} # => 3
+ *
+ * If no such element is found, calls +if_none_proc+ and returns its return value.
+ *
+ * (0..9).find(proc {false}) {|element| element > 12} # => false
+ * {foo: 0, bar: 1, baz: 2}.find {|key, value| key.start_with?('b') } # => [:bar, 1]
+ * {foo: 0, bar: 1, baz: 2}.find(proc {[]}) {|key, value| key.start_with?('c') } # => []
+ *
+ * With no block given, returns an Enumerator.
+ *
+ */
+static VALUE
+enum_find(int argc, VALUE *argv, VALUE obj)
{
- NODE *memo = rb_node_newnode(NODE_MEMO, Qnil, Qfalse, 0);
+ struct MEMO *memo;
VALUE if_none;
- rb_scan_args(argc, argv, "01", &if_none);
- rb_iterate(rb_each, obj, find_i, (VALUE)memo);
- if (memo->u2.value) {
- VALUE result = memo->u1.value;
- rb_gc_force_recycle((VALUE)memo);
- return result;
+ if_none = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil;
+ RETURN_ENUMERATOR(obj, argc, argv);
+ memo = rb_imemo_memo_new(Qundef, 0, 0);
+ if (rb_block_pair_yield_optimizable())
+ rb_block_call2(obj, id_each, 0, 0, find_i_fast, (VALUE)memo, RB_BLOCK_NO_USE_PACKED_ARGS);
+ else
+ rb_block_call2(obj, id_each, 0, 0, find_i, (VALUE)memo, RB_BLOCK_NO_USE_PACKED_ARGS);
+ if (memo->u3.cnt) {
+ return memo->v1;
}
- rb_gc_force_recycle((VALUE)memo);
if (!NIL_P(if_none)) {
- return rb_funcall(if_none, rb_intern("call"), 0, 0);
+ return rb_funcallv(if_none, id_call, 0, 0);
+ }
+ return Qnil;
+}
+
+static VALUE
+find_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
+{
+ struct MEMO *memo = MEMO_CAST(memop);
+
+ ENUM_WANT_SVALUE();
+
+ if (rb_equal(i, memo->v2)) {
+ MEMO_V1_SET(memo, imemo_count_value(memo));
+ rb_iter_break();
}
+ imemo_count_up(memo);
return Qnil;
}
static VALUE
-find_all_i(i, ary)
- VALUE i, ary;
+find_index_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
{
- if (RTEST(rb_yield(i))) {
- rb_ary_push(ary, i);
+ struct MEMO *memo = MEMO_CAST(memop);
+
+ if (RTEST(rb_yield_values2(argc, argv))) {
+ MEMO_V1_SET(memo, imemo_count_value(memo));
+ rb_iter_break();
}
+ imemo_count_up(memo);
return Qnil;
}
/*
- * call-seq:
- * enum.find_all {| obj | block } => array
- * enum.select {| obj | block } => array
- *
- * Returns an array containing all elements of <i>enum</i> for which
- * <em>block</em> is not <code>false</code> (see also
- * <code>Enumerable#reject</code>).
- *
- * (1..10).find_all {|i| i % 3 == 0 } #=> [3, 6, 9]
- *
+ * call-seq:
+ * find_index(object) -> integer or nil
+ * find_index {|element| ... } -> integer or nil
+ * find_index -> enumerator
+ *
+ * Returns the index of the first element that meets a specified criterion,
+ * or +nil+ if no such element is found.
+ *
+ * With argument +object+ given,
+ * returns the index of the first element that is <tt>==</tt> +object+:
+ *
+ * ['a', 'b', 'c', 'b'].find_index('b') # => 1
+ *
+ * With a block given, calls the block with successive elements;
+ * returns the first element for which the block returns a truthy value:
+ *
+ * ['a', 'b', 'c', 'b'].find_index {|element| element.start_with?('b') } # => 1
+ * {foo: 0, bar: 1, baz: 2}.find_index {|key, value| value > 1 } # => 2
+ *
+ * With no argument and no block given, returns an Enumerator.
+ *
*/
static VALUE
-enum_find_all(obj)
- VALUE obj;
+enum_find_index(int argc, VALUE *argv, VALUE obj)
{
- VALUE ary = rb_ary_new();
-
- rb_iterate(rb_each, obj, find_all_i, ary);
+ struct MEMO *memo; /* [return value, current index, ] */
+ VALUE condition_value = Qnil;
+ rb_block_call_func *func;
+
+ if (argc == 0) {
+ RETURN_ENUMERATOR(obj, 0, 0);
+ func = find_index_iter_i;
+ }
+ else {
+ rb_scan_args(argc, argv, "1", &condition_value);
+ if (rb_block_given_p()) {
+ rb_warn("given block not used");
+ }
+ func = find_index_i;
+ }
+
+ memo = rb_imemo_memo_new(Qnil, condition_value, 0);
+ rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
+ return memo->v1;
+}
+
+static VALUE
+find_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
+{
+ ENUM_WANT_SVALUE();
+
+ if (RTEST(enum_yield(argc, i))) {
+ rb_ary_push(ary, i);
+ }
+ return Qnil;
+}
+
+static VALUE
+enum_size(VALUE self, VALUE args, VALUE eobj)
+{
+ return rb_check_funcall_default(self, id_size, 0, 0, Qnil);
+}
+
+static long
+limit_by_enum_size(VALUE obj, long n)
+{
+ unsigned long limit;
+ VALUE size = rb_check_funcall(obj, id_size, 0, 0);
+ if (!FIXNUM_P(size)) return n;
+ limit = FIX2ULONG(size);
+ return ((unsigned long)n > limit) ? (long)limit : n;
+}
+
+static int
+enum_size_over_p(VALUE obj, long n)
+{
+ VALUE size = rb_check_funcall(obj, id_size, 0, 0);
+ if (!FIXNUM_P(size)) return 0;
+ return ((unsigned long)n > FIX2ULONG(size));
+}
+
+/*
+ * call-seq:
+ * select {|element| ... } -> array
+ * select -> enumerator
+ *
+ * Returns an array containing elements selected by the block.
+ *
+ * With a block given, calls the block with successive elements;
+ * returns an array of those elements for which the block returns a truthy value:
+ *
+ * (0..9).select {|element| element % 3 == 0 } # => [0, 3, 6, 9]
+ * a = {foo: 0, bar: 1, baz: 2}.select {|key, value| key.start_with?('b') }
+ * a # => {:bar=>1, :baz=>2}
+ *
+ * With no block given, returns an Enumerator.
+ *
+ * Related: #reject.
+ */
+static VALUE
+enum_find_all(VALUE obj)
+{
+ VALUE ary;
+
+ RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
+
+ ary = rb_ary_new();
+ rb_block_call(obj, id_each, 0, 0, find_all_i, ary);
return ary;
}
static VALUE
-reject_i(i, ary)
- VALUE i, ary;
+filter_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
{
- if (!RTEST(rb_yield(i))) {
- rb_ary_push(ary, i);
+ i = rb_yield_values2(argc, argv);
+
+ if (RTEST(i)) {
+ rb_ary_push(ary, i);
}
+
return Qnil;
}
/*
- * call-seq:
- * enum.reject {| obj | block } => array
- *
- * Returns an array for all elements of <i>enum</i> for which
- * <em>block</em> is false (see also <code>Enumerable#find_all</code>).
- *
- * (1..10).reject {|i| i % 3 == 0 } #=> [1, 2, 4, 5, 7, 8, 10]
- *
+ * call-seq:
+ * filter_map {|element| ... } -> array
+ * filter_map -> enumerator
+ *
+ * Returns an array containing truthy elements returned by the block.
+ *
+ * With a block given, calls the block with successive elements;
+ * returns an array containing each truthy value returned by the block:
+ *
+ * (0..9).filter_map {|i| i * 2 if i.even? } # => [0, 4, 8, 12, 16]
+ * {foo: 0, bar: 1, baz: 2}.filter_map {|key, value| key if value.even? } # => [:foo, :baz]
+ *
+ * When no block given, returns an Enumerator.
+ *
*/
+static VALUE
+enum_filter_map(VALUE obj)
+{
+ VALUE ary;
+
+ RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
+
+ ary = rb_ary_new();
+ rb_block_call(obj, id_each, 0, 0, filter_map_i, ary);
+
+ return ary;
+}
+
static VALUE
-enum_reject(obj)
- VALUE obj;
+reject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
{
- VALUE ary = rb_ary_new();
-
- rb_iterate(rb_each, obj, reject_i, ary);
+ ENUM_WANT_SVALUE();
+
+ if (!RTEST(enum_yield(argc, i))) {
+ rb_ary_push(ary, i);
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * reject {|element| ... } -> array
+ * reject -> enumerator
+ *
+ * Returns an array of objects rejected by the block.
+ *
+ * With a block given, calls the block with successive elements;
+ * returns an array of those elements for which the block returns +nil+ or +false+:
+ *
+ * (0..9).reject {|i| i * 2 if i.even? } # => [1, 3, 5, 7, 9]
+ * {foo: 0, bar: 1, baz: 2}.reject {|key, value| key if value.odd? } # => {:foo=>0, :baz=>2}
+ *
+ * When no block given, returns an Enumerator.
+ *
+ * Related: #select.
+ */
+
+static VALUE
+enum_reject(VALUE obj)
+{
+ VALUE ary;
+
+ RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
+
+ ary = rb_ary_new();
+ rb_block_call(obj, id_each, 0, 0, reject_i, ary);
return ary;
}
static VALUE
-collect_i(i, ary)
- VALUE i, ary;
+collect_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
{
- rb_ary_push(ary, rb_yield(i));
+ rb_ary_push(ary, rb_yield_values2(argc, argv));
return Qnil;
}
static VALUE
-collect_all(i, ary)
- VALUE i, ary;
+collect_all(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
{
- rb_ary_push(ary, i);
+ rb_ary_push(ary, rb_enum_values_pack(argc, argv));
return Qnil;
}
/*
- * call-seq:
- * enum.collect {| obj | block } => array
- * enum.map {| obj | block } => array
- *
- * Returns a new array with the results of running <em>block</em> once
- * for every element in <i>enum</i>.
- *
- * (1..4).collect {|i| i*i } #=> [1, 4, 9, 16]
- * (1..4).collect { "cat" } #=> ["cat", "cat", "cat", "cat"]
- *
+ * call-seq:
+ * map {|element| ... } -> array
+ * map -> enumerator
+ *
+ * Returns an array of objects returned by the block.
+ *
+ * With a block given, calls the block with successive elements;
+ * returns an array of the objects returned by the block:
+ *
+ * (0..4).map {|i| i*i } # => [0, 1, 4, 9, 16]
+ * {foo: 0, bar: 1, baz: 2}.map {|key, value| value*2} # => [0, 2, 4]
+ *
+ * With no block given, returns an Enumerator.
+ *
*/
+static VALUE
+enum_collect(VALUE obj)
+{
+ VALUE ary;
+ int min_argc, max_argc;
+
+ RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
+
+ ary = rb_ary_new();
+ min_argc = rb_block_min_max_arity(&max_argc);
+ rb_lambda_call(obj, id_each, 0, 0, collect_i, min_argc, max_argc, ary);
+
+ return ary;
+}
static VALUE
-enum_collect(obj)
- VALUE obj;
+flat_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
{
- VALUE ary = rb_ary_new();
+ VALUE tmp;
- rb_iterate(rb_each, obj, rb_block_given_p() ? collect_i : collect_all, ary);
+ i = rb_yield_values2(argc, argv);
+ tmp = rb_check_array_type(i);
+
+ if (NIL_P(tmp)) {
+ rb_ary_push(ary, i);
+ }
+ else {
+ rb_ary_concat(ary, tmp);
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * flat_map {|element| ... } -> array
+ * flat_map -> enumerator
+ *
+ * Returns an array of flattened objects returned by the block.
+ *
+ * With a block given, calls the block with successive elements;
+ * returns a flattened array of objects returned by the block:
+ *
+ * [0, 1, 2, 3].flat_map {|element| -element } # => [0, -1, -2, -3]
+ * [0, 1, 2, 3].flat_map {|element| [element, -element] } # => [0, 0, 1, -1, 2, -2, 3, -3]
+ * [[0, 1], [2, 3]].flat_map {|e| e + [100] } # => [0, 1, 100, 2, 3, 100]
+ * {foo: 0, bar: 1, baz: 2}.flat_map {|key, value| [key, value] } # => [:foo, 0, :bar, 1, :baz, 2]
+ *
+ * With no block given, returns an Enumerator.
+ *
+ * Alias: #collect_concat.
+ */
+static VALUE
+enum_flat_map(VALUE obj)
+{
+ VALUE ary;
+
+ RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
+
+ ary = rb_ary_new();
+ rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);
return ary;
}
/*
* call-seq:
- * enum.to_a => array
- * enum.entries => array
- *
- * Returns an array containing the items in <i>enum</i>.
- *
- * (1..7).to_a #=> [1, 2, 3, 4, 5, 6, 7]
- * { 'a'=>1, 'b'=>2, 'c'=>3 }.to_a #=> [["a", 1], ["b", 2], ["c", 3]]
+ * to_a(*args) -> array
+ *
+ * Returns an array containing the items in +self+:
+ *
+ * (0..4).to_a # => [0, 1, 2, 3, 4]
+ *
*/
static VALUE
-enum_to_a(obj)
- VALUE obj;
+enum_to_a(int argc, VALUE *argv, VALUE obj)
{
VALUE ary = rb_ary_new();
- rb_iterate(rb_each, obj, collect_all, ary);
+ rb_block_call_kw(obj, id_each, argc, argv, collect_all, ary, RB_PASS_CALLED_KEYWORDS);
return ary;
}
static VALUE
-inject_i(i, memo)
- VALUE i;
- NODE *memo;
+enum_hashify_into(VALUE obj, int argc, const VALUE *argv, rb_block_call_func *iter, VALUE hash)
+{
+ rb_block_call(obj, id_each, argc, argv, iter, hash);
+ return hash;
+}
+
+static VALUE
+enum_hashify(VALUE obj, int argc, const VALUE *argv, rb_block_call_func *iter)
+{
+ return enum_hashify_into(obj, argc, argv, iter, rb_hash_new());
+}
+
+static VALUE
+enum_to_h_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
+{
+ ENUM_WANT_SVALUE();
+ return rb_hash_set_pair(hash, i);
+}
+
+static VALUE
+enum_to_h_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
{
- if (memo->u2.value) {
- memo->u2.value = Qfalse;
- memo->u1.value = i;
+ return rb_hash_set_pair(hash, rb_yield_values2(argc, argv));
+}
+
+/*
+ * call-seq:
+ * to_h(*args) -> hash
+ * to_h(*args) {|element| ... } -> hash
+ *
+ * When +self+ consists of 2-element arrays,
+ * returns a hash each of whose entries is the key-value pair
+ * formed from one of those arrays:
+ *
+ * [[:foo, 0], [:bar, 1], [:baz, 2]].to_h # => {:foo=>0, :bar=>1, :baz=>2}
+ *
+ * When a block is given, the block is called with each element of +self+;
+ * the block should return a 2-element array which becomes a key-value pair
+ * in the returned hash:
+ *
+ * (0..3).to_h {|i| [i, i ** 2]} # => {0=>0, 1=>1, 2=>4, 3=>9}
+ *
+ * Raises an exception if an element of +self+ is not a 2-element array,
+ * and a block is not passed.
+ */
+
+static VALUE
+enum_to_h(int argc, VALUE *argv, VALUE obj)
+{
+ rb_block_call_func *iter = rb_block_given_p() ? enum_to_h_ii : enum_to_h_i;
+ return enum_hashify(obj, argc, argv, iter);
+}
+
+static VALUE
+inject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
+{
+ struct MEMO *memo = MEMO_CAST(p);
+
+ ENUM_WANT_SVALUE();
+
+ if (UNDEF_P(memo->v1)) {
+ MEMO_V1_SET(memo, i);
+ }
+ else {
+ MEMO_V1_SET(memo, rb_yield_values(2, memo->v1, i));
+ }
+ return Qnil;
+}
+
+static VALUE
+inject_op_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
+{
+ struct MEMO *memo = MEMO_CAST(p);
+ VALUE name;
+
+ ENUM_WANT_SVALUE();
+
+ if (UNDEF_P(memo->v1)) {
+ MEMO_V1_SET(memo, i);
+ }
+ else if (SYMBOL_P(name = memo->u3.value)) {
+ const ID mid = SYM2ID(name);
+ MEMO_V1_SET(memo, rb_funcallv_public(memo->v1, mid, 1, &i));
}
else {
- memo->u1.value = rb_yield_values(2, memo->u1.value, i);
+ VALUE args[2];
+ args[0] = name;
+ args[1] = i;
+ MEMO_V1_SET(memo, rb_f_send(numberof(args), args, memo->v1));
}
return Qnil;
}
+static VALUE
+ary_inject_op(VALUE ary, VALUE init, VALUE op)
+{
+ ID id;
+ VALUE v, e;
+ long i, n;
+
+ if (RARRAY_LEN(ary) == 0)
+ return UNDEF_P(init) ? Qnil : init;
+
+ if (UNDEF_P(init)) {
+ v = RARRAY_AREF(ary, 0);
+ i = 1;
+ if (RARRAY_LEN(ary) == 1)
+ return v;
+ }
+ else {
+ v = init;
+ i = 0;
+ }
+
+ id = SYM2ID(op);
+ if (id == idPLUS) {
+ if (RB_INTEGER_TYPE_P(v) &&
+ rb_method_basic_definition_p(rb_cInteger, idPLUS) &&
+ rb_obj_respond_to(v, idPLUS, FALSE)) {
+ n = 0;
+ for (; i < RARRAY_LEN(ary); i++) {
+ e = RARRAY_AREF(ary, i);
+ if (FIXNUM_P(e)) {
+ n += FIX2LONG(e); /* should not overflow long type */
+ if (!FIXABLE(n)) {
+ v = rb_big_plus(LONG2NUM(n), v);
+ n = 0;
+ }
+ }
+ else if (RB_BIGNUM_TYPE_P(e))
+ v = rb_big_plus(e, v);
+ else
+ goto not_integer;
+ }
+ if (n != 0)
+ v = rb_fix_plus(LONG2FIX(n), v);
+ return v;
+
+ not_integer:
+ if (n != 0)
+ v = rb_fix_plus(LONG2FIX(n), v);
+ }
+ }
+ for (; i < RARRAY_LEN(ary); i++) {
+ VALUE arg = RARRAY_AREF(ary, i);
+ v = rb_funcallv_public(v, id, 1, &arg);
+ }
+ return v;
+}
+
/*
* call-seq:
- * enum.inject(initial) {| memo, obj | block } => obj
- * enum.inject {| memo, obj | block } => obj
- *
- * Combines the elements of <i>enum</i> by applying the block to an
- * accumulator value (<i>memo</i>) and each element in turn. At each
- * step, <i>memo</i> is set to the value returned by the block. The
- * first form lets you supply an initial value for <i>memo</i>. The
- * second form uses the first element of the collection as a the
- * initial value (and skips that element while iterating).
- *
- * # Sum some numbers
- * (5..10).inject {|sum, n| sum + n } #=> 45
- * # Multiply some numbers
- * (5..10).inject(1) {|product, n| product * n } #=> 151200
- *
- * # find the longest word
- * longest = %w{ cat sheep bear }.inject do |memo,word|
- * memo.length > word.length ? memo : word
- * end
- * longest #=> "sheep"
- *
- * # find the length of the longest word
- * longest = %w{ cat sheep bear }.inject(0) do |memo,word|
- * memo >= word.length ? memo : word.length
- * end
- * longest #=> 5
- *
+ * inject(symbol) -> object
+ * inject(initial_value, symbol) -> object
+ * inject {|memo, value| ... } -> object
+ * inject(initial_value) {|memo, value| ... } -> object
+ *
+ * Returns the result of applying a reducer to an initial value and
+ * the first element of the Enumerable. It then takes the result and applies the
+ * function to it and the second element of the collection, and so on. The
+ * return value is the result returned by the final call to the function.
+ *
+ * You can think of
+ *
+ * [ a, b, c, d ].inject(i) { |r, v| fn(r, v) }
+ *
+ * as being
+ *
+ * fn(fn(fn(fn(i, a), b), c), d)
+ *
+ * In a way the +inject+ function _injects_ the function
+ * between the elements of the enumerable.
+ *
+ * +inject+ is aliased as +reduce+. You use it when you want to
+ * _reduce_ a collection to a single value.
+ *
+ * <b>The Calling Sequences</b>
+ *
+ * Let's start with the most verbose:
+ *
+ * enum.inject(initial_value) do |result, next_value|
+ * # do something with +result+ and +next_value+
+ * # the value returned by the block becomes the
+ * # value passed in to the next iteration
+ * # as +result+
+ * end
+ *
+ * For example:
+ *
+ * product = [ 2, 3, 4 ].inject(1) do |result, next_value|
+ * result * next_value
+ * end
+ * product #=> 24
+ *
+ * When this runs, the block is first called with +1+ (the initial value) and
+ * +2+ (the first element of the array). The block returns <tt>1*2</tt>, so on
+ * the next iteration the block is called with +2+ (the previous result) and
+ * +3+. The block returns +6+, and is called one last time with +6+ and +4+.
+ * The result of the block, +24+ becomes the value returned by +inject+. This
+ * code returns the product of the elements in the enumerable.
+ *
+ * <b>First Shortcut: Default Initial value</b>
+ *
+ * In the case of the previous example, the initial value, +1+, wasn't really
+ * necessary: the calculation of the product of a list of numbers is self-contained.
+ *
+ * In these circumstances, you can omit the +initial_value+ parameter. +inject+
+ * will then initially call the block with the first element of the collection
+ * as the +result+ parameter and the second element as the +next_value+.
+ *
+ * [ 2, 3, 4 ].inject do |result, next_value|
+ * result * next_value
+ * end
+ *
+ * This shortcut is convenient, but can only be used when the block produces a result
+ * which can be passed back to it as a first parameter.
+ *
+ * Here's an example where that's not the case: it returns a hash where the keys are words
+ * and the values are the number of occurrences of that word in the enumerable.
+ *
+ * freqs = File.read("README.md")
+ * .scan(/\w{2,}/)
+ * .reduce(Hash.new(0)) do |counts, word|
+ * counts[word] += 1
+ * counts
+ * end
+ * freqs #=> {"Actions"=>4,
+ * "Status"=>5,
+ * "MinGW"=>3,
+ * "https"=>27,
+ * "github"=>10,
+ * "com"=>15, ...
+ *
+ * Note that the last line of the block is just the word +counts+. This ensures the
+ * return value of the block is the result that's being calculated.
+ *
+ * <b>Second Shortcut: a Reducer function</b>
+ *
+ * A <i>reducer function</i> is a function that takes a partial result and the next value,
+ * returning the next partial result. The block that is given to +inject+ is a reducer.
+ *
+ * You can also write a reducer as a function and pass the name of that function
+ * (as a symbol) to +inject+. However, for this to work, the function
+ *
+ * 1. Must be defined on the type of the result value
+ * 2. Must accept a single parameter, the next value in the collection, and
+ * 3. Must return an updated result which will also implement the function.
+ *
+ * Here's an example that adds elements to a string. The two calls invoke the functions
+ * String#concat and String#+ on the result so far, passing it the next value.
+ *
+ * s = [ "cat", " ", "dog" ].inject("", :concat)
+ * s #=> "cat dog"
+ * s = [ "cat", " ", "dog" ].inject("The result is:", :+)
+ * s #=> "The result is: cat dog"
+ *
+ * Here's a more complex example when the result object maintains
+ * state of a different type to the enumerable elements.
+ *
+ * class Turtle
+ *
+ * def initialize
+ * @x = @y = 0
+ * end
+ *
+ * def move(dir)
+ * case dir
+ * when "n" then @y += 1
+ * when "s" then @y -= 1
+ * when "e" then @x += 1
+ * when "w" then @x -= 1
+ * end
+ * self
+ * end
+ * end
+ *
+ * position = "nnneesw".chars.reduce(Turtle.new, :move)
+ * position #=>> #<Turtle:0x00000001052f4698 @y=2, @x=1>
+ *
+ * <b>Third Shortcut: Reducer With no Initial Value</b>
+ *
+ * If your reducer returns a value that it can accept as a parameter, then you
+ * don't have to pass in an initial value. Here <tt>:*</tt> is the name of the
+ * _times_ function:
+ *
+ * product = [ 2, 3, 4 ].inject(:*)
+ * product # => 24
+ *
+ * String concatenation again:
+ *
+ * s = [ "cat", " ", "dog" ].inject(:+)
+ * s #=> "cat dog"
+ *
+ * And an example that converts a hash to an array of two-element subarrays.
+ *
+ * nested = {foo: 0, bar: 1}.inject([], :push)
+ * nested # => [[:foo, 0], [:bar, 1]]
+ *
+ *
*/
+static VALUE
+enum_inject(int argc, VALUE *argv, VALUE obj)
+{
+ struct MEMO *memo;
+ VALUE init, op;
+ rb_block_call_func *iter = inject_i;
+ ID id;
+ int num_args;
+
+ if (rb_block_given_p()) {
+ num_args = rb_scan_args(argc, argv, "02", &init, &op);
+ }
+ else {
+ num_args = rb_scan_args(argc, argv, "11", &init, &op);
+ }
+
+ switch (num_args) {
+ case 0:
+ init = Qundef;
+ break;
+ case 1:
+ if (rb_block_given_p()) {
+ break;
+ }
+ id = rb_check_id(&init);
+ op = id ? ID2SYM(id) : init;
+ init = Qundef;
+ iter = inject_op_i;
+ break;
+ case 2:
+ if (rb_block_given_p()) {
+ rb_warning("given block not used");
+ }
+ id = rb_check_id(&op);
+ if (id) op = ID2SYM(id);
+ iter = inject_op_i;
+ break;
+ }
+
+ if (iter == inject_op_i &&
+ SYMBOL_P(op) &&
+ RB_TYPE_P(obj, T_ARRAY) &&
+ rb_method_basic_definition_p(CLASS_OF(obj), id_each)) {
+ return ary_inject_op(obj, init, op);
+ }
+
+ memo = rb_imemo_memo_new(init, Qnil, op);
+ rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
+ if (UNDEF_P(memo->v1)) return Qnil;
+ return memo->v1;
+}
static VALUE
-enum_inject(argc, argv, obj)
- int argc;
- VALUE *argv, obj;
+partition_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, arys))
{
- NODE *memo;
- VALUE n;
+ struct MEMO *memo = MEMO_CAST(arys);
+ VALUE ary;
+ ENUM_WANT_SVALUE();
- if (rb_scan_args(argc, argv, "01", &n) == 1) {
- memo = rb_node_newnode(NODE_MEMO, n, Qfalse, 0);
+ if (RTEST(enum_yield(argc, i))) {
+ ary = memo->v1;
}
else {
- memo = rb_node_newnode(NODE_MEMO, Qnil, Qtrue, 0);
+ ary = memo->v2;
}
- rb_iterate(rb_each, obj, inject_i, (VALUE)memo);
- n = memo->u1.value;
- rb_gc_force_recycle((VALUE)memo);
- return n;
+ rb_ary_push(ary, i);
+ return Qnil;
}
+/*
+ * call-seq:
+ * partition {|element| ... } -> [true_array, false_array]
+ * partition -> enumerator
+ *
+ * With a block given, returns an array of two arrays:
+ *
+ * - The first having those elements for which the block returns a truthy value.
+ * - The other having all other elements.
+ *
+ * Examples:
+ *
+ * p = (1..4).partition {|i| i.even? }
+ * p # => [[2, 4], [1, 3]]
+ * p = ('a'..'d').partition {|c| c < 'c' }
+ * p # => [["a", "b"], ["c", "d"]]
+ * h = {foo: 0, bar: 1, baz: 2, bat: 3}
+ * p = h.partition {|key, value| key.start_with?('b') }
+ * p # => [[[:bar, 1], [:baz, 2], [:bat, 3]], [[:foo, 0]]]
+ * p = h.partition {|key, value| value < 2 }
+ * p # => [[[:foo, 0], [:bar, 1]], [[:baz, 2], [:bat, 3]]]
+ *
+ * With no block given, returns an Enumerator.
+ *
+ * Related: Enumerable#group_by.
+ *
+ */
+
+static VALUE
+enum_partition(VALUE obj)
+{
+ struct MEMO *memo;
+
+ RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
+
+ memo = rb_imemo_memo_new(rb_ary_new(), rb_ary_new(), 0);
+ rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo);
+
+ return rb_assoc_new(memo->v1, memo->v2);
+}
+
+static VALUE
+group_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
+{
+ VALUE group;
+ VALUE values;
+
+ ENUM_WANT_SVALUE();
+
+ group = enum_yield(argc, i);
+ values = rb_hash_aref(hash, group);
+ if (!RB_TYPE_P(values, T_ARRAY)) {
+ values = rb_ary_new3(1, i);
+ rb_hash_aset(hash, group, values);
+ }
+ else {
+ rb_ary_push(values, i);
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * group_by {|element| ... } -> hash
+ * group_by -> enumerator
+ *
+ * With a block given returns a hash:
+ *
+ * - Each key is a return value from the block.
+ * - Each value is an array of those elements for which the block returned that key.
+ *
+ * Examples:
+ *
+ * g = (1..6).group_by {|i| i%3 }
+ * g # => {1=>[1, 4], 2=>[2, 5], 0=>[3, 6]}
+ * h = {foo: 0, bar: 1, baz: 0, bat: 1}
+ * g = h.group_by {|key, value| value }
+ * g # => {0=>[[:foo, 0], [:baz, 0]], 1=>[[:bar, 1], [:bat, 1]]}
+ *
+ * With no block given, returns an Enumerator.
+ *
+ */
+
static VALUE
-partition_i(i, ary)
- VALUE i, *ary;
+enum_group_by(VALUE obj)
{
- if (RTEST(rb_yield(i))) {
- rb_ary_push(ary[0], i);
+ RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
+
+ return enum_hashify(obj, 0, 0, group_by_i);
+}
+
+static int
+tally_up(st_data_t *group, st_data_t *value, st_data_t arg, int existing)
+{
+ VALUE tally = (VALUE)*value;
+ VALUE hash = (VALUE)arg;
+ if (!existing) {
+ tally = INT2FIX(1);
+ }
+ else if (FIXNUM_P(tally) && tally < INT2FIX(FIXNUM_MAX)) {
+ tally += INT2FIX(1) & ~FIXNUM_FLAG;
}
else {
- rb_ary_push(ary[1], i);
+ Check_Type(tally, T_BIGNUM);
+ tally = rb_big_plus(tally, INT2FIX(1));
+ RB_OBJ_WRITTEN(hash, Qundef, tally);
+ }
+ *value = (st_data_t)tally;
+ return ST_CONTINUE;
+}
+
+static VALUE
+rb_enum_tally_up(VALUE hash, VALUE group)
+{
+ if (!rb_hash_stlike_update(hash, group, tally_up, (st_data_t)hash)) {
+ RB_OBJ_WRITTEN(hash, Qundef, group);
}
+ return hash;
+}
+
+static VALUE
+tally_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
+{
+ ENUM_WANT_SVALUE();
+ rb_enum_tally_up(hash, i);
return Qnil;
}
/*
* call-seq:
- * enum.partition {| obj | block } => [ true_array, false_array ]
- *
- * Returns two arrays, the first containing the elements of
- * <i>enum</i> for which the block evaluates to true, the second
- * containing the rest.
- *
- * (1..6).partition {|i| (i&1).zero?} #=> [[2, 4, 6], [1, 3, 5]]
- *
+ * tally(hash = {}) -> hash
+ *
+ * When argument +hash+ is not given,
+ * returns a new hash whose keys are the distinct elements in +self+;
+ * each integer value is the count of occurrences of each element:
+ *
+ * %w[a b c b c a c b].tally # => {"a"=>2, "b"=>3, "c"=>3}
+ *
+ * When argument +hash+ is given,
+ * returns +hash+, possibly augmented; for each element +ele+ in +self+:
+ *
+ * - Adds it as a key with a zero value if that key does not already exist:
+ *
+ * hash[ele] = 0 unless hash.include?(ele)
+ *
+ * - Increments the value of key +ele+:
+ *
+ * hash[ele] += 1
+ *
+ * This is useful for accumulating tallies across multiple enumerables:
+ *
+ * h = {} # => {}
+ * %w[a c d b c a].tally(h) # => {"a"=>2, "c"=>2, "d"=>1, "b"=>1}
+ * %w[b a z].tally(h) # => {"a"=>3, "c"=>2, "d"=>1, "b"=>2, "z"=>1}
+ * %w[b a m].tally(h) # => {"a"=>4, "c"=>2, "d"=>1, "b"=>3, "z"=>1, "m"=>1}
+ *
+ * The key to be added or found for an element depends on the class of +self+;
+ * see {Enumerable in Ruby Classes}[rdoc-ref:Enumerable@Enumerable+in+Ruby+Classes].
+ *
+ * Examples:
+ *
+ * - Array (and certain array-like classes):
+ * the key is the element (as above).
+ * - Hash (and certain hash-like classes):
+ * the key is the 2-element array formed from the key-value pair:
+ *
+ * h = {} # => {}
+ * {foo: 'a', bar: 'b'}.tally(h) # => {[:foo, "a"]=>1, [:bar, "b"]=>1}
+ * {foo: 'c', bar: 'd'}.tally(h) # => {[:foo, "a"]=>1, [:bar, "b"]=>1, [:foo, "c"]=>1, [:bar, "d"]=>1}
+ * {foo: 'a', bar: 'b'}.tally(h) # => {[:foo, "a"]=>2, [:bar, "b"]=>2, [:foo, "c"]=>1, [:bar, "d"]=>1}
+ * {foo: 'c', bar: 'd'}.tally(h) # => {[:foo, "a"]=>2, [:bar, "b"]=>2, [:foo, "c"]=>2, [:bar, "d"]=>2}
+ *
*/
static VALUE
-enum_partition(obj)
- VALUE obj;
+enum_tally(int argc, VALUE *argv, VALUE obj)
+{
+ VALUE hash;
+ if (rb_check_arity(argc, 0, 1)) {
+ hash = rb_to_hash_type(argv[0]);
+ rb_check_frozen(hash);
+ }
+ else {
+ hash = rb_hash_new();
+ }
+
+ return enum_hashify_into(obj, 0, 0, tally_i, hash);
+}
+
+NORETURN(static VALUE first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, params)));
+static VALUE
+first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, params))
{
- VALUE ary[2];
+ struct MEMO *memo = MEMO_CAST(params);
+ ENUM_WANT_SVALUE();
- ary[0] = rb_ary_new();
- ary[1] = rb_ary_new();
- rb_iterate(rb_each, obj, partition_i, (VALUE)ary);
+ MEMO_V1_SET(memo, i);
+ rb_iter_break();
- return rb_assoc_new(ary[0], ary[1]);
+ UNREACHABLE_RETURN(Qnil);
}
+static VALUE enum_take(VALUE obj, VALUE n);
+
/*
* call-seq:
- * enum.sort => array
- * enum.sort {| a, b | block } => array
- *
- * Returns an array containing the items in <i>enum</i> sorted,
- * either according to their own <code><=></code> method, or by using
- * the results of the supplied block. The block should return -1, 0, or
- * +1 depending on the comparison between <i>a</i> and <i>b</i>. As of
- * Ruby 1.8, the method <code>Enumerable#sort_by</code> implements a
- * built-in Schwartzian Transform, useful when key computation or
- * comparison is expensive..
- *
- * %w(rhea kea flea).sort #=> ["flea", "kea", "rhea"]
- * (1..10).sort {|a,b| b <=> a} #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
+ * first -> element or nil
+ * first(n) -> array
+ *
+ * Returns the first element or elements.
+ *
+ * With no argument, returns the first element, or +nil+ if there is none:
+ *
+ * (1..4).first # => 1
+ * %w[a b c].first # => "a"
+ * {foo: 1, bar: 1, baz: 2}.first # => [:foo, 1]
+ * [].first # => nil
+ *
+ * With integer argument +n+, returns an array
+ * containing the first +n+ elements that exist:
+ *
+ * (1..4).first(2) # => [1, 2]
+ * %w[a b c d].first(3) # => ["a", "b", "c"]
+ * %w[a b c d].first(50) # => ["a", "b", "c", "d"]
+ * {foo: 1, bar: 1, baz: 2}.first(2) # => [[:foo, 1], [:bar, 1]]
+ * [].first(2) # => []
+ *
*/
static VALUE
-enum_sort(obj)
- VALUE obj;
+enum_first(int argc, VALUE *argv, VALUE obj)
{
- return rb_ary_sort(enum_to_a(obj));
+ struct MEMO *memo;
+ rb_check_arity(argc, 0, 1);
+ if (argc > 0) {
+ return enum_take(obj, argv[0]);
+ }
+ else {
+ memo = rb_imemo_memo_new(Qnil, 0, 0);
+ rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo);
+ return memo->v1;
+ }
}
+/*
+ * call-seq:
+ * sort -> array
+ * sort {|a, b| ... } -> array
+ *
+ * Returns an array containing the sorted elements of +self+.
+ * The ordering of equal elements is indeterminate and may be unstable.
+ *
+ * With no block given, the sort compares
+ * using the elements' own method <tt>#<=></tt>:
+ *
+ * %w[b c a d].sort # => ["a", "b", "c", "d"]
+ * {foo: 0, bar: 1, baz: 2}.sort # => [[:bar, 1], [:baz, 2], [:foo, 0]]
+ *
+ * With a block given, comparisons in the block determine the ordering.
+ * The block is called with two elements +a+ and +b+, and must return:
+ *
+ * - A negative integer if <tt>a < b</tt>.
+ * - Zero if <tt>a == b</tt>.
+ * - A positive integer if <tt>a > b</tt>.
+ *
+ * Examples:
+ *
+ * a = %w[b c a d]
+ * a.sort {|a, b| b <=> a } # => ["d", "c", "b", "a"]
+ * h = {foo: 0, bar: 1, baz: 2}
+ * h.sort {|a, b| b <=> a } # => [[:foo, 0], [:baz, 2], [:bar, 1]]
+ *
+ * See also #sort_by. It implements a Schwartzian transform
+ * which is useful when key computation or comparison is expensive.
+ */
+
static VALUE
-sort_by_i(i, ary)
- VALUE i, ary;
+enum_sort(VALUE obj)
{
- VALUE v, e;
+ return rb_ary_sort_bang(enum_to_a(0, 0, obj));
+}
+
+#define SORT_BY_BUFSIZE 16
+#define SORT_BY_UNIFORMED(num, flo, fix) (((num&1)<<2)|((flo&1)<<1)|fix)
+struct sort_by_data {
+ const VALUE ary;
+ const VALUE buf;
+ uint8_t n;
+ uint8_t primitive_uniformed;
+};
- v = rb_yield(i);
- e = rb_assoc_new(v, i);
- rb_ary_push(ary, e);
+static VALUE
+sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data))
+{
+ struct sort_by_data *data = (struct sort_by_data *)&MEMO_CAST(_data)->v1;
+ VALUE ary = data->ary;
+ VALUE v;
+
+ ENUM_WANT_SVALUE();
+
+ v = enum_yield(argc, i);
+
+ if (RBASIC(ary)->klass) {
+ rb_raise(rb_eRuntimeError, "sort_by reentered");
+ }
+ if (RARRAY_LEN(data->buf) != SORT_BY_BUFSIZE*2) {
+ rb_raise(rb_eRuntimeError, "sort_by reentered");
+ }
+
+ if (data->primitive_uniformed) {
+ data->primitive_uniformed &= SORT_BY_UNIFORMED((FIXNUM_P(v)) || (RB_FLOAT_TYPE_P(v)),
+ RB_FLOAT_TYPE_P(v),
+ FIXNUM_P(v));
+ }
+ RARRAY_ASET(data->buf, data->n*2, v);
+ RARRAY_ASET(data->buf, data->n*2+1, i);
+ data->n++;
+ if (data->n == SORT_BY_BUFSIZE) {
+ rb_ary_concat(ary, data->buf);
+ data->n = 0;
+ }
return Qnil;
}
static int
-sort_by_cmp(a, b)
- VALUE *a, *b;
+sort_by_cmp(const void *ap, const void *bp, void *data)
+{
+ VALUE a;
+ VALUE b;
+ VALUE ary = (VALUE)data;
+
+ if (RBASIC(ary)->klass) {
+ rb_raise(rb_eRuntimeError, "sort_by reentered");
+ }
+
+ a = *(VALUE *)ap;
+ b = *(VALUE *)bp;
+
+ return OPTIMIZED_CMP(a, b);
+}
+
+
+/*
+ This is parts of uniform sort
+*/
+
+#define uless rb_uniform_is_less
+#define UNIFORM_SWAP(a,b)\
+ do{struct rb_uniform_sort_data tmp = a; a = b; b = tmp;} while(0)
+
+struct rb_uniform_sort_data {
+ VALUE v;
+ VALUE i;
+};
+
+static inline bool
+rb_uniform_is_less(VALUE a, VALUE b)
+{
+
+ if (FIXNUM_P(a) && FIXNUM_P(b)) {
+ return (SIGNED_VALUE)a < (SIGNED_VALUE)b;
+ }
+ else if (FIXNUM_P(a)) {
+ RUBY_ASSERT(RB_FLOAT_TYPE_P(b));
+ return rb_float_cmp(b, a) > 0;
+ }
+ else {
+ RUBY_ASSERT(RB_FLOAT_TYPE_P(a));
+ return rb_float_cmp(a, b) < 0;
+ }
+}
+
+static inline bool
+rb_uniform_is_larger(VALUE a, VALUE b)
+{
+
+ if (FIXNUM_P(a) && FIXNUM_P(b)) {
+ return (SIGNED_VALUE)a > (SIGNED_VALUE)b;
+ }
+ else if (FIXNUM_P(a)) {
+ RUBY_ASSERT(RB_FLOAT_TYPE_P(b));
+ return rb_float_cmp(b, a) < 0;
+ }
+ else {
+ RUBY_ASSERT(RB_FLOAT_TYPE_P(a));
+ return rb_float_cmp(a, b) > 0;
+ }
+}
+
+#define med3_val(a,b,c) (uless(a,b)?(uless(b,c)?b:uless(c,a)?a:c):(uless(c,b)?b:uless(a,c)?a:c))
+
+static void
+rb_uniform_insertionsort_2(struct rb_uniform_sort_data* ptr_begin,
+ struct rb_uniform_sort_data* ptr_end)
+{
+ if ((ptr_end - ptr_begin) < 2) return;
+ struct rb_uniform_sort_data tmp, *j, *k,
+ *index = ptr_begin+1;
+ for (; index < ptr_end; index++) {
+ tmp = *index;
+ j = k = index;
+ if (uless(tmp.v, ptr_begin->v)) {
+ while (ptr_begin < j) {
+ *j = *(--k);
+ j = k;
+ }
+ }
+ else {
+ while (uless(tmp.v, (--k)->v)) {
+ *j = *k;
+ j = k;
+ }
+ }
+ *j = tmp;
+ }
+}
+
+static inline void
+rb_uniform_heap_down_2(struct rb_uniform_sort_data* ptr_begin,
+ size_t offset, size_t len)
+{
+ size_t c;
+ struct rb_uniform_sort_data tmp = ptr_begin[offset];
+ while ((c = (offset<<1)+1) <= len) {
+ if (c < len && uless(ptr_begin[c].v, ptr_begin[c+1].v)) {
+ c++;
+ }
+ if (!uless(tmp.v, ptr_begin[c].v)) break;
+ ptr_begin[offset] = ptr_begin[c];
+ offset = c;
+ }
+ ptr_begin[offset] = tmp;
+}
+
+static void
+rb_uniform_heapsort_2(struct rb_uniform_sort_data* ptr_begin,
+ struct rb_uniform_sort_data* ptr_end)
+{
+ size_t n = ptr_end - ptr_begin;
+ if (n < 2) return;
+
+ for (size_t offset = n>>1; offset > 0;) {
+ rb_uniform_heap_down_2(ptr_begin, --offset, n-1);
+ }
+ for (size_t offset = n-1; offset > 0;) {
+ UNIFORM_SWAP(*ptr_begin, ptr_begin[offset]);
+ rb_uniform_heap_down_2(ptr_begin, 0, --offset);
+ }
+}
+
+
+static void
+rb_uniform_quicksort_intro_2(struct rb_uniform_sort_data* ptr_begin,
+ struct rb_uniform_sort_data* ptr_end, size_t d)
+{
+
+ if (ptr_end - ptr_begin <= 16) {
+ rb_uniform_insertionsort_2(ptr_begin, ptr_end);
+ return;
+ }
+ if (d == 0) {
+ rb_uniform_heapsort_2(ptr_begin, ptr_end);
+ return;
+ }
+
+ VALUE x = med3_val(ptr_begin->v,
+ ptr_begin[(ptr_end - ptr_begin)>>1].v,
+ ptr_end[-1].v);
+ struct rb_uniform_sort_data *i = ptr_begin;
+ struct rb_uniform_sort_data *j = ptr_end-1;
+
+ do {
+ while (uless(i->v, x)) i++;
+ while (uless(x, j->v)) j--;
+ if (i <= j) {
+ UNIFORM_SWAP(*i, *j);
+ i++;
+ j--;
+ }
+ } while (i <= j);
+ j++;
+ if (ptr_end - j > 1) rb_uniform_quicksort_intro_2(j, ptr_end, d-1);
+ if (i - ptr_begin > 1) rb_uniform_quicksort_intro_2(ptr_begin, i, d-1);
+}
+
+/**
+ * Direct primitive data compare sort. Implement with intro sort.
+ * @param[in] ptr_begin The begin address of target rb_ary's raw pointer.
+ * @param[in] ptr_end The end address of target rb_ary's raw pointer.
+**/
+static void
+rb_uniform_intro_sort_2(struct rb_uniform_sort_data* ptr_begin,
+ struct rb_uniform_sort_data* ptr_end)
{
- VALUE retval;
+ size_t n = ptr_end - ptr_begin;
+ size_t d = CHAR_BIT * sizeof(n) - nlz_intptr(n) - 1;
+ bool sorted_flag = true;
- retval = rb_funcall(RARRAY(*a)->ptr[0], id_cmp, 1, RARRAY(*b)->ptr[0]);
- return rb_cmpint(retval, *a, *b);
+ for (struct rb_uniform_sort_data* ptr = ptr_begin+1; ptr < ptr_end; ptr++) {
+ if (rb_uniform_is_larger((ptr-1)->v, (ptr)->v)) {
+ sorted_flag = false;
+ break;
+ }
+ }
+
+ if (sorted_flag) {
+ return;
+ }
+ rb_uniform_quicksort_intro_2(ptr_begin, ptr_end, d<<1);
}
+#undef uless
+
+
/*
* call-seq:
- * enum.sort_by {| obj | block } => array
- *
- * Sorts <i>enum</i> using a set of keys generated by mapping the
- * values in <i>enum</i> through the given block.
- *
- * %w{ apple pear fig }.sort_by {|word| word.length}
- #=> ["fig", "pear", "apple"]
- *
- * The current implementation of <code>sort_by</code> generates an
- * array of tuples containing the original collection element and the
- * mapped value. This makes <code>sort_by</code> fairly expensive when
- * the keysets are simple
- *
+ * sort_by {|element| ... } -> array
+ * sort_by -> enumerator
+ *
+ * With a block given, returns an array of elements of +self+,
+ * sorted according to the value returned by the block for each element.
+ * The ordering of equal elements is indeterminate and may be unstable.
+ *
+ * Examples:
+ *
+ * a = %w[xx xxx x xxxx]
+ * a.sort_by {|s| s.size } # => ["x", "xx", "xxx", "xxxx"]
+ * a.sort_by {|s| -s.size } # => ["xxxx", "xxx", "xx", "x"]
+ * h = {foo: 2, bar: 1, baz: 0}
+ * h.sort_by{|key, value| value } # => [[:baz, 0], [:bar, 1], [:foo, 2]]
+ * h.sort_by{|key, value| key } # => [[:bar, 1], [:baz, 0], [:foo, 2]]
+ *
+ * With no block given, returns an Enumerator.
+ *
+ * The current implementation of #sort_by generates an array of
+ * tuples containing the original collection element and the mapped
+ * value. This makes #sort_by fairly expensive when the keysets are
+ * simple.
+ *
* require 'benchmark'
- * include Benchmark
- *
- * a = (1..100000).map {rand(100000)}
- *
- * bm(10) do |b|
+ *
+ * a = (1..100000).map { rand(100000) }
+ *
+ * Benchmark.bm(10) do |b|
* b.report("Sort") { a.sort }
- * b.report("Sort by") { a.sort_by {|a| a} }
+ * b.report("Sort by") { a.sort_by { |a| a } }
* end
- *
+ *
* <em>produces:</em>
- *
+ *
* user system total real
* Sort 0.180000 0.000000 0.180000 ( 0.175469)
* Sort by 1.980000 0.040000 2.020000 ( 2.013586)
- *
+ *
* However, consider the case where comparing the keys is a non-trivial
* operation. The following code sorts some files on modification time
- * using the basic <code>sort</code> method.
- *
+ * using the basic #sort method.
+ *
* files = Dir["*"]
- * sorted = files.sort {|a,b| File.new(a).mtime <=> File.new(b).mtime}
+ * sorted = files.sort { |a, b| File.new(a).mtime <=> File.new(b).mtime }
* sorted #=> ["mon", "tues", "wed", "thurs"]
- *
- * This sort is inefficient: it generates two new <code>File</code>
+ *
+ * This sort is inefficient: it generates two new File
* objects during every comparison. A slightly better technique is to
- * use the <code>Kernel#test</code> method to generate the modification
+ * use the Kernel#test method to generate the modification
* times directly.
- *
+ *
* files = Dir["*"]
- * sorted = files.sort { |a,b|
+ * sorted = files.sort { |a, b|
* test(?M, a) <=> test(?M, b)
* }
* sorted #=> ["mon", "tues", "wed", "thurs"]
- *
- * This still generates many unnecessary <code>Time</code> objects. A
- * more efficient technique is to cache the sort keys (modification
- * times in this case) before the sort. Perl users often call this
- * approach a Schwartzian Transform, after Randal Schwartz. We
- * construct a temporary array, where each element is an array
- * containing our sort key along with the filename. We sort this array,
- * and then extract the filename from the result.
- *
+ *
+ * This still generates many unnecessary Time objects. A more
+ * efficient technique is to cache the sort keys (modification times
+ * in this case) before the sort. Perl users often call this approach
+ * a Schwartzian transform, after Randal Schwartz. We construct a
+ * temporary array, where each element is an array containing our
+ * sort key along with the filename. We sort this array, and then
+ * extract the filename from the result.
+ *
* sorted = Dir["*"].collect { |f|
* [test(?M, f), f]
* }.sort.collect { |f| f[1] }
* sorted #=> ["mon", "tues", "wed", "thurs"]
- *
- * This is exactly what <code>sort_by</code> does internally.
- *
- * sorted = Dir["*"].sort_by {|f| test(?M, f)}
+ *
+ * This is exactly what #sort_by does internally.
+ *
+ * sorted = Dir["*"].sort_by { |f| test(?M, f) }
* sorted #=> ["mon", "tues", "wed", "thurs"]
+ *
+ * To produce the reverse of a specific order, the following can be used:
+ *
+ * ary.sort_by { ... }.reverse!
*/
static VALUE
-enum_sort_by(obj)
- VALUE obj;
+enum_sort_by(VALUE obj)
{
- VALUE ary;
+ VALUE ary, buf;
+ struct MEMO *memo;
long i;
+ struct sort_by_data *data;
+
+ RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
- if (TYPE(obj) == T_ARRAY) {
- ary = rb_ary_new2(RARRAY(obj)->len);
+ if (RB_TYPE_P(obj, T_ARRAY) && RARRAY_LEN(obj) <= LONG_MAX/2) {
+ ary = rb_ary_new2(RARRAY_LEN(obj)*2);
}
else {
- ary = rb_ary_new();
+ ary = rb_ary_new();
+ }
+ RBASIC_CLEAR_CLASS(ary);
+ buf = rb_ary_hidden_new(SORT_BY_BUFSIZE*2);
+ rb_ary_store(buf, SORT_BY_BUFSIZE*2-1, Qnil);
+ memo = rb_imemo_memo_new(0, 0, 0);
+ data = (struct sort_by_data *)&memo->v1;
+ RB_OBJ_WRITE(memo, &data->ary, ary);
+ RB_OBJ_WRITE(memo, &data->buf, buf);
+ data->n = 0;
+ data->primitive_uniformed = SORT_BY_UNIFORMED((CMP_OPTIMIZABLE(FLOAT) && CMP_OPTIMIZABLE(INTEGER)),
+ CMP_OPTIMIZABLE(FLOAT),
+ CMP_OPTIMIZABLE(INTEGER));
+ rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo);
+ ary = data->ary;
+ buf = data->buf;
+ if (data->n) {
+ rb_ary_resize(buf, data->n*2);
+ rb_ary_concat(ary, buf);
+ }
+ if (RARRAY_LEN(ary) > 2) {
+ if (data->primitive_uniformed) {
+ RARRAY_PTR_USE(ary, ptr,
+ rb_uniform_intro_sort_2((struct rb_uniform_sort_data*)ptr,
+ (struct rb_uniform_sort_data*)(ptr + RARRAY_LEN(ary))));
+ }
+ else {
+ RARRAY_PTR_USE(ary, ptr,
+ ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE),
+ sort_by_cmp, (void *)ary));
+ }
}
- rb_iterate(rb_each, obj, sort_by_i, ary);
- if (RARRAY(ary)->len > 1) {
- qsort(RARRAY(ary)->ptr, RARRAY(ary)->len, sizeof(VALUE), sort_by_cmp);
+ if (RBASIC(ary)->klass) {
+ rb_raise(rb_eRuntimeError, "sort_by reentered");
}
- for (i=0; i<RARRAY(ary)->len; i++) {
- VALUE e = RARRAY(ary)->ptr[i];
- RARRAY(ary)->ptr[i] = RARRAY(e)->ptr[1];
+ for (i=1; i<RARRAY_LEN(ary); i+=2) {
+ RARRAY_ASET(ary, i/2, RARRAY_AREF(ary, i));
}
+ rb_ary_resize(ary, RARRAY_LEN(ary)/2);
+ RBASIC_SET_CLASS_RAW(ary, rb_cArray);
+
return ary;
}
-static VALUE
-all_iter_i(i, memo)
- VALUE i;
- NODE *memo;
+#define ENUMFUNC(name) argc ? name##_eqq : rb_block_given_p() ? name##_iter_i : name##_i
+
+#define ENUM_BLOCK_CALL(name) \
+ rb_block_call2(obj, id_each, 0, 0, ENUMFUNC(name), (VALUE)memo, rb_block_given_p() && rb_block_pair_yield_optimizable() ? RB_BLOCK_NO_USE_PACKED_ARGS : 0);
+
+#define MEMO_ENUM_NEW(v1) (rb_check_arity(argc, 0, 1), rb_imemo_memo_new((v1), (argc ? *argv : 0), 0))
+
+#define DEFINE_ENUMFUNCS(name) \
+static VALUE enum_##name##_func(VALUE result, struct MEMO *memo); \
+\
+static VALUE \
+name##_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
+{ \
+ return enum_##name##_func(rb_enum_values_pack(argc, argv), MEMO_CAST(memo)); \
+} \
+\
+static VALUE \
+name##_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
+{ \
+ return enum_##name##_func(rb_yield_values2(argc, argv), MEMO_CAST(memo)); \
+} \
+\
+static VALUE \
+name##_eqq(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
+{ \
+ ENUM_WANT_SVALUE(); \
+ return enum_##name##_func(rb_funcallv(MEMO_CAST(memo)->v2, id_eqq, 1, &i), MEMO_CAST(memo)); \
+} \
+\
+static VALUE \
+enum_##name##_func(VALUE result, struct MEMO *memo)
+
+#define WARN_UNUSED_BLOCK(argc) do { \
+ if ((argc) > 0 && rb_block_given_p()) { \
+ rb_warn("given block not used"); \
+ } \
+} while (0)
+
+DEFINE_ENUMFUNCS(all)
{
- if (!RTEST(rb_yield(i))) {
- memo->u1.value = Qfalse;
- rb_iter_break();
+ if (!RTEST(result)) {
+ MEMO_V1_SET(memo, Qfalse);
+ rb_iter_break();
}
return Qnil;
}
+/*
+ * call-seq:
+ * all? -> true or false
+ * all?(pattern) -> true or false
+ * all? {|element| ... } -> true or false
+ *
+ * Returns whether every element meets a given criterion.
+ *
+ * If +self+ has no element, returns +true+ and argument or block
+ * are not used.
+ *
+ * With no argument and no block,
+ * returns whether every element is truthy:
+ *
+ * (1..4).all? # => true
+ * %w[a b c d].all? # => true
+ * [1, 2, nil].all? # => false
+ * ['a','b', false].all? # => false
+ * [].all? # => true
+ *
+ * With argument +pattern+ and no block,
+ * returns whether for each element +element+,
+ * <tt>pattern === element</tt>:
+ *
+ * (1..4).all?(Integer) # => true
+ * (1..4).all?(Numeric) # => true
+ * (1..4).all?(Float) # => false
+ * %w[bar baz bat bam].all?(/ba/) # => true
+ * %w[bar baz bat bam].all?(/bar/) # => false
+ * %w[bar baz bat bam].all?('ba') # => false
+ * {foo: 0, bar: 1, baz: 2}.all?(Array) # => true
+ * {foo: 0, bar: 1, baz: 2}.all?(Hash) # => false
+ * [].all?(Integer) # => true
+ *
+ * With a block given, returns whether the block returns a truthy value
+ * for every element:
+ *
+ * (1..4).all? {|element| element < 5 } # => true
+ * (1..4).all? {|element| element < 4 } # => false
+ * {foo: 0, bar: 1, baz: 2}.all? {|key, value| value < 3 } # => true
+ * {foo: 0, bar: 1, baz: 2}.all? {|key, value| value < 2 } # => false
+ *
+ * Related: #any?, #none? #one?.
+ *
+ */
+
static VALUE
-all_i(i, memo)
- VALUE i;
- NODE *memo;
+enum_all(int argc, VALUE *argv, VALUE obj)
{
- if (!RTEST(i)) {
- memo->u1.value = Qfalse;
- rb_iter_break();
+ struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);
+ WARN_UNUSED_BLOCK(argc);
+ ENUM_BLOCK_CALL(all);
+ return memo->v1;
+}
+
+DEFINE_ENUMFUNCS(any)
+{
+ if (RTEST(result)) {
+ MEMO_V1_SET(memo, Qtrue);
+ rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
- * enum.all? [{|obj| block } ] => true or false
- *
- * Passes each element of the collection to the given block. The method
- * returns <code>true</code> if the block never returns
- * <code>false</code> or <code>nil</code>. If the block is not given,
- * Ruby adds an implicit block of <code>{|obj| obj}</code> (that is
- * <code>all?</code> will return <code>true</code> only if none of the
- * collection members are <code>false</code> or <code>nil</code>.)
- *
- * %w{ ant bear cat}.all? {|word| word.length >= 3} #=> true
- * %w{ ant bear cat}.all? {|word| word.length >= 4} #=> false
- * [ nil, true, 99 ].all? #=> false
- *
+ * any? -> true or false
+ * any?(pattern) -> true or false
+ * any? {|element| ... } -> true or false
+ *
+ * Returns whether any element meets a given criterion.
+ *
+ * If +self+ has no element, returns +false+ and argument or block
+ * are not used.
+ *
+ * With no argument and no block,
+ * returns whether any element is truthy:
+ *
+ * (1..4).any? # => true
+ * %w[a b c d].any? # => true
+ * [1, false, nil].any? # => true
+ * [].any? # => false
+ *
+ * With argument +pattern+ and no block,
+ * returns whether for any element +element+,
+ * <tt>pattern === element</tt>:
+ *
+ * [nil, false, 0].any?(Integer) # => true
+ * [nil, false, 0].any?(Numeric) # => true
+ * [nil, false, 0].any?(Float) # => false
+ * %w[bar baz bat bam].any?(/m/) # => true
+ * %w[bar baz bat bam].any?(/foo/) # => false
+ * %w[bar baz bat bam].any?('ba') # => false
+ * {foo: 0, bar: 1, baz: 2}.any?(Array) # => true
+ * {foo: 0, bar: 1, baz: 2}.any?(Hash) # => false
+ * [].any?(Integer) # => false
+ *
+ * With a block given, returns whether the block returns a truthy value
+ * for any element:
+ *
+ * (1..4).any? {|element| element < 2 } # => true
+ * (1..4).any? {|element| element < 1 } # => false
+ * {foo: 0, bar: 1, baz: 2}.any? {|key, value| value < 1 } # => true
+ * {foo: 0, bar: 1, baz: 2}.any? {|key, value| value < 0 } # => false
+ *
+ * Related: #all?, #none?, #one?.
*/
static VALUE
-enum_all(obj)
- VALUE obj;
+enum_any(int argc, VALUE *argv, VALUE obj)
+{
+ struct MEMO *memo = MEMO_ENUM_NEW(Qfalse);
+ WARN_UNUSED_BLOCK(argc);
+ ENUM_BLOCK_CALL(any);
+ return memo->v1;
+}
+
+DEFINE_ENUMFUNCS(one)
+{
+ if (RTEST(result)) {
+ if (UNDEF_P(memo->v1)) {
+ MEMO_V1_SET(memo, Qtrue);
+ }
+ else if (memo->v1 == Qtrue) {
+ MEMO_V1_SET(memo, Qfalse);
+ rb_iter_break();
+ }
+ }
+ return Qnil;
+}
+
+struct nmin_data {
+ long n;
+ long bufmax;
+ long curlen;
+ VALUE buf;
+ VALUE limit;
+ int (*cmpfunc)(const void *, const void *, void *);
+ int rev: 1; /* max if 1 */
+ int by: 1; /* min_by if 1 */
+};
+
+static VALUE
+cmpint_reenter_check(struct nmin_data *data, VALUE val)
+{
+ if (RBASIC(data->buf)->klass) {
+ rb_raise(rb_eRuntimeError, "%s%s reentered",
+ data->rev ? "max" : "min",
+ data->by ? "_by" : "");
+ }
+ return val;
+}
+
+static int
+nmin_cmp(const void *ap, const void *bp, void *_data)
+{
+ struct nmin_data *data = (struct nmin_data *)_data;
+ VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
+#define rb_cmpint(cmp, a, b) rb_cmpint(cmpint_reenter_check(data, (cmp)), a, b)
+ return OPTIMIZED_CMP(a, b);
+#undef rb_cmpint
+}
+
+static int
+nmin_block_cmp(const void *ap, const void *bp, void *_data)
+{
+ struct nmin_data *data = (struct nmin_data *)_data;
+ VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
+ VALUE cmp = rb_yield_values(2, a, b);
+ cmpint_reenter_check(data, cmp);
+ return rb_cmpint(cmp, a, b);
+}
+
+static void
+nmin_filter(struct nmin_data *data)
+{
+ long n;
+ VALUE *beg;
+ int eltsize;
+ long numelts;
+
+ long left, right;
+ long store_index;
+
+ long i, j;
+
+ if (data->curlen <= data->n)
+ return;
+
+ n = data->n;
+ beg = RARRAY_PTR(data->buf);
+ eltsize = data->by ? 2 : 1;
+ numelts = data->curlen;
+
+ left = 0;
+ right = numelts-1;
+
+#define GETPTR(i) (beg+(i)*eltsize)
+
+#define SWAP(i, j) do { \
+ VALUE tmp[2]; \
+ memcpy(tmp, GETPTR(i), sizeof(VALUE)*eltsize); \
+ memcpy(GETPTR(i), GETPTR(j), sizeof(VALUE)*eltsize); \
+ memcpy(GETPTR(j), tmp, sizeof(VALUE)*eltsize); \
+} while (0)
+
+ while (1) {
+ long pivot_index = left + (right-left)/2;
+ long num_pivots = 1;
+
+ SWAP(pivot_index, right);
+ pivot_index = right;
+
+ store_index = left;
+ i = left;
+ while (i <= right-num_pivots) {
+ int c = data->cmpfunc(GETPTR(i), GETPTR(pivot_index), data);
+ if (data->rev)
+ c = -c;
+ if (c == 0) {
+ SWAP(i, right-num_pivots);
+ num_pivots++;
+ continue;
+ }
+ if (c < 0) {
+ SWAP(i, store_index);
+ store_index++;
+ }
+ i++;
+ }
+ j = store_index;
+ for (i = right; right-num_pivots < i; i--) {
+ if (i <= j)
+ break;
+ SWAP(j, i);
+ j++;
+ }
+
+ if (store_index <= n && n <= store_index+num_pivots)
+ break;
+
+ if (n < store_index) {
+ right = store_index-1;
+ }
+ else {
+ left = store_index+num_pivots;
+ }
+ }
+#undef GETPTR
+#undef SWAP
+
+ data->limit = RARRAY_AREF(data->buf, store_index*eltsize); /* the last pivot */
+ data->curlen = data->n;
+ rb_ary_resize(data->buf, data->n * eltsize);
+}
+
+static VALUE
+nmin_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data))
+{
+ struct nmin_data *data = (struct nmin_data *)_data;
+ VALUE cmpv;
+
+ ENUM_WANT_SVALUE();
+
+ if (data->by)
+ cmpv = enum_yield(argc, i);
+ else
+ cmpv = i;
+
+ if (!UNDEF_P(data->limit)) {
+ int c = data->cmpfunc(&cmpv, &data->limit, data);
+ if (data->rev)
+ c = -c;
+ if (c >= 0)
+ return Qnil;
+ }
+
+ if (data->by)
+ rb_ary_push(data->buf, cmpv);
+ rb_ary_push(data->buf, i);
+
+ data->curlen++;
+
+ if (data->curlen == data->bufmax) {
+ nmin_filter(data);
+ }
+
+ return Qnil;
+}
+
+VALUE
+rb_nmin_run(VALUE obj, VALUE num, int by, int rev, int ary)
{
VALUE result;
- NODE *memo = rb_node_newnode(NODE_MEMO, Qnil, 0, 0);
+ struct nmin_data data;
- memo->u1.value = Qtrue;
- rb_iterate(rb_each, obj, rb_block_given_p() ? all_iter_i : all_i, (VALUE)memo);
- result = memo->u1.value;
- rb_gc_force_recycle((VALUE)memo);
+ data.n = NUM2LONG(num);
+ if (data.n < 0)
+ rb_raise(rb_eArgError, "negative size (%ld)", data.n);
+ if (data.n == 0)
+ return rb_ary_new2(0);
+ if (LONG_MAX/4/(by ? 2 : 1) < data.n)
+ rb_raise(rb_eArgError, "too big size");
+ data.bufmax = data.n * 4;
+ data.curlen = 0;
+ data.buf = rb_ary_hidden_new(data.bufmax * (by ? 2 : 1));
+ data.limit = Qundef;
+ data.cmpfunc = by ? nmin_cmp :
+ rb_block_given_p() ? nmin_block_cmp :
+ nmin_cmp;
+ data.rev = rev;
+ data.by = by;
+ if (ary) {
+ long i;
+ for (i = 0; i < RARRAY_LEN(obj); i++) {
+ VALUE args[1];
+ args[0] = RARRAY_AREF(obj, i);
+ nmin_i(obj, (VALUE)&data, 1, args, Qundef);
+ }
+ }
+ else {
+ rb_block_call(obj, id_each, 0, 0, nmin_i, (VALUE)&data);
+ }
+ nmin_filter(&data);
+ result = data.buf;
+ if (by) {
+ long i;
+ RARRAY_PTR_USE(result, ptr, {
+ ruby_qsort(ptr,
+ RARRAY_LEN(result)/2,
+ sizeof(VALUE)*2,
+ data.cmpfunc, (void *)&data);
+ for (i=1; i<RARRAY_LEN(result); i+=2) {
+ ptr[i/2] = ptr[i];
+ }
+ });
+ rb_ary_resize(result, RARRAY_LEN(result)/2);
+ }
+ else {
+ RARRAY_PTR_USE(result, ptr, {
+ ruby_qsort(ptr, RARRAY_LEN(result), sizeof(VALUE),
+ data.cmpfunc, (void *)&data);
+ });
+ }
+ if (rev) {
+ rb_ary_reverse(result);
+ }
+ RBASIC_SET_CLASS(result, rb_cArray);
return result;
+
}
+/*
+ * call-seq:
+ * one? -> true or false
+ * one?(pattern) -> true or false
+ * one? {|element| ... } -> true or false
+ *
+ * Returns whether exactly one element meets a given criterion.
+ *
+ * With no argument and no block,
+ * returns whether exactly one element is truthy:
+ *
+ * (1..1).one? # => true
+ * [1, nil, false].one? # => true
+ * (1..4).one? # => false
+ * {foo: 0}.one? # => true
+ * {foo: 0, bar: 1}.one? # => false
+ * [].one? # => false
+ *
+ * With argument +pattern+ and no block,
+ * returns whether for exactly one element +element+,
+ * <tt>pattern === element</tt>:
+ *
+ * [nil, false, 0].one?(Integer) # => true
+ * [nil, false, 0].one?(Numeric) # => true
+ * [nil, false, 0].one?(Float) # => false
+ * %w[bar baz bat bam].one?(/m/) # => true
+ * %w[bar baz bat bam].one?(/foo/) # => false
+ * %w[bar baz bat bam].one?('ba') # => false
+ * {foo: 0, bar: 1, baz: 2}.one?(Array) # => false
+ * {foo: 0}.one?(Array) # => true
+ * [].one?(Integer) # => false
+ *
+ * With a block given, returns whether the block returns a truthy value
+ * for exactly one element:
+ *
+ * (1..4).one? {|element| element < 2 } # => true
+ * (1..4).one? {|element| element < 1 } # => false
+ * {foo: 0, bar: 1, baz: 2}.one? {|key, value| value < 1 } # => true
+ * {foo: 0, bar: 1, baz: 2}.one? {|key, value| value < 2 } # => false
+ *
+ * Related: #none?, #all?, #any?.
+ *
+ */
static VALUE
-any_iter_i(i, memo)
- VALUE i;
- NODE *memo;
+enum_one(int argc, VALUE *argv, VALUE obj)
{
- if (RTEST(rb_yield(i))) {
- memo->u1.value = Qtrue;
- rb_iter_break();
+ struct MEMO *memo = MEMO_ENUM_NEW(Qundef);
+ VALUE result;
+
+ WARN_UNUSED_BLOCK(argc);
+ ENUM_BLOCK_CALL(one);
+ result = memo->v1;
+ if (UNDEF_P(result)) return Qfalse;
+ return result;
+}
+
+DEFINE_ENUMFUNCS(none)
+{
+ if (RTEST(result)) {
+ MEMO_V1_SET(memo, Qfalse);
+ rb_iter_break();
}
return Qnil;
}
+/*
+ * call-seq:
+ * none? -> true or false
+ * none?(pattern) -> true or false
+ * none? {|element| ... } -> true or false
+ *
+ * Returns whether no element meets a given criterion.
+ *
+ * With no argument and no block,
+ * returns whether no element is truthy:
+ *
+ * (1..4).none? # => false
+ * [nil, false].none? # => true
+ * {foo: 0}.none? # => false
+ * {foo: 0, bar: 1}.none? # => false
+ * [].none? # => true
+ *
+ * With argument +pattern+ and no block,
+ * returns whether for no element +element+,
+ * <tt>pattern === element</tt>:
+ *
+ * [nil, false, 1.1].none?(Integer) # => true
+ * %w[bar baz bat bam].none?(/m/) # => false
+ * %w[bar baz bat bam].none?(/foo/) # => true
+ * %w[bar baz bat bam].none?('ba') # => true
+ * {foo: 0, bar: 1, baz: 2}.none?(Hash) # => true
+ * {foo: 0}.none?(Array) # => false
+ * [].none?(Integer) # => true
+ *
+ * With a block given, returns whether the block returns a truthy value
+ * for no element:
+ *
+ * (1..4).none? {|element| element < 1 } # => true
+ * (1..4).none? {|element| element < 2 } # => false
+ * {foo: 0, bar: 1, baz: 2}.none? {|key, value| value < 0 } # => true
+ * {foo: 0, bar: 1, baz: 2}.none? {|key, value| value < 1 } # => false
+ *
+ * Related: #one?, #all?, #any?.
+ *
+ */
+static VALUE
+enum_none(int argc, VALUE *argv, VALUE obj)
+{
+ struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);
+
+ WARN_UNUSED_BLOCK(argc);
+ ENUM_BLOCK_CALL(none);
+ return memo->v1;
+}
+
+struct min_t {
+ VALUE min;
+};
+
static VALUE
-any_i(i, memo)
- VALUE i;
- NODE *memo;
+min_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
- if (RTEST(i)) {
- memo->u1.value = Qtrue;
- rb_iter_break();
+ struct min_t *memo = MEMO_FOR(struct min_t, args);
+
+ ENUM_WANT_SVALUE();
+
+ if (UNDEF_P(memo->min)) {
+ memo->min = i;
+ }
+ else {
+ if (OPTIMIZED_CMP(i, memo->min) < 0) {
+ memo->min = i;
+ }
}
return Qnil;
}
+static VALUE
+min_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ VALUE cmp;
+ struct min_t *memo = MEMO_FOR(struct min_t, args);
+
+ ENUM_WANT_SVALUE();
+
+ if (UNDEF_P(memo->min)) {
+ memo->min = i;
+ }
+ else {
+ cmp = rb_yield_values(2, i, memo->min);
+ if (rb_cmpint(cmp, i, memo->min) < 0) {
+ memo->min = i;
+ }
+ }
+ return Qnil;
+}
+
+
/*
* call-seq:
- * enum.any? [{|obj| block } ] => true or false
- *
- * Passes each element of the collection to the given block. The method
- * returns <code>true</code> if the block ever returns a value other
- * that <code>false</code> or <code>nil</code>. If the block is not
- * given, Ruby adds an implicit block of <code>{|obj| obj}</code> (that
- * is <code>any?</code> will return <code>true</code> if at least one
- * of the collection members is not <code>false</code> or
- * <code>nil</code>.
- *
- * %w{ ant bear cat}.any? {|word| word.length >= 3} #=> true
- * %w{ ant bear cat}.any? {|word| word.length >= 4} #=> true
- * [ nil, true, 99 ].any? #=> true
- *
+ * min -> element
+ * min(n) -> array
+ * min {|a, b| ... } -> element
+ * min(n) {|a, b| ... } -> array
+ *
+ * Returns the element with the minimum element according to a given criterion.
+ * The ordering of equal elements is indeterminate and may be unstable.
+ *
+ * With no argument and no block, returns the minimum element,
+ * using the elements' own method <tt>#<=></tt> for comparison:
+ *
+ * (1..4).min # => 1
+ * (-4..-1).min # => -4
+ * %w[d c b a].min # => "a"
+ * {foo: 0, bar: 1, baz: 2}.min # => [:bar, 1]
+ * [].min # => nil
+ *
+ * With positive integer argument +n+ given, and no block,
+ * returns an array containing the first +n+ minimum elements that exist:
+ *
+ * (1..4).min(2) # => [1, 2]
+ * (-4..-1).min(2) # => [-4, -3]
+ * %w[d c b a].min(2) # => ["a", "b"]
+ * {foo: 0, bar: 1, baz: 2}.min(2) # => [[:bar, 1], [:baz, 2]]
+ * [].min(2) # => []
+ *
+ * With a block given, the block determines the minimum elements.
+ * The block is called with two elements +a+ and +b+, and must return:
+ *
+ * - A negative integer if <tt>a < b</tt>.
+ * - Zero if <tt>a == b</tt>.
+ * - A positive integer if <tt>a > b</tt>.
+ *
+ * With a block given and no argument,
+ * returns the minimum element as determined by the block:
+ *
+ * %w[xxx x xxxx xx].min {|a, b| a.size <=> b.size } # => "x"
+ * h = {foo: 0, bar: 1, baz: 2}
+ * h.min {|pair1, pair2| pair1[1] <=> pair2[1] } # => [:foo, 0]
+ * [].min {|a, b| a <=> b } # => nil
+ *
+ * With a block given and positive integer argument +n+ given,
+ * returns an array containing the first +n+ minimum elements that exist,
+ * as determined by the block.
+ *
+ * %w[xxx x xxxx xx].min(2) {|a, b| a.size <=> b.size } # => ["x", "xx"]
+ * h = {foo: 0, bar: 1, baz: 2}
+ * h.min(2) {|pair1, pair2| pair1[1] <=> pair2[1] }
+ * # => [[:foo, 0], [:bar, 1]]
+ * [].min(2) {|a, b| a <=> b } # => []
+ *
+ * Related: #min_by, #minmax, #max.
+ *
*/
static VALUE
-enum_any(obj)
- VALUE obj;
+enum_min(int argc, VALUE *argv, VALUE obj)
{
+ VALUE memo;
+ struct min_t *m = NEW_MEMO_FOR(struct min_t, memo);
VALUE result;
- NODE *memo = rb_node_newnode(NODE_MEMO, Qnil, 0, 0);
+ VALUE num;
- memo->u1.value = Qfalse;
- rb_iterate(rb_each, obj, rb_block_given_p() ? any_iter_i : any_i, (VALUE)memo);
- result = memo->u1.value;
- rb_gc_force_recycle((VALUE)memo);
+ if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
+ return rb_nmin_run(obj, num, 0, 0, 0);
+
+ m->min = Qundef;
+ if (rb_block_given_p()) {
+ rb_block_call(obj, id_each, 0, 0, min_ii, memo);
+ }
+ else {
+ rb_block_call(obj, id_each, 0, 0, min_i, memo);
+ }
+ result = m->min;
+ if (UNDEF_P(result)) return Qnil;
return result;
}
+struct max_t {
+ VALUE max;
+};
+
static VALUE
-min_i(i, memo)
- VALUE i;
- NODE *memo;
+max_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
- VALUE cmp;
+ struct max_t *memo = MEMO_FOR(struct max_t, args);
+
+ ENUM_WANT_SVALUE();
- if (NIL_P(memo->u1.value)) {
- memo->u1.value = i;
+ if (UNDEF_P(memo->max)) {
+ memo->max = i;
}
else {
- cmp = rb_funcall(i, id_cmp, 1, memo->u1.value);
- if (rb_cmpint(cmp, i, memo->u1.value) < 0) {
- memo->u1.value = i;
- }
+ if (OPTIMIZED_CMP(i, memo->max) > 0) {
+ memo->max = i;
+ }
}
return Qnil;
}
static VALUE
-min_ii(i, memo)
- VALUE i;
- NODE *memo;
+max_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
+ struct max_t *memo = MEMO_FOR(struct max_t, args);
VALUE cmp;
- if (NIL_P(memo->u1.value)) {
- memo->u1.value = i;
+ ENUM_WANT_SVALUE();
+
+ if (UNDEF_P(memo->max)) {
+ memo->max = i;
}
else {
- cmp = rb_yield_values(2, i, memo->u1.value);
- if (rb_cmpint(cmp, i, memo->u1.value) < 0) {
- memo->u1.value = i;
- }
+ cmp = rb_yield_values(2, i, memo->max);
+ if (rb_cmpint(cmp, i, memo->max) > 0) {
+ memo->max = i;
+ }
}
return Qnil;
}
-
/*
* call-seq:
- * enum.min => obj
- * enum.min {| a,b | block } => obj
- *
- * Returns the object in <i>enum</i> with the minimum value. The
- * first form assumes all objects implement <code>Comparable</code>;
- * the second uses the block to return <em>a <=> b</em>.
- *
- * a = %w(albatross dog horse)
- * a.min #=> "albatross"
- * a.min {|a,b| a.length <=> b.length } #=> "dog"
+ * max -> element
+ * max(n) -> array
+ * max {|a, b| ... } -> element
+ * max(n) {|a, b| ... } -> array
+ *
+ * Returns the element with the maximum element according to a given criterion.
+ * The ordering of equal elements is indeterminate and may be unstable.
+ *
+ * With no argument and no block, returns the maximum element,
+ * using the elements' own method <tt>#<=></tt> for comparison:
+ *
+ * (1..4).max # => 4
+ * (-4..-1).max # => -1
+ * %w[d c b a].max # => "d"
+ * {foo: 0, bar: 1, baz: 2}.max # => [:foo, 0]
+ * [].max # => nil
+ *
+ * With positive integer argument +n+ given, and no block,
+ * returns an array containing the first +n+ maximum elements that exist:
+ *
+ * (1..4).max(2) # => [4, 3]
+ * (-4..-1).max(2) # => [-1, -2]
+ * %w[d c b a].max(2) # => ["d", "c"]
+ * {foo: 0, bar: 1, baz: 2}.max(2) # => [[:foo, 0], [:baz, 2]]
+ * [].max(2) # => []
+ *
+ * With a block given, the block determines the maximum elements.
+ * The block is called with two elements +a+ and +b+, and must return:
+ *
+ * - A negative integer if <tt>a < b</tt>.
+ * - Zero if <tt>a == b</tt>.
+ * - A positive integer if <tt>a > b</tt>.
+ *
+ * With a block given and no argument,
+ * returns the maximum element as determined by the block:
+ *
+ * %w[xxx x xxxx xx].max {|a, b| a.size <=> b.size } # => "xxxx"
+ * h = {foo: 0, bar: 1, baz: 2}
+ * h.max {|pair1, pair2| pair1[1] <=> pair2[1] } # => [:baz, 2]
+ * [].max {|a, b| a <=> b } # => nil
+ *
+ * With a block given and positive integer argument +n+ given,
+ * returns an array containing the first +n+ maximum elements that exist,
+ * as determined by the block.
+ *
+ * %w[xxx x xxxx xx].max(2) {|a, b| a.size <=> b.size } # => ["xxxx", "xxx"]
+ * h = {foo: 0, bar: 1, baz: 2}
+ * h.max(2) {|pair1, pair2| pair1[1] <=> pair2[1] }
+ * # => [[:baz, 2], [:bar, 1]]
+ * [].max(2) {|a, b| a <=> b } # => []
+ *
+ * Related: #min, #minmax, #max_by.
+ *
*/
static VALUE
-enum_min(obj)
- VALUE obj;
+enum_max(int argc, VALUE *argv, VALUE obj)
{
+ VALUE memo;
+ struct max_t *m = NEW_MEMO_FOR(struct max_t, memo);
VALUE result;
- NODE *memo = rb_node_newnode(NODE_MEMO, Qnil, 0, 0);
+ VALUE num;
+
+ if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
+ return rb_nmin_run(obj, num, 0, 1, 0);
- rb_iterate(rb_each, obj, rb_block_given_p() ? min_ii : min_i, (VALUE)memo);
- result = memo->u1.value;
- rb_gc_force_recycle((VALUE)memo);
+ m->max = Qundef;
+ if (rb_block_given_p()) {
+ rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo);
+ }
+ else {
+ rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo);
+ }
+ result = m->max;
+ if (UNDEF_P(result)) return Qnil;
return result;
}
+struct minmax_t {
+ VALUE min;
+ VALUE max;
+ VALUE last;
+};
+
+static void
+minmax_i_update(VALUE i, VALUE j, struct minmax_t *memo)
+{
+ int n;
+
+ if (UNDEF_P(memo->min)) {
+ memo->min = i;
+ memo->max = j;
+ }
+ else {
+ n = OPTIMIZED_CMP(i, memo->min);
+ if (n < 0) {
+ memo->min = i;
+ }
+ n = OPTIMIZED_CMP(j, memo->max);
+ if (n > 0) {
+ memo->max = j;
+ }
+ }
+}
+
+static VALUE
+minmax_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
+{
+ struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo);
+ int n;
+ VALUE j;
+
+ ENUM_WANT_SVALUE();
+
+ if (UNDEF_P(memo->last)) {
+ memo->last = i;
+ return Qnil;
+ }
+ j = memo->last;
+ memo->last = Qundef;
+
+ n = OPTIMIZED_CMP(j, i);
+ if (n == 0)
+ i = j;
+ else if (n < 0) {
+ VALUE tmp;
+ tmp = i;
+ i = j;
+ j = tmp;
+ }
+
+ minmax_i_update(i, j, memo);
+
+ return Qnil;
+}
+
+static void
+minmax_ii_update(VALUE i, VALUE j, struct minmax_t *memo)
+{
+ int n;
+
+ if (UNDEF_P(memo->min)) {
+ memo->min = i;
+ memo->max = j;
+ }
+ else {
+ n = rb_cmpint(rb_yield_values(2, i, memo->min), i, memo->min);
+ if (n < 0) {
+ memo->min = i;
+ }
+ n = rb_cmpint(rb_yield_values(2, j, memo->max), j, memo->max);
+ if (n > 0) {
+ memo->max = j;
+ }
+ }
+}
+
+static VALUE
+minmax_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
+{
+ struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo);
+ int n;
+ VALUE j;
+
+ ENUM_WANT_SVALUE();
+
+ if (UNDEF_P(memo->last)) {
+ memo->last = i;
+ return Qnil;
+ }
+ j = memo->last;
+ memo->last = Qundef;
+
+ n = rb_cmpint(rb_yield_values(2, j, i), j, i);
+ if (n == 0)
+ i = j;
+ else if (n < 0) {
+ VALUE tmp;
+ tmp = i;
+ i = j;
+ j = tmp;
+ }
+
+ minmax_ii_update(i, j, memo);
+
+ return Qnil;
+}
+
/*
* call-seq:
- * enum.max => obj
- * enum.max {| a,b | block } => obj
- *
- * Returns the object in <i>enum</i> with the maximum value. The
- * first form assumes all objects implement <code>Comparable</code>;
- * the second uses the block to return <em>a <=> b</em>.
- *
- * a = %w(albatross dog horse)
- * a.max #=> "horse"
- * a.max {|a,b| a.length <=> b.length } #=> "albatross"
+ * minmax -> [minimum, maximum]
+ * minmax {|a, b| ... } -> [minimum, maximum]
+ *
+ * Returns a 2-element array containing the minimum and maximum elements
+ * according to a given criterion.
+ * The ordering of equal elements is indeterminate and may be unstable.
+ *
+ * With no argument and no block, returns the minimum and maximum elements,
+ * using the elements' own method <tt>#<=></tt> for comparison:
+ *
+ * (1..4).minmax # => [1, 4]
+ * (-4..-1).minmax # => [-4, -1]
+ * %w[d c b a].minmax # => ["a", "d"]
+ * {foo: 0, bar: 1, baz: 2}.minmax # => [[:bar, 1], [:foo, 0]]
+ * [].minmax # => [nil, nil]
+ *
+ * With a block given, returns the minimum and maximum elements
+ * as determined by the block:
+ *
+ * %w[xxx x xxxx xx].minmax {|a, b| a.size <=> b.size } # => ["x", "xxxx"]
+ * h = {foo: 0, bar: 1, baz: 2}
+ * h.minmax {|pair1, pair2| pair1[1] <=> pair2[1] }
+ * # => [[:foo, 0], [:baz, 2]]
+ * [].minmax {|a, b| a <=> b } # => [nil, nil]
+ *
+ * Related: #min, #max, #minmax_by.
+ *
*/
static VALUE
-max_i(i, memo)
- VALUE i;
- NODE *memo;
+enum_minmax(VALUE obj)
{
- VALUE cmp;
+ VALUE memo;
+ struct minmax_t *m = NEW_MEMO_FOR(struct minmax_t, memo);
- if (NIL_P(memo->u1.value)) {
- memo->u1.value = i;
+ m->min = Qundef;
+ m->last = Qundef;
+ if (rb_block_given_p()) {
+ rb_block_call(obj, id_each, 0, 0, minmax_ii, memo);
+ if (!UNDEF_P(m->last))
+ minmax_ii_update(m->last, m->last, m);
}
else {
- cmp = rb_funcall(i, id_cmp, 1, memo->u1.value);
- if (rb_cmpint(cmp, i, memo->u1.value) > 0) {
- memo->u1.value = i;
- }
+ rb_block_call(obj, id_each, 0, 0, minmax_i, memo);
+ if (!UNDEF_P(m->last))
+ minmax_i_update(m->last, m->last, m);
+ }
+ if (!UNDEF_P(m->min)) {
+ return rb_assoc_new(m->min, m->max);
+ }
+ return rb_assoc_new(Qnil, Qnil);
+}
+
+static VALUE
+min_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ struct MEMO *memo = MEMO_CAST(args);
+ VALUE v;
+
+ ENUM_WANT_SVALUE();
+
+ v = enum_yield(argc, i);
+ if (UNDEF_P(memo->v1)) {
+ MEMO_V1_SET(memo, v);
+ MEMO_V2_SET(memo, i);
+ }
+ else if (OPTIMIZED_CMP(v, memo->v1) < 0) {
+ MEMO_V1_SET(memo, v);
+ MEMO_V2_SET(memo, i);
}
return Qnil;
}
+/*
+ * call-seq:
+ * min_by {|element| ... } -> element
+ * min_by(n) {|element| ... } -> array
+ * min_by -> enumerator
+ * min_by(n) -> enumerator
+ *
+ * Returns the elements for which the block returns the minimum values.
+ *
+ * With a block given and no argument,
+ * returns the element for which the block returns the minimum value:
+ *
+ * (1..4).min_by {|element| -element } # => 4
+ * %w[a b c d].min_by {|element| -element.ord } # => "d"
+ * {foo: 0, bar: 1, baz: 2}.min_by {|key, value| -value } # => [:baz, 2]
+ * [].min_by {|element| -element } # => nil
+ *
+ * With a block given and positive integer argument +n+ given,
+ * returns an array containing the +n+ elements
+ * for which the block returns minimum values:
+ *
+ * (1..4).min_by(2) {|element| -element }
+ * # => [4, 3]
+ * %w[a b c d].min_by(2) {|element| -element.ord }
+ * # => ["d", "c"]
+ * {foo: 0, bar: 1, baz: 2}.min_by(2) {|key, value| -value }
+ * # => [[:baz, 2], [:bar, 1]]
+ * [].min_by(2) {|element| -element }
+ * # => []
+ *
+ * Returns an Enumerator if no block is given.
+ *
+ * Related: #min, #minmax, #max_by.
+ *
+ */
+
static VALUE
-max_ii(i, memo)
- VALUE i;
- NODE *memo;
+enum_min_by(int argc, VALUE *argv, VALUE obj)
{
- VALUE cmp;
+ struct MEMO *memo;
+ VALUE num;
+
+ rb_check_arity(argc, 0, 1);
+
+ RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
+
+ if (argc && !NIL_P(num = argv[0]))
+ return rb_nmin_run(obj, num, 1, 0, 0);
+
+ memo = rb_imemo_memo_new(Qundef, Qnil, 0);
+ rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo);
+ return memo->v2;
+}
+
+static VALUE
+max_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ struct MEMO *memo = MEMO_CAST(args);
+ VALUE v;
+
+ ENUM_WANT_SVALUE();
+
+ v = enum_yield(argc, i);
+ if (UNDEF_P(memo->v1)) {
+ MEMO_V1_SET(memo, v);
+ MEMO_V2_SET(memo, i);
+ }
+ else if (OPTIMIZED_CMP(v, memo->v1) > 0) {
+ MEMO_V1_SET(memo, v);
+ MEMO_V2_SET(memo, i);
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * max_by {|element| ... } -> element
+ * max_by(n) {|element| ... } -> array
+ * max_by -> enumerator
+ * max_by(n) -> enumerator
+ *
+ * Returns the elements for which the block returns the maximum values.
+ *
+ * With a block given and no argument,
+ * returns the element for which the block returns the maximum value:
+ *
+ * (1..4).max_by {|element| -element } # => 1
+ * %w[a b c d].max_by {|element| -element.ord } # => "a"
+ * {foo: 0, bar: 1, baz: 2}.max_by {|key, value| -value } # => [:foo, 0]
+ * [].max_by {|element| -element } # => nil
+ *
+ * With a block given and positive integer argument +n+ given,
+ * returns an array containing the +n+ elements
+ * for which the block returns maximum values:
+ *
+ * (1..4).max_by(2) {|element| -element }
+ * # => [1, 2]
+ * %w[a b c d].max_by(2) {|element| -element.ord }
+ * # => ["a", "b"]
+ * {foo: 0, bar: 1, baz: 2}.max_by(2) {|key, value| -value }
+ * # => [[:foo, 0], [:bar, 1]]
+ * [].max_by(2) {|element| -element }
+ * # => []
+ *
+ * Returns an Enumerator if no block is given.
+ *
+ * Related: #max, #minmax, #min_by.
+ *
+ */
+
+static VALUE
+enum_max_by(int argc, VALUE *argv, VALUE obj)
+{
+ struct MEMO *memo;
+ VALUE num;
+
+ rb_check_arity(argc, 0, 1);
+
+ RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
+
+ if (argc && !NIL_P(num = argv[0]))
+ return rb_nmin_run(obj, num, 1, 1, 0);
+
+ memo = rb_imemo_memo_new(Qundef, Qnil, 0);
+ rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo);
+ return memo->v2;
+}
- if (NIL_P(memo->u1.value)) {
- memo->u1.value = i;
+struct minmax_by_t {
+ VALUE min_bv;
+ VALUE max_bv;
+ VALUE min;
+ VALUE max;
+ VALUE last_bv;
+ VALUE last;
+};
+
+static void
+minmax_by_i_update(VALUE v1, VALUE v2, VALUE i1, VALUE i2, struct minmax_by_t *memo)
+{
+ if (UNDEF_P(memo->min_bv)) {
+ memo->min_bv = v1;
+ memo->max_bv = v2;
+ memo->min = i1;
+ memo->max = i2;
}
else {
- cmp = rb_yield_values(2, i, memo->u1.value);
- if (rb_cmpint(cmp, i, memo->u1.value) > 0) {
- memo->u1.value = i;
- }
+ if (OPTIMIZED_CMP(v1, memo->min_bv) < 0) {
+ memo->min_bv = v1;
+ memo->min = i1;
+ }
+ if (OPTIMIZED_CMP(v2, memo->max_bv) > 0) {
+ memo->max_bv = v2;
+ memo->max = i2;
+ }
+ }
+}
+
+static VALUE
+minmax_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
+{
+ struct minmax_by_t *memo = MEMO_FOR(struct minmax_by_t, _memo);
+ VALUE vi, vj, j;
+ int n;
+
+ ENUM_WANT_SVALUE();
+
+ vi = enum_yield(argc, i);
+
+ if (UNDEF_P(memo->last_bv)) {
+ memo->last_bv = vi;
+ memo->last = i;
+ return Qnil;
+ }
+ vj = memo->last_bv;
+ j = memo->last;
+ memo->last_bv = Qundef;
+
+ n = OPTIMIZED_CMP(vj, vi);
+ if (n == 0) {
+ i = j;
+ vi = vj;
}
+ else if (n < 0) {
+ VALUE tmp;
+ tmp = i;
+ i = j;
+ j = tmp;
+ tmp = vi;
+ vi = vj;
+ vj = tmp;
+ }
+
+ minmax_by_i_update(vi, vj, i, j, memo);
+
return Qnil;
}
/*
* call-seq:
- * enum.max => obj
- * enum.max {|a,b| block } => obj
- *
- * Returns the object in _enum_ with the maximum value. The
- * first form assumes all objects implement <code>Comparable</code>;
- * the second uses the block to return <em>a <=> b</em>.
- *
- * a = %w(albatross dog horse)
- * a.max #=> "horse"
- * a.max {|a,b| a.length <=> b.length } #=> "albatross"
- */
+ * minmax_by {|element| ... } -> [minimum, maximum]
+ * minmax_by -> enumerator
+ *
+ * Returns a 2-element array containing the elements
+ * for which the block returns minimum and maximum values:
+ *
+ * (1..4).minmax_by {|element| -element }
+ * # => [4, 1]
+ * %w[a b c d].minmax_by {|element| -element.ord }
+ * # => ["d", "a"]
+ * {foo: 0, bar: 1, baz: 2}.minmax_by {|key, value| -value }
+ * # => [[:baz, 2], [:foo, 0]]
+ * [].minmax_by {|element| -element }
+ * # => [nil, nil]
+ *
+ * Returns an Enumerator if no block is given.
+ *
+ * Related: #max_by, #minmax, #min_by.
+ *
+ */
static VALUE
-enum_max(obj)
- VALUE obj;
+enum_minmax_by(VALUE obj)
{
- VALUE result;
- NODE *memo = rb_node_newnode(NODE_MEMO, Qnil, 0, 0);
+ VALUE memo;
+ struct minmax_by_t *m = NEW_MEMO_FOR(struct minmax_by_t, memo);
- rb_iterate(rb_each, obj, rb_block_given_p() ? max_ii : max_i, (VALUE)memo);
- result = memo->u1.value;
- rb_gc_force_recycle((VALUE)memo);
- return result;
+ RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
+
+ m->min_bv = Qundef;
+ m->max_bv = Qundef;
+ m->min = Qnil;
+ m->max = Qnil;
+ m->last_bv = Qundef;
+ m->last = Qundef;
+ rb_block_call(obj, id_each, 0, 0, minmax_by_i, memo);
+ if (!UNDEF_P(m->last_bv))
+ minmax_by_i_update(m->last_bv, m->last_bv, m->last, m->last, m);
+ m = MEMO_FOR(struct minmax_by_t, memo);
+ return rb_assoc_new(m->min, m->max);
}
static VALUE
-member_i(item, memo)
- VALUE item;
- NODE *memo;
+member_i(RB_BLOCK_CALL_FUNC_ARGLIST(iter, args))
{
- if (rb_equal(item, memo->u1.value)) {
- memo->u2.value = Qtrue;
- rb_iter_break();
+ struct MEMO *memo = MEMO_CAST(args);
+
+ if (rb_equal(rb_enum_values_pack(argc, argv), memo->v1)) {
+ MEMO_V2_SET(memo, Qtrue);
+ rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
- * enum.include?(obj) => true or false
- * enum.member?(obj) => true or false
- *
- * Returns <code>true</code> if any member of <i>enum</i> equals
- * <i>obj</i>. Equality is tested using <code>==</code>.
- *
- * IO.constants.include? "SEEK_SET" #=> true
- * IO.constants.include? "SEEK_NO_FURTHER" #=> false
- *
+ * include?(object) -> true or false
+ *
+ * Returns whether for any element <tt>object == element</tt>:
+ *
+ * (1..4).include?(2) # => true
+ * (1..4).include?(5) # => false
+ * (1..4).include?('2') # => false
+ * %w[a b c d].include?('b') # => true
+ * %w[a b c d].include?('2') # => false
+ * {foo: 0, bar: 1, baz: 2}.include?(:foo) # => true
+ * {foo: 0, bar: 1, baz: 2}.include?('foo') # => false
+ * {foo: 0, bar: 1, baz: 2}.include?(0) # => false
+ *
*/
static VALUE
-enum_member(obj, val)
- VALUE obj, val;
+enum_member(VALUE obj, VALUE val)
{
- VALUE result;
- NODE *memo = rb_node_newnode(NODE_MEMO, val, Qfalse, 0);
+ struct MEMO *memo = rb_imemo_memo_new(val, Qfalse, 0);
- rb_iterate(rb_each, obj, member_i, (VALUE)memo);
- result = memo->u2.value;
- rb_gc_force_recycle((VALUE)memo);
- return result;
+ rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
+ return memo->v2;
+}
+
+static VALUE
+each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(_, index))
+{
+ struct vm_ifunc *ifunc = rb_current_ifunc();
+ ifunc->data = (const void *)rb_int_succ(index);
+
+ return rb_yield_values(2, rb_enum_values_pack(argc, argv), index);
+}
+
+/*
+ * call-seq:
+ * each_with_index(*args) {|element, i| ..... } -> self
+ * each_with_index(*args) -> enumerator
+ *
+ * Invoke <tt>self.each</tt> with <tt>*args</tt>.
+ * With a block given, the block receives each element and its index;
+ * returns +self+:
+ *
+ * h = {}
+ * (1..4).each_with_index {|element, i| h[element] = i } # => 1..4
+ * h # => {1=>0, 2=>1, 3=>2, 4=>3}
+ *
+ * h = {}
+ * %w[a b c d].each_with_index {|element, i| h[element] = i }
+ * # => ["a", "b", "c", "d"]
+ * h # => {"a"=>0, "b"=>1, "c"=>2, "d"=>3}
+ *
+ * a = []
+ * h = {foo: 0, bar: 1, baz: 2}
+ * h.each_with_index {|element, i| a.push([i, element]) }
+ * # => {:foo=>0, :bar=>1, :baz=>2}
+ * a # => [[0, [:foo, 0]], [1, [:bar, 1]], [2, [:baz, 2]]]
+ *
+ * With no block given, returns an Enumerator.
+ *
+ */
+
+static VALUE
+enum_each_with_index(int argc, VALUE *argv, VALUE obj)
+{
+ RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
+
+ rb_block_call(obj, id_each, argc, argv, each_with_index_i, INT2FIX(0));
+ return obj;
+}
+
+
+/*
+ * call-seq:
+ * reverse_each(*args) {|element| ... } -> self
+ * reverse_each(*args) -> enumerator
+ *
+ * With a block given, calls the block with each element,
+ * but in reverse order; returns +self+:
+ *
+ * a = []
+ * (1..4).reverse_each {|element| a.push(-element) } # => 1..4
+ * a # => [-4, -3, -2, -1]
+ *
+ * a = []
+ * %w[a b c d].reverse_each {|element| a.push(element) }
+ * # => ["a", "b", "c", "d"]
+ * a # => ["d", "c", "b", "a"]
+ *
+ * a = []
+ * h.reverse_each {|element| a.push(element) }
+ * # => {:foo=>0, :bar=>1, :baz=>2}
+ * a # => [[:baz, 2], [:bar, 1], [:foo, 0]]
+ *
+ * With no block given, returns an Enumerator.
+ *
+ */
+
+static VALUE
+enum_reverse_each(int argc, VALUE *argv, VALUE obj)
+{
+ VALUE ary;
+ long len;
+
+ RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
+
+ ary = enum_to_a(argc, argv, obj);
+
+ len = RARRAY_LEN(ary);
+ while (len--) {
+ long nlen;
+ rb_yield(RARRAY_AREF(ary, len));
+ nlen = RARRAY_LEN(ary);
+ if (nlen < len) {
+ len = nlen;
+ }
+ }
+
+ return obj;
}
+
static VALUE
-each_with_index_i(val, memo)
- VALUE val;
- NODE *memo;
+each_val_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
{
- rb_yield_values(2, val, INT2FIX(memo->u3.cnt));
- memo->u3.cnt++;
+ ENUM_WANT_SVALUE();
+ enum_yield(argc, i);
return Qnil;
}
/*
* call-seq:
- * enum.each_with_index {|obj, i| block } -> nil
- *
- * Calls <em>block</em> with two arguments, the item and its index, for
- * each item in <i>enum</i>.
- *
- * hash = Hash.new
- * %w(cat dog wombat).each_with_index {|item, index|
- * hash[item] = index
- * }
- * hash #=> {"cat"=>0, "wombat"=>2, "dog"=>1}
- *
+ * each_entry(*args) {|element| ... } -> self
+ * each_entry(*args) -> enumerator
+ *
+ * Calls the given block with each element,
+ * converting multiple values from yield to an array; returns +self+:
+ *
+ * a = []
+ * (1..4).each_entry {|element| a.push(element) } # => 1..4
+ * a # => [1, 2, 3, 4]
+ *
+ * a = []
+ * h = {foo: 0, bar: 1, baz:2}
+ * h.each_entry {|element| a.push(element) }
+ * # => {:foo=>0, :bar=>1, :baz=>2}
+ * a # => [[:foo, 0], [:bar, 1], [:baz, 2]]
+ *
+ * class Foo
+ * include Enumerable
+ * def each
+ * yield 1
+ * yield 1, 2
+ * yield
+ * end
+ * end
+ * Foo.new.each_entry {|yielded| p yielded }
+ *
+ * Output:
+ *
+ * 1
+ * [1, 2]
+ * nil
+ *
+ * With no block given, returns an Enumerator.
+ *
*/
static VALUE
-enum_each_with_index(obj)
- VALUE obj;
+enum_each_entry(int argc, VALUE *argv, VALUE obj)
+{
+ RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
+ rb_block_call(obj, id_each, argc, argv, each_val_i, 0);
+ return obj;
+}
+
+static VALUE
+add_int(VALUE x, long n)
+{
+ const VALUE y = LONG2NUM(n);
+ if (RB_INTEGER_TYPE_P(x)) return rb_int_plus(x, y);
+ return rb_funcallv(x, '+', 1, &y);
+}
+
+static VALUE
+div_int(VALUE x, long n)
+{
+ const VALUE y = LONG2NUM(n);
+ if (RB_INTEGER_TYPE_P(x)) return rb_int_idiv(x, y);
+ return rb_funcallv(x, id_div, 1, &y);
+}
+
+#define dont_recycle_block_arg(arity) ((arity) == 1 || (arity) < 0)
+
+static VALUE
+each_slice_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, m))
+{
+ struct MEMO *memo = MEMO_CAST(m);
+ VALUE ary = memo->v1;
+ VALUE v = Qnil;
+ long size = memo->u3.cnt;
+ ENUM_WANT_SVALUE();
+
+ rb_ary_push(ary, i);
+
+ if (RARRAY_LEN(ary) == size) {
+ v = rb_yield(ary);
+
+ if (memo->v2) {
+ MEMO_V1_SET(memo, rb_ary_new2(size));
+ }
+ else {
+ rb_ary_clear(ary);
+ }
+ }
+
+ return v;
+}
+
+static VALUE
+enum_each_slice_size(VALUE obj, VALUE args, VALUE eobj)
+{
+ VALUE n, size;
+ long slice_size = NUM2LONG(RARRAY_AREF(args, 0));
+ ID infinite_p;
+ CONST_ID(infinite_p, "infinite?");
+ if (slice_size <= 0) rb_raise(rb_eArgError, "invalid slice size");
+
+ size = enum_size(obj, 0, 0);
+ if (NIL_P(size)) return Qnil;
+ if (RB_FLOAT_TYPE_P(size) && RTEST(rb_funcall(size, infinite_p, 0))) {
+ return size;
+ }
+
+ n = add_int(size, slice_size-1);
+ return div_int(n, slice_size);
+}
+
+/*
+ * call-seq:
+ * each_slice(n) { ... } -> self
+ * each_slice(n) -> enumerator
+ *
+ * Calls the block with each successive disjoint +n+-tuple of elements;
+ * returns +self+:
+ *
+ * a = []
+ * (1..10).each_slice(3) {|tuple| a.push(tuple) }
+ * a # => [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]
+ *
+ * a = []
+ * h = {foo: 0, bar: 1, baz: 2, bat: 3, bam: 4}
+ * h.each_slice(2) {|tuple| a.push(tuple) }
+ * a # => [[[:foo, 0], [:bar, 1]], [[:baz, 2], [:bat, 3]], [[:bam, 4]]]
+ *
+ * With no block given, returns an Enumerator.
+ *
+ */
+static VALUE
+enum_each_slice(VALUE obj, VALUE n)
{
- NODE *memo = rb_node_newnode(NODE_MEMO, 0, 0, 0);
+ long size = NUM2LONG(n);
+ VALUE ary;
+ struct MEMO *memo;
+ int arity;
+
+ if (size <= 0) rb_raise(rb_eArgError, "invalid slice size");
+ RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_slice_size);
+ size = limit_by_enum_size(obj, size);
+ ary = rb_ary_new2(size);
+ arity = rb_block_arity();
+ memo = rb_imemo_memo_new(ary, dont_recycle_block_arg(arity), size);
+ rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo);
+ ary = memo->v1;
+ if (RARRAY_LEN(ary) > 0) rb_yield(ary);
- rb_iterate(rb_each, obj, each_with_index_i, (VALUE)memo);
- rb_gc_force_recycle((VALUE)memo);
return obj;
}
static VALUE
-zip_i(val, memo)
- VALUE val;
- NODE *memo;
+each_cons_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ struct MEMO *memo = MEMO_CAST(args);
+ VALUE ary = memo->v1;
+ VALUE v = Qnil;
+ long size = memo->u3.cnt;
+ ENUM_WANT_SVALUE();
+
+ if (RARRAY_LEN(ary) == size) {
+ rb_ary_shift(ary);
+ }
+ rb_ary_push(ary, i);
+ if (RARRAY_LEN(ary) == size) {
+ if (memo->v2) {
+ ary = rb_ary_dup(ary);
+ }
+ v = rb_yield(ary);
+ }
+ return v;
+}
+
+static VALUE
+enum_each_cons_size(VALUE obj, VALUE args, VALUE eobj)
+{
+ const VALUE zero = LONG2FIX(0);
+ VALUE n, size;
+ long cons_size = NUM2LONG(RARRAY_AREF(args, 0));
+ if (cons_size <= 0) rb_raise(rb_eArgError, "invalid size");
+
+ size = enum_size(obj, 0, 0);
+ if (NIL_P(size)) return Qnil;
+
+ n = add_int(size, 1 - cons_size);
+ return (OPTIMIZED_CMP(n, zero) == -1) ? zero : n;
+}
+
+/*
+ * call-seq:
+ * each_cons(n) { ... } -> self
+ * each_cons(n) -> enumerator
+ *
+ * Calls the block with each successive overlapped +n+-tuple of elements;
+ * returns +self+:
+ *
+ * a = []
+ * (1..5).each_cons(3) {|element| a.push(element) }
+ * a # => [[1, 2, 3], [2, 3, 4], [3, 4, 5]]
+ *
+ * a = []
+ * h = {foo: 0, bar: 1, baz: 2, bam: 3}
+ * h.each_cons(2) {|element| a.push(element) }
+ * a # => [[[:foo, 0], [:bar, 1]], [[:bar, 1], [:baz, 2]], [[:baz, 2], [:bam, 3]]]
+ *
+ * With no block given, returns an Enumerator.
+ *
+ */
+static VALUE
+enum_each_cons(VALUE obj, VALUE n)
{
- VALUE result = memo->u1.value;
- VALUE args = memo->u2.value;
- int idx = memo->u3.cnt++;
+ long size = NUM2LONG(n);
+ struct MEMO *memo;
+ int arity;
+
+ if (size <= 0) rb_raise(rb_eArgError, "invalid size");
+ RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_cons_size);
+ arity = rb_block_arity();
+ if (enum_size_over_p(obj, size)) return obj;
+ memo = rb_imemo_memo_new(rb_ary_new2(size), dont_recycle_block_arg(arity), size);
+ rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo);
+
+ return obj;
+}
+
+static VALUE
+each_with_object_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo))
+{
+ ENUM_WANT_SVALUE();
+ return rb_yield_values(2, i, memo);
+}
+
+/*
+ * call-seq:
+ * each_with_object(object) { |(*args), memo_object| ... } -> object
+ * each_with_object(object) -> enumerator
+ *
+ * Calls the block once for each element, passing both the element
+ * and the given object:
+ *
+ * (1..4).each_with_object([]) {|i, a| a.push(i**2) }
+ * # => [1, 4, 9, 16]
+ *
+ * {foo: 0, bar: 1, baz: 2}.each_with_object({}) {|(k, v), h| h[v] = k }
+ * # => {0=>:foo, 1=>:bar, 2=>:baz}
+ *
+ * With no block given, returns an Enumerator.
+ *
+ */
+static VALUE
+enum_each_with_object(VALUE obj, VALUE memo)
+{
+ RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enum_size);
+
+ rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo);
+
+ return memo;
+}
+
+static VALUE
+zip_ary(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval))
+{
+ struct MEMO *memo = (struct MEMO *)memoval;
+ VALUE result = memo->v1;
+ VALUE args = memo->v2;
+ long n = memo->u3.cnt++;
VALUE tmp;
int i;
- tmp = rb_ary_new2(RARRAY(args)->len + 1);
- rb_ary_store(tmp, 0, val);
- for (i=0; i<RARRAY(args)->len; i++) {
- rb_ary_push(tmp, rb_ary_entry(RARRAY(args)->ptr[i], idx));
+ tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
+ rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv));
+ for (i=0; i<RARRAY_LEN(args); i++) {
+ VALUE e = RARRAY_AREF(args, i);
+
+ if (RARRAY_LEN(e) <= n) {
+ rb_ary_push(tmp, Qnil);
+ }
+ else {
+ rb_ary_push(tmp, RARRAY_AREF(e, n));
+ }
}
- if (rb_block_given_p()) {
- rb_yield(tmp);
+ if (NIL_P(result)) {
+ enum_yield_array(tmp);
+ }
+ else {
+ rb_ary_push(result, tmp);
+ }
+
+ RB_GC_GUARD(args);
+
+ return Qnil;
+}
+
+static VALUE
+call_next(VALUE w)
+{
+ VALUE *v = (VALUE *)w;
+ return v[0] = rb_funcallv(v[1], id_next, 0, 0);
+}
+
+static VALUE
+call_stop(VALUE w, VALUE _)
+{
+ VALUE *v = (VALUE *)w;
+ return v[0] = Qundef;
+}
+
+static VALUE
+zip_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval))
+{
+ struct MEMO *memo = (struct MEMO *)memoval;
+ VALUE result = memo->v1;
+ VALUE args = memo->v2;
+ VALUE tmp;
+ int i;
+
+ tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
+ rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv));
+ for (i=0; i<RARRAY_LEN(args); i++) {
+ if (NIL_P(RARRAY_AREF(args, i))) {
+ rb_ary_push(tmp, Qnil);
+ }
+ else {
+ VALUE v[2];
+
+ v[1] = RARRAY_AREF(args, i);
+ rb_rescue2(call_next, (VALUE)v, call_stop, (VALUE)v, rb_eStopIteration, (VALUE)0);
+ if (UNDEF_P(v[0])) {
+ RARRAY_ASET(args, i, Qnil);
+ v[0] = Qnil;
+ }
+ rb_ary_push(tmp, v[0]);
+ }
+ }
+ if (NIL_P(result)) {
+ enum_yield_array(tmp);
}
else {
- rb_ary_push(result, tmp);
+ rb_ary_push(result, tmp);
}
+
+ RB_GC_GUARD(args);
+
return Qnil;
}
/*
* call-seq:
- * enum.zip(arg, ...) => array
- * enum.zip(arg, ...) {|arr| block } => nil
- *
- * Converts any arguments to arrays, then merges elements of
- * <i>enum</i> with corresponding elements from each argument. This
- * generates a sequence of <code>enum#size</code> <em>n</em>-element
- * arrays, where <em>n</em> is one more that the count of arguments. If
- * the size of any arguemnt is less than <code>enum#size</code>,
- * <code>nil</code> values are supplied. If a block given, it is
- * invoked for each output array, otherwise an array of arrays is
- * returned.
- *
- * a = [ 4, 5, 6 ]
- * b = [ 7, 8, 9 ]
- *
- * (1..3).zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
- * "cat\ndog".zip([1]) #=> [["cat\n", 1], ["dog", nil]]
- * (1..3).zip #=> [[1], [2], [3]]
- *
+ * zip(*other_enums) -> array
+ * zip(*other_enums) {|array| ... } -> nil
+ *
+ * With no block given, returns a new array +new_array+ of size self.size
+ * whose elements are arrays.
+ * Each nested array <tt>new_array[n]</tt>
+ * is of size <tt>other_enums.size+1</tt>, and contains:
+ *
+ * - The +n+-th element of self.
+ * - The +n+-th element of each of the +other_enums+.
+ *
+ * If all +other_enums+ and self are the same size,
+ * all elements are included in the result, and there is no +nil+-filling:
+ *
+ * a = [:a0, :a1, :a2, :a3]
+ * b = [:b0, :b1, :b2, :b3]
+ * c = [:c0, :c1, :c2, :c3]
+ * d = a.zip(b, c)
+ * d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]]
+ *
+ * f = {foo: 0, bar: 1, baz: 2}
+ * g = {goo: 3, gar: 4, gaz: 5}
+ * h = {hoo: 6, har: 7, haz: 8}
+ * d = f.zip(g, h)
+ * d # => [
+ * # [[:foo, 0], [:goo, 3], [:hoo, 6]],
+ * # [[:bar, 1], [:gar, 4], [:har, 7]],
+ * # [[:baz, 2], [:gaz, 5], [:haz, 8]]
+ * # ]
+ *
+ * If any enumerable in other_enums is smaller than self,
+ * fills to <tt>self.size</tt> with +nil+:
+ *
+ * a = [:a0, :a1, :a2, :a3]
+ * b = [:b0, :b1, :b2]
+ * c = [:c0, :c1]
+ * d = a.zip(b, c)
+ * d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, nil], [:a3, nil, nil]]
+ *
+ * If any enumerable in other_enums is larger than self,
+ * its trailing elements are ignored:
+ *
+ * a = [:a0, :a1, :a2, :a3]
+ * b = [:b0, :b1, :b2, :b3, :b4]
+ * c = [:c0, :c1, :c2, :c3, :c4, :c5]
+ * d = a.zip(b, c)
+ * d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]]
+ *
+ * When a block is given, calls the block with each of the sub-arrays
+ * (formed as above); returns nil:
+ *
+ * a = [:a0, :a1, :a2, :a3]
+ * b = [:b0, :b1, :b2, :b3]
+ * c = [:c0, :c1, :c2, :c3]
+ * a.zip(b, c) {|sub_array| p sub_array} # => nil
+ *
+ * Output:
+ *
+ * [:a0, :b0, :c0]
+ * [:a1, :b1, :c1]
+ * [:a2, :b2, :c2]
+ * [:a3, :b3, :c3]
+ *
*/
static VALUE
-enum_zip(argc, argv, obj)
- int argc;
- VALUE *argv;
- VALUE obj;
+enum_zip(int argc, VALUE *argv, VALUE obj)
{
int i;
- VALUE result;
- NODE *memo;
+ ID conv;
+ struct MEMO *memo;
+ VALUE result = Qnil;
+ VALUE args = rb_ary_new4(argc, argv);
+ int allary = TRUE;
+ argv = RARRAY_PTR(args);
for (i=0; i<argc; i++) {
- argv[i] = rb_convert_type(argv[i], T_ARRAY, "Array", "to_a");
+ VALUE ary = rb_check_array_type(argv[i]);
+ if (NIL_P(ary)) {
+ allary = FALSE;
+ break;
+ }
+ argv[i] = ary;
+ }
+ if (!allary) {
+ static const VALUE sym_each = STATIC_ID2SYM(id_each);
+ CONST_ID(conv, "to_enum");
+ for (i=0; i<argc; i++) {
+ if (!rb_respond_to(argv[i], id_each)) {
+ rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)",
+ rb_obj_class(argv[i]));
+ }
+ argv[i] = rb_funcallv(argv[i], conv, 1, &sym_each);
+ }
+ }
+ if (!rb_block_given_p()) {
+ result = rb_ary_new();
+ }
+
+ /* TODO: use NODE_DOT2 as memo(v, v, -) */
+ memo = rb_imemo_memo_new(result, args, 0);
+ rb_block_call(obj, id_each, 0, 0, allary ? zip_ary : zip_i, (VALUE)memo);
+
+ return result;
+}
+
+static VALUE
+take_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ struct MEMO *memo = MEMO_CAST(args);
+ rb_ary_push(memo->v1, rb_enum_values_pack(argc, argv));
+ if (--memo->u3.cnt == 0) rb_iter_break();
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * take(n) -> array
+ *
+ * For non-negative integer +n+, returns the first +n+ elements:
+ *
+ * r = (1..4)
+ * r.take(2) # => [1, 2]
+ * r.take(0) # => []
+ *
+ * h = {foo: 0, bar: 1, baz: 2, bat: 3}
+ * h.take(2) # => [[:foo, 0], [:bar, 1]]
+ *
+ */
+
+static VALUE
+enum_take(VALUE obj, VALUE n)
+{
+ struct MEMO *memo;
+ VALUE result;
+ long len = NUM2LONG(n);
+
+ if (len < 0) {
+ rb_raise(rb_eArgError, "attempt to take negative size");
}
- result = rb_block_given_p() ? Qnil : rb_ary_new();
- memo = rb_node_newnode(NODE_MEMO, result, rb_ary_new4(argc, argv), 0);
- rb_iterate(rb_each, obj, zip_i, (VALUE)memo);
+ if (len == 0) return rb_ary_new2(0);
+ result = rb_ary_new2(len);
+ memo = rb_imemo_memo_new(result, 0, len);
+ rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo);
return result;
}
+
+static VALUE
+take_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
+{
+ if (!RTEST(rb_yield_values2(argc, argv))) rb_iter_break();
+ rb_ary_push(ary, rb_enum_values_pack(argc, argv));
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * take_while {|element| ... } -> array
+ * take_while -> enumerator
+ *
+ * Calls the block with successive elements as long as the block
+ * returns a truthy value;
+ * returns an array of all elements up to that point:
+ *
+ *
+ * (1..4).take_while{|i| i < 3 } # => [1, 2]
+ * h = {foo: 0, bar: 1, baz: 2}
+ * h.take_while{|element| key, value = *element; value < 2 }
+ * # => [[:foo, 0], [:bar, 1]]
+ *
+ * With no block given, returns an Enumerator.
+ *
+ */
+
+static VALUE
+enum_take_while(VALUE obj)
+{
+ VALUE ary;
+
+ RETURN_ENUMERATOR(obj, 0, 0);
+ ary = rb_ary_new();
+ rb_block_call(obj, id_each, 0, 0, take_while_i, ary);
+ return ary;
+}
+
+static VALUE
+drop_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ struct MEMO *memo = MEMO_CAST(args);
+ if (memo->u3.cnt == 0) {
+ rb_ary_push(memo->v1, rb_enum_values_pack(argc, argv));
+ }
+ else {
+ memo->u3.cnt--;
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * drop(n) -> array
+ *
+ * For positive integer +n+, returns an array containing
+ * all but the first +n+ elements:
+ *
+ * r = (1..4)
+ * r.drop(3) # => [4]
+ * r.drop(2) # => [3, 4]
+ * r.drop(1) # => [2, 3, 4]
+ * r.drop(0) # => [1, 2, 3, 4]
+ * r.drop(50) # => []
+ *
+ * h = {foo: 0, bar: 1, baz: 2, bat: 3}
+ * h.drop(2) # => [[:baz, 2], [:bat, 3]]
+ *
+ */
+
+static VALUE
+enum_drop(VALUE obj, VALUE n)
+{
+ VALUE result;
+ struct MEMO *memo;
+ long len = NUM2LONG(n);
+
+ if (len < 0) {
+ rb_raise(rb_eArgError, "attempt to drop negative size");
+ }
+
+ result = rb_ary_new();
+ memo = rb_imemo_memo_new(result, 0, len);
+ rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo);
+ return result;
+}
+
+
+static VALUE
+drop_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ struct MEMO *memo = MEMO_CAST(args);
+ ENUM_WANT_SVALUE();
+
+ if (!memo->u3.state && !RTEST(enum_yield(argc, i))) {
+ memo->u3.state = TRUE;
+ }
+ if (memo->u3.state) {
+ rb_ary_push(memo->v1, i);
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * drop_while {|element| ... } -> array
+ * drop_while -> enumerator
+ *
+ * Calls the block with successive elements as long as the block
+ * returns a truthy value;
+ * returns an array of all elements after that point:
+ *
+ *
+ * (1..4).drop_while{|i| i < 3 } # => [3, 4]
+ * h = {foo: 0, bar: 1, baz: 2}
+ * a = h.drop_while{|element| key, value = *element; value < 2 }
+ * a # => [[:baz, 2]]
+ *
+ * With no block given, returns an Enumerator.
+ *
+ * e = (1..4).drop_while
+ * p e #=> #<Enumerator: 1..4:drop_while>
+ * i = e.next; p i; e.feed(i < 3) #=> 1
+ * i = e.next; p i; e.feed(i < 3) #=> 2
+ * i = e.next; p i; e.feed(i < 3) #=> 3
+ * begin
+ * e.next
+ * rescue StopIteration
+ * p $!.result #=> [3, 4]
+ * end
+ *
+ */
+
+static VALUE
+enum_drop_while(VALUE obj)
+{
+ VALUE result;
+ struct MEMO *memo;
+
+ RETURN_ENUMERATOR(obj, 0, 0);
+ result = rb_ary_new();
+ memo = rb_imemo_memo_new(result, 0, FALSE);
+ rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo);
+ return result;
+}
+
+static VALUE
+cycle_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
+{
+ ENUM_WANT_SVALUE();
+
+ rb_ary_push(ary, argc > 1 ? i : rb_ary_new_from_values(argc, argv));
+ enum_yield(argc, i);
+ return Qnil;
+}
+
+static VALUE
+enum_cycle_size(VALUE self, VALUE args, VALUE eobj)
+{
+ long mul = 0;
+ VALUE n = Qnil;
+ VALUE size;
+
+ if (args && (RARRAY_LEN(args) > 0)) {
+ n = RARRAY_AREF(args, 0);
+ if (!NIL_P(n)) mul = NUM2LONG(n);
+ }
+
+ size = enum_size(self, args, 0);
+ if (NIL_P(size) || FIXNUM_ZERO_P(size)) return size;
+
+ if (NIL_P(n)) return DBL2NUM(HUGE_VAL);
+ if (mul <= 0) return INT2FIX(0);
+ n = LONG2FIX(mul);
+ return rb_funcallv(size, '*', 1, &n);
+}
+
+/*
+ * call-seq:
+ * cycle(n = nil) {|element| ...} -> nil
+ * cycle(n = nil) -> enumerator
+ *
+ * When called with positive integer argument +n+ and a block,
+ * calls the block with each element, then does so again,
+ * until it has done so +n+ times; returns +nil+:
+ *
+ * a = []
+ * (1..4).cycle(3) {|element| a.push(element) } # => nil
+ * a # => [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]
+ * a = []
+ * ('a'..'d').cycle(2) {|element| a.push(element) }
+ * a # => ["a", "b", "c", "d", "a", "b", "c", "d"]
+ * a = []
+ * {foo: 0, bar: 1, baz: 2}.cycle(2) {|element| a.push(element) }
+ * a # => [[:foo, 0], [:bar, 1], [:baz, 2], [:foo, 0], [:bar, 1], [:baz, 2]]
+ *
+ * If count is zero or negative, does not call the block.
+ *
+ * When called with a block and +n+ is +nil+, cycles forever.
+ *
+ * When no block is given, returns an Enumerator.
+ *
+ */
+
+static VALUE
+enum_cycle(int argc, VALUE *argv, VALUE obj)
+{
+ VALUE ary;
+ VALUE nv = Qnil;
+ long n, i, len;
+
+ rb_check_arity(argc, 0, 1);
+
+ RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_cycle_size);
+ if (!argc || NIL_P(nv = argv[0])) {
+ n = -1;
+ }
+ else {
+ n = NUM2LONG(nv);
+ if (n <= 0) return Qnil;
+ }
+ ary = rb_ary_new();
+ RBASIC_CLEAR_CLASS(ary);
+ rb_block_call(obj, id_each, 0, 0, cycle_i, ary);
+ len = RARRAY_LEN(ary);
+ if (len == 0) return Qnil;
+ while (n < 0 || 0 < --n) {
+ for (i=0; i<len; i++) {
+ enum_yield_array(RARRAY_AREF(ary, i));
+ }
+ }
+ return Qnil;
+}
+
+struct chunk_arg {
+ VALUE categorize;
+ VALUE prev_value;
+ VALUE prev_elts;
+ VALUE yielder;
+};
+
+static VALUE
+chunk_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp))
+{
+ struct chunk_arg *argp = MEMO_FOR(struct chunk_arg, _argp);
+ VALUE v, s;
+ VALUE alone = ID2SYM(id__alone);
+ VALUE separator = ID2SYM(id__separator);
+
+ ENUM_WANT_SVALUE();
+
+ v = rb_funcallv(argp->categorize, id_call, 1, &i);
+
+ if (v == alone) {
+ if (!NIL_P(argp->prev_value)) {
+ s = rb_assoc_new(argp->prev_value, argp->prev_elts);
+ rb_funcallv(argp->yielder, id_lshift, 1, &s);
+ argp->prev_value = argp->prev_elts = Qnil;
+ }
+ v = rb_assoc_new(v, rb_ary_new3(1, i));
+ rb_funcallv(argp->yielder, id_lshift, 1, &v);
+ }
+ else if (NIL_P(v) || v == separator) {
+ if (!NIL_P(argp->prev_value)) {
+ v = rb_assoc_new(argp->prev_value, argp->prev_elts);
+ rb_funcallv(argp->yielder, id_lshift, 1, &v);
+ argp->prev_value = argp->prev_elts = Qnil;
+ }
+ }
+ else if (SYMBOL_P(v) && (s = rb_sym2str(v), RSTRING_PTR(s)[0] == '_')) {
+ rb_raise(rb_eRuntimeError, "symbols beginning with an underscore are reserved");
+ }
+ else {
+ if (NIL_P(argp->prev_value)) {
+ argp->prev_value = v;
+ argp->prev_elts = rb_ary_new3(1, i);
+ }
+ else {
+ if (rb_equal(argp->prev_value, v)) {
+ rb_ary_push(argp->prev_elts, i);
+ }
+ else {
+ s = rb_assoc_new(argp->prev_value, argp->prev_elts);
+ rb_funcallv(argp->yielder, id_lshift, 1, &s);
+ argp->prev_value = v;
+ argp->prev_elts = rb_ary_new3(1, i);
+ }
+ }
+ }
+ return Qnil;
+}
+
+static VALUE
+chunk_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
+{
+ VALUE enumerable;
+ VALUE arg;
+ struct chunk_arg *memo = NEW_MEMO_FOR(struct chunk_arg, arg);
+
+ enumerable = rb_ivar_get(enumerator, id_chunk_enumerable);
+ memo->categorize = rb_ivar_get(enumerator, id_chunk_categorize);
+ memo->prev_value = Qnil;
+ memo->prev_elts = Qnil;
+ memo->yielder = yielder;
+
+ rb_block_call(enumerable, id_each, 0, 0, chunk_ii, arg);
+ memo = MEMO_FOR(struct chunk_arg, arg);
+ if (!NIL_P(memo->prev_elts)) {
+ arg = rb_assoc_new(memo->prev_value, memo->prev_elts);
+ rb_funcallv(memo->yielder, id_lshift, 1, &arg);
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * chunk {|array| ... } -> enumerator
+ *
+ * Each element in the returned enumerator is a 2-element array consisting of:
+ *
+ * - A value returned by the block.
+ * - An array ("chunk") containing the element for which that value was returned,
+ * and all following elements for which the block returned the same value:
+ *
+ * So that:
+ *
+ * - Each block return value that is different from its predecessor
+ * begins a new chunk.
+ * - Each block return value that is the same as its predecessor
+ * continues the same chunk.
+ *
+ * Example:
+ *
+ * e = (0..10).chunk {|i| (i / 3).floor } # => #<Enumerator: ...>
+ * # The enumerator elements.
+ * e.next # => [0, [0, 1, 2]]
+ * e.next # => [1, [3, 4, 5]]
+ * e.next # => [2, [6, 7, 8]]
+ * e.next # => [3, [9, 10]]
+ *
+ * Method +chunk+ is especially useful for an enumerable that is already sorted.
+ * This example counts words for each initial letter in a large array of words:
+ *
+ * # Get sorted words from a web page.
+ * url = 'https://raw.githubusercontent.com/eneko/data-repository/master/data/words.txt'
+ * words = URI::open(url).readlines
+ * # Make chunks, one for each letter.
+ * e = words.chunk {|word| word.upcase[0] } # => #<Enumerator: ...>
+ * # Display 'A' through 'F'.
+ * e.each {|c, words| p [c, words.length]; break if c == 'F' }
+ *
+ * Output:
+ *
+ * ["A", 17096]
+ * ["B", 11070]
+ * ["C", 19901]
+ * ["D", 10896]
+ * ["E", 8736]
+ * ["F", 6860]
+ *
+ * You can use the special symbol <tt>:_alone</tt> to force an element
+ * into its own separate chunk:
+ *
+ * a = [0, 0, 1, 1]
+ * e = a.chunk{|i| i.even? ? :_alone : true }
+ * e.to_a # => [[:_alone, [0]], [:_alone, [0]], [true, [1, 1]]]
+ *
+ * For example, you can put each line that contains a URL into its own chunk:
+ *
+ * pattern = /http/
+ * open(filename) { |f|
+ * f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines|
+ * pp lines
+ * }
+ * }
+ *
+ * You can use the special symbol <tt>:_separator</tt> or +nil+
+ * to force an element to be ignored (not included in any chunk):
+ *
+ * a = [0, 0, -1, 1, 1]
+ * e = a.chunk{|i| i < 0 ? :_separator : true }
+ * e.to_a # => [[true, [0, 0]], [true, [1, 1]]]
+ *
+ * Note that the separator does end the chunk:
+ *
+ * a = [0, 0, -1, 1, -1, 1]
+ * e = a.chunk{|i| i < 0 ? :_separator : true }
+ * e.to_a # => [[true, [0, 0]], [true, [1]], [true, [1]]]
+ *
+ * For example, the sequence of hyphens in svn log can be eliminated as follows:
+ *
+ * sep = "-"*72 + "\n"
+ * IO.popen("svn log README") { |f|
+ * f.chunk { |line|
+ * line != sep || nil
+ * }.each { |_, lines|
+ * pp lines
+ * }
+ * }
+ * #=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n",
+ * # "\n",
+ * # "* README, README.ja: Update the portability section.\n",
+ * # "\n"]
+ * # ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n",
+ * # "\n",
+ * # "* README, README.ja: Add a note about default C flags.\n",
+ * # "\n"]
+ * # ...
+ *
+ * Paragraphs separated by empty lines can be parsed as follows:
+ *
+ * File.foreach("README").chunk { |line|
+ * /\A\s*\z/ !~ line || nil
+ * }.each { |_, lines|
+ * pp lines
+ * }
+ *
+ */
+static VALUE
+enum_chunk(VALUE enumerable)
+{
+ VALUE enumerator;
+
+ RETURN_SIZED_ENUMERATOR(enumerable, 0, 0, enum_size);
+
+ enumerator = rb_obj_alloc(rb_cEnumerator);
+ rb_ivar_set(enumerator, id_chunk_enumerable, enumerable);
+ rb_ivar_set(enumerator, id_chunk_categorize, rb_block_proc());
+ rb_block_call(enumerator, idInitialize, 0, 0, chunk_i, enumerator);
+ return enumerator;
+}
+
+
+struct slicebefore_arg {
+ VALUE sep_pred;
+ VALUE sep_pat;
+ VALUE prev_elts;
+ VALUE yielder;
+};
+
+static VALUE
+slicebefore_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp))
+{
+ struct slicebefore_arg *argp = MEMO_FOR(struct slicebefore_arg, _argp);
+ VALUE header_p;
+
+ ENUM_WANT_SVALUE();
+
+ if (!NIL_P(argp->sep_pat))
+ header_p = rb_funcallv(argp->sep_pat, id_eqq, 1, &i);
+ else
+ header_p = rb_funcallv(argp->sep_pred, id_call, 1, &i);
+ if (RTEST(header_p)) {
+ if (!NIL_P(argp->prev_elts))
+ rb_funcallv(argp->yielder, id_lshift, 1, &argp->prev_elts);
+ argp->prev_elts = rb_ary_new3(1, i);
+ }
+ else {
+ if (NIL_P(argp->prev_elts))
+ argp->prev_elts = rb_ary_new3(1, i);
+ else
+ rb_ary_push(argp->prev_elts, i);
+ }
+
+ return Qnil;
+}
+
+static VALUE
+slicebefore_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
+{
+ VALUE enumerable;
+ VALUE arg;
+ struct slicebefore_arg *memo = NEW_MEMO_FOR(struct slicebefore_arg, arg);
+
+ enumerable = rb_ivar_get(enumerator, id_slicebefore_enumerable);
+ memo->sep_pred = rb_attr_get(enumerator, id_slicebefore_sep_pred);
+ memo->sep_pat = NIL_P(memo->sep_pred) ? rb_ivar_get(enumerator, id_slicebefore_sep_pat) : Qnil;
+ memo->prev_elts = Qnil;
+ memo->yielder = yielder;
+
+ rb_block_call(enumerable, id_each, 0, 0, slicebefore_ii, arg);
+ memo = MEMO_FOR(struct slicebefore_arg, arg);
+ if (!NIL_P(memo->prev_elts))
+ rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * slice_before(pattern) -> enumerator
+ * slice_before {|elt| ... } -> enumerator
+ *
+ * With argument +pattern+, returns an enumerator that uses the pattern
+ * to partition elements into arrays ("slices").
+ * An element begins a new slice if <tt>element === pattern</tt>
+ * (or if it is the first element).
+ *
+ * a = %w[foo bar fop for baz fob fog bam foy]
+ * e = a.slice_before(/ba/) # => #<Enumerator: ...>
+ * e.each {|array| p array }
+ *
+ * Output:
+ *
+ * ["foo"]
+ * ["bar", "fop", "for"]
+ * ["baz", "fob", "fog"]
+ * ["bam", "foy"]
+ *
+ * With a block, returns an enumerator that uses the block
+ * to partition elements into arrays.
+ * An element begins a new slice if its block return is a truthy value
+ * (or if it is the first element):
+ *
+ * e = (1..20).slice_before {|i| i % 4 == 2 } # => #<Enumerator: ...>
+ * e.each {|array| p array }
+ *
+ * Output:
+ *
+ * [1]
+ * [2, 3, 4, 5]
+ * [6, 7, 8, 9]
+ * [10, 11, 12, 13]
+ * [14, 15, 16, 17]
+ * [18, 19, 20]
+ *
+ * Other methods of the Enumerator class and Enumerable module,
+ * such as +to_a+, +map+, etc., are also usable.
+ *
+ * For example, iteration over ChangeLog entries can be implemented as
+ * follows:
+ *
+ * # iterate over ChangeLog entries.
+ * open("ChangeLog") { |f|
+ * f.slice_before(/\A\S/).each { |e| pp e }
+ * }
+ *
+ * # same as above. block is used instead of pattern argument.
+ * open("ChangeLog") { |f|
+ * f.slice_before { |line| /\A\S/ === line }.each { |e| pp e }
+ * }
+ *
+ * "svn proplist -R" produces multiline output for each file.
+ * They can be chunked as follows:
+ *
+ * IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f|
+ * f.lines.slice_before(/\AProp/).each { |lines| p lines }
+ * }
+ * #=> ["Properties on '.':\n", " svn:ignore\n", " svk:merge\n"]
+ * # ["Properties on 'goruby.c':\n", " svn:eol-style\n"]
+ * # ["Properties on 'complex.c':\n", " svn:mime-type\n", " svn:eol-style\n"]
+ * # ["Properties on 'regparse.c':\n", " svn:eol-style\n"]
+ * # ...
+ *
+ * If the block needs to maintain state over multiple elements,
+ * local variables can be used.
+ * For example, three or more consecutive increasing numbers can be squashed
+ * as follows (see +chunk_while+ for a better way):
+ *
+ * a = [0, 2, 3, 4, 6, 7, 9]
+ * prev = a[0]
+ * p a.slice_before { |e|
+ * prev, prev2 = e, prev
+ * prev2 + 1 != e
+ * }.map { |es|
+ * es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}"
+ * }.join(",")
+ * #=> "0,2-4,6,7,9"
+ *
+ * However local variables should be used carefully
+ * if the result enumerator is enumerated twice or more.
+ * The local variables should be initialized for each enumeration.
+ * Enumerator.new can be used to do it.
+ *
+ * # Word wrapping. This assumes all characters have same width.
+ * def wordwrap(words, maxwidth)
+ * Enumerator.new {|y|
+ * # cols is initialized in Enumerator.new.
+ * cols = 0
+ * words.slice_before { |w|
+ * cols += 1 if cols != 0
+ * cols += w.length
+ * if maxwidth < cols
+ * cols = w.length
+ * true
+ * else
+ * false
+ * end
+ * }.each {|ws| y.yield ws }
+ * }
+ * end
+ * text = (1..20).to_a.join(" ")
+ * enum = wordwrap(text.split(/\s+/), 10)
+ * puts "-"*10
+ * enum.each { |ws| puts ws.join(" ") } # first enumeration.
+ * puts "-"*10
+ * enum.each { |ws| puts ws.join(" ") } # second enumeration generates same result as the first.
+ * puts "-"*10
+ * #=> ----------
+ * # 1 2 3 4 5
+ * # 6 7 8 9 10
+ * # 11 12 13
+ * # 14 15 16
+ * # 17 18 19
+ * # 20
+ * # ----------
+ * # 1 2 3 4 5
+ * # 6 7 8 9 10
+ * # 11 12 13
+ * # 14 15 16
+ * # 17 18 19
+ * # 20
+ * # ----------
+ *
+ * mbox contains series of mails which start with Unix From line.
+ * So each mail can be extracted by slice before Unix From line.
+ *
+ * # parse mbox
+ * open("mbox") { |f|
+ * f.slice_before { |line|
+ * line.start_with? "From "
+ * }.each { |mail|
+ * unix_from = mail.shift
+ * i = mail.index("\n")
+ * header = mail[0...i]
+ * body = mail[(i+1)..-1]
+ * body.pop if body.last == "\n"
+ * fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a
+ * p unix_from
+ * pp fields
+ * pp body
+ * }
+ * }
+ *
+ * # split mails in mbox (slice before Unix From line after an empty line)
+ * open("mbox") { |f|
+ * emp = true
+ * f.slice_before { |line|
+ * prevemp = emp
+ * emp = line == "\n"
+ * prevemp && line.start_with?("From ")
+ * }.each { |mail|
+ * mail.pop if mail.last == "\n"
+ * pp mail
+ * }
+ * }
+ *
+ */
+static VALUE
+enum_slice_before(int argc, VALUE *argv, VALUE enumerable)
+{
+ VALUE enumerator;
+
+ if (rb_block_given_p()) {
+ if (argc != 0)
+ rb_error_arity(argc, 0, 0);
+ enumerator = rb_obj_alloc(rb_cEnumerator);
+ rb_ivar_set(enumerator, id_slicebefore_sep_pred, rb_block_proc());
+ }
+ else {
+ VALUE sep_pat;
+ rb_scan_args(argc, argv, "1", &sep_pat);
+ enumerator = rb_obj_alloc(rb_cEnumerator);
+ rb_ivar_set(enumerator, id_slicebefore_sep_pat, sep_pat);
+ }
+ rb_ivar_set(enumerator, id_slicebefore_enumerable, enumerable);
+ rb_block_call(enumerator, idInitialize, 0, 0, slicebefore_i, enumerator);
+ return enumerator;
+}
+
+
+struct sliceafter_arg {
+ VALUE pat;
+ VALUE pred;
+ VALUE prev_elts;
+ VALUE yielder;
+};
+
+static VALUE
+sliceafter_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
+{
+#define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct sliceafter_arg, _memo)))
+ struct sliceafter_arg *memo;
+ int split_p;
+ UPDATE_MEMO;
+
+ ENUM_WANT_SVALUE();
+
+ if (NIL_P(memo->prev_elts)) {
+ memo->prev_elts = rb_ary_new3(1, i);
+ }
+ else {
+ rb_ary_push(memo->prev_elts, i);
+ }
+
+ if (NIL_P(memo->pred)) {
+ split_p = RTEST(rb_funcallv(memo->pat, id_eqq, 1, &i));
+ UPDATE_MEMO;
+ }
+ else {
+ split_p = RTEST(rb_funcallv(memo->pred, id_call, 1, &i));
+ UPDATE_MEMO;
+ }
+
+ if (split_p) {
+ rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
+ UPDATE_MEMO;
+ memo->prev_elts = Qnil;
+ }
+
+ return Qnil;
+#undef UPDATE_MEMO
+}
+
+static VALUE
+sliceafter_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
+{
+ VALUE enumerable;
+ VALUE arg;
+ struct sliceafter_arg *memo = NEW_MEMO_FOR(struct sliceafter_arg, arg);
+
+ enumerable = rb_ivar_get(enumerator, id_sliceafter_enum);
+ memo->pat = rb_ivar_get(enumerator, id_sliceafter_pat);
+ memo->pred = rb_attr_get(enumerator, id_sliceafter_pred);
+ memo->prev_elts = Qnil;
+ memo->yielder = yielder;
+
+ rb_block_call(enumerable, id_each, 0, 0, sliceafter_ii, arg);
+ memo = MEMO_FOR(struct sliceafter_arg, arg);
+ if (!NIL_P(memo->prev_elts))
+ rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.slice_after(pattern) -> an_enumerator
+ * enum.slice_after { |elt| bool } -> an_enumerator
+ *
+ * Creates an enumerator for each chunked elements.
+ * The ends of chunks are defined by _pattern_ and the block.
+ *
+ * If <code>_pattern_ === _elt_</code> returns <code>true</code> or the block
+ * returns <code>true</code> for the element, the element is end of a
+ * chunk.
+ *
+ * The <code>===</code> and _block_ is called from the first element to the last
+ * element of _enum_.
+ *
+ * The result enumerator yields the chunked elements as an array.
+ * So +each+ method can be called as follows:
+ *
+ * enum.slice_after(pattern).each { |ary| ... }
+ * enum.slice_after { |elt| bool }.each { |ary| ... }
+ *
+ * Other methods of the Enumerator class and Enumerable module,
+ * such as +map+, etc., are also usable.
+ *
+ * For example, continuation lines (lines end with backslash) can be
+ * concatenated as follows:
+ *
+ * lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"]
+ * e = lines.slice_after(/(?<!\\)\n\z/)
+ * p e.to_a
+ * #=> [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]]
+ * p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last }
+ * #=>["foo\n", "barbaz\n", "\n", "qux\n"]
+ *
+ */
+
+static VALUE
+enum_slice_after(int argc, VALUE *argv, VALUE enumerable)
+{
+ VALUE enumerator;
+ VALUE pat = Qnil, pred = Qnil;
+
+ if (rb_block_given_p()) {
+ if (0 < argc)
+ rb_raise(rb_eArgError, "both pattern and block are given");
+ pred = rb_block_proc();
+ }
+ else {
+ rb_scan_args(argc, argv, "1", &pat);
+ }
+
+ enumerator = rb_obj_alloc(rb_cEnumerator);
+ rb_ivar_set(enumerator, id_sliceafter_enum, enumerable);
+ rb_ivar_set(enumerator, id_sliceafter_pat, pat);
+ rb_ivar_set(enumerator, id_sliceafter_pred, pred);
+
+ rb_block_call(enumerator, idInitialize, 0, 0, sliceafter_i, enumerator);
+ return enumerator;
+}
+
+struct slicewhen_arg {
+ VALUE pred;
+ VALUE prev_elt;
+ VALUE prev_elts;
+ VALUE yielder;
+ int inverted; /* 0 for slice_when and 1 for chunk_while. */
+};
+
+static VALUE
+slicewhen_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
+{
+#define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct slicewhen_arg, _memo)))
+ struct slicewhen_arg *memo;
+ int split_p;
+ UPDATE_MEMO;
+
+ ENUM_WANT_SVALUE();
+
+ if (UNDEF_P(memo->prev_elt)) {
+ /* The first element */
+ memo->prev_elt = i;
+ memo->prev_elts = rb_ary_new3(1, i);
+ }
+ else {
+ VALUE args[2];
+ args[0] = memo->prev_elt;
+ args[1] = i;
+ split_p = RTEST(rb_funcallv(memo->pred, id_call, 2, args));
+ UPDATE_MEMO;
+
+ if (memo->inverted)
+ split_p = !split_p;
+
+ if (split_p) {
+ rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
+ UPDATE_MEMO;
+ memo->prev_elts = rb_ary_new3(1, i);
+ }
+ else {
+ rb_ary_push(memo->prev_elts, i);
+ }
+
+ memo->prev_elt = i;
+ }
+
+ return Qnil;
+#undef UPDATE_MEMO
+}
+
+static VALUE
+slicewhen_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
+{
+ VALUE enumerable;
+ VALUE arg;
+ struct slicewhen_arg *memo =
+ NEW_PARTIAL_MEMO_FOR(struct slicewhen_arg, arg, inverted);
+
+ enumerable = rb_ivar_get(enumerator, id_slicewhen_enum);
+ memo->pred = rb_attr_get(enumerator, id_slicewhen_pred);
+ memo->prev_elt = Qundef;
+ memo->prev_elts = Qnil;
+ memo->yielder = yielder;
+ memo->inverted = RTEST(rb_attr_get(enumerator, id_slicewhen_inverted));
+
+ rb_block_call(enumerable, id_each, 0, 0, slicewhen_ii, arg);
+ memo = MEMO_FOR(struct slicewhen_arg, arg);
+ if (!NIL_P(memo->prev_elts))
+ rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
+ return Qnil;
+}
+
/*
- * The <code>Enumerable</code> mixin provides collection classes with
- * several traversal and searching methods, and with the ability to
- * sort. The class must provide a method <code>each</code>, which
- * yields successive members of the collection. If
- * <code>Enumerable#max</code>, <code>#min</code>, or
- * <code>#sort</code> is used, the objects in the collection must also
- * implement a meaningful <code><=></code> operator, as these methods
- * rely on an ordering between members of the collection.
+ * call-seq:
+ * enum.slice_when {|elt_before, elt_after| bool } -> an_enumerator
+ *
+ * Creates an enumerator for each chunked elements.
+ * The beginnings of chunks are defined by the block.
+ *
+ * This method splits each chunk using adjacent elements,
+ * _elt_before_ and _elt_after_,
+ * in the receiver enumerator.
+ * This method split chunks between _elt_before_ and _elt_after_ where
+ * the block returns <code>true</code>.
+ *
+ * The block is called the length of the receiver enumerator minus one.
+ *
+ * The result enumerator yields the chunked elements as an array.
+ * So +each+ method can be called as follows:
+ *
+ * enum.slice_when { |elt_before, elt_after| bool }.each { |ary| ... }
+ *
+ * Other methods of the Enumerator class and Enumerable module,
+ * such as +to_a+, +map+, etc., are also usable.
+ *
+ * For example, one-by-one increasing subsequence can be chunked as follows:
+ *
+ * a = [1,2,4,9,10,11,12,15,16,19,20,21]
+ * b = a.slice_when {|i, j| i+1 != j }
+ * p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
+ * c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
+ * p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
+ * d = c.join(",")
+ * p d #=> "1,2,4,9-12,15,16,19-21"
+ *
+ * Near elements (threshold: 6) in sorted array can be chunked as follows:
+ *
+ * a = [3, 11, 14, 25, 28, 29, 29, 41, 55, 57]
+ * p a.slice_when {|i, j| 6 < j - i }.to_a
+ * #=> [[3], [11, 14], [25, 28, 29, 29], [41], [55, 57]]
+ *
+ * Increasing (non-decreasing) subsequence can be chunked as follows:
+ *
+ * a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
+ * p a.slice_when {|i, j| i > j }.to_a
+ * #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
+ *
+ * Adjacent evens and odds can be chunked as follows:
+ * (Enumerable#chunk is another way to do it.)
+ *
+ * a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
+ * p a.slice_when {|i, j| i.even? != j.even? }.to_a
+ * #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
+ *
+ * Paragraphs (non-empty lines with trailing empty lines) can be chunked as follows:
+ * (See Enumerable#chunk to ignore empty lines.)
+ *
+ * lines = ["foo\n", "bar\n", "\n", "baz\n", "qux\n"]
+ * p lines.slice_when {|l1, l2| /\A\s*\z/ =~ l1 && /\S/ =~ l2 }.to_a
+ * #=> [["foo\n", "bar\n", "\n"], ["baz\n", "qux\n"]]
+ *
+ * Enumerable#chunk_while does the same, except splitting when the block
+ * returns <code>false</code> instead of <code>true</code>.
+ */
+static VALUE
+enum_slice_when(VALUE enumerable)
+{
+ VALUE enumerator;
+ VALUE pred;
+
+ pred = rb_block_proc();
+
+ enumerator = rb_obj_alloc(rb_cEnumerator);
+ rb_ivar_set(enumerator, id_slicewhen_enum, enumerable);
+ rb_ivar_set(enumerator, id_slicewhen_pred, pred);
+ rb_ivar_set(enumerator, id_slicewhen_inverted, Qfalse);
+
+ rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
+ return enumerator;
+}
+
+/*
+ * call-seq:
+ * enum.chunk_while {|elt_before, elt_after| bool } -> an_enumerator
+ *
+ * Creates an enumerator for each chunked elements.
+ * The beginnings of chunks are defined by the block.
+ *
+ * This method splits each chunk using adjacent elements,
+ * _elt_before_ and _elt_after_,
+ * in the receiver enumerator.
+ * This method split chunks between _elt_before_ and _elt_after_ where
+ * the block returns <code>false</code>.
+ *
+ * The block is called the length of the receiver enumerator minus one.
+ *
+ * The result enumerator yields the chunked elements as an array.
+ * So +each+ method can be called as follows:
+ *
+ * enum.chunk_while { |elt_before, elt_after| bool }.each { |ary| ... }
+ *
+ * Other methods of the Enumerator class and Enumerable module,
+ * such as +to_a+, +map+, etc., are also usable.
+ *
+ * For example, one-by-one increasing subsequence can be chunked as follows:
+ *
+ * a = [1,2,4,9,10,11,12,15,16,19,20,21]
+ * b = a.chunk_while {|i, j| i+1 == j }
+ * p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
+ * c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
+ * p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
+ * d = c.join(",")
+ * p d #=> "1,2,4,9-12,15,16,19-21"
+ *
+ * Increasing (non-decreasing) subsequence can be chunked as follows:
+ *
+ * a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
+ * p a.chunk_while {|i, j| i <= j }.to_a
+ * #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
+ *
+ * Adjacent evens and odds can be chunked as follows:
+ * (Enumerable#chunk is another way to do it.)
+ *
+ * a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
+ * p a.chunk_while {|i, j| i.even? == j.even? }.to_a
+ * #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
+ *
+ * Enumerable#slice_when does the same, except splitting when the block
+ * returns <code>true</code> instead of <code>false</code>.
+ */
+static VALUE
+enum_chunk_while(VALUE enumerable)
+{
+ VALUE enumerator;
+ VALUE pred;
+
+ pred = rb_block_proc();
+
+ enumerator = rb_obj_alloc(rb_cEnumerator);
+ rb_ivar_set(enumerator, id_slicewhen_enum, enumerable);
+ rb_ivar_set(enumerator, id_slicewhen_pred, pred);
+ rb_ivar_set(enumerator, id_slicewhen_inverted, Qtrue);
+
+ rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
+ return enumerator;
+}
+
+struct enum_sum_memo {
+ VALUE v, r;
+ long n;
+ double f, c;
+ int block_given;
+ int float_value;
+};
+
+static void
+sum_iter_normalize_memo(struct enum_sum_memo *memo)
+{
+ RUBY_ASSERT(FIXABLE(memo->n));
+ memo->v = rb_fix_plus(LONG2FIX(memo->n), memo->v);
+ memo->n = 0;
+
+ switch (TYPE(memo->r)) {
+ case T_RATIONAL: memo->v = rb_rational_plus(memo->r, memo->v); break;
+ case T_UNDEF: break;
+ default: UNREACHABLE; /* or ...? */
+ }
+ memo->r = Qundef;
+}
+
+static void
+sum_iter_fixnum(VALUE i, struct enum_sum_memo *memo)
+{
+ memo->n += FIX2LONG(i); /* should not overflow long type */
+ if (! FIXABLE(memo->n)) {
+ memo->v = rb_big_plus(LONG2NUM(memo->n), memo->v);
+ memo->n = 0;
+ }
+}
+
+static void
+sum_iter_bignum(VALUE i, struct enum_sum_memo *memo)
+{
+ memo->v = rb_big_plus(i, memo->v);
+}
+
+static void
+sum_iter_rational(VALUE i, struct enum_sum_memo *memo)
+{
+ if (UNDEF_P(memo->r)) {
+ memo->r = i;
+ }
+ else {
+ memo->r = rb_rational_plus(memo->r, i);
+ }
+}
+
+static void
+sum_iter_some_value(VALUE i, struct enum_sum_memo *memo)
+{
+ memo->v = rb_funcallv(memo->v, idPLUS, 1, &i);
+}
+
+static void
+sum_iter_Kahan_Babuska(VALUE i, struct enum_sum_memo *memo)
+{
+ /*
+ * Kahan-Babuska balancing compensated summation algorithm
+ * See https://link.springer.com/article/10.1007/s00607-005-0139-x
+ */
+ double x;
+
+ switch (TYPE(i)) {
+ case T_FLOAT: x = RFLOAT_VALUE(i); break;
+ case T_FIXNUM: x = FIX2LONG(i); break;
+ case T_BIGNUM: x = rb_big2dbl(i); break;
+ case T_RATIONAL: x = rb_num2dbl(i); break;
+ default:
+ memo->v = DBL2NUM(memo->f);
+ memo->float_value = 0;
+ sum_iter_some_value(i, memo);
+ return;
+ }
+
+ double f = memo->f;
+
+ if (isnan(f)) {
+ return;
+ }
+ else if (! isfinite(x)) {
+ if (isinf(x) && isinf(f) && signbit(x) != signbit(f)) {
+ i = DBL2NUM(f);
+ x = nan("");
+ }
+ memo->v = i;
+ memo->f = x;
+ return;
+ }
+ else if (isinf(f)) {
+ return;
+ }
+
+ double c = memo->c;
+ double t = f + x;
+
+ if (fabs(f) >= fabs(x)) {
+ c += ((f - t) + x);
+ }
+ else {
+ c += ((x - t) + f);
+ }
+ f = t;
+
+ memo->f = f;
+ memo->c = c;
+}
+
+static void
+sum_iter(VALUE i, struct enum_sum_memo *memo)
+{
+ RUBY_ASSERT(memo != NULL);
+ if (memo->block_given) {
+ i = rb_yield(i);
+ }
+
+ if (memo->float_value) {
+ sum_iter_Kahan_Babuska(i, memo);
+ }
+ else switch (TYPE(memo->v)) {
+ default: sum_iter_some_value(i, memo); return;
+ case T_FLOAT:
+ case T_FIXNUM:
+ case T_BIGNUM:
+ case T_RATIONAL:
+ switch (TYPE(i)) {
+ case T_FIXNUM: sum_iter_fixnum(i, memo); return;
+ case T_BIGNUM: sum_iter_bignum(i, memo); return;
+ case T_RATIONAL: sum_iter_rational(i, memo); return;
+ case T_FLOAT:
+ sum_iter_normalize_memo(memo);
+ memo->f = NUM2DBL(memo->v);
+ memo->c = 0.0;
+ memo->float_value = 1;
+ sum_iter_Kahan_Babuska(i, memo);
+ return;
+ default:
+ sum_iter_normalize_memo(memo);
+ sum_iter_some_value(i, memo);
+ return;
+ }
+ }
+}
+
+static VALUE
+enum_sum_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ ENUM_WANT_SVALUE();
+ sum_iter(i, (struct enum_sum_memo *) args);
+ return Qnil;
+}
+
+static int
+hash_sum_i(VALUE key, VALUE value, VALUE arg)
+{
+ sum_iter(rb_assoc_new(key, value), (struct enum_sum_memo *) arg);
+ return ST_CONTINUE;
+}
+
+static void
+hash_sum(VALUE hash, struct enum_sum_memo *memo)
+{
+ RUBY_ASSERT(RB_TYPE_P(hash, T_HASH));
+ RUBY_ASSERT(memo != NULL);
+
+ rb_hash_foreach(hash, hash_sum_i, (VALUE)memo);
+}
+
+static VALUE
+int_range_sum(VALUE beg, VALUE end, int excl, VALUE init)
+{
+ if (excl) {
+ if (FIXNUM_P(end))
+ end = LONG2FIX(FIX2LONG(end) - 1);
+ else
+ end = rb_big_minus(end, LONG2FIX(1));
+ }
+
+ if (rb_int_ge(end, beg)) {
+ VALUE a;
+ a = rb_int_plus(rb_int_minus(end, beg), LONG2FIX(1));
+ a = rb_int_mul(a, rb_int_plus(end, beg));
+ a = rb_int_idiv(a, LONG2FIX(2));
+ return rb_int_plus(init, a);
+ }
+
+ return init;
+}
+
+/*
+ * call-seq:
+ * sum(initial_value = 0) -> number
+ * sum(initial_value = 0) {|element| ... } -> object
+ *
+ * With no block given,
+ * returns the sum of +initial_value+ and the elements:
+ *
+ * (1..100).sum # => 5050
+ * (1..100).sum(1) # => 5051
+ * ('a'..'d').sum('foo') # => "fooabcd"
+ *
+ * Generally, the sum is computed using methods <tt>+</tt> and +each+;
+ * for performance optimizations, those methods may not be used,
+ * and so any redefinition of those methods may not have effect here.
+ *
+ * One such optimization: When possible, computes using Gauss's summation
+ * formula <em>n(n+1)/2</em>:
+ *
+ * 100 * (100 + 1) / 2 # => 5050
+ *
+ * With a block given, calls the block with each element;
+ * returns the sum of +initial_value+ and the block return values:
+ *
+ * (1..4).sum {|i| i*i } # => 30
+ * (1..4).sum(100) {|i| i*i } # => 130
+ * h = {a: 0, b: 1, c: 2, d: 3, e: 4, f: 5}
+ * h.sum {|key, value| value.odd? ? value : 0 } # => 9
+ * ('a'..'f').sum('x') {|c| c < 'd' ? c : '' } # => "xabc"
+ *
+ */
+static VALUE
+enum_sum(int argc, VALUE* argv, VALUE obj)
+{
+ struct enum_sum_memo memo;
+ VALUE beg, end;
+ int excl;
+
+ memo.v = (rb_check_arity(argc, 0, 1) == 0) ? LONG2FIX(0) : argv[0];
+ memo.block_given = rb_block_given_p();
+ memo.n = 0;
+ memo.r = Qundef;
+
+ if ((memo.float_value = RB_FLOAT_TYPE_P(memo.v))) {
+ memo.f = RFLOAT_VALUE(memo.v);
+ memo.c = 0.0;
+ }
+ else {
+ memo.f = 0.0;
+ memo.c = 0.0;
+ }
+
+ if (RTEST(rb_range_values(obj, &beg, &end, &excl))) {
+ if (!memo.block_given && !memo.float_value &&
+ (FIXNUM_P(beg) || RB_BIGNUM_TYPE_P(beg)) &&
+ (FIXNUM_P(end) || RB_BIGNUM_TYPE_P(end))) {
+ return int_range_sum(beg, end, excl, memo.v);
+ }
+ }
+
+ if (RB_TYPE_P(obj, T_HASH) &&
+ rb_method_basic_definition_p(CLASS_OF(obj), id_each))
+ hash_sum(obj, &memo);
+ else
+ rb_block_call(obj, id_each, 0, 0, enum_sum_i, (VALUE)&memo);
+
+ if (memo.float_value) {
+ return DBL2NUM(memo.f + memo.c);
+ }
+ else {
+ if (memo.n != 0)
+ memo.v = rb_fix_plus(LONG2FIX(memo.n), memo.v);
+ if (!UNDEF_P(memo.r)) {
+ memo.v = rb_rational_plus(memo.r, memo.v);
+ }
+ return memo.v;
+ }
+}
+
+static VALUE
+uniq_func(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
+{
+ ENUM_WANT_SVALUE();
+ rb_hash_add_new_element(hash, i, i);
+ return Qnil;
+}
+
+static VALUE
+uniq_iter(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
+{
+ ENUM_WANT_SVALUE();
+ rb_hash_add_new_element(hash, rb_yield_values2(argc, argv), i);
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * uniq -> array
+ * uniq {|element| ... } -> array
+ *
+ * With no block, returns a new array containing only unique elements;
+ * the array has no two elements +e0+ and +e1+ such that <tt>e0.eql?(e1)</tt>:
+ *
+ * %w[a b c c b a a b c].uniq # => ["a", "b", "c"]
+ * [0, 1, 2, 2, 1, 0, 0, 1, 2].uniq # => [0, 1, 2]
+ *
+ * With a block, returns a new array containing elements only for which the block
+ * returns a unique value:
+ *
+ * a = [0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1]
+ * a.uniq {|i| i.even? ? i : 0 } # => [0, 2, 4]
+ * a = %w[a b c d e e d c b a a b c d e]
+ * a.uniq {|c| c < 'c' } # => ["a", "c"]
+ *
+ */
+
+static VALUE
+enum_uniq(VALUE obj)
+{
+ VALUE hash, ret;
+ rb_block_call_func *const func =
+ rb_block_given_p() ? uniq_iter : uniq_func;
+
+ hash = rb_obj_hide(rb_hash_new());
+ rb_block_call(obj, id_each, 0, 0, func, hash);
+ ret = rb_hash_values(hash);
+ rb_hash_clear(hash);
+ return ret;
+}
+
+static VALUE
+compact_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
+{
+ ENUM_WANT_SVALUE();
+
+ if (!NIL_P(i)) {
+ rb_ary_push(ary, i);
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * compact -> array
+ *
+ * Returns an array of all non-+nil+ elements:
+ *
+ * a = [nil, 0, nil, 'a', false, nil, false, nil, 'a', nil, 0, nil]
+ * a.compact # => [0, "a", false, false, "a", 0]
+ *
+ */
+
+static VALUE
+enum_compact(VALUE obj)
+{
+ VALUE ary;
+
+ ary = rb_ary_new();
+ rb_block_call(obj, id_each, 0, 0, compact_i, ary);
+
+ return ary;
+}
+
+
+/*
+ * == What's Here
+ *
+ * Module \Enumerable provides methods that are useful to a collection class for:
+ *
+ * - {Querying}[rdoc-ref:Enumerable@Methods+for+Querying]
+ * - {Fetching}[rdoc-ref:Enumerable@Methods+for+Fetching]
+ * - {Searching and Filtering}[rdoc-ref:Enumerable@Methods+for+Searching+and+Filtering]
+ * - {Sorting}[rdoc-ref:Enumerable@Methods+for+Sorting]
+ * - {Iterating}[rdoc-ref:Enumerable@Methods+for+Iterating]
+ * - {And more....}[rdoc-ref:Enumerable@Other+Methods]
+ *
+ * === Methods for Querying
+ *
+ * These methods return information about the \Enumerable other than the elements themselves:
+ *
+ * - #member? (aliased as #include?): Returns +true+ if <tt>self == object</tt>, +false+ otherwise.
+ * - #all?: Returns +true+ if all elements meet a specified criterion; +false+ otherwise.
+ * - #any?: Returns +true+ if any element meets a specified criterion; +false+ otherwise.
+ * - #none?: Returns +true+ if no element meets a specified criterion; +false+ otherwise.
+ * - #one?: Returns +true+ if exactly one element meets a specified criterion; +false+ otherwise.
+ * - #count: Returns the count of elements,
+ * based on an argument or block criterion, if given.
+ * - #tally: Returns a new Hash containing the counts of occurrences of each element.
+ *
+ * === Methods for Fetching
+ *
+ * These methods return entries from the \Enumerable, without modifying it:
+ *
+ * <i>Leading, trailing, or all elements</i>:
+ *
+ * - #to_a (aliased as #entries): Returns all elements.
+ * - #first: Returns the first element or leading elements.
+ * - #take: Returns a specified number of leading elements.
+ * - #drop: Returns a specified number of trailing elements.
+ * - #take_while: Returns leading elements as specified by the given block.
+ * - #drop_while: Returns trailing elements as specified by the given block.
+ *
+ * <i>Minimum and maximum value elements</i>:
+ *
+ * - #min: Returns the elements whose values are smallest among the elements,
+ * as determined by <tt>#<=></tt> or a given block.
+ * - #max: Returns the elements whose values are largest among the elements,
+ * as determined by <tt>#<=></tt> or a given block.
+ * - #minmax: Returns a 2-element Array containing the smallest and largest elements.
+ * - #min_by: Returns the smallest element, as determined by the given block.
+ * - #max_by: Returns the largest element, as determined by the given block.
+ * - #minmax_by: Returns the smallest and largest elements, as determined by the given block.
+ *
+ * <i>Groups, slices, and partitions</i>:
+ *
+ * - #group_by: Returns a Hash that partitions the elements into groups.
+ * - #partition: Returns elements partitioned into two new Arrays, as determined by the given block.
+ * - #slice_after: Returns a new Enumerator whose entries are a partition of +self+,
+ * based either on a given +object+ or a given block.
+ * - #slice_before: Returns a new Enumerator whose entries are a partition of +self+,
+ * based either on a given +object+ or a given block.
+ * - #slice_when: Returns a new Enumerator whose entries are a partition of +self+
+ * based on the given block.
+ * - #chunk: Returns elements organized into chunks as specified by the given block.
+ * - #chunk_while: Returns elements organized into chunks as specified by the given block.
+ *
+ * === Methods for Searching and Filtering
+ *
+ * These methods return elements that meet a specified criterion:
+ *
+ * - #find (aliased as #detect): Returns an element selected by the block.
+ * - #find_all (aliased as #filter, #select): Returns elements selected by the block.
+ * - #find_index: Returns the index of an element selected by a given object or block.
+ * - #reject: Returns elements not rejected by the block.
+ * - #uniq: Returns elements that are not duplicates.
+ *
+ * === Methods for Sorting
+ *
+ * These methods return elements in sorted order:
+ *
+ * - #sort: Returns the elements, sorted by <tt>#<=></tt> or the given block.
+ * - #sort_by: Returns the elements, sorted by the given block.
+ *
+ * === Methods for Iterating
+ *
+ * - #each_entry: Calls the block with each successive element
+ * (slightly different from #each).
+ * - #each_with_index: Calls the block with each successive element and its index.
+ * - #each_with_object: Calls the block with each successive element and a given object.
+ * - #each_slice: Calls the block with successive non-overlapping slices.
+ * - #each_cons: Calls the block with successive overlapping slices.
+ * (different from #each_slice).
+ * - #reverse_each: Calls the block with each successive element, in reverse order.
+ *
+ * === Other Methods
+ *
+ * - #collect (aliased as #map): Returns objects returned by the block.
+ * - #filter_map: Returns truthy objects returned by the block.
+ * - #flat_map (aliased as #collect_concat): Returns flattened objects returned by the block.
+ * - #grep: Returns elements selected by a given object
+ * or objects returned by a given block.
+ * - #grep_v: Returns elements not selected by a given object
+ * or objects returned by a given block.
+ * - #inject (aliased as #reduce): Returns the object formed by combining all elements.
+ * - #sum: Returns the sum of the elements, using method <tt>+</tt>.
+ * - #zip: Combines each element with elements from other enumerables;
+ * returns the n-tuples or calls the block with each.
+ * - #cycle: Calls the block with each element, cycling repeatedly.
+ *
+ * == Usage
+ *
+ * To use module \Enumerable in a collection class:
+ *
+ * - Include it:
+ *
+ * include Enumerable
+ *
+ * - Implement method <tt>#each</tt>
+ * which must yield successive elements of the collection.
+ * The method will be called by almost any \Enumerable method.
+ *
+ * Example:
+ *
+ * class Foo
+ * include Enumerable
+ * def each
+ * yield 1
+ * yield 1, 2
+ * yield
+ * end
+ * end
+ * Foo.new.each_entry{ |element| p element }
+ *
+ * Output:
+ *
+ * 1
+ * [1, 2]
+ * nil
+ *
+ * == \Enumerable in Ruby Classes
+ *
+ * These Ruby core classes include (or extend) \Enumerable:
+ *
+ * - ARGF
+ * - Array
+ * - Dir
+ * - Enumerator
+ * - ENV (extends)
+ * - Hash
+ * - IO
+ * - Range
+ * - Struct
+ *
+ * These Ruby standard library classes include \Enumerable:
+ *
+ * - CSV
+ * - CSV::Table
+ * - CSV::Row
+ * - Set
+ *
+ * Virtually all methods in \Enumerable call method +#each+ in the including class:
+ *
+ * - <tt>Hash#each</tt> yields the next key-value pair as a 2-element Array.
+ * - <tt>Struct#each</tt> yields the next name-value pair as a 2-element Array.
+ * - For the other classes above, +#each+ yields the next object from the collection.
+ *
+ * == About the Examples
+ *
+ * The example code snippets for the \Enumerable methods:
+ *
+ * - Always show the use of one or more Array-like classes (often Array itself).
+ * - Sometimes show the use of a Hash-like class.
+ * For some methods, though, the usage would not make sense,
+ * and so it is not shown. Example: #tally would find exactly one of each Hash entry.
+ *
+ * == Extended Methods
+ *
+ * A Enumerable class may define extended methods. This section describes the standard
+ * behavior of extension methods for reference purposes.
+ *
+ * === #size
+ *
+ * \Enumerator has a #size method.
+ * It uses the size function argument passed to +Enumerator.new+.
+ *
+ * e = Enumerator.new(-> { 3 }) {|y| p y; y.yield :a; y.yield :b; y.yield :c; :z }
+ * p e.size #=> 3
+ * p e.next #=> :a
+ * p e.next #=> :b
+ * p e.next #=> :c
+ * begin
+ * e.next
+ * rescue StopIteration
+ * p $!.result #=> :z
+ * end
+ *
+ * The result of the size function should represent the number of iterations
+ * (i.e., the number of times Enumerator::Yielder#yield is called).
+ * In the above example, the block calls #yield three times, and
+ * the size function, +-> { 3 }+, returns 3 accordingly.
+ * The result of the size function can be an integer, +Float::INFINITY+,
+ * or +nil+.
+ * An integer means the exact number of times #yield will be called,
+ * as shown above.
+ * +Float::INFINITY+ indicates an infinite number of #yield calls.
+ * +nil+ means the number of #yield calls is difficult or impossible to
+ * determine.
+ *
+ * Many iteration methods return an \Enumerator object with an
+ * appropriate size function if no block is given.
+ *
+ * Examples:
+ *
+ * ["a", "b", "c"].each.size #=> 3
+ * {a: "x", b: "y", c: "z"}.each.size #=> 3
+ * (0..20).to_a.permutation.size #=> 51090942171709440000
+ * loop.size #=> Float::INFINITY
+ * (1..100).drop_while.size #=> nil # size depends on the block's behavior
+ * STDIN.each.size #=> nil # cannot be computed without consuming input
+ * File.open("/etc/resolv.conf").each.size #=> nil # cannot be computed without reading the file
+ *
+ * The behavior of #size for Range-based enumerators depends on the #begin element:
+ *
+ * - If the #begin element is an Integer, the #size method returns an Integer or +Float::INFINITY+.
+ * - If the #begin element is an object with a #succ method (other than Integer), #size returns +nil+.
+ * (Computing the size would require repeatedly calling #succ, which may be too slow.)
+ * - If the #begin element does not have a #succ method, #size raises a TypeError.
+ *
+ * Examples:
+ *
+ * (10..42).each.size #=> 33
+ * (10..42.9).each.size #=> 33 (the #end element may be a non-integer numeric)
+ * (10..).each.size #=> Float::INFINITY
+ * ("a".."z").each.size #=> nil
+ * ("a"..).each.size #=> nil
+ * (1.0..9.0).each.size # raises TypeError (Float does not have #succ)
+ * (..10).each.size # raises TypeError (beginless range has nil as its #begin)
+ *
+ * The \Enumerable module itself does not define a #size method.
+ * A class that includes \Enumerable may define its own #size method.
+ * It is recommended that such a #size method be consistent with
+ * Enumerator#size.
+ *
+ * Array and Hash implement #size and return values consistent with
+ * Enumerator#size.
+ * IO and Dir do not define #size, which is also consistent because the
+ * corresponding enumerator's size function returns +nil+.
+ *
+ * However, it is not strictly required for a class's #size method to match Enumerator#size.
+ * For example, File#size returns the number of bytes in the file, not the number of lines.
+ *
*/
void
-Init_Enumerable()
+Init_Enumerable(void)
{
rb_mEnumerable = rb_define_module("Enumerable");
- rb_define_method(rb_mEnumerable,"to_a", enum_to_a, 0);
- rb_define_method(rb_mEnumerable,"entries", enum_to_a, 0);
-
- rb_define_method(rb_mEnumerable,"sort", enum_sort, 0);
- rb_define_method(rb_mEnumerable,"sort_by", enum_sort_by, 0);
- rb_define_method(rb_mEnumerable,"grep", enum_grep, 1);
- rb_define_method(rb_mEnumerable,"find", enum_find, -1);
- rb_define_method(rb_mEnumerable,"detect", enum_find, -1);
- rb_define_method(rb_mEnumerable,"find_all", enum_find_all, 0);
- rb_define_method(rb_mEnumerable,"select", enum_find_all, 0);
- rb_define_method(rb_mEnumerable,"reject", enum_reject, 0);
- rb_define_method(rb_mEnumerable,"collect", enum_collect, 0);
- rb_define_method(rb_mEnumerable,"map", enum_collect, 0);
- rb_define_method(rb_mEnumerable,"inject", enum_inject, -1);
- rb_define_method(rb_mEnumerable,"partition", enum_partition, 0);
- rb_define_method(rb_mEnumerable,"all?", enum_all, 0);
- rb_define_method(rb_mEnumerable,"any?", enum_any, 0);
- rb_define_method(rb_mEnumerable,"min", enum_min, 0);
- rb_define_method(rb_mEnumerable,"max", enum_max, 0);
- rb_define_method(rb_mEnumerable,"member?", enum_member, 1);
- rb_define_method(rb_mEnumerable,"include?", enum_member, 1);
- rb_define_method(rb_mEnumerable,"each_with_index", enum_each_with_index, 0);
+ rb_define_method(rb_mEnumerable, "to_a", enum_to_a, -1);
+ rb_define_method(rb_mEnumerable, "entries", enum_to_a, -1);
+ rb_define_method(rb_mEnumerable, "to_h", enum_to_h, -1);
+
+ rb_define_method(rb_mEnumerable, "sort", enum_sort, 0);
+ rb_define_method(rb_mEnumerable, "sort_by", enum_sort_by, 0);
+ rb_define_method(rb_mEnumerable, "grep", enum_grep, 1);
+ rb_define_method(rb_mEnumerable, "grep_v", enum_grep_v, 1);
+ rb_define_method(rb_mEnumerable, "count", enum_count, -1);
+ rb_define_method(rb_mEnumerable, "find", enum_find, -1);
+ rb_define_method(rb_mEnumerable, "detect", enum_find, -1);
+ rb_define_method(rb_mEnumerable, "find_index", enum_find_index, -1);
+ rb_define_method(rb_mEnumerable, "find_all", enum_find_all, 0);
+ rb_define_method(rb_mEnumerable, "select", enum_find_all, 0);
+ rb_define_method(rb_mEnumerable, "filter", enum_find_all, 0);
+ rb_define_method(rb_mEnumerable, "filter_map", enum_filter_map, 0);
+ rb_define_method(rb_mEnumerable, "reject", enum_reject, 0);
+ rb_define_method(rb_mEnumerable, "collect", enum_collect, 0);
+ rb_define_method(rb_mEnumerable, "map", enum_collect, 0);
+ rb_define_method(rb_mEnumerable, "flat_map", enum_flat_map, 0);
+ rb_define_method(rb_mEnumerable, "collect_concat", enum_flat_map, 0);
+ rb_define_method(rb_mEnumerable, "inject", enum_inject, -1);
+ rb_define_method(rb_mEnumerable, "reduce", enum_inject, -1);
+ rb_define_method(rb_mEnumerable, "partition", enum_partition, 0);
+ rb_define_method(rb_mEnumerable, "group_by", enum_group_by, 0);
+ rb_define_method(rb_mEnumerable, "tally", enum_tally, -1);
+ rb_define_method(rb_mEnumerable, "first", enum_first, -1);
+ rb_define_method(rb_mEnumerable, "all?", enum_all, -1);
+ rb_define_method(rb_mEnumerable, "any?", enum_any, -1);
+ rb_define_method(rb_mEnumerable, "one?", enum_one, -1);
+ rb_define_method(rb_mEnumerable, "none?", enum_none, -1);
+ rb_define_method(rb_mEnumerable, "min", enum_min, -1);
+ rb_define_method(rb_mEnumerable, "max", enum_max, -1);
+ rb_define_method(rb_mEnumerable, "minmax", enum_minmax, 0);
+ rb_define_method(rb_mEnumerable, "min_by", enum_min_by, -1);
+ rb_define_method(rb_mEnumerable, "max_by", enum_max_by, -1);
+ rb_define_method(rb_mEnumerable, "minmax_by", enum_minmax_by, 0);
+ rb_define_method(rb_mEnumerable, "member?", enum_member, 1);
+ rb_define_method(rb_mEnumerable, "include?", enum_member, 1);
+ rb_define_method(rb_mEnumerable, "each_with_index", enum_each_with_index, -1);
+ rb_define_method(rb_mEnumerable, "reverse_each", enum_reverse_each, -1);
+ rb_define_method(rb_mEnumerable, "each_entry", enum_each_entry, -1);
+ rb_define_method(rb_mEnumerable, "each_slice", enum_each_slice, 1);
+ rb_define_method(rb_mEnumerable, "each_cons", enum_each_cons, 1);
+ rb_define_method(rb_mEnumerable, "each_with_object", enum_each_with_object, 1);
rb_define_method(rb_mEnumerable, "zip", enum_zip, -1);
+ rb_define_method(rb_mEnumerable, "take", enum_take, 1);
+ rb_define_method(rb_mEnumerable, "take_while", enum_take_while, 0);
+ rb_define_method(rb_mEnumerable, "drop", enum_drop, 1);
+ rb_define_method(rb_mEnumerable, "drop_while", enum_drop_while, 0);
+ rb_define_method(rb_mEnumerable, "cycle", enum_cycle, -1);
+ rb_define_method(rb_mEnumerable, "chunk", enum_chunk, 0);
+ rb_define_method(rb_mEnumerable, "slice_before", enum_slice_before, -1);
+ rb_define_method(rb_mEnumerable, "slice_after", enum_slice_after, -1);
+ rb_define_method(rb_mEnumerable, "slice_when", enum_slice_when, 0);
+ rb_define_method(rb_mEnumerable, "chunk_while", enum_chunk_while, 0);
+ rb_define_method(rb_mEnumerable, "sum", enum_sum, -1);
+ rb_define_method(rb_mEnumerable, "uniq", enum_uniq, 0);
+ rb_define_method(rb_mEnumerable, "compact", enum_compact, 0);
- id_eqq = rb_intern("===");
- id_each = rb_intern("each");
- id_cmp = rb_intern("<=>");
+ id__alone = rb_intern_const("_alone");
+ id__separator = rb_intern_const("_separator");
+ id_chunk_categorize = rb_intern_const("chunk_categorize");
+ id_chunk_enumerable = rb_intern_const("chunk_enumerable");
+ id_next = rb_intern_const("next");
+ id_sliceafter_enum = rb_intern_const("sliceafter_enum");
+ id_sliceafter_pat = rb_intern_const("sliceafter_pat");
+ id_sliceafter_pred = rb_intern_const("sliceafter_pred");
+ id_slicebefore_enumerable = rb_intern_const("slicebefore_enumerable");
+ id_slicebefore_sep_pat = rb_intern_const("slicebefore_sep_pat");
+ id_slicebefore_sep_pred = rb_intern_const("slicebefore_sep_pred");
+ id_slicewhen_enum = rb_intern_const("slicewhen_enum");
+ id_slicewhen_inverted = rb_intern_const("slicewhen_inverted");
+ id_slicewhen_pred = rb_intern_const("slicewhen_pred");
}
-