diff options
Diffstat (limited to 'enum.c')
| -rw-r--r-- | enum.c | 1793 |
1 files changed, 1096 insertions, 697 deletions
@@ -65,9 +65,9 @@ static VALUE enum_yield(int argc, VALUE ary) { if (argc > 1) - return rb_yield_force_blockarg(ary); + return rb_yield_force_blockarg(ary); if (argc == 1) - return rb_yield(ary); + return rb_yield(ary); return rb_yield_values2(0, 0); } @@ -77,9 +77,9 @@ enum_yield_array(VALUE ary) long len = RARRAY_LEN(ary); if (len > 1) - return rb_yield_force_blockarg(ary); + return rb_yield_force_blockarg(ary); if (len == 1) - return rb_yield(RARRAY_AREF(ary, 0)); + return rb_yield(RARRAY_AREF(ary, 0)); return rb_yield_values2(0, 0); } @@ -90,7 +90,7 @@ grep_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) ENUM_WANT_SVALUE(); if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) { - rb_ary_push(memo->v2, i); + rb_ary_push(memo->v2, i); } return Qnil; } @@ -106,7 +106,7 @@ grep_regexp_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) converted_element = SYMBOL_P(i) ? i : rb_check_string_type(i); match = NIL_P(converted_element) ? Qfalse : rb_reg_match_p(memo->v1, i, 0); if (match == memo->u3.value) { - rb_ary_push(memo->v2, i); + rb_ary_push(memo->v2, i); } return Qnil; } @@ -118,7 +118,7 @@ grep_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) ENUM_WANT_SVALUE(); if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) { - rb_ary_push(memo->v2, enum_yield(argc, i)); + rb_ary_push(memo->v2, enum_yield(argc, i)); } return Qnil; } @@ -127,17 +127,17 @@ static VALUE enum_grep0(VALUE obj, VALUE pat, VALUE test) { VALUE ary = rb_ary_new(); - struct MEMO *memo = MEMO_NEW(pat, ary, test); + struct MEMO *memo = rb_imemo_memo_new(pat, ary, test); rb_block_call_func_t fn; if (rb_block_given_p()) { - fn = grep_iter_i; + fn = grep_iter_i; } else if (RB_TYPE_P(pat, T_REGEXP) && LIKELY(rb_method_basic_definition_p(CLASS_OF(pat), idEqq))) { - fn = grep_regexp_i; + fn = grep_regexp_i; } else { - fn = grep_i; + fn = grep_i; } rb_block_call(obj, id_each, 0, 0, fn, (VALUE)memo); @@ -214,13 +214,13 @@ static void imemo_count_up(struct MEMO *memo) { if (memo->flags & COUNT_BIGNUM) { - MEMO_V3_SET(memo, rb_int_succ(memo->u3.value)); + MEMO_V3_SET(memo, rb_int_succ(memo->u3.value)); } else if (++memo->u3.cnt == 0) { - /* overflow */ - unsigned long buf[2] = {0, 1}; - MEMO_V3_SET(memo, rb_big_unpack(buf, 2)); - memo->flags |= COUNT_BIGNUM; + /* overflow */ + unsigned long buf[2] = {0, 1}; + MEMO_V3_SET(memo, rb_big_unpack(buf, 2)); + memo->flags |= COUNT_BIGNUM; } } @@ -228,10 +228,10 @@ static VALUE imemo_count_value(struct MEMO *memo) { if (memo->flags & COUNT_BIGNUM) { - return memo->u3.value; + return memo->u3.value; } else { - return ULONG2NUM(memo->u3.cnt); + return ULONG2NUM(memo->u3.cnt); } } @@ -243,7 +243,7 @@ count_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) ENUM_WANT_SVALUE(); if (rb_equal(i, memo->v1)) { - imemo_count_up(memo); + imemo_count_up(memo); } return Qnil; } @@ -254,7 +254,7 @@ count_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) struct MEMO *memo = MEMO_CAST(memop); if (RTEST(rb_yield_values2(argc, argv))) { - imemo_count_up(memo); + imemo_count_up(memo); } return Qnil; } @@ -302,36 +302,53 @@ enum_count(int argc, VALUE *argv, VALUE obj) rb_block_call_func *func; if (argc == 0) { - if (rb_block_given_p()) { - func = count_iter_i; - } - else { - func = count_all_i; - } + if (rb_block_given_p()) { + func = count_iter_i; + } + else { + func = count_all_i; + } } else { - rb_scan_args(argc, argv, "1", &item); - if (rb_block_given_p()) { - rb_warn("given block not used"); - } + rb_scan_args(argc, argv, "1", &item); + if (rb_block_given_p()) { + rb_warn("given block not used"); + } func = count_i; } - memo = MEMO_NEW(item, 0, 0); + memo = rb_imemo_memo_new(item, 0, 0); rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo); return imemo_count_value(memo); } +NORETURN(static void found(VALUE i, VALUE memop)); +static void +found(VALUE i, VALUE memop) +{ + struct MEMO *memo = MEMO_CAST(memop); + MEMO_V1_SET(memo, i); + memo->u3.cnt = 1; + rb_iter_break(); +} + +static VALUE +find_i_fast(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) +{ + if (RTEST(rb_yield_values2(argc, argv))) { + ENUM_WANT_SVALUE(); + found(i, memop); + } + return Qnil; +} + static VALUE find_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) { ENUM_WANT_SVALUE(); if (RTEST(enum_yield(argc, i))) { - struct MEMO *memo = MEMO_CAST(memop); - MEMO_V1_SET(memo, i); - memo->u3.cnt = 1; - rb_iter_break(); + found(i, memop); } return Qnil; } @@ -354,7 +371,7 @@ find_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) * {foo: 0, bar: 1, baz: 2}.find {|key, value| key.start_with?('b') } # => [:bar, 1] * {foo: 0, bar: 1, baz: 2}.find(proc {[]}) {|key, value| key.start_with?('c') } # => [] * - * With no block given, returns an \Enumerator. + * With no block given, returns an Enumerator. * */ static VALUE @@ -365,13 +382,16 @@ enum_find(int argc, VALUE *argv, VALUE obj) if_none = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil; RETURN_ENUMERATOR(obj, argc, argv); - memo = MEMO_NEW(Qundef, 0, 0); - rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo); + memo = rb_imemo_memo_new(Qundef, 0, 0); + if (rb_block_pair_yield_optimizable()) + rb_block_call2(obj, id_each, 0, 0, find_i_fast, (VALUE)memo, RB_BLOCK_NO_USE_PACKED_ARGS); + else + rb_block_call2(obj, id_each, 0, 0, find_i, (VALUE)memo, RB_BLOCK_NO_USE_PACKED_ARGS); if (memo->u3.cnt) { - return memo->v1; + return memo->v1; } if (!NIL_P(if_none)) { - return rb_funcallv(if_none, id_call, 0, 0); + return rb_funcallv(if_none, id_call, 0, 0); } return Qnil; } @@ -384,8 +404,8 @@ find_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) ENUM_WANT_SVALUE(); if (rb_equal(i, memo->v2)) { - MEMO_V1_SET(memo, imemo_count_value(memo)); - rb_iter_break(); + MEMO_V1_SET(memo, imemo_count_value(memo)); + rb_iter_break(); } imemo_count_up(memo); return Qnil; @@ -397,8 +417,8 @@ find_index_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) struct MEMO *memo = MEMO_CAST(memop); if (RTEST(rb_yield_values2(argc, argv))) { - MEMO_V1_SET(memo, imemo_count_value(memo)); - rb_iter_break(); + MEMO_V1_SET(memo, imemo_count_value(memo)); + rb_iter_break(); } imemo_count_up(memo); return Qnil; @@ -424,7 +444,7 @@ find_index_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) * ['a', 'b', 'c', 'b'].find_index {|element| element.start_with?('b') } # => 1 * {foo: 0, bar: 1, baz: 2}.find_index {|key, value| value > 1 } # => 2 * - * With no argument and no block given, returns an \Enumerator. + * With no argument and no block given, returns an Enumerator. * */ @@ -440,14 +460,14 @@ enum_find_index(int argc, VALUE *argv, VALUE obj) func = find_index_iter_i; } else { - rb_scan_args(argc, argv, "1", &condition_value); - if (rb_block_given_p()) { - rb_warn("given block not used"); - } + rb_scan_args(argc, argv, "1", &condition_value); + if (rb_block_given_p()) { + rb_warn("given block not used"); + } func = find_index_i; } - memo = MEMO_NEW(Qnil, condition_value, 0); + memo = rb_imemo_memo_new(Qnil, condition_value, 0); rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo); return memo->v1; } @@ -458,7 +478,7 @@ find_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) ENUM_WANT_SVALUE(); if (RTEST(enum_yield(argc, i))) { - rb_ary_push(ary, i); + rb_ary_push(ary, i); } return Qnil; } @@ -501,7 +521,7 @@ enum_size_over_p(VALUE obj, long n) * a = {foo: 0, bar: 1, baz: 2}.select {|key, value| key.start_with?('b') } * a # => {:bar=>1, :baz=>2} * - * With no block given, returns an \Enumerator. + * With no block given, returns an Enumerator. * * Related: #reject. */ @@ -543,7 +563,7 @@ filter_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) * (0..9).filter_map {|i| i * 2 if i.even? } # => [0, 4, 8, 12, 16] * {foo: 0, bar: 1, baz: 2}.filter_map {|key, value| key if value.even? } # => [:foo, :baz] * - * When no block given, returns an \Enumerator. + * When no block given, returns an Enumerator. * */ static VALUE @@ -566,7 +586,7 @@ reject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) ENUM_WANT_SVALUE(); if (!RTEST(enum_yield(argc, i))) { - rb_ary_push(ary, i); + rb_ary_push(ary, i); } return Qnil; } @@ -584,7 +604,7 @@ reject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) * (0..9).reject {|i| i * 2 if i.even? } # => [1, 3, 5, 7, 9] * {foo: 0, bar: 1, baz: 2}.reject {|key, value| key if value.odd? } # => {:foo=>0, :baz=>2} * - * When no block given, returns an \Enumerator. + * When no block given, returns an Enumerator. * * Related: #select. */ @@ -631,7 +651,7 @@ collect_all(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) * (0..4).map {|i| i*i } # => [0, 1, 4, 9, 16] * {foo: 0, bar: 1, baz: 2}.map {|key, value| value*2} # => [0, 2, 4] * - * With no block given, returns an \Enumerator. + * With no block given, returns an Enumerator. * */ static VALUE @@ -658,10 +678,10 @@ flat_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) tmp = rb_check_array_type(i); if (NIL_P(tmp)) { - rb_ary_push(ary, i); + rb_ary_push(ary, i); } else { - rb_ary_concat(ary, tmp); + rb_ary_concat(ary, tmp); } return Qnil; } @@ -681,7 +701,7 @@ flat_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) * [[0, 1], [2, 3]].flat_map {|e| e + [100] } # => [0, 1, 100, 2, 3, 100] * {foo: 0, bar: 1, baz: 2}.flat_map {|key, value| [key, value] } # => [:foo, 0, :bar, 1, :baz, 2] * - * With no block given, returns an \Enumerator. + * With no block given, returns an Enumerator. * * Alias: #collect_concat. */ @@ -700,20 +720,19 @@ enum_flat_map(VALUE obj) /* * call-seq: - * to_a -> array + * to_a(*args) -> array * * Returns an array containing the items in +self+: * * (0..4).to_a # => [0, 1, 2, 3, 4] * - * Enumerable#entries is an alias for Enumerable#to_a. */ static VALUE enum_to_a(int argc, VALUE *argv, VALUE obj) { VALUE ary = rb_ary_new(); - rb_block_call(obj, id_each, argc, argv, collect_all, ary); + rb_block_call_kw(obj, id_each, argc, argv, collect_all, ary, RB_PASS_CALLED_KEYWORDS); return ary; } @@ -746,8 +765,8 @@ enum_to_h_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) /* * call-seq: - * to_h -> hash - * to_h {|element| ... } -> hash + * to_h(*args) -> hash + * to_h(*args) {|element| ... } -> hash * * When +self+ consists of 2-element arrays, * returns a hash each of whose entries is the key-value pair @@ -779,11 +798,11 @@ inject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p)) ENUM_WANT_SVALUE(); - if (memo->v1 == Qundef) { - MEMO_V1_SET(memo, i); + if (UNDEF_P(memo->v1)) { + MEMO_V1_SET(memo, i); } else { - MEMO_V1_SET(memo, rb_yield_values(2, memo->v1, i)); + MEMO_V1_SET(memo, rb_yield_values(2, memo->v1, i)); } return Qnil; } @@ -796,18 +815,18 @@ inject_op_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p)) ENUM_WANT_SVALUE(); - if (memo->v1 == Qundef) { - MEMO_V1_SET(memo, i); + if (UNDEF_P(memo->v1)) { + MEMO_V1_SET(memo, i); } else if (SYMBOL_P(name = memo->u3.value)) { - const ID mid = SYM2ID(name); - MEMO_V1_SET(memo, rb_funcallv_public(memo->v1, mid, 1, &i)); + const ID mid = SYM2ID(name); + MEMO_V1_SET(memo, rb_funcallv_public(memo->v1, mid, 1, &i)); } else { - VALUE args[2]; - args[0] = name; - args[1] = i; - MEMO_V1_SET(memo, rb_f_send(numberof(args), args, memo->v1)); + VALUE args[2]; + args[0] = name; + args[1] = i; + MEMO_V1_SET(memo, rb_f_send(numberof(args), args, memo->v1)); } return Qnil; } @@ -820,9 +839,9 @@ ary_inject_op(VALUE ary, VALUE init, VALUE op) long i, n; if (RARRAY_LEN(ary) == 0) - return init == Qundef ? Qnil : init; + return UNDEF_P(init) ? Qnil : init; - if (init == Qundef) { + if (UNDEF_P(init)) { v = RARRAY_AREF(ary, 0); i = 1; if (RARRAY_LEN(ary) == 1) @@ -835,9 +854,9 @@ ary_inject_op(VALUE ary, VALUE init, VALUE op) id = SYM2ID(op); if (id == idPLUS) { - if (RB_INTEGER_TYPE_P(v) && - rb_method_basic_definition_p(rb_cInteger, idPLUS) && - rb_obj_respond_to(v, idPLUS, FALSE)) { + if (RB_INTEGER_TYPE_P(v) && + rb_method_basic_definition_p(rb_cInteger, idPLUS) && + rb_obj_respond_to(v, idPLUS, FALSE)) { n = 0; for (; i < RARRAY_LEN(ary); i++) { e = RARRAY_AREF(ary, i); @@ -871,136 +890,152 @@ ary_inject_op(VALUE ary, VALUE init, VALUE op) /* * call-seq: - * inject(symbol) -> object - * inject(initial_operand, symbol) -> object - * inject {|memo, operand| ... } -> object - * inject(initial_operand) {|memo, operand| ... } -> object - * - * Returns an object formed from operands via either: + * inject(symbol) -> object + * inject(initial_value, symbol) -> object + * inject {|memo, value| ... } -> object + * inject(initial_value) {|memo, value| ... } -> object + * + * Returns the result of applying a reducer to an initial value and + * the first element of the Enumerable. It then takes the result and applies the + * function to it and the second element of the collection, and so on. The + * return value is the result returned by the final call to the function. * - * - A method named by +symbol+. - * - A block to which each operand is passed. - * - * With method-name argument +symbol+, - * combines operands using the method: - * - * # Sum, without initial_operand. - * (1..4).inject(:+) # => 10 - * # Sum, with initial_operand. - * (1..4).inject(10, :+) # => 20 + * You can think of * - * With a block, passes each operand to the block: - * - * # Sum of squares, without initial_operand. - * (1..4).inject {|sum, n| sum + n*n } # => 30 - * # Sum of squares, with initial_operand. - * (1..4).inject(2) {|sum, n| sum + n*n } # => 32 + * [ a, b, c, d ].inject(i) { |r, v| fn(r, v) } * - * <b>Operands</b> + * as being * - * If argument +initial_operand+ is not given, - * the operands for +inject+ are simply the elements of +self+. - * Example calls and their operands: + * fn(fn(fn(fn(i, a), b), c), d) * - * - <tt>(1..4).inject(:+)</tt>:: <tt>[1, 2, 3, 4]</tt>. - * - <tt>(1...4).inject(:+)</tt>:: <tt>[1, 2, 3]</tt>. - * - <tt>('a'..'d').inject(:+)</tt>:: <tt>['a', 'b', 'c', 'd']</tt>. - * - <tt>('a'...'d').inject(:+)</tt>:: <tt>['a', 'b', 'c']</tt>. + * In a way the +inject+ function _injects_ the function + * between the elements of the enumerable. * - * Examples with first operand (which is <tt>self.first</tt>) of various types: + * +inject+ is aliased as +reduce+. You use it when you want to + * _reduce_ a collection to a single value. * - * # Integer. - * (1..4).inject(:+) # => 10 - * # Float. - * [1.0, 2, 3, 4].inject(:+) # => 10.0 - * # Character. - * ('a'..'d').inject(:+) # => "abcd" - * # Complex. - * [Complex(1, 2), 3, 4].inject(:+) # => (8+2i) + * <b>The Calling Sequences</b> * - * If argument +initial_operand+ is given, - * the operands for +inject+ are that value plus the elements of +self+. - * Example calls their operands: + * Let's start with the most verbose: * - * - <tt>(1..4).inject(10, :+)</tt>:: <tt>[10, 1, 2, 3, 4]</tt>. - * - <tt>(1...4).inject(10, :+)</tt>:: <tt>[10, 1, 2, 3]</tt>. - * - <tt>('a'..'d').inject('e', :+)</tt>:: <tt>['e', 'a', 'b', 'c', 'd']</tt>. - * - <tt>('a'...'d').inject('e', :+)</tt>:: <tt>['e', 'a', 'b', 'c']</tt>. + * enum.inject(initial_value) do |result, next_value| + * # do something with +result+ and +next_value+ + * # the value returned by the block becomes the + * # value passed in to the next iteration + * # as +result+ + * end + * + * For example: + * + * product = [ 2, 3, 4 ].inject(1) do |result, next_value| + * result * next_value + * end + * product #=> 24 * - * Examples with +initial_operand+ of various types: + * When this runs, the block is first called with +1+ (the initial value) and + * +2+ (the first element of the array). The block returns <tt>1*2</tt>, so on + * the next iteration the block is called with +2+ (the previous result) and + * +3+. The block returns +6+, and is called one last time with +6+ and +4+. + * The result of the block, +24+ becomes the value returned by +inject+. This + * code returns the product of the elements in the enumerable. * - * # Integer. - * (1..4).inject(2, :+) # => 12 - * # Float. - * (1..4).inject(2.0, :+) # => 12.0 - * # String. - * ('a'..'d').inject('foo', :+) # => "fooabcd" - * # Array. - * %w[a b c].inject(['x'], :push) # => ["x", "a", "b", "c"] - * # Complex. - * (1..4).inject(Complex(2, 2), :+) # => (12+2i) + * <b>First Shortcut: Default Initial value</b> * - * <b>Combination by Given \Method</b> + * In the case of the previous example, the initial value, +1+, wasn't really + * necessary: the calculation of the product of a list of numbers is self-contained. * - * If the method-name argument +symbol+ is given, - * the operands are combined by that method: + * In these circumstances, you can omit the +initial_value+ parameter. +inject+ + * will then initially call the block with the first element of the collection + * as the +result+ parameter and the second element as the +next_value+. * - * - The first and second operands are combined. - * - That result is combined with the third operand. - * - That result is combined with the fourth operand. - * - And so on. + * [ 2, 3, 4 ].inject do |result, next_value| + * result * next_value + * end + * + * This shortcut is convenient, but can only be used when the block produces a result + * which can be passed back to it as a first parameter. * - * The return value from +inject+ is the result of the last combination. + * Here's an example where that's not the case: it returns a hash where the keys are words + * and the values are the number of occurrences of that word in the enumerable. * - * This call to +inject+ computes the sum of the operands: + * freqs = File.read("README.md") + * .scan(/\w{2,}/) + * .reduce(Hash.new(0)) do |counts, word| + * counts[word] += 1 + * counts + * end + * freqs #=> {"Actions"=>4, + * "Status"=>5, + * "MinGW"=>3, + * "https"=>27, + * "github"=>10, + * "com"=>15, ... * - * (1..4).inject(:+) # => 10 + * Note that the last line of the block is just the word +counts+. This ensures the + * return value of the block is the result that's being calculated. * - * Examples with various methods: + * <b>Second Shortcut: a Reducer function</b> * - * # Integer addition. - * (1..4).inject(:+) # => 10 - * # Integer multiplication. - * (1..4).inject(:*) # => 24 - * # Character range concatenation. - * ('a'..'d').inject('', :+) # => "abcd" - * # String array concatenation. - * %w[foo bar baz].inject('', :+) # => "foobarbaz" - * # Hash update. - * h = [{foo: 0, bar: 1}, {baz: 2}, {bat: 3}].inject(:update) - * h # => {:foo=>0, :bar=>1, :baz=>2, :bat=>3} - * # Hash conversion to nested arrays. - * h = {foo: 0, bar: 1}.inject([], :push) - * h # => [[:foo, 0], [:bar, 1]] + * A <i>reducer function</i> is a function that takes a partial result and the next value, + * returning the next partial result. The block that is given to +inject+ is a reducer. * - * <b>Combination by Given Block</b> + * You can also write a reducer as a function and pass the name of that function + * (as a symbol) to +inject+. However, for this to work, the function * - * If a block is given, the operands are passed to the block: + * 1. Must be defined on the type of the result value + * 2. Must accept a single parameter, the next value in the collection, and + * 3. Must return an updated result which will also implement the function. * - * - The first call passes the first and second operands. - * - The second call passes the result of the first call, - * along with the third operand. - * - The third call passes the result of the second call, - * along with the fourth operand. - * - And so on. + * Here's an example that adds elements to a string. The two calls invoke the functions + * String#concat and String#+ on the result so far, passing it the next value. * - * The return value from +inject+ is the return value from the last block call. - * - * This call to +inject+ gives a block - * that writes the memo and element, and also sums the elements: + * s = [ "cat", " ", "dog" ].inject("", :concat) + * s #=> "cat dog" + * s = [ "cat", " ", "dog" ].inject("The result is:", :+) + * s #=> "The result is: cat dog" * - * (1..4).inject do |memo, element| - * p "Memo: #{memo}; element: #{element}" - * memo + element - * end # => 10 + * Here's a more complex example when the result object maintains + * state of a different type to the enumerable elements. * - * Output: + * class Turtle * - * "Memo: 1; element: 2" - * "Memo: 3; element: 3" - * "Memo: 6; element: 4" + * def initialize + * @x = @y = 0 + * end + * + * def move(dir) + * case dir + * when "n" then @y += 1 + * when "s" then @y -= 1 + * when "e" then @x += 1 + * when "w" then @x -= 1 + * end + * self + * end + * end + * + * position = "nnneesw".chars.reduce(Turtle.new, :move) + * position #=>> #<Turtle:0x00000001052f4698 @y=2, @x=1> + * + * <b>Third Shortcut: Reducer With no Initial Value</b> + * + * If your reducer returns a value that it can accept as a parameter, then you + * don't have to pass in an initial value. Here <tt>:*</tt> is the name of the + * _times_ function: + * + * product = [ 2, 3, 4 ].inject(:*) + * product # => 24 + * + * String concatenation again: + * + * s = [ "cat", " ", "dog" ].inject(:+) + * s #=> "cat dog" + * + * And an example that converts a hash to an array of two-element subarrays. + * + * nested = {foo: 0, bar: 1}.inject([], :push) + * nested # => [[:foo, 0], [:bar, 1]] * - * Enumerable#reduce is an alias for Enumerable#inject. * */ static VALUE @@ -1010,28 +1045,36 @@ enum_inject(int argc, VALUE *argv, VALUE obj) VALUE init, op; rb_block_call_func *iter = inject_i; ID id; + int num_args; + + if (rb_block_given_p()) { + num_args = rb_scan_args(argc, argv, "02", &init, &op); + } + else { + num_args = rb_scan_args(argc, argv, "11", &init, &op); + } - switch (rb_scan_args(argc, argv, "02", &init, &op)) { + switch (num_args) { case 0: - init = Qundef; - break; + init = Qundef; + break; case 1: - if (rb_block_given_p()) { - break; - } - id = rb_check_id(&init); - op = id ? ID2SYM(id) : init; - init = Qundef; - iter = inject_op_i; - break; + if (rb_block_given_p()) { + break; + } + id = rb_check_id(&init); + op = id ? ID2SYM(id) : init; + init = Qundef; + iter = inject_op_i; + break; case 2: - if (rb_block_given_p()) { - rb_warning("given block not used"); - } - id = rb_check_id(&op); - if (id) op = ID2SYM(id); - iter = inject_op_i; - break; + if (rb_block_given_p()) { + rb_warning("given block not used"); + } + id = rb_check_id(&op); + if (id) op = ID2SYM(id); + iter = inject_op_i; + break; } if (iter == inject_op_i && @@ -1041,9 +1084,9 @@ enum_inject(int argc, VALUE *argv, VALUE obj) return ary_inject_op(obj, init, op); } - memo = MEMO_NEW(init, Qnil, op); + memo = rb_imemo_memo_new(init, Qnil, op); rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo); - if (memo->v1 == Qundef) return Qnil; + if (UNDEF_P(memo->v1)) return Qnil; return memo->v1; } @@ -1055,10 +1098,10 @@ partition_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, arys)) ENUM_WANT_SVALUE(); if (RTEST(enum_yield(argc, i))) { - ary = memo->v1; + ary = memo->v1; } else { - ary = memo->v2; + ary = memo->v2; } rb_ary_push(ary, i); return Qnil; @@ -1099,7 +1142,7 @@ enum_partition(VALUE obj) RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); - memo = MEMO_NEW(rb_ary_new(), rb_ary_new(), 0); + memo = rb_imemo_memo_new(rb_ary_new(), rb_ary_new(), 0); rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo); return rb_assoc_new(memo->v1, memo->v2); @@ -1116,11 +1159,11 @@ group_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) group = enum_yield(argc, i); values = rb_hash_aref(hash, group); if (!RB_TYPE_P(values, T_ARRAY)) { - values = rb_ary_new3(1, i); - rb_hash_aset(hash, group, values); + values = rb_ary_new3(1, i); + rb_hash_aset(hash, group, values); } else { - rb_ary_push(values, i); + rb_ary_push(values, i); } return Qnil; } @@ -1172,14 +1215,15 @@ tally_up(st_data_t *group, st_data_t *value, st_data_t arg, int existing) RB_OBJ_WRITTEN(hash, Qundef, tally); } *value = (st_data_t)tally; - if (!SPECIAL_CONST_P(*group)) RB_OBJ_WRITTEN(hash, Qundef, *group); return ST_CONTINUE; } static VALUE rb_enum_tally_up(VALUE hash, VALUE group) { - rb_hash_stlike_update(hash, group, tally_up, (st_data_t)hash); + if (!rb_hash_stlike_update(hash, group, tally_up, (st_data_t)hash)) { + RB_OBJ_WRITTEN(hash, Qundef, group); + } return hash; } @@ -1193,29 +1237,47 @@ tally_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) /* * call-seq: - * tally -> new_hash - * tally(hash) -> hash + * tally(hash = {}) -> hash + * + * When argument +hash+ is not given, + * returns a new hash whose keys are the distinct elements in +self+; + * each integer value is the count of occurrences of each element: * - * Returns a hash containing the counts of equal elements: + * %w[a b c b c a c b].tally # => {"a"=>2, "b"=>3, "c"=>3} * - * - Each key is an element of +self+. - * - Each value is the number elements equal to that key. + * When argument +hash+ is given, + * returns +hash+, possibly augmented; for each element +ele+ in +self+: * - * With no argument: + * - Adds it as a key with a zero value if that key does not already exist: * - * %w[a b c b c a c b].tally # => {"a"=>2, "b"=>3, "c"=>3} + * hash[ele] = 0 unless hash.include?(ele) + * + * - Increments the value of key +ele+: + * + * hash[ele] += 1 * - * With a hash argument, that hash is used for the tally (instead of a new hash), - * and is returned; - * this may be useful for accumulating tallies across multiple enumerables: + * This is useful for accumulating tallies across multiple enumerables: * - * hash = {} - * hash = %w[a c d b c a].tally(hash) - * hash # => {"a"=>2, "c"=>2, "d"=>1, "b"=>1} - * hash = %w[b a z].tally(hash) - * hash # => {"a"=>3, "c"=>2, "d"=>1, "b"=>2, "z"=>1} - * hash = %w[b a m].tally(hash) - * hash # => {"a"=>4, "c"=>2, "d"=>1, "b"=>3, "z"=>1, "m"=> 1} + * h = {} # => {} + * %w[a c d b c a].tally(h) # => {"a"=>2, "c"=>2, "d"=>1, "b"=>1} + * %w[b a z].tally(h) # => {"a"=>3, "c"=>2, "d"=>1, "b"=>2, "z"=>1} + * %w[b a m].tally(h) # => {"a"=>4, "c"=>2, "d"=>1, "b"=>3, "z"=>1, "m"=>1} + * + * The key to be added or found for an element depends on the class of +self+; + * see {Enumerable in Ruby Classes}[rdoc-ref:Enumerable@Enumerable+in+Ruby+Classes]. + * + * Examples: + * + * - Array (and certain array-like classes): + * the key is the element (as above). + * - Hash (and certain hash-like classes): + * the key is the 2-element array formed from the key-value pair: + * + * h = {} # => {} + * {foo: 'a', bar: 'b'}.tally(h) # => {[:foo, "a"]=>1, [:bar, "b"]=>1} + * {foo: 'c', bar: 'd'}.tally(h) # => {[:foo, "a"]=>1, [:bar, "b"]=>1, [:foo, "c"]=>1, [:bar, "d"]=>1} + * {foo: 'a', bar: 'b'}.tally(h) # => {[:foo, "a"]=>2, [:bar, "b"]=>2, [:foo, "c"]=>1, [:bar, "d"]=>1} + * {foo: 'c', bar: 'd'}.tally(h) # => {[:foo, "a"]=>2, [:bar, "b"]=>2, [:foo, "c"]=>2, [:bar, "d"]=>2} * */ @@ -1224,7 +1286,7 @@ enum_tally(int argc, VALUE *argv, VALUE obj) { VALUE hash; if (rb_check_arity(argc, 0, 1)) { - hash = rb_convert_type(argv[0], T_HASH, "Hash", "to_hash"); + hash = rb_to_hash_type(argv[0]); rb_check_frozen(hash); } else { @@ -1280,12 +1342,12 @@ enum_first(int argc, VALUE *argv, VALUE obj) struct MEMO *memo; rb_check_arity(argc, 0, 1); if (argc > 0) { - return enum_take(obj, argv[0]); + return enum_take(obj, argv[0]); } else { - memo = MEMO_NEW(Qnil, 0, 0); - rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo); - return memo->v1; + memo = rb_imemo_memo_new(Qnil, 0, 0); + rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo); + return memo->v1; } } @@ -1298,7 +1360,7 @@ enum_first(int argc, VALUE *argv, VALUE obj) * The ordering of equal elements is indeterminate and may be unstable. * * With no block given, the sort compares - * using the elements' own method <tt><=></tt>: + * using the elements' own method <tt>#<=></tt>: * * %w[b c a d].sort # => ["a", "b", "c", "d"] * {foo: 0, bar: 1, baz: 2}.sort # => [[:bar, 1], [:baz, 2], [:foo, 0]] @@ -1328,10 +1390,12 @@ enum_sort(VALUE obj) } #define SORT_BY_BUFSIZE 16 +#define SORT_BY_UNIFORMED(num, flo, fix) (((num&1)<<2)|((flo&1)<<1)|fix) struct sort_by_data { const VALUE ary; const VALUE buf; - long n; + uint8_t n; + uint8_t primitive_uniformed; }; static VALUE @@ -1346,18 +1410,23 @@ sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data)) v = enum_yield(argc, i); if (RBASIC(ary)->klass) { - rb_raise(rb_eRuntimeError, "sort_by reentered"); + rb_raise(rb_eRuntimeError, "sort_by reentered"); } if (RARRAY_LEN(data->buf) != SORT_BY_BUFSIZE*2) { - rb_raise(rb_eRuntimeError, "sort_by reentered"); + rb_raise(rb_eRuntimeError, "sort_by reentered"); } + if (data->primitive_uniformed) { + data->primitive_uniformed &= SORT_BY_UNIFORMED((FIXNUM_P(v)) || (RB_FLOAT_TYPE_P(v)), + RB_FLOAT_TYPE_P(v), + FIXNUM_P(v)); + } RARRAY_ASET(data->buf, data->n*2, v); RARRAY_ASET(data->buf, data->n*2+1, i); data->n++; if (data->n == SORT_BY_BUFSIZE) { - rb_ary_concat(ary, data->buf); - data->n = 0; + rb_ary_concat(ary, data->buf); + data->n = 0; } return Qnil; } @@ -1365,21 +1434,193 @@ sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data)) static int sort_by_cmp(const void *ap, const void *bp, void *data) { - struct cmp_opt_data cmp_opt = { 0, 0 }; VALUE a; VALUE b; VALUE ary = (VALUE)data; if (RBASIC(ary)->klass) { - rb_raise(rb_eRuntimeError, "sort_by reentered"); + rb_raise(rb_eRuntimeError, "sort_by reentered"); } a = *(VALUE *)ap; b = *(VALUE *)bp; - return OPTIMIZED_CMP(a, b, cmp_opt); + return OPTIMIZED_CMP(a, b); +} + + +/* + This is parts of uniform sort +*/ + +#define uless rb_uniform_is_less +#define UNIFORM_SWAP(a,b)\ + do{struct rb_uniform_sort_data tmp = a; a = b; b = tmp;} while(0) + +struct rb_uniform_sort_data { + VALUE v; + VALUE i; +}; + +static inline bool +rb_uniform_is_less(VALUE a, VALUE b) +{ + + if (FIXNUM_P(a) && FIXNUM_P(b)) { + return (SIGNED_VALUE)a < (SIGNED_VALUE)b; + } + else if (FIXNUM_P(a)) { + RUBY_ASSERT(RB_FLOAT_TYPE_P(b)); + return rb_float_cmp(b, a) > 0; + } + else { + RUBY_ASSERT(RB_FLOAT_TYPE_P(a)); + return rb_float_cmp(a, b) < 0; + } +} + +static inline bool +rb_uniform_is_larger(VALUE a, VALUE b) +{ + + if (FIXNUM_P(a) && FIXNUM_P(b)) { + return (SIGNED_VALUE)a > (SIGNED_VALUE)b; + } + else if (FIXNUM_P(a)) { + RUBY_ASSERT(RB_FLOAT_TYPE_P(b)); + return rb_float_cmp(b, a) < 0; + } + else { + RUBY_ASSERT(RB_FLOAT_TYPE_P(a)); + return rb_float_cmp(a, b) > 0; + } +} + +#define med3_val(a,b,c) (uless(a,b)?(uless(b,c)?b:uless(c,a)?a:c):(uless(c,b)?b:uless(a,c)?a:c)) + +static void +rb_uniform_insertionsort_2(struct rb_uniform_sort_data* ptr_begin, + struct rb_uniform_sort_data* ptr_end) +{ + if ((ptr_end - ptr_begin) < 2) return; + struct rb_uniform_sort_data tmp, *j, *k, + *index = ptr_begin+1; + for (; index < ptr_end; index++) { + tmp = *index; + j = k = index; + if (uless(tmp.v, ptr_begin->v)) { + while (ptr_begin < j) { + *j = *(--k); + j = k; + } + } + else { + while (uless(tmp.v, (--k)->v)) { + *j = *k; + j = k; + } + } + *j = tmp; + } +} + +static inline void +rb_uniform_heap_down_2(struct rb_uniform_sort_data* ptr_begin, + size_t offset, size_t len) +{ + size_t c; + struct rb_uniform_sort_data tmp = ptr_begin[offset]; + while ((c = (offset<<1)+1) <= len) { + if (c < len && uless(ptr_begin[c].v, ptr_begin[c+1].v)) { + c++; + } + if (!uless(tmp.v, ptr_begin[c].v)) break; + ptr_begin[offset] = ptr_begin[c]; + offset = c; + } + ptr_begin[offset] = tmp; +} + +static void +rb_uniform_heapsort_2(struct rb_uniform_sort_data* ptr_begin, + struct rb_uniform_sort_data* ptr_end) +{ + size_t n = ptr_end - ptr_begin; + if (n < 2) return; + + for (size_t offset = n>>1; offset > 0;) { + rb_uniform_heap_down_2(ptr_begin, --offset, n-1); + } + for (size_t offset = n-1; offset > 0;) { + UNIFORM_SWAP(*ptr_begin, ptr_begin[offset]); + rb_uniform_heap_down_2(ptr_begin, 0, --offset); + } +} + + +static void +rb_uniform_quicksort_intro_2(struct rb_uniform_sort_data* ptr_begin, + struct rb_uniform_sort_data* ptr_end, size_t d) +{ + + if (ptr_end - ptr_begin <= 16) { + rb_uniform_insertionsort_2(ptr_begin, ptr_end); + return; + } + if (d == 0) { + rb_uniform_heapsort_2(ptr_begin, ptr_end); + return; + } + + VALUE x = med3_val(ptr_begin->v, + ptr_begin[(ptr_end - ptr_begin)>>1].v, + ptr_end[-1].v); + struct rb_uniform_sort_data *i = ptr_begin; + struct rb_uniform_sort_data *j = ptr_end-1; + + do { + while (uless(i->v, x)) i++; + while (uless(x, j->v)) j--; + if (i <= j) { + UNIFORM_SWAP(*i, *j); + i++; + j--; + } + } while (i <= j); + j++; + if (ptr_end - j > 1) rb_uniform_quicksort_intro_2(j, ptr_end, d-1); + if (i - ptr_begin > 1) rb_uniform_quicksort_intro_2(ptr_begin, i, d-1); +} + +/** + * Direct primitive data compare sort. Implement with intro sort. + * @param[in] ptr_begin The begin address of target rb_ary's raw pointer. + * @param[in] ptr_end The end address of target rb_ary's raw pointer. +**/ +static void +rb_uniform_intro_sort_2(struct rb_uniform_sort_data* ptr_begin, + struct rb_uniform_sort_data* ptr_end) +{ + size_t n = ptr_end - ptr_begin; + size_t d = CHAR_BIT * sizeof(n) - nlz_intptr(n) - 1; + bool sorted_flag = true; + + for (struct rb_uniform_sort_data* ptr = ptr_begin+1; ptr < ptr_end; ptr++) { + if (rb_uniform_is_larger((ptr-1)->v, (ptr)->v)) { + sorted_flag = false; + break; + } + } + + if (sorted_flag) { + return; + } + rb_uniform_quicksort_intro_2(ptr_begin, ptr_end, d<<1); } +#undef uless + + /* * call-seq: * sort_by {|element| ... } -> array @@ -1473,36 +1714,46 @@ enum_sort_by(VALUE obj) RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); if (RB_TYPE_P(obj, T_ARRAY) && RARRAY_LEN(obj) <= LONG_MAX/2) { - ary = rb_ary_new2(RARRAY_LEN(obj)*2); + ary = rb_ary_new2(RARRAY_LEN(obj)*2); } else { - ary = rb_ary_new(); + ary = rb_ary_new(); } RBASIC_CLEAR_CLASS(ary); - buf = rb_ary_tmp_new(SORT_BY_BUFSIZE*2); + buf = rb_ary_hidden_new(SORT_BY_BUFSIZE*2); rb_ary_store(buf, SORT_BY_BUFSIZE*2-1, Qnil); - memo = MEMO_NEW(0, 0, 0); + memo = rb_imemo_memo_new(0, 0, 0); data = (struct sort_by_data *)&memo->v1; RB_OBJ_WRITE(memo, &data->ary, ary); RB_OBJ_WRITE(memo, &data->buf, buf); data->n = 0; + data->primitive_uniformed = SORT_BY_UNIFORMED((CMP_OPTIMIZABLE(FLOAT) && CMP_OPTIMIZABLE(INTEGER)), + CMP_OPTIMIZABLE(FLOAT), + CMP_OPTIMIZABLE(INTEGER)); rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo); ary = data->ary; buf = data->buf; if (data->n) { - rb_ary_resize(buf, data->n*2); - rb_ary_concat(ary, buf); + rb_ary_resize(buf, data->n*2); + rb_ary_concat(ary, buf); } if (RARRAY_LEN(ary) > 2) { - RARRAY_PTR_USE(ary, ptr, - ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE), - sort_by_cmp, (void *)ary)); + if (data->primitive_uniformed) { + RARRAY_PTR_USE(ary, ptr, + rb_uniform_intro_sort_2((struct rb_uniform_sort_data*)ptr, + (struct rb_uniform_sort_data*)(ptr + RARRAY_LEN(ary)))); + } + else { + RARRAY_PTR_USE(ary, ptr, + ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE), + sort_by_cmp, (void *)ary)); + } } if (RBASIC(ary)->klass) { - rb_raise(rb_eRuntimeError, "sort_by reentered"); + rb_raise(rb_eRuntimeError, "sort_by reentered"); } for (i=1; i<RARRAY_LEN(ary); i+=2) { - RARRAY_ASET(ary, i/2, RARRAY_AREF(ary, i)); + RARRAY_ASET(ary, i/2, RARRAY_AREF(ary, i)); } rb_ary_resize(ary, RARRAY_LEN(ary)/2); RBASIC_SET_CLASS_RAW(ary, rb_cArray); @@ -1512,7 +1763,10 @@ enum_sort_by(VALUE obj) #define ENUMFUNC(name) argc ? name##_eqq : rb_block_given_p() ? name##_iter_i : name##_i -#define MEMO_ENUM_NEW(v1) (rb_check_arity(argc, 0, 1), MEMO_NEW((v1), (argc ? *argv : 0), 0)) +#define ENUM_BLOCK_CALL(name) \ + rb_block_call2(obj, id_each, 0, 0, ENUMFUNC(name), (VALUE)memo, rb_block_given_p() && rb_block_pair_yield_optimizable() ? RB_BLOCK_NO_USE_PACKED_ARGS : 0); + +#define MEMO_ENUM_NEW(v1) (rb_check_arity(argc, 0, 1), rb_imemo_memo_new((v1), (argc ? *argv : 0), 0)) #define DEFINE_ENUMFUNCS(name) \ static VALUE enum_##name##_func(VALUE result, struct MEMO *memo); \ @@ -1548,8 +1802,8 @@ enum_##name##_func(VALUE result, struct MEMO *memo) DEFINE_ENUMFUNCS(all) { if (!RTEST(result)) { - MEMO_V1_SET(memo, Qfalse); - rb_iter_break(); + MEMO_V1_SET(memo, Qfalse); + rb_iter_break(); } return Qnil; } @@ -1562,6 +1816,9 @@ DEFINE_ENUMFUNCS(all) * * Returns whether every element meets a given criterion. * + * If +self+ has no element, returns +true+ and argument or block + * are not used. + * * With no argument and no block, * returns whether every element is truthy: * @@ -1602,15 +1859,15 @@ enum_all(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo = MEMO_ENUM_NEW(Qtrue); WARN_UNUSED_BLOCK(argc); - rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)memo); + ENUM_BLOCK_CALL(all); return memo->v1; } DEFINE_ENUMFUNCS(any) { if (RTEST(result)) { - MEMO_V1_SET(memo, Qtrue); - rb_iter_break(); + MEMO_V1_SET(memo, Qtrue); + rb_iter_break(); } return Qnil; } @@ -1623,6 +1880,9 @@ DEFINE_ENUMFUNCS(any) * * Returns whether any element meets a given criterion. * + * If +self+ has no element, returns +false+ and argument or block + * are not used. + * * With no argument and no block, * returns whether any element is truthy: * @@ -1653,7 +1913,6 @@ DEFINE_ENUMFUNCS(any) * {foo: 0, bar: 1, baz: 2}.any? {|key, value| value < 1 } # => true * {foo: 0, bar: 1, baz: 2}.any? {|key, value| value < 0 } # => false * - * * Related: #all?, #none?, #one?. */ @@ -1662,20 +1921,20 @@ enum_any(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo = MEMO_ENUM_NEW(Qfalse); WARN_UNUSED_BLOCK(argc); - rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)memo); + ENUM_BLOCK_CALL(any); return memo->v1; } DEFINE_ENUMFUNCS(one) { if (RTEST(result)) { - if (memo->v1 == Qundef) { - MEMO_V1_SET(memo, Qtrue); - } - else if (memo->v1 == Qtrue) { - MEMO_V1_SET(memo, Qfalse); - rb_iter_break(); - } + if (UNDEF_P(memo->v1)) { + MEMO_V1_SET(memo, Qtrue); + } + else if (memo->v1 == Qtrue) { + MEMO_V1_SET(memo, Qfalse); + rb_iter_break(); + } } return Qnil; } @@ -1705,11 +1964,10 @@ cmpint_reenter_check(struct nmin_data *data, VALUE val) static int nmin_cmp(const void *ap, const void *bp, void *_data) { - struct cmp_opt_data cmp_opt = { 0, 0 }; struct nmin_data *data = (struct nmin_data *)_data; VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp; #define rb_cmpint(cmp, a, b) rb_cmpint(cmpint_reenter_check(data, (cmp)), a, b) - return OPTIMIZED_CMP(a, b, cmp_opt); + return OPTIMIZED_CMP(a, b); #undef rb_cmpint } @@ -1737,7 +1995,7 @@ nmin_filter(struct nmin_data *data) long i, j; if (data->curlen <= data->n) - return; + return; n = data->n; beg = RARRAY_PTR(data->buf); @@ -1757,46 +2015,46 @@ nmin_filter(struct nmin_data *data) } while (0) while (1) { - long pivot_index = left + (right-left)/2; - long num_pivots = 1; - - SWAP(pivot_index, right); - pivot_index = right; - - store_index = left; - i = left; - while (i <= right-num_pivots) { - int c = data->cmpfunc(GETPTR(i), GETPTR(pivot_index), data); - if (data->rev) - c = -c; - if (c == 0) { - SWAP(i, right-num_pivots); - num_pivots++; - continue; - } - if (c < 0) { - SWAP(i, store_index); - store_index++; - } - i++; - } - j = store_index; - for (i = right; right-num_pivots < i; i--) { - if (i <= j) - break; - SWAP(j, i); - j++; - } - - if (store_index <= n && n <= store_index+num_pivots) - break; - - if (n < store_index) { - right = store_index-1; - } - else { - left = store_index+num_pivots; - } + long pivot_index = left + (right-left)/2; + long num_pivots = 1; + + SWAP(pivot_index, right); + pivot_index = right; + + store_index = left; + i = left; + while (i <= right-num_pivots) { + int c = data->cmpfunc(GETPTR(i), GETPTR(pivot_index), data); + if (data->rev) + c = -c; + if (c == 0) { + SWAP(i, right-num_pivots); + num_pivots++; + continue; + } + if (c < 0) { + SWAP(i, store_index); + store_index++; + } + i++; + } + j = store_index; + for (i = right; right-num_pivots < i; i--) { + if (i <= j) + break; + SWAP(j, i); + j++; + } + + if (store_index <= n && n <= store_index+num_pivots) + break; + + if (n < store_index) { + right = store_index-1; + } + else { + left = store_index+num_pivots; + } } #undef GETPTR #undef SWAP @@ -1815,11 +2073,11 @@ nmin_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data)) ENUM_WANT_SVALUE(); if (data->by) - cmpv = enum_yield(argc, i); + cmpv = enum_yield(argc, i); else - cmpv = i; + cmpv = i; - if (data->limit != Qundef) { + if (!UNDEF_P(data->limit)) { int c = data->cmpfunc(&cmpv, &data->limit, data); if (data->rev) c = -c; @@ -1828,13 +2086,13 @@ nmin_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data)) } if (data->by) - rb_ary_push(data->buf, cmpv); + rb_ary_push(data->buf, cmpv); rb_ary_push(data->buf, i); data->curlen++; if (data->curlen == data->bufmax) { - nmin_filter(data); + nmin_filter(data); } return Qnil; @@ -1855,28 +2113,28 @@ rb_nmin_run(VALUE obj, VALUE num, int by, int rev, int ary) rb_raise(rb_eArgError, "too big size"); data.bufmax = data.n * 4; data.curlen = 0; - data.buf = rb_ary_tmp_new(data.bufmax * (by ? 2 : 1)); + data.buf = rb_ary_hidden_new(data.bufmax * (by ? 2 : 1)); data.limit = Qundef; data.cmpfunc = by ? nmin_cmp : rb_block_given_p() ? nmin_block_cmp : - nmin_cmp; + nmin_cmp; data.rev = rev; data.by = by; if (ary) { - long i; - for (i = 0; i < RARRAY_LEN(obj); i++) { - VALUE args[1]; - args[0] = RARRAY_AREF(obj, i); + long i; + for (i = 0; i < RARRAY_LEN(obj); i++) { + VALUE args[1]; + args[0] = RARRAY_AREF(obj, i); nmin_i(obj, (VALUE)&data, 1, args, Qundef); - } + } } else { - rb_block_call(obj, id_each, 0, 0, nmin_i, (VALUE)&data); + rb_block_call(obj, id_each, 0, 0, nmin_i, (VALUE)&data); } nmin_filter(&data); result = data.buf; if (by) { - long i; + long i; RARRAY_PTR_USE(result, ptr, { ruby_qsort(ptr, RARRAY_LEN(result)/2, @@ -1886,7 +2144,7 @@ rb_nmin_run(VALUE obj, VALUE num, int by, int rev, int ary) ptr[i/2] = ptr[i]; } }); - rb_ary_resize(result, RARRAY_LEN(result)/2); + rb_ary_resize(result, RARRAY_LEN(result)/2); } else { RARRAY_PTR_USE(result, ptr, { @@ -1952,17 +2210,17 @@ enum_one(int argc, VALUE *argv, VALUE obj) VALUE result; WARN_UNUSED_BLOCK(argc); - rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)memo); + ENUM_BLOCK_CALL(one); result = memo->v1; - if (result == Qundef) return Qfalse; + if (UNDEF_P(result)) return Qfalse; return result; } DEFINE_ENUMFUNCS(none) { if (RTEST(result)) { - MEMO_V1_SET(memo, Qfalse); - rb_iter_break(); + MEMO_V1_SET(memo, Qfalse); + rb_iter_break(); } return Qnil; } @@ -2013,13 +2271,12 @@ enum_none(int argc, VALUE *argv, VALUE obj) struct MEMO *memo = MEMO_ENUM_NEW(Qtrue); WARN_UNUSED_BLOCK(argc); - rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)memo); + ENUM_BLOCK_CALL(none); return memo->v1; } struct min_t { VALUE min; - struct cmp_opt_data cmp_opt; }; static VALUE @@ -2029,13 +2286,13 @@ min_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) ENUM_WANT_SVALUE(); - if (memo->min == Qundef) { - memo->min = i; + if (UNDEF_P(memo->min)) { + memo->min = i; } else { - if (OPTIMIZED_CMP(i, memo->min, memo->cmp_opt) < 0) { - memo->min = i; - } + if (OPTIMIZED_CMP(i, memo->min) < 0) { + memo->min = i; + } } return Qnil; } @@ -2048,14 +2305,14 @@ min_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) ENUM_WANT_SVALUE(); - if (memo->min == Qundef) { - memo->min = i; + if (UNDEF_P(memo->min)) { + memo->min = i; } else { - cmp = rb_yield_values(2, i, memo->min); - if (rb_cmpint(cmp, i, memo->min) < 0) { - memo->min = i; - } + cmp = rb_yield_values(2, i, memo->min); + if (rb_cmpint(cmp, i, memo->min) < 0) { + memo->min = i; + } } return Qnil; } @@ -2072,7 +2329,7 @@ min_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) * The ordering of equal elements is indeterminate and may be unstable. * * With no argument and no block, returns the minimum element, - * using the elements' own method <tt><=></tt> for comparison: + * using the elements' own method <tt>#<=></tt> for comparison: * * (1..4).min # => 1 * (-4..-1).min # => -4 @@ -2122,7 +2379,7 @@ static VALUE enum_min(int argc, VALUE *argv, VALUE obj) { VALUE memo; - struct min_t *m = NEW_CMP_OPT_MEMO(struct min_t, memo); + struct min_t *m = NEW_MEMO_FOR(struct min_t, memo); VALUE result; VALUE num; @@ -2130,22 +2387,19 @@ enum_min(int argc, VALUE *argv, VALUE obj) return rb_nmin_run(obj, num, 0, 0, 0); m->min = Qundef; - m->cmp_opt.opt_methods = 0; - m->cmp_opt.opt_inited = 0; if (rb_block_given_p()) { - rb_block_call(obj, id_each, 0, 0, min_ii, memo); + rb_block_call(obj, id_each, 0, 0, min_ii, memo); } else { - rb_block_call(obj, id_each, 0, 0, min_i, memo); + rb_block_call(obj, id_each, 0, 0, min_i, memo); } result = m->min; - if (result == Qundef) return Qnil; + if (UNDEF_P(result)) return Qnil; return result; } struct max_t { VALUE max; - struct cmp_opt_data cmp_opt; }; static VALUE @@ -2155,13 +2409,13 @@ max_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) ENUM_WANT_SVALUE(); - if (memo->max == Qundef) { - memo->max = i; + if (UNDEF_P(memo->max)) { + memo->max = i; } else { - if (OPTIMIZED_CMP(i, memo->max, memo->cmp_opt) > 0) { - memo->max = i; - } + if (OPTIMIZED_CMP(i, memo->max) > 0) { + memo->max = i; + } } return Qnil; } @@ -2174,14 +2428,14 @@ max_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) ENUM_WANT_SVALUE(); - if (memo->max == Qundef) { - memo->max = i; + if (UNDEF_P(memo->max)) { + memo->max = i; } else { - cmp = rb_yield_values(2, i, memo->max); - if (rb_cmpint(cmp, i, memo->max) > 0) { - memo->max = i; - } + cmp = rb_yield_values(2, i, memo->max); + if (rb_cmpint(cmp, i, memo->max) > 0) { + memo->max = i; + } } return Qnil; } @@ -2197,7 +2451,7 @@ max_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) * The ordering of equal elements is indeterminate and may be unstable. * * With no argument and no block, returns the maximum element, - * using the elements' own method <tt><=></tt> for comparison: + * using the elements' own method <tt>#<=></tt> for comparison: * * (1..4).max # => 4 * (-4..-1).max # => -1 @@ -2247,7 +2501,7 @@ static VALUE enum_max(int argc, VALUE *argv, VALUE obj) { VALUE memo; - struct max_t *m = NEW_CMP_OPT_MEMO(struct max_t, memo); + struct max_t *m = NEW_MEMO_FOR(struct max_t, memo); VALUE result; VALUE num; @@ -2255,16 +2509,14 @@ enum_max(int argc, VALUE *argv, VALUE obj) return rb_nmin_run(obj, num, 0, 1, 0); m->max = Qundef; - m->cmp_opt.opt_methods = 0; - m->cmp_opt.opt_inited = 0; if (rb_block_given_p()) { - rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo); + rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo); } else { - rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo); + rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo); } result = m->max; - if (result == Qundef) return Qnil; + if (UNDEF_P(result)) return Qnil; return result; } @@ -2272,7 +2524,6 @@ struct minmax_t { VALUE min; VALUE max; VALUE last; - struct cmp_opt_data cmp_opt; }; static void @@ -2280,19 +2531,19 @@ minmax_i_update(VALUE i, VALUE j, struct minmax_t *memo) { int n; - if (memo->min == Qundef) { - memo->min = i; - memo->max = j; + if (UNDEF_P(memo->min)) { + memo->min = i; + memo->max = j; } else { - n = OPTIMIZED_CMP(i, memo->min, memo->cmp_opt); - if (n < 0) { - memo->min = i; - } - n = OPTIMIZED_CMP(j, memo->max, memo->cmp_opt); - if (n > 0) { - memo->max = j; - } + n = OPTIMIZED_CMP(i, memo->min); + if (n < 0) { + memo->min = i; + } + n = OPTIMIZED_CMP(j, memo->max); + if (n > 0) { + memo->max = j; + } } } @@ -2305,14 +2556,14 @@ minmax_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) ENUM_WANT_SVALUE(); - if (memo->last == Qundef) { + if (UNDEF_P(memo->last)) { memo->last = i; return Qnil; } j = memo->last; memo->last = Qundef; - n = OPTIMIZED_CMP(j, i, memo->cmp_opt); + n = OPTIMIZED_CMP(j, i); if (n == 0) i = j; else if (n < 0) { @@ -2332,19 +2583,19 @@ minmax_ii_update(VALUE i, VALUE j, struct minmax_t *memo) { int n; - if (memo->min == Qundef) { - memo->min = i; - memo->max = j; + if (UNDEF_P(memo->min)) { + memo->min = i; + memo->max = j; } else { - n = rb_cmpint(rb_yield_values(2, i, memo->min), i, memo->min); - if (n < 0) { - memo->min = i; - } - n = rb_cmpint(rb_yield_values(2, j, memo->max), j, memo->max); - if (n > 0) { - memo->max = j; - } + n = rb_cmpint(rb_yield_values(2, i, memo->min), i, memo->min); + if (n < 0) { + memo->min = i; + } + n = rb_cmpint(rb_yield_values(2, j, memo->max), j, memo->max); + if (n > 0) { + memo->max = j; + } } } @@ -2357,7 +2608,7 @@ minmax_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) ENUM_WANT_SVALUE(); - if (memo->last == Qundef) { + if (UNDEF_P(memo->last)) { memo->last = i; return Qnil; } @@ -2389,7 +2640,7 @@ minmax_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) * The ordering of equal elements is indeterminate and may be unstable. * * With no argument and no block, returns the minimum and maximum elements, - * using the elements' own method <tt><=></tt> for comparison: + * using the elements' own method <tt>#<=></tt> for comparison: * * (1..4).minmax # => [1, 4] * (-4..-1).minmax # => [-4, -1] @@ -2414,24 +2665,22 @@ static VALUE enum_minmax(VALUE obj) { VALUE memo; - struct minmax_t *m = NEW_CMP_OPT_MEMO(struct minmax_t, memo); + struct minmax_t *m = NEW_MEMO_FOR(struct minmax_t, memo); m->min = Qundef; m->last = Qundef; - m->cmp_opt.opt_methods = 0; - m->cmp_opt.opt_inited = 0; if (rb_block_given_p()) { - rb_block_call(obj, id_each, 0, 0, minmax_ii, memo); - if (m->last != Qundef) - minmax_ii_update(m->last, m->last, m); + rb_block_call(obj, id_each, 0, 0, minmax_ii, memo); + if (!UNDEF_P(m->last)) + minmax_ii_update(m->last, m->last, m); } else { - rb_block_call(obj, id_each, 0, 0, minmax_i, memo); - if (m->last != Qundef) - minmax_i_update(m->last, m->last, m); + rb_block_call(obj, id_each, 0, 0, minmax_i, memo); + if (!UNDEF_P(m->last)) + minmax_i_update(m->last, m->last, m); } - if (m->min != Qundef) { - return rb_assoc_new(m->min, m->max); + if (!UNDEF_P(m->min)) { + return rb_assoc_new(m->min, m->max); } return rb_assoc_new(Qnil, Qnil); } @@ -2439,20 +2688,19 @@ enum_minmax(VALUE obj) static VALUE min_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { - struct cmp_opt_data cmp_opt = { 0, 0 }; struct MEMO *memo = MEMO_CAST(args); VALUE v; ENUM_WANT_SVALUE(); v = enum_yield(argc, i); - if (memo->v1 == Qundef) { - MEMO_V1_SET(memo, v); - MEMO_V2_SET(memo, i); + if (UNDEF_P(memo->v1)) { + MEMO_V1_SET(memo, v); + MEMO_V2_SET(memo, i); } - else if (OPTIMIZED_CMP(v, memo->v1, cmp_opt) < 0) { - MEMO_V1_SET(memo, v); - MEMO_V2_SET(memo, i); + else if (OPTIMIZED_CMP(v, memo->v1) < 0) { + MEMO_V1_SET(memo, v); + MEMO_V2_SET(memo, i); } return Qnil; } @@ -2506,7 +2754,7 @@ enum_min_by(int argc, VALUE *argv, VALUE obj) if (argc && !NIL_P(num = argv[0])) return rb_nmin_run(obj, num, 1, 0, 0); - memo = MEMO_NEW(Qundef, Qnil, 0); + memo = rb_imemo_memo_new(Qundef, Qnil, 0); rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo); return memo->v2; } @@ -2514,20 +2762,19 @@ enum_min_by(int argc, VALUE *argv, VALUE obj) static VALUE max_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { - struct cmp_opt_data cmp_opt = { 0, 0 }; struct MEMO *memo = MEMO_CAST(args); VALUE v; ENUM_WANT_SVALUE(); v = enum_yield(argc, i); - if (memo->v1 == Qundef) { - MEMO_V1_SET(memo, v); - MEMO_V2_SET(memo, i); + if (UNDEF_P(memo->v1)) { + MEMO_V1_SET(memo, v); + MEMO_V2_SET(memo, i); } - else if (OPTIMIZED_CMP(v, memo->v1, cmp_opt) > 0) { - MEMO_V1_SET(memo, v); - MEMO_V2_SET(memo, i); + else if (OPTIMIZED_CMP(v, memo->v1) > 0) { + MEMO_V1_SET(memo, v); + MEMO_V2_SET(memo, i); } return Qnil; } @@ -2581,7 +2828,7 @@ enum_max_by(int argc, VALUE *argv, VALUE obj) if (argc && !NIL_P(num = argv[0])) return rb_nmin_run(obj, num, 1, 1, 0); - memo = MEMO_NEW(Qundef, Qnil, 0); + memo = rb_imemo_memo_new(Qundef, Qnil, 0); rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo); return memo->v2; } @@ -2598,30 +2845,27 @@ struct minmax_by_t { static void minmax_by_i_update(VALUE v1, VALUE v2, VALUE i1, VALUE i2, struct minmax_by_t *memo) { - struct cmp_opt_data cmp_opt = { 0, 0 }; - - if (memo->min_bv == Qundef) { - memo->min_bv = v1; - memo->max_bv = v2; - memo->min = i1; - memo->max = i2; + if (UNDEF_P(memo->min_bv)) { + memo->min_bv = v1; + memo->max_bv = v2; + memo->min = i1; + memo->max = i2; } else { - if (OPTIMIZED_CMP(v1, memo->min_bv, cmp_opt) < 0) { - memo->min_bv = v1; - memo->min = i1; - } - if (OPTIMIZED_CMP(v2, memo->max_bv, cmp_opt) > 0) { - memo->max_bv = v2; - memo->max = i2; - } + if (OPTIMIZED_CMP(v1, memo->min_bv) < 0) { + memo->min_bv = v1; + memo->min = i1; + } + if (OPTIMIZED_CMP(v2, memo->max_bv) > 0) { + memo->max_bv = v2; + memo->max = i2; + } } } static VALUE minmax_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) { - struct cmp_opt_data cmp_opt = { 0, 0 }; struct minmax_by_t *memo = MEMO_FOR(struct minmax_by_t, _memo); VALUE vi, vj, j; int n; @@ -2630,7 +2874,7 @@ minmax_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) vi = enum_yield(argc, i); - if (memo->last_bv == Qundef) { + if (UNDEF_P(memo->last_bv)) { memo->last_bv = vi; memo->last = i; return Qnil; @@ -2639,7 +2883,7 @@ minmax_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) j = memo->last; memo->last_bv = Qundef; - n = OPTIMIZED_CMP(vj, vi, cmp_opt); + n = OPTIMIZED_CMP(vj, vi); if (n == 0) { i = j; vi = vj; @@ -2697,7 +2941,7 @@ enum_minmax_by(VALUE obj) m->last_bv = Qundef; m->last = Qundef; rb_block_call(obj, id_each, 0, 0, minmax_by_i, memo); - if (m->last_bv != Qundef) + if (!UNDEF_P(m->last_bv)) minmax_by_i_update(m->last_bv, m->last_bv, m->last, m->last, m); m = MEMO_FOR(struct minmax_by_t, memo); return rb_assoc_new(m->min, m->max); @@ -2709,8 +2953,8 @@ member_i(RB_BLOCK_CALL_FUNC_ARGLIST(iter, args)) struct MEMO *memo = MEMO_CAST(args); if (rb_equal(rb_enum_values_pack(argc, argv), memo->v1)) { - MEMO_V2_SET(memo, Qtrue); - rb_iter_break(); + MEMO_V2_SET(memo, Qtrue); + rb_iter_break(); } return Qnil; } @@ -2730,27 +2974,24 @@ member_i(RB_BLOCK_CALL_FUNC_ARGLIST(iter, args)) * {foo: 0, bar: 1, baz: 2}.include?('foo') # => false * {foo: 0, bar: 1, baz: 2}.include?(0) # => false * - * Enumerable#member? is an alias for Enumerable#include?. - * */ static VALUE enum_member(VALUE obj, VALUE val) { - struct MEMO *memo = MEMO_NEW(val, Qfalse, 0); + struct MEMO *memo = rb_imemo_memo_new(val, Qfalse, 0); rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo); return memo->v2; } static VALUE -each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) +each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(_, index)) { - struct MEMO *m = MEMO_CAST(memo); - VALUE n = imemo_count_value(m); + struct vm_ifunc *ifunc = rb_current_ifunc(); + ifunc->data = (const void *)rb_int_succ(index); - imemo_count_up(m); - return rb_yield_values(2, rb_enum_values_pack(argc, argv), n); + return rb_yield_values(2, rb_enum_values_pack(argc, argv), index); } /* @@ -2758,7 +2999,8 @@ each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) * each_with_index(*args) {|element, i| ..... } -> self * each_with_index(*args) -> enumerator * - * With a block given, calls the block with each element and its index; + * Invoke <tt>self.each</tt> with <tt>*args</tt>. + * With a block given, the block receives each element and its index; * returns +self+: * * h = {} @@ -2783,12 +3025,9 @@ each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) static VALUE enum_each_with_index(int argc, VALUE *argv, VALUE obj) { - struct MEMO *memo; - RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size); - memo = MEMO_NEW(0, 0, 0); - rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)memo); + rb_block_call(obj, id_each, argc, argv, each_with_index_i, INT2FIX(0)); return obj; } @@ -2927,14 +3166,14 @@ each_slice_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, m)) rb_ary_push(ary, i); if (RARRAY_LEN(ary) == size) { - v = rb_yield(ary); + v = rb_yield(ary); - if (memo->v2) { - MEMO_V1_SET(memo, rb_ary_new2(size)); - } - else { - rb_ary_clear(ary); - } + if (memo->v2) { + MEMO_V1_SET(memo, rb_ary_new2(size)); + } + else { + rb_ary_clear(ary); + } } return v; @@ -2961,19 +3200,19 @@ enum_each_slice_size(VALUE obj, VALUE args, VALUE eobj) /* * call-seq: - * each_slice(n) { ... } -> nil + * each_slice(n) { ... } -> self * each_slice(n) -> enumerator * * Calls the block with each successive disjoint +n+-tuple of elements; - * returns +nil+: + * returns +self+: * * a = [] - * (1..10).each_slice(3) {|tuple| a.push(tuple) } # => nil + * (1..10).each_slice(3) {|tuple| a.push(tuple) } * a # => [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]] * * a = [] * h = {foo: 0, bar: 1, baz: 2, bat: 3, bam: 4} - * h.each_slice(2) {|tuple| a.push(tuple) } # => nil + * h.each_slice(2) {|tuple| a.push(tuple) } * a # => [[[:foo, 0], [:bar, 1]], [[:baz, 2], [:bat, 3]], [[:bam, 4]]] * * With no block given, returns an Enumerator. @@ -2992,12 +3231,12 @@ enum_each_slice(VALUE obj, VALUE n) size = limit_by_enum_size(obj, size); ary = rb_ary_new2(size); arity = rb_block_arity(); - memo = MEMO_NEW(ary, dont_recycle_block_arg(arity), size); + memo = rb_imemo_memo_new(ary, dont_recycle_block_arg(arity), size); rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo); ary = memo->v1; if (RARRAY_LEN(ary) > 0) rb_yield(ary); - return Qnil; + return obj; } static VALUE @@ -3010,14 +3249,14 @@ each_cons_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) ENUM_WANT_SVALUE(); if (RARRAY_LEN(ary) == size) { - rb_ary_shift(ary); + rb_ary_shift(ary); } rb_ary_push(ary, i); if (RARRAY_LEN(ary) == size) { - if (memo->v2) { - ary = rb_ary_dup(ary); - } - v = rb_yield(ary); + if (memo->v2) { + ary = rb_ary_dup(ary); + } + v = rb_yield(ary); } return v; } @@ -3025,7 +3264,6 @@ each_cons_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) static VALUE enum_each_cons_size(VALUE obj, VALUE args, VALUE eobj) { - struct cmp_opt_data cmp_opt = { 0, 0 }; const VALUE zero = LONG2FIX(0); VALUE n, size; long cons_size = NUM2LONG(RARRAY_AREF(args, 0)); @@ -3035,24 +3273,24 @@ enum_each_cons_size(VALUE obj, VALUE args, VALUE eobj) if (NIL_P(size)) return Qnil; n = add_int(size, 1 - cons_size); - return (OPTIMIZED_CMP(n, zero, cmp_opt) == -1) ? zero : n; + return (OPTIMIZED_CMP(n, zero) == -1) ? zero : n; } /* * call-seq: - * each_cons(n) { ... } -> nil + * each_cons(n) { ... } -> self * each_cons(n) -> enumerator * * Calls the block with each successive overlapped +n+-tuple of elements; - * returns +nil+: + * returns +self+: * * a = [] - * (1..5).each_cons(3) {|element| a.push(element) } # => nil + * (1..5).each_cons(3) {|element| a.push(element) } * a # => [[1, 2, 3], [2, 3, 4], [3, 4, 5]] * * a = [] * h = {foo: 0, bar: 1, baz: 2, bam: 3} - * h.each_cons(2) {|element| a.push(element) } # => nil + * h.each_cons(2) {|element| a.push(element) } * a # => [[[:foo, 0], [:bar, 1]], [[:bar, 1], [:baz, 2]], [[:baz, 2], [:bam, 3]]] * * With no block given, returns an Enumerator. @@ -3068,11 +3306,11 @@ enum_each_cons(VALUE obj, VALUE n) if (size <= 0) rb_raise(rb_eArgError, "invalid size"); RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_cons_size); arity = rb_block_arity(); - if (enum_size_over_p(obj, size)) return Qnil; - memo = MEMO_NEW(rb_ary_new2(size), dont_recycle_block_arg(arity), size); + if (enum_size_over_p(obj, size)) return obj; + memo = rb_imemo_memo_new(rb_ary_new2(size), dont_recycle_block_arg(arity), size); rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo); - return Qnil; + return obj; } static VALUE @@ -3090,8 +3328,10 @@ each_with_object_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) * Calls the block once for each element, passing both the element * and the given object: * - * (1..4).each_with_object([]) {|i, a| a.push(i**2) } # => [1, 4, 9, 16] - * h.each_with_object({}) {|element, h| k, v = *element; h[v] = k } + * (1..4).each_with_object([]) {|i, a| a.push(i**2) } + * # => [1, 4, 9, 16] + * + * {foo: 0, bar: 1, baz: 2}.each_with_object({}) {|(k, v), h| h[v] = k } * # => {0=>:foo, 1=>:bar, 2=>:baz} * * With no block given, returns an Enumerator. @@ -3120,20 +3360,20 @@ zip_ary(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval)) tmp = rb_ary_new2(RARRAY_LEN(args) + 1); rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv)); for (i=0; i<RARRAY_LEN(args); i++) { - VALUE e = RARRAY_AREF(args, i); + VALUE e = RARRAY_AREF(args, i); - if (RARRAY_LEN(e) <= n) { - rb_ary_push(tmp, Qnil); - } - else { - rb_ary_push(tmp, RARRAY_AREF(e, n)); - } + if (RARRAY_LEN(e) <= n) { + rb_ary_push(tmp, Qnil); + } + else { + rb_ary_push(tmp, RARRAY_AREF(e, n)); + } } if (NIL_P(result)) { - enum_yield_array(tmp); + enum_yield_array(tmp); } else { - rb_ary_push(result, tmp); + rb_ary_push(result, tmp); } RB_GC_GUARD(args); @@ -3167,26 +3407,26 @@ zip_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval)) tmp = rb_ary_new2(RARRAY_LEN(args) + 1); rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv)); for (i=0; i<RARRAY_LEN(args); i++) { - if (NIL_P(RARRAY_AREF(args, i))) { - rb_ary_push(tmp, Qnil); - } - else { - VALUE v[2]; - - v[1] = RARRAY_AREF(args, i); - rb_rescue2(call_next, (VALUE)v, call_stop, (VALUE)v, rb_eStopIteration, (VALUE)0); - if (v[0] == Qundef) { - RARRAY_ASET(args, i, Qnil); - v[0] = Qnil; - } - rb_ary_push(tmp, v[0]); - } + if (NIL_P(RARRAY_AREF(args, i))) { + rb_ary_push(tmp, Qnil); + } + else { + VALUE v[2]; + + v[1] = RARRAY_AREF(args, i); + rb_rescue2(call_next, (VALUE)v, call_stop, (VALUE)v, rb_eStopIteration, (VALUE)0); + if (UNDEF_P(v[0])) { + RARRAY_ASET(args, i, Qnil); + v[0] = Qnil; + } + rb_ary_push(tmp, v[0]); + } } if (NIL_P(result)) { - enum_yield_array(tmp); + enum_yield_array(tmp); } else { - rb_ary_push(result, tmp); + rb_ary_push(result, tmp); } RB_GC_GUARD(args); @@ -3204,8 +3444,8 @@ zip_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval)) * Each nested array <tt>new_array[n]</tt> * is of size <tt>other_enums.size+1</tt>, and contains: * - * - The +n+th element of self. - * - The +n+th element of each of the +other_enums+. + * - The +n+-th element of self. + * - The +n+-th element of each of the +other_enums+. * * If all +other_enums+ and self are the same size, * all elements are included in the result, and there is no +nil+-filling: @@ -3273,30 +3513,30 @@ enum_zip(int argc, VALUE *argv, VALUE obj) argv = RARRAY_PTR(args); for (i=0; i<argc; i++) { - VALUE ary = rb_check_array_type(argv[i]); - if (NIL_P(ary)) { - allary = FALSE; - break; - } - argv[i] = ary; + VALUE ary = rb_check_array_type(argv[i]); + if (NIL_P(ary)) { + allary = FALSE; + break; + } + argv[i] = ary; } if (!allary) { - static const VALUE sym_each = STATIC_ID2SYM(id_each); - CONST_ID(conv, "to_enum"); - for (i=0; i<argc; i++) { - if (!rb_respond_to(argv[i], id_each)) { - rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)", - rb_obj_class(argv[i])); + static const VALUE sym_each = STATIC_ID2SYM(id_each); + CONST_ID(conv, "to_enum"); + for (i=0; i<argc; i++) { + if (!rb_respond_to(argv[i], id_each)) { + rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)", + rb_obj_class(argv[i])); } - argv[i] = rb_funcallv(argv[i], conv, 1, &sym_each); - } + argv[i] = rb_funcallv(argv[i], conv, 1, &sym_each); + } } if (!rb_block_given_p()) { - result = rb_ary_new(); + result = rb_ary_new(); } /* TODO: use NODE_DOT2 as memo(v, v, -) */ - memo = MEMO_NEW(result, args, 0); + memo = rb_imemo_memo_new(result, args, 0); rb_block_call(obj, id_each, 0, 0, allary ? zip_ary : zip_i, (VALUE)memo); return result; @@ -3334,12 +3574,12 @@ enum_take(VALUE obj, VALUE n) long len = NUM2LONG(n); if (len < 0) { - rb_raise(rb_eArgError, "attempt to take negative size"); + rb_raise(rb_eArgError, "attempt to take negative size"); } if (len == 0) return rb_ary_new2(0); result = rb_ary_new2(len); - memo = MEMO_NEW(result, 0, len); + memo = rb_imemo_memo_new(result, 0, len); rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo); return result; } @@ -3388,10 +3628,10 @@ drop_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct MEMO *memo = MEMO_CAST(args); if (memo->u3.cnt == 0) { - rb_ary_push(memo->v1, rb_enum_values_pack(argc, argv)); + rb_ary_push(memo->v1, rb_enum_values_pack(argc, argv)); } else { - memo->u3.cnt--; + memo->u3.cnt--; } return Qnil; } @@ -3423,11 +3663,11 @@ enum_drop(VALUE obj, VALUE n) long len = NUM2LONG(n); if (len < 0) { - rb_raise(rb_eArgError, "attempt to drop negative size"); + rb_raise(rb_eArgError, "attempt to drop negative size"); } result = rb_ary_new(); - memo = MEMO_NEW(result, 0, len); + memo = rb_imemo_memo_new(result, 0, len); rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo); return result; } @@ -3440,10 +3680,10 @@ drop_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) ENUM_WANT_SVALUE(); if (!memo->u3.state && !RTEST(enum_yield(argc, i))) { - memo->u3.state = TRUE; + memo->u3.state = TRUE; } if (memo->u3.state) { - rb_ary_push(memo->v1, i); + rb_ary_push(memo->v1, i); } return Qnil; } @@ -3465,6 +3705,17 @@ drop_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) * * With no block given, returns an Enumerator. * + * e = (1..4).drop_while + * p e #=> #<Enumerator: 1..4:drop_while> + * i = e.next; p i; e.feed(i < 3) #=> 1 + * i = e.next; p i; e.feed(i < 3) #=> 2 + * i = e.next; p i; e.feed(i < 3) #=> 3 + * begin + * e.next + * rescue StopIteration + * p $!.result #=> [3, 4] + * end + * */ static VALUE @@ -3475,7 +3726,7 @@ enum_drop_while(VALUE obj) RETURN_ENUMERATOR(obj, 0, 0); result = rb_ary_new(); - memo = MEMO_NEW(result, 0, FALSE); + memo = rb_imemo_memo_new(result, 0, FALSE); rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo); return result; } @@ -3498,8 +3749,8 @@ enum_cycle_size(VALUE self, VALUE args, VALUE eobj) VALUE size; if (args && (RARRAY_LEN(args) > 0)) { - n = RARRAY_AREF(args, 0); - if (!NIL_P(n)) mul = NUM2LONG(n); + n = RARRAY_AREF(args, 0); + if (!NIL_P(n)) mul = NUM2LONG(n); } size = enum_size(self, args, 0); @@ -3562,7 +3813,7 @@ enum_cycle(int argc, VALUE *argv, VALUE obj) if (len == 0) return Qnil; while (n < 0 || 0 < --n) { for (i=0; i<len; i++) { - enum_yield_array(RARRAY_AREF(ary, i)); + enum_yield_array(RARRAY_AREF(ary, i)); } } return Qnil; @@ -3589,22 +3840,22 @@ chunk_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp)) if (v == alone) { if (!NIL_P(argp->prev_value)) { - s = rb_assoc_new(argp->prev_value, argp->prev_elts); + s = rb_assoc_new(argp->prev_value, argp->prev_elts); rb_funcallv(argp->yielder, id_lshift, 1, &s); argp->prev_value = argp->prev_elts = Qnil; } - v = rb_assoc_new(v, rb_ary_new3(1, i)); + v = rb_assoc_new(v, rb_ary_new3(1, i)); rb_funcallv(argp->yielder, id_lshift, 1, &v); } else if (NIL_P(v) || v == separator) { if (!NIL_P(argp->prev_value)) { - v = rb_assoc_new(argp->prev_value, argp->prev_elts); + v = rb_assoc_new(argp->prev_value, argp->prev_elts); rb_funcallv(argp->yielder, id_lshift, 1, &v); argp->prev_value = argp->prev_elts = Qnil; } } else if (SYMBOL_P(v) && (s = rb_sym2str(v), RSTRING_PTR(s)[0] == '_')) { - rb_raise(rb_eRuntimeError, "symbols beginning with an underscore are reserved"); + rb_raise(rb_eRuntimeError, "symbols beginning with an underscore are reserved"); } else { if (NIL_P(argp->prev_value)) { @@ -3616,7 +3867,7 @@ chunk_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp)) rb_ary_push(argp->prev_elts, i); } else { - s = rb_assoc_new(argp->prev_value, argp->prev_elts); + s = rb_assoc_new(argp->prev_value, argp->prev_elts); rb_funcallv(argp->yielder, id_lshift, 1, &s); argp->prev_value = v; argp->prev_elts = rb_ary_new3(1, i); @@ -3642,8 +3893,8 @@ chunk_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) rb_block_call(enumerable, id_each, 0, 0, chunk_ii, arg); memo = MEMO_FOR(struct chunk_arg, arg); if (!NIL_P(memo->prev_elts)) { - arg = rb_assoc_new(memo->prev_value, memo->prev_elts); - rb_funcallv(memo->yielder, id_lshift, 1, &arg); + arg = rb_assoc_new(memo->prev_value, memo->prev_elts); + rb_funcallv(memo->yielder, id_lshift, 1, &arg); } return Qnil; } @@ -3674,7 +3925,7 @@ chunk_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) * e.next # => [2, [6, 7, 8]] * e.next # => [3, [9, 10]] * - * \Method +chunk+ is especially useful for an enumerable that is already sorted. + * Method +chunk+ is especially useful for an enumerable that is already sorted. * This example counts words for each initial letter in a large array of words: * * # Get sorted words from a web page. @@ -3695,7 +3946,7 @@ chunk_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) * ["F", 6860] * * You can use the special symbol <tt>:_alone</tt> to force an element - * into its own separate chuck: + * into its own separate chunk: * * a = [0, 0, 1, 1] * e = a.chunk{|i| i.even? ? :_alone : true } @@ -3824,7 +4075,7 @@ slicebefore_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) /* * call-seq: * slice_before(pattern) -> enumerator - * slice_before {|array| ... } -> enumerator + * slice_before {|elt| ... } -> enumerator * * With argument +pattern+, returns an enumerator that uses the pattern * to partition elements into arrays ("slices"). @@ -4069,39 +4320,24 @@ sliceafter_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) /* * call-seq: - * slice_after(pattern) -> enumerator - * slice_after {|array| ... } -> enumerator + * enum.slice_after(pattern) -> an_enumerator + * enum.slice_after { |elt| bool } -> an_enumerator * - * With argument +pattern+, returns an enumerator that uses the pattern - * to partition elements into arrays ("slices"). - * An element ends the current slice if <tt>element === pattern</tt>: - * - * a = %w[foo bar fop for baz fob fog bam foy] - * e = a.slice_after(/ba/) # => #<Enumerator: ...> - * e.each {|array| p array } + * Creates an enumerator for each chunked elements. + * The ends of chunks are defined by _pattern_ and the block. * - * Output: - * - * ["foo", "bar"] - * ["fop", "for", "baz"] - * ["fob", "fog", "bam"] - * ["foy"] - * - * With a block, returns an enumerator that uses the block - * to partition elements into arrays. - * An element ends the current slice if its block return is a truthy value: + * If <code>_pattern_ === _elt_</code> returns <code>true</code> or the block + * returns <code>true</code> for the element, the element is end of a + * chunk. * - * e = (1..20).slice_after {|i| i % 4 == 2 } # => #<Enumerator: ...> - * e.each {|array| p array } + * The <code>===</code> and _block_ is called from the first element to the last + * element of _enum_. * - * Output: + * The result enumerator yields the chunked elements as an array. + * So +each+ method can be called as follows: * - * [1, 2] - * [3, 4, 5, 6] - * [7, 8, 9, 10] - * [11, 12, 13, 14] - * [15, 16, 17, 18] - * [19, 20] + * enum.slice_after(pattern).each { |ary| ... } + * enum.slice_after { |elt| bool }.each { |ary| ... } * * Other methods of the Enumerator class and Enumerable module, * such as +map+, etc., are also usable. @@ -4160,15 +4396,15 @@ slicewhen_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) ENUM_WANT_SVALUE(); - if (memo->prev_elt == Qundef) { + if (UNDEF_P(memo->prev_elt)) { /* The first element */ memo->prev_elt = i; memo->prev_elts = rb_ary_new3(1, i); } else { - VALUE args[2]; - args[0] = memo->prev_elt; - args[1] = i; + VALUE args[2]; + args[0] = memo->prev_elt; + args[1] = i; split_p = RTEST(rb_funcallv(memo->pred, id_call, 2, args)); UPDATE_MEMO; @@ -4197,7 +4433,7 @@ slicewhen_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) VALUE enumerable; VALUE arg; struct slicewhen_arg *memo = - NEW_PARTIAL_MEMO_FOR(struct slicewhen_arg, arg, inverted); + NEW_PARTIAL_MEMO_FOR(struct slicewhen_arg, arg, inverted); enumerable = rb_ivar_get(enumerator, id_slicewhen_enum); memo->pred = rb_attr_get(enumerator, id_slicewhen_pred); @@ -4215,23 +4451,65 @@ slicewhen_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) /* * call-seq: - * slice_when {|element, next_element| ... } -> enumerator + * enum.slice_when {|elt_before, elt_after| bool } -> an_enumerator * - * The returned enumerator uses the block - * to partition elements into arrays ("slices"); - * it calls the block with each element and its successor; - * begins a new slice if and only if the block returns a truthy value: + * Creates an enumerator for each chunked elements. + * The beginnings of chunks are defined by the block. * - * a = [0, 1, 2, 4, 5, 6, 8, 9] - * e = a.slice_when {|i, j| j != i + 1 } - * e.each {|array| p array } + * This method splits each chunk using adjacent elements, + * _elt_before_ and _elt_after_, + * in the receiver enumerator. + * This method split chunks between _elt_before_ and _elt_after_ where + * the block returns <code>true</code>. * - * Output: + * The block is called the length of the receiver enumerator minus one. + * + * The result enumerator yields the chunked elements as an array. + * So +each+ method can be called as follows: + * + * enum.slice_when { |elt_before, elt_after| bool }.each { |ary| ... } * - * [0, 1, 2] - * [4, 5, 6] - * [8, 9] + * Other methods of the Enumerator class and Enumerable module, + * such as +to_a+, +map+, etc., are also usable. + * + * For example, one-by-one increasing subsequence can be chunked as follows: + * + * a = [1,2,4,9,10,11,12,15,16,19,20,21] + * b = a.slice_when {|i, j| i+1 != j } + * p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]] + * c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" } + * p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"] + * d = c.join(",") + * p d #=> "1,2,4,9-12,15,16,19-21" + * + * Near elements (threshold: 6) in sorted array can be chunked as follows: + * + * a = [3, 11, 14, 25, 28, 29, 29, 41, 55, 57] + * p a.slice_when {|i, j| 6 < j - i }.to_a + * #=> [[3], [11, 14], [25, 28, 29, 29], [41], [55, 57]] + * + * Increasing (non-decreasing) subsequence can be chunked as follows: + * + * a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5] + * p a.slice_when {|i, j| i > j }.to_a + * #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]] * + * Adjacent evens and odds can be chunked as follows: + * (Enumerable#chunk is another way to do it.) + * + * a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0] + * p a.slice_when {|i, j| i.even? != j.even? }.to_a + * #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]] + * + * Paragraphs (non-empty lines with trailing empty lines) can be chunked as follows: + * (See Enumerable#chunk to ignore empty lines.) + * + * lines = ["foo\n", "bar\n", "\n", "baz\n", "qux\n"] + * p lines.slice_when {|l1, l2| /\A\s*\z/ =~ l1 && /\S/ =~ l2 }.to_a + * #=> [["foo\n", "bar\n", "\n"], ["baz\n", "qux\n"]] + * + * Enumerable#chunk_while does the same, except splitting when the block + * returns <code>false</code> instead of <code>true</code>. */ static VALUE enum_slice_when(VALUE enumerable) @@ -4252,27 +4530,52 @@ enum_slice_when(VALUE enumerable) /* * call-seq: - * chunk_while {|element, next_element| ... } -> enumerator + * enum.chunk_while {|elt_before, elt_after| bool } -> an_enumerator * - * The returned Enumerator uses the block to partition elements - * into arrays ("chunks"); - * it calls the block with each element and its successor; - * begins a new chunk if and only if the block returns a truthy value: + * Creates an enumerator for each chunked elements. + * The beginnings of chunks are defined by the block. * - * Example: + * This method splits each chunk using adjacent elements, + * _elt_before_ and _elt_after_, + * in the receiver enumerator. + * This method split chunks between _elt_before_ and _elt_after_ where + * the block returns <code>false</code>. * - * a = [1, 2, 4, 9, 10, 11, 12, 15, 16, 19, 20, 21] - * e = a.chunk_while {|i, j| j == i + 1 } - * e.each {|array| p array } + * The block is called the length of the receiver enumerator minus one. * - * Output: + * The result enumerator yields the chunked elements as an array. + * So +each+ method can be called as follows: * - * [1, 2] - * [4] - * [9, 10, 11, 12] - * [15, 16] - * [19, 20, 21] + * enum.chunk_while { |elt_before, elt_after| bool }.each { |ary| ... } * + * Other methods of the Enumerator class and Enumerable module, + * such as +to_a+, +map+, etc., are also usable. + * + * For example, one-by-one increasing subsequence can be chunked as follows: + * + * a = [1,2,4,9,10,11,12,15,16,19,20,21] + * b = a.chunk_while {|i, j| i+1 == j } + * p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]] + * c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" } + * p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"] + * d = c.join(",") + * p d #=> "1,2,4,9-12,15,16,19-21" + * + * Increasing (non-decreasing) subsequence can be chunked as follows: + * + * a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5] + * p a.chunk_while {|i, j| i <= j }.to_a + * #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]] + * + * Adjacent evens and odds can be chunked as follows: + * (Enumerable#chunk is another way to do it.) + * + * a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0] + * p a.chunk_while {|i, j| i.even? == j.even? }.to_a + * #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]] + * + * Enumerable#slice_when does the same, except splitting when the block + * returns <code>true</code> instead of <code>false</code>. */ static VALUE enum_chunk_while(VALUE enumerable) @@ -4302,7 +4605,7 @@ struct enum_sum_memo { static void sum_iter_normalize_memo(struct enum_sum_memo *memo) { - assert(FIXABLE(memo->n)); + RUBY_ASSERT(FIXABLE(memo->n)); memo->v = rb_fix_plus(LONG2FIX(memo->n), memo->v); memo->n = 0; @@ -4333,7 +4636,7 @@ sum_iter_bignum(VALUE i, struct enum_sum_memo *memo) static void sum_iter_rational(VALUE i, struct enum_sum_memo *memo) { - if (memo->r == Qundef) { + if (UNDEF_P(memo->r)) { memo->r = i; } else { @@ -4404,7 +4707,7 @@ sum_iter_Kahan_Babuska(VALUE i, struct enum_sum_memo *memo) static void sum_iter(VALUE i, struct enum_sum_memo *memo) { - assert(memo != NULL); + RUBY_ASSERT(memo != NULL); if (memo->block_given) { i = rb_yield(i); } @@ -4414,7 +4717,7 @@ sum_iter(VALUE i, struct enum_sum_memo *memo) } else switch (TYPE(memo->v)) { default: sum_iter_some_value(i, memo); return; - case T_FLOAT: sum_iter_Kahan_Babuska(i, memo); return; + case T_FLOAT: case T_FIXNUM: case T_BIGNUM: case T_RATIONAL: @@ -4455,8 +4758,8 @@ hash_sum_i(VALUE key, VALUE value, VALUE arg) static void hash_sum(VALUE hash, struct enum_sum_memo *memo) { - assert(RB_TYPE_P(hash, T_HASH)); - assert(memo != NULL); + RUBY_ASSERT(RB_TYPE_P(hash, T_HASH)); + RUBY_ASSERT(memo != NULL); rb_hash_foreach(hash, hash_sum_i, (VALUE)memo); } @@ -4554,7 +4857,7 @@ enum_sum(int argc, VALUE* argv, VALUE obj) else { if (memo.n != 0) memo.v = rb_fix_plus(LONG2FIX(memo.n), memo.v); - if (memo.r != Qundef) { + if (!UNDEF_P(memo.r)) { memo.v = rb_rational_plus(memo.r, memo.v); } return memo.v; @@ -4588,13 +4891,13 @@ uniq_iter(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) * %w[a b c c b a a b c].uniq # => ["a", "b", "c"] * [0, 1, 2, 2, 1, 0, 0, 1, 2].uniq # => [0, 1, 2] * - * With a block, returns a new array containing only for which the block + * With a block, returns a new array containing elements only for which the block * returns a unique value: * * a = [0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1] * a.uniq {|i| i.even? ? i : 0 } # => [0, 2, 4] * a = %w[a b c d e e d c b a a b c d e] - a.uniq {|c| c < 'c' } # => ["a", "c"] + * a.uniq {|c| c < 'c' } # => ["a", "c"] * */ @@ -4603,7 +4906,7 @@ enum_uniq(VALUE obj) { VALUE hash, ret; rb_block_call_func *const func = - rb_block_given_p() ? uniq_iter : uniq_func; + rb_block_given_p() ? uniq_iter : uniq_func; hash = rb_obj_hide(rb_hash_new()); rb_block_call(obj, id_each, 0, 0, func, hash); @@ -4649,103 +4952,107 @@ enum_compact(VALUE obj) /* * == What's Here * - * \Module \Enumerable provides methods that are useful to a collection class for: - * - {Querying}[#module-Enumerable-label-Methods+for+Querying] - * - {Fetching}[#module-Enumerable-label-Methods+for+Fetching] - * - {Searching}[#module-Enumerable-label-Methods+for+Searching] - * - {Sorting}[#module-Enumerable-label-Methods+for+Sorting] - * - {Iterating}[#module-Enumerable-label-Methods+for+Iterating] - * - {And more....}[#module-Enumerable-label-Other+Methods] + * Module \Enumerable provides methods that are useful to a collection class for: + * + * - {Querying}[rdoc-ref:Enumerable@Methods+for+Querying] + * - {Fetching}[rdoc-ref:Enumerable@Methods+for+Fetching] + * - {Searching and Filtering}[rdoc-ref:Enumerable@Methods+for+Searching+and+Filtering] + * - {Sorting}[rdoc-ref:Enumerable@Methods+for+Sorting] + * - {Iterating}[rdoc-ref:Enumerable@Methods+for+Iterating] + * - {And more....}[rdoc-ref:Enumerable@Other+Methods] * * === Methods for Querying * * These methods return information about the \Enumerable other than the elements themselves: * - * #include?, #member?:: Returns +true+ if self == object, +false+ otherwise. - * #all?:: Returns +true+ if all elements meet a specified criterion; +false+ otherwise. - * #any?:: Returns +true+ if any element meets a specified criterion; +false+ otherwise. - * #none?:: Returns +true+ if no element meets a specified criterion; +false+ otherwise. - * #one?:: Returns +true+ if exactly one element meets a specified criterion; +false+ otherwise. - * #count:: Returns the count of elements, - * based on an argument or block criterion, if given. - * #tally:: Returns a new \Hash containing the counts of occurrences of each element. + * - #member? (aliased as #include?): Returns +true+ if <tt>self == object</tt>, +false+ otherwise. + * - #all?: Returns +true+ if all elements meet a specified criterion; +false+ otherwise. + * - #any?: Returns +true+ if any element meets a specified criterion; +false+ otherwise. + * - #none?: Returns +true+ if no element meets a specified criterion; +false+ otherwise. + * - #one?: Returns +true+ if exactly one element meets a specified criterion; +false+ otherwise. + * - #count: Returns the count of elements, + * based on an argument or block criterion, if given. + * - #tally: Returns a new Hash containing the counts of occurrences of each element. * * === Methods for Fetching * * These methods return entries from the \Enumerable, without modifying it: * * <i>Leading, trailing, or all elements</i>: - * #entries, #to_a:: Returns all elements. - * #first:: Returns the first element or leading elements. - * #take:: Returns a specified number of leading elements. - * #drop:: Returns a specified number of trailing elements. - * #take_while:: Returns leading elements as specified by the given block. - * #drop_while:: Returns trailing elements as specified by the given block. + * + * - #to_a (aliased as #entries): Returns all elements. + * - #first: Returns the first element or leading elements. + * - #take: Returns a specified number of leading elements. + * - #drop: Returns a specified number of trailing elements. + * - #take_while: Returns leading elements as specified by the given block. + * - #drop_while: Returns trailing elements as specified by the given block. * * <i>Minimum and maximum value elements</i>: - * #min:: Returns the elements whose values are smallest among the elements, - * as determined by <tt><=></tt> or a given block. - * #max:: Returns the elements whose values are largest among the elements, - * as determined by <tt><=></tt> or a given block. - * #minmax:: Returns a 2-element \Array containing the smallest and largest elements. - * #min_by:: Returns the smallest element, as determined by the given block. - * #max_by:: Returns the largest element, as determined by the given block. - * #minmax_by:: Returns the smallest and largest elements, as determined by the given block. + * + * - #min: Returns the elements whose values are smallest among the elements, + * as determined by <tt>#<=></tt> or a given block. + * - #max: Returns the elements whose values are largest among the elements, + * as determined by <tt>#<=></tt> or a given block. + * - #minmax: Returns a 2-element Array containing the smallest and largest elements. + * - #min_by: Returns the smallest element, as determined by the given block. + * - #max_by: Returns the largest element, as determined by the given block. + * - #minmax_by: Returns the smallest and largest elements, as determined by the given block. * * <i>Groups, slices, and partitions</i>: - * #group_by:: Returns a \Hash that partitions the elements into groups. - * #partition:: Returns elements partitioned into two new Arrays, as determined by the given block. - * #slice_after:: Returns a new \Enumerator whose entries are a partition of +self+, - based either on a given +object+ or a given block. - * #slice_before:: Returns a new \Enumerator whose entries are a partition of +self+, - based either on a given +object+ or a given block. - * #slice_when:: Returns a new \Enumerator whose entries are a partition of +self+ - based on the given block. - * #chunk:: Returns elements organized into chunks as specified by the given block. - * #chunk_while:: Returns elements organized into chunks as specified by the given block. + * + * - #group_by: Returns a Hash that partitions the elements into groups. + * - #partition: Returns elements partitioned into two new Arrays, as determined by the given block. + * - #slice_after: Returns a new Enumerator whose entries are a partition of +self+, + * based either on a given +object+ or a given block. + * - #slice_before: Returns a new Enumerator whose entries are a partition of +self+, + * based either on a given +object+ or a given block. + * - #slice_when: Returns a new Enumerator whose entries are a partition of +self+ + * based on the given block. + * - #chunk: Returns elements organized into chunks as specified by the given block. + * - #chunk_while: Returns elements organized into chunks as specified by the given block. * * === Methods for Searching and Filtering * - * These methods return elements that meet a specified criterion. + * These methods return elements that meet a specified criterion: * - * #find, #detect:: Returns an element selected by the block. - * #find_all, #filter, #select:: Returns elements selected by the block. - * #find_index:: Returns the index of an element selected by a given object or block. - * #reject:: Returns elements not rejected by the block. - * #uniq:: Returns elements that are not duplicates. + * - #find (aliased as #detect): Returns an element selected by the block. + * - #find_all (aliased as #filter, #select): Returns elements selected by the block. + * - #find_index: Returns the index of an element selected by a given object or block. + * - #reject: Returns elements not rejected by the block. + * - #uniq: Returns elements that are not duplicates. * * === Methods for Sorting * - * These methods return elements in sorted order. + * These methods return elements in sorted order: * - * #sort:: Returns the elements, sorted by <tt><=></tt> or the given block. - * #sort_by:: Returns the elements, sorted by the given block. + * - #sort: Returns the elements, sorted by <tt>#<=></tt> or the given block. + * - #sort_by: Returns the elements, sorted by the given block. * * === Methods for Iterating * - * #each_entry:: Calls the block with each successive element - * (slightly different from #each). - * #each_with_index:: Calls the block with each successive element and its index. - * #each_with_object:: Calls the block with each successive element and a given object. - * #each_slice:: Calls the block with successive non-overlapping slices. - * #each_cons:: Calls the block with successive overlapping slices. - * (different from #each_slice). - * #reverse_each:: Calls the block with each successive element, in reverse order. + * - #each_entry: Calls the block with each successive element + * (slightly different from #each). + * - #each_with_index: Calls the block with each successive element and its index. + * - #each_with_object: Calls the block with each successive element and a given object. + * - #each_slice: Calls the block with successive non-overlapping slices. + * - #each_cons: Calls the block with successive overlapping slices. + * (different from #each_slice). + * - #reverse_each: Calls the block with each successive element, in reverse order. * * === Other Methods * - * #map, #collect:: Returns objects returned by the block. - * #filter_map:: Returns truthy objects returned by the block. - * #flat_map, #collect_concat:: Returns flattened objects returned by the block. - * #grep:: Returns elements selected by a given object - * or objects returned by a given block. - * #grep_v:: Returns elements selected by a given object - * or objects returned by a given block. - * #reduce, #inject:: Returns the object formed by combining all elements. - * #sum:: Returns the sum of the elements, using method +++. - * #zip:: Combines each element with elements from other enumerables; - * returns the n-tuples or calls the block with each. - * #cycle:: Calls the block with each element, cycling repeatedly. + * - #collect (aliased as #map): Returns objects returned by the block. + * - #filter_map: Returns truthy objects returned by the block. + * - #flat_map (aliased as #collect_concat): Returns flattened objects returned by the block. + * - #grep: Returns elements selected by a given object + * or objects returned by a given block. + * - #grep_v: Returns elements not selected by a given object + * or objects returned by a given block. + * - #inject (aliased as #reduce): Returns the object formed by combining all elements. + * - #sum: Returns the sum of the elements, using method <tt>+</tt>. + * - #zip: Combines each element with elements from other enumerables; + * returns the n-tuples or calls the block with each. + * - #cycle: Calls the block with each element, cycling repeatedly. * * == Usage * @@ -4777,26 +5084,118 @@ enum_compact(VALUE obj) * [1, 2] * nil * - * == \Enumerable in Ruby Core Classes - * Some Ruby classes include \Enumerable: + * == \Enumerable in Ruby Classes + * + * These Ruby core classes include (or extend) \Enumerable: + * + * - ARGF * - Array * - Dir + * - Enumerator + * - ENV (extends) * - Hash * - IO * - Range - * - Set * - Struct + * + * These Ruby standard library classes include \Enumerable: + * + * - CSV + * - CSV::Table + * - CSV::Row + * - Set + * * Virtually all methods in \Enumerable call method +#each+ in the including class: - * - <tt>Hash#each</tt> yields the next key-value pair as a 2-element \Array. - * - <tt>Struct#each</tt> yields the next name-value pair as a 2-element \Array. + * + * - <tt>Hash#each</tt> yields the next key-value pair as a 2-element Array. + * - <tt>Struct#each</tt> yields the next name-value pair as a 2-element Array. * - For the other classes above, +#each+ yields the next object from the collection. * * == About the Examples + * * The example code snippets for the \Enumerable methods: - * - Always show the use of one or more \Array-like classes (often \Array itself). - * - Sometimes show the use of a \Hash-like class. + * + * - Always show the use of one or more Array-like classes (often Array itself). + * - Sometimes show the use of a Hash-like class. * For some methods, though, the usage would not make sense, - * and so it is not shown. Example: #tally would find exactly one of each \Hash entry. + * and so it is not shown. Example: #tally would find exactly one of each Hash entry. + * + * == Extended Methods + * + * A Enumerable class may define extended methods. This section describes the standard + * behavior of extension methods for reference purposes. + * + * === #size + * + * \Enumerator has a #size method. + * It uses the size function argument passed to +Enumerator.new+. + * + * e = Enumerator.new(-> { 3 }) {|y| p y; y.yield :a; y.yield :b; y.yield :c; :z } + * p e.size #=> 3 + * p e.next #=> :a + * p e.next #=> :b + * p e.next #=> :c + * begin + * e.next + * rescue StopIteration + * p $!.result #=> :z + * end + * + * The result of the size function should represent the number of iterations + * (i.e., the number of times Enumerator::Yielder#yield is called). + * In the above example, the block calls #yield three times, and + * the size function, +-> { 3 }+, returns 3 accordingly. + * The result of the size function can be an integer, +Float::INFINITY+, + * or +nil+. + * An integer means the exact number of times #yield will be called, + * as shown above. + * +Float::INFINITY+ indicates an infinite number of #yield calls. + * +nil+ means the number of #yield calls is difficult or impossible to + * determine. + * + * Many iteration methods return an \Enumerator object with an + * appropriate size function if no block is given. + * + * Examples: + * + * ["a", "b", "c"].each.size #=> 3 + * {a: "x", b: "y", c: "z"}.each.size #=> 3 + * (0..20).to_a.permutation.size #=> 51090942171709440000 + * loop.size #=> Float::INFINITY + * (1..100).drop_while.size #=> nil # size depends on the block's behavior + * STDIN.each.size #=> nil # cannot be computed without consuming input + * File.open("/etc/resolv.conf").each.size #=> nil # cannot be computed without reading the file + * + * The behavior of #size for Range-based enumerators depends on the #begin element: + * + * - If the #begin element is an Integer, the #size method returns an Integer or +Float::INFINITY+. + * - If the #begin element is an object with a #succ method (other than Integer), #size returns +nil+. + * (Computing the size would require repeatedly calling #succ, which may be too slow.) + * - If the #begin element does not have a #succ method, #size raises a TypeError. + * + * Examples: + * + * (10..42).each.size #=> 33 + * (10..42.9).each.size #=> 33 (the #end element may be a non-integer numeric) + * (10..).each.size #=> Float::INFINITY + * ("a".."z").each.size #=> nil + * ("a"..).each.size #=> nil + * (1.0..9.0).each.size # raises TypeError (Float does not have #succ) + * (..10).each.size # raises TypeError (beginless range has nil as its #begin) + * + * The \Enumerable module itself does not define a #size method. + * A class that includes \Enumerable may define its own #size method. + * It is recommended that such a #size method be consistent with + * Enumerator#size. + * + * Array and Hash implement #size and return values consistent with + * Enumerator#size. + * IO and Dir do not define #size, which is also consistent because the + * corresponding enumerator's size function returns +nil+. + * + * However, it is not strictly required for a class's #size method to match Enumerator#size. + * For example, File#size returns the number of bytes in the file, not the number of lines. + * */ void |
