summaryrefslogtreecommitdiff
path: root/enum.c
diff options
context:
space:
mode:
Diffstat (limited to 'enum.c')
-rw-r--r--enum.c758
1 files changed, 548 insertions, 210 deletions
diff --git a/enum.c b/enum.c
index 8e89b603a6..765c093da7 100644
--- a/enum.c
+++ b/enum.c
@@ -127,7 +127,7 @@ static VALUE
enum_grep0(VALUE obj, VALUE pat, VALUE test)
{
VALUE ary = rb_ary_new();
- struct MEMO *memo = MEMO_NEW(pat, ary, test);
+ struct MEMO *memo = rb_imemo_memo_new(pat, ary, test);
rb_block_call_func_t fn;
if (rb_block_given_p()) {
fn = grep_iter_i;
@@ -317,21 +317,38 @@ enum_count(int argc, VALUE *argv, VALUE obj)
func = count_i;
}
- memo = MEMO_NEW(item, 0, 0);
+ memo = rb_imemo_memo_new(item, 0, 0);
rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
return imemo_count_value(memo);
}
+NORETURN(static void found(VALUE i, VALUE memop));
+static void
+found(VALUE i, VALUE memop)
+{
+ struct MEMO *memo = MEMO_CAST(memop);
+ MEMO_V1_SET(memo, i);
+ memo->u3.cnt = 1;
+ rb_iter_break();
+}
+
+static VALUE
+find_i_fast(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
+{
+ if (RTEST(rb_yield_values2(argc, argv))) {
+ ENUM_WANT_SVALUE();
+ found(i, memop);
+ }
+ return Qnil;
+}
+
static VALUE
find_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
{
ENUM_WANT_SVALUE();
if (RTEST(enum_yield(argc, i))) {
- struct MEMO *memo = MEMO_CAST(memop);
- MEMO_V1_SET(memo, i);
- memo->u3.cnt = 1;
- rb_iter_break();
+ found(i, memop);
}
return Qnil;
}
@@ -354,7 +371,7 @@ find_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
* {foo: 0, bar: 1, baz: 2}.find {|key, value| key.start_with?('b') } # => [:bar, 1]
* {foo: 0, bar: 1, baz: 2}.find(proc {[]}) {|key, value| key.start_with?('c') } # => []
*
- * With no block given, returns an \Enumerator.
+ * With no block given, returns an Enumerator.
*
*/
static VALUE
@@ -365,8 +382,11 @@ enum_find(int argc, VALUE *argv, VALUE obj)
if_none = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil;
RETURN_ENUMERATOR(obj, argc, argv);
- memo = MEMO_NEW(Qundef, 0, 0);
- rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo);
+ memo = rb_imemo_memo_new(Qundef, 0, 0);
+ if (rb_block_pair_yield_optimizable())
+ rb_block_call2(obj, id_each, 0, 0, find_i_fast, (VALUE)memo, RB_BLOCK_NO_USE_PACKED_ARGS);
+ else
+ rb_block_call2(obj, id_each, 0, 0, find_i, (VALUE)memo, RB_BLOCK_NO_USE_PACKED_ARGS);
if (memo->u3.cnt) {
return memo->v1;
}
@@ -424,7 +444,7 @@ find_index_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
* ['a', 'b', 'c', 'b'].find_index {|element| element.start_with?('b') } # => 1
* {foo: 0, bar: 1, baz: 2}.find_index {|key, value| value > 1 } # => 2
*
- * With no argument and no block given, returns an \Enumerator.
+ * With no argument and no block given, returns an Enumerator.
*
*/
@@ -447,7 +467,7 @@ enum_find_index(int argc, VALUE *argv, VALUE obj)
func = find_index_i;
}
- memo = MEMO_NEW(Qnil, condition_value, 0);
+ memo = rb_imemo_memo_new(Qnil, condition_value, 0);
rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
return memo->v1;
}
@@ -501,7 +521,7 @@ enum_size_over_p(VALUE obj, long n)
* a = {foo: 0, bar: 1, baz: 2}.select {|key, value| key.start_with?('b') }
* a # => {:bar=>1, :baz=>2}
*
- * With no block given, returns an \Enumerator.
+ * With no block given, returns an Enumerator.
*
* Related: #reject.
*/
@@ -543,7 +563,7 @@ filter_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
* (0..9).filter_map {|i| i * 2 if i.even? } # => [0, 4, 8, 12, 16]
* {foo: 0, bar: 1, baz: 2}.filter_map {|key, value| key if value.even? } # => [:foo, :baz]
*
- * When no block given, returns an \Enumerator.
+ * When no block given, returns an Enumerator.
*
*/
static VALUE
@@ -584,7 +604,7 @@ reject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
* (0..9).reject {|i| i * 2 if i.even? } # => [1, 3, 5, 7, 9]
* {foo: 0, bar: 1, baz: 2}.reject {|key, value| key if value.odd? } # => {:foo=>0, :baz=>2}
*
- * When no block given, returns an \Enumerator.
+ * When no block given, returns an Enumerator.
*
* Related: #select.
*/
@@ -631,7 +651,7 @@ collect_all(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
* (0..4).map {|i| i*i } # => [0, 1, 4, 9, 16]
* {foo: 0, bar: 1, baz: 2}.map {|key, value| value*2} # => [0, 2, 4]
*
- * With no block given, returns an \Enumerator.
+ * With no block given, returns an Enumerator.
*
*/
static VALUE
@@ -681,7 +701,7 @@ flat_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
* [[0, 1], [2, 3]].flat_map {|e| e + [100] } # => [0, 1, 100, 2, 3, 100]
* {foo: 0, bar: 1, baz: 2}.flat_map {|key, value| [key, value] } # => [:foo, 0, :bar, 1, :baz, 2]
*
- * With no block given, returns an \Enumerator.
+ * With no block given, returns an Enumerator.
*
* Alias: #collect_concat.
*/
@@ -870,134 +890,151 @@ ary_inject_op(VALUE ary, VALUE init, VALUE op)
/*
* call-seq:
- * inject(symbol) -> object
- * inject(initial_operand, symbol) -> object
- * inject {|memo, operand| ... } -> object
- * inject(initial_operand) {|memo, operand| ... } -> object
- *
- * Returns an object formed from operands via either:
+ * inject(symbol) -> object
+ * inject(initial_value, symbol) -> object
+ * inject {|memo, value| ... } -> object
+ * inject(initial_value) {|memo, value| ... } -> object
*
- * - A method named by +symbol+.
- * - A block to which each operand is passed.
- *
- * With method-name argument +symbol+,
- * combines operands using the method:
- *
- * # Sum, without initial_operand.
- * (1..4).inject(:+) # => 10
- * # Sum, with initial_operand.
- * (1..4).inject(10, :+) # => 20
+ * Returns the result of applying a reducer to an initial value and
+ * the first element of the Enumerable. It then takes the result and applies the
+ * function to it and the second element of the collection, and so on. The
+ * return value is the result returned by the final call to the function.
*
- * With a block, passes each operand to the block:
- *
- * # Sum of squares, without initial_operand.
- * (1..4).inject {|sum, n| sum + n*n } # => 30
- * # Sum of squares, with initial_operand.
- * (1..4).inject(2) {|sum, n| sum + n*n } # => 32
+ * You can think of
*
- * <b>Operands</b>
+ * [ a, b, c, d ].inject(i) { |r, v| fn(r, v) }
*
- * If argument +initial_operand+ is not given,
- * the operands for +inject+ are simply the elements of +self+.
- * Example calls and their operands:
+ * as being
*
- * - <tt>(1..4).inject(:+)</tt>:: <tt>[1, 2, 3, 4]</tt>.
- * - <tt>(1...4).inject(:+)</tt>:: <tt>[1, 2, 3]</tt>.
- * - <tt>('a'..'d').inject(:+)</tt>:: <tt>['a', 'b', 'c', 'd']</tt>.
- * - <tt>('a'...'d').inject(:+)</tt>:: <tt>['a', 'b', 'c']</tt>.
+ * fn(fn(fn(fn(i, a), b), c), d)
*
- * Examples with first operand (which is <tt>self.first</tt>) of various types:
+ * In a way the +inject+ function _injects_ the function
+ * between the elements of the enumerable.
*
- * # Integer.
- * (1..4).inject(:+) # => 10
- * # Float.
- * [1.0, 2, 3, 4].inject(:+) # => 10.0
- * # Character.
- * ('a'..'d').inject(:+) # => "abcd"
- * # Complex.
- * [Complex(1, 2), 3, 4].inject(:+) # => (8+2i)
+ * +inject+ is aliased as +reduce+. You use it when you want to
+ * _reduce_ a collection to a single value.
*
- * If argument +initial_operand+ is given,
- * the operands for +inject+ are that value plus the elements of +self+.
- * Example calls their operands:
+ * <b>The Calling Sequences</b>
*
- * - <tt>(1..4).inject(10, :+)</tt>:: <tt>[10, 1, 2, 3, 4]</tt>.
- * - <tt>(1...4).inject(10, :+)</tt>:: <tt>[10, 1, 2, 3]</tt>.
- * - <tt>('a'..'d').inject('e', :+)</tt>:: <tt>['e', 'a', 'b', 'c', 'd']</tt>.
- * - <tt>('a'...'d').inject('e', :+)</tt>:: <tt>['e', 'a', 'b', 'c']</tt>.
+ * Let's start with the most verbose:
*
- * Examples with +initial_operand+ of various types:
+ * enum.inject(initial_value) do |result, next_value|
+ * # do something with +result+ and +next_value+
+ * # the value returned by the block becomes the
+ * # value passed in to the next iteration
+ * # as +result+
+ * end
*
- * # Integer.
- * (1..4).inject(2, :+) # => 12
- * # Float.
- * (1..4).inject(2.0, :+) # => 12.0
- * # String.
- * ('a'..'d').inject('foo', :+) # => "fooabcd"
- * # Array.
- * %w[a b c].inject(['x'], :push) # => ["x", "a", "b", "c"]
- * # Complex.
- * (1..4).inject(Complex(2, 2), :+) # => (12+2i)
+ * For example:
*
- * <b>Combination by Given \Method</b>
+ * product = [ 2, 3, 4 ].inject(1) do |result, next_value|
+ * result * next_value
+ * end
+ * product #=> 24
*
- * If the method-name argument +symbol+ is given,
- * the operands are combined by that method:
+ * When this runs, the block is first called with +1+ (the initial value) and
+ * +2+ (the first element of the array). The block returns <tt>1*2</tt>, so on
+ * the next iteration the block is called with +2+ (the previous result) and
+ * +3+. The block returns +6+, and is called one last time with +6+ and +4+.
+ * The result of the block, +24+ becomes the value returned by +inject+. This
+ * code returns the product of the elements in the enumerable.
*
- * - The first and second operands are combined.
- * - That result is combined with the third operand.
- * - That result is combined with the fourth operand.
- * - And so on.
+ * <b>First Shortcut: Default Initial value</b>
*
- * The return value from +inject+ is the result of the last combination.
+ * In the case of the previous example, the initial value, +1+, wasn't really
+ * necessary: the calculation of the product of a list of numbers is self-contained.
*
- * This call to +inject+ computes the sum of the operands:
+ * In these circumstances, you can omit the +initial_value+ parameter. +inject+
+ * will then initially call the block with the first element of the collection
+ * as the +result+ parameter and the second element as the +next_value+.
*
- * (1..4).inject(:+) # => 10
+ * [ 2, 3, 4 ].inject do |result, next_value|
+ * result * next_value
+ * end
*
- * Examples with various methods:
+ * This shortcut is convenient, but can only be used when the block produces a result
+ * which can be passed back to it as a first parameter.
*
- * # Integer addition.
- * (1..4).inject(:+) # => 10
- * # Integer multiplication.
- * (1..4).inject(:*) # => 24
- * # Character range concatenation.
- * ('a'..'d').inject('', :+) # => "abcd"
- * # String array concatenation.
- * %w[foo bar baz].inject('', :+) # => "foobarbaz"
- * # Hash update.
- * h = [{foo: 0, bar: 1}, {baz: 2}, {bat: 3}].inject(:update)
- * h # => {:foo=>0, :bar=>1, :baz=>2, :bat=>3}
- * # Hash conversion to nested arrays.
- * h = {foo: 0, bar: 1}.inject([], :push)
- * h # => [[:foo, 0], [:bar, 1]]
+ * Here's an example where that's not the case: it returns a hash where the keys are words
+ * and the values are the number of occurrences of that word in the enumerable.
*
- * <b>Combination by Given Block</b>
+ * freqs = File.read("README.md")
+ * .scan(/\w{2,}/)
+ * .reduce(Hash.new(0)) do |counts, word|
+ * counts[word] += 1
+ * counts
+ * end
+ * freqs #=> {"Actions"=>4,
+ * "Status"=>5,
+ * "MinGW"=>3,
+ * "https"=>27,
+ * "github"=>10,
+ * "com"=>15, ...
*
- * If a block is given, the operands are passed to the block:
+ * Note that the last line of the block is just the word +counts+. This ensures the
+ * return value of the block is the result that's being calculated.
*
- * - The first call passes the first and second operands.
- * - The second call passes the result of the first call,
- * along with the third operand.
- * - The third call passes the result of the second call,
- * along with the fourth operand.
- * - And so on.
+ * <b>Second Shortcut: a Reducer function</b>
*
- * The return value from +inject+ is the return value from the last block call.
- *
- * This call to +inject+ gives a block
- * that writes the memo and element, and also sums the elements:
+ * A <i>reducer function</i> is a function that takes a partial result and the next value,
+ * returning the next partial result. The block that is given to +inject+ is a reducer.
*
- * (1..4).inject do |memo, element|
- * p "Memo: #{memo}; element: #{element}"
- * memo + element
- * end # => 10
+ * You can also write a reducer as a function and pass the name of that function
+ * (as a symbol) to +inject+. However, for this to work, the function
*
- * Output:
+ * 1. Must be defined on the type of the result value
+ * 2. Must accept a single parameter, the next value in the collection, and
+ * 3. Must return an updated result which will also implement the function.
+ *
+ * Here's an example that adds elements to a string. The two calls invoke the functions
+ * String#concat and String#+ on the result so far, passing it the next value.
+ *
+ * s = [ "cat", " ", "dog" ].inject("", :concat)
+ * s #=> "cat dog"
+ * s = [ "cat", " ", "dog" ].inject("The result is:", :+)
+ * s #=> "The result is: cat dog"
+ *
+ * Here's a more complex example when the result object maintains
+ * state of a different type to the enumerable elements.
+ *
+ * class Turtle
+ *
+ * def initialize
+ * @x = @y = 0
+ * end
+ *
+ * def move(dir)
+ * case dir
+ * when "n" then @y += 1
+ * when "s" then @y -= 1
+ * when "e" then @x += 1
+ * when "w" then @x -= 1
+ * end
+ * self
+ * end
+ * end
+ *
+ * position = "nnneesw".chars.reduce(Turtle.new, :move)
+ * position #=>> #<Turtle:0x00000001052f4698 @y=2, @x=1>
+ *
+ * <b>Third Shortcut: Reducer With no Initial Value</b>
+ *
+ * If your reducer returns a value that it can accept as a parameter, then you
+ * don't have to pass in an initial value. Here <tt>:*</tt> is the name of the
+ * _times_ function:
+ *
+ * product = [ 2, 3, 4 ].inject(:*)
+ * product # => 24
+ *
+ * String concatenation again:
*
- * "Memo: 1; element: 2"
- * "Memo: 3; element: 3"
- * "Memo: 6; element: 4"
+ * s = [ "cat", " ", "dog" ].inject(:+)
+ * s #=> "cat dog"
+ *
+ * And an example that converts a hash to an array of two-element subarrays.
+ *
+ * nested = {foo: 0, bar: 1}.inject([], :push)
+ * nested # => [[:foo, 0], [:bar, 1]]
*
*
*/
@@ -1047,7 +1084,7 @@ enum_inject(int argc, VALUE *argv, VALUE obj)
return ary_inject_op(obj, init, op);
}
- memo = MEMO_NEW(init, Qnil, op);
+ memo = rb_imemo_memo_new(init, Qnil, op);
rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
if (UNDEF_P(memo->v1)) return Qnil;
return memo->v1;
@@ -1105,7 +1142,7 @@ enum_partition(VALUE obj)
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
- memo = MEMO_NEW(rb_ary_new(), rb_ary_new(), 0);
+ memo = rb_imemo_memo_new(rb_ary_new(), rb_ary_new(), 0);
rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo);
return rb_assoc_new(memo->v1, memo->v2);
@@ -1178,14 +1215,15 @@ tally_up(st_data_t *group, st_data_t *value, st_data_t arg, int existing)
RB_OBJ_WRITTEN(hash, Qundef, tally);
}
*value = (st_data_t)tally;
- if (!SPECIAL_CONST_P(*group)) RB_OBJ_WRITTEN(hash, Qundef, *group);
return ST_CONTINUE;
}
static VALUE
rb_enum_tally_up(VALUE hash, VALUE group)
{
- rb_hash_stlike_update(hash, group, tally_up, (st_data_t)hash);
+ if (!rb_hash_stlike_update(hash, group, tally_up, (st_data_t)hash)) {
+ RB_OBJ_WRITTEN(hash, Qundef, group);
+ }
return hash;
}
@@ -1199,29 +1237,47 @@ tally_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
/*
* call-seq:
- * tally -> new_hash
- * tally(hash) -> hash
+ * tally(hash = {}) -> hash
*
- * Returns a hash containing the counts of equal elements:
+ * When argument +hash+ is not given,
+ * returns a new hash whose keys are the distinct elements in +self+;
+ * each integer value is the count of occurrences of each element:
*
- * - Each key is an element of +self+.
- * - Each value is the number elements equal to that key.
+ * %w[a b c b c a c b].tally # => {"a"=>2, "b"=>3, "c"=>3}
*
- * With no argument:
+ * When argument +hash+ is given,
+ * returns +hash+, possibly augmented; for each element +ele+ in +self+:
*
- * %w[a b c b c a c b].tally # => {"a"=>2, "b"=>3, "c"=>3}
+ * - Adds it as a key with a zero value if that key does not already exist:
+ *
+ * hash[ele] = 0 unless hash.include?(ele)
+ *
+ * - Increments the value of key +ele+:
+ *
+ * hash[ele] += 1
+ *
+ * This is useful for accumulating tallies across multiple enumerables:
*
- * With a hash argument, that hash is used for the tally (instead of a new hash),
- * and is returned;
- * this may be useful for accumulating tallies across multiple enumerables:
+ * h = {} # => {}
+ * %w[a c d b c a].tally(h) # => {"a"=>2, "c"=>2, "d"=>1, "b"=>1}
+ * %w[b a z].tally(h) # => {"a"=>3, "c"=>2, "d"=>1, "b"=>2, "z"=>1}
+ * %w[b a m].tally(h) # => {"a"=>4, "c"=>2, "d"=>1, "b"=>3, "z"=>1, "m"=>1}
*
- * hash = {}
- * hash = %w[a c d b c a].tally(hash)
- * hash # => {"a"=>2, "c"=>2, "d"=>1, "b"=>1}
- * hash = %w[b a z].tally(hash)
- * hash # => {"a"=>3, "c"=>2, "d"=>1, "b"=>2, "z"=>1}
- * hash = %w[b a m].tally(hash)
- * hash # => {"a"=>4, "c"=>2, "d"=>1, "b"=>3, "z"=>1, "m"=> 1}
+ * The key to be added or found for an element depends on the class of +self+;
+ * see {Enumerable in Ruby Classes}[rdoc-ref:Enumerable@Enumerable+in+Ruby+Classes].
+ *
+ * Examples:
+ *
+ * - Array (and certain array-like classes):
+ * the key is the element (as above).
+ * - Hash (and certain hash-like classes):
+ * the key is the 2-element array formed from the key-value pair:
+ *
+ * h = {} # => {}
+ * {foo: 'a', bar: 'b'}.tally(h) # => {[:foo, "a"]=>1, [:bar, "b"]=>1}
+ * {foo: 'c', bar: 'd'}.tally(h) # => {[:foo, "a"]=>1, [:bar, "b"]=>1, [:foo, "c"]=>1, [:bar, "d"]=>1}
+ * {foo: 'a', bar: 'b'}.tally(h) # => {[:foo, "a"]=>2, [:bar, "b"]=>2, [:foo, "c"]=>1, [:bar, "d"]=>1}
+ * {foo: 'c', bar: 'd'}.tally(h) # => {[:foo, "a"]=>2, [:bar, "b"]=>2, [:foo, "c"]=>2, [:bar, "d"]=>2}
*
*/
@@ -1289,7 +1345,7 @@ enum_first(int argc, VALUE *argv, VALUE obj)
return enum_take(obj, argv[0]);
}
else {
- memo = MEMO_NEW(Qnil, 0, 0);
+ memo = rb_imemo_memo_new(Qnil, 0, 0);
rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo);
return memo->v1;
}
@@ -1304,7 +1360,7 @@ enum_first(int argc, VALUE *argv, VALUE obj)
* The ordering of equal elements is indeterminate and may be unstable.
*
* With no block given, the sort compares
- * using the elements' own method <tt><=></tt>:
+ * using the elements' own method <tt>#<=></tt>:
*
* %w[b c a d].sort # => ["a", "b", "c", "d"]
* {foo: 0, bar: 1, baz: 2}.sort # => [[:bar, 1], [:baz, 2], [:foo, 0]]
@@ -1334,10 +1390,12 @@ enum_sort(VALUE obj)
}
#define SORT_BY_BUFSIZE 16
+#define SORT_BY_UNIFORMED(num, flo, fix) (((num&1)<<2)|((flo&1)<<1)|fix)
struct sort_by_data {
const VALUE ary;
const VALUE buf;
- long n;
+ uint8_t n;
+ uint8_t primitive_uniformed;
};
static VALUE
@@ -1358,6 +1416,11 @@ sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data))
rb_raise(rb_eRuntimeError, "sort_by reentered");
}
+ if (data->primitive_uniformed) {
+ data->primitive_uniformed &= SORT_BY_UNIFORMED((FIXNUM_P(v)) || (RB_FLOAT_TYPE_P(v)),
+ RB_FLOAT_TYPE_P(v),
+ FIXNUM_P(v));
+ }
RARRAY_ASET(data->buf, data->n*2, v);
RARRAY_ASET(data->buf, data->n*2+1, i);
data->n++;
@@ -1385,6 +1448,179 @@ sort_by_cmp(const void *ap, const void *bp, void *data)
return OPTIMIZED_CMP(a, b);
}
+
+/*
+ This is parts of uniform sort
+*/
+
+#define uless rb_uniform_is_less
+#define UNIFORM_SWAP(a,b)\
+ do{struct rb_uniform_sort_data tmp = a; a = b; b = tmp;} while(0)
+
+struct rb_uniform_sort_data {
+ VALUE v;
+ VALUE i;
+};
+
+static inline bool
+rb_uniform_is_less(VALUE a, VALUE b)
+{
+
+ if (FIXNUM_P(a) && FIXNUM_P(b)) {
+ return (SIGNED_VALUE)a < (SIGNED_VALUE)b;
+ }
+ else if (FIXNUM_P(a)) {
+ RUBY_ASSERT(RB_FLOAT_TYPE_P(b));
+ return rb_float_cmp(b, a) > 0;
+ }
+ else {
+ RUBY_ASSERT(RB_FLOAT_TYPE_P(a));
+ return rb_float_cmp(a, b) < 0;
+ }
+}
+
+static inline bool
+rb_uniform_is_larger(VALUE a, VALUE b)
+{
+
+ if (FIXNUM_P(a) && FIXNUM_P(b)) {
+ return (SIGNED_VALUE)a > (SIGNED_VALUE)b;
+ }
+ else if (FIXNUM_P(a)) {
+ RUBY_ASSERT(RB_FLOAT_TYPE_P(b));
+ return rb_float_cmp(b, a) < 0;
+ }
+ else {
+ RUBY_ASSERT(RB_FLOAT_TYPE_P(a));
+ return rb_float_cmp(a, b) > 0;
+ }
+}
+
+#define med3_val(a,b,c) (uless(a,b)?(uless(b,c)?b:uless(c,a)?a:c):(uless(c,b)?b:uless(a,c)?a:c))
+
+static void
+rb_uniform_insertionsort_2(struct rb_uniform_sort_data* ptr_begin,
+ struct rb_uniform_sort_data* ptr_end)
+{
+ if ((ptr_end - ptr_begin) < 2) return;
+ struct rb_uniform_sort_data tmp, *j, *k,
+ *index = ptr_begin+1;
+ for (; index < ptr_end; index++) {
+ tmp = *index;
+ j = k = index;
+ if (uless(tmp.v, ptr_begin->v)) {
+ while (ptr_begin < j) {
+ *j = *(--k);
+ j = k;
+ }
+ }
+ else {
+ while (uless(tmp.v, (--k)->v)) {
+ *j = *k;
+ j = k;
+ }
+ }
+ *j = tmp;
+ }
+}
+
+static inline void
+rb_uniform_heap_down_2(struct rb_uniform_sort_data* ptr_begin,
+ size_t offset, size_t len)
+{
+ size_t c;
+ struct rb_uniform_sort_data tmp = ptr_begin[offset];
+ while ((c = (offset<<1)+1) <= len) {
+ if (c < len && uless(ptr_begin[c].v, ptr_begin[c+1].v)) {
+ c++;
+ }
+ if (!uless(tmp.v, ptr_begin[c].v)) break;
+ ptr_begin[offset] = ptr_begin[c];
+ offset = c;
+ }
+ ptr_begin[offset] = tmp;
+}
+
+static void
+rb_uniform_heapsort_2(struct rb_uniform_sort_data* ptr_begin,
+ struct rb_uniform_sort_data* ptr_end)
+{
+ size_t n = ptr_end - ptr_begin;
+ if (n < 2) return;
+
+ for (size_t offset = n>>1; offset > 0;) {
+ rb_uniform_heap_down_2(ptr_begin, --offset, n-1);
+ }
+ for (size_t offset = n-1; offset > 0;) {
+ UNIFORM_SWAP(*ptr_begin, ptr_begin[offset]);
+ rb_uniform_heap_down_2(ptr_begin, 0, --offset);
+ }
+}
+
+
+static void
+rb_uniform_quicksort_intro_2(struct rb_uniform_sort_data* ptr_begin,
+ struct rb_uniform_sort_data* ptr_end, size_t d)
+{
+
+ if (ptr_end - ptr_begin <= 16) {
+ rb_uniform_insertionsort_2(ptr_begin, ptr_end);
+ return;
+ }
+ if (d == 0) {
+ rb_uniform_heapsort_2(ptr_begin, ptr_end);
+ return;
+ }
+
+ VALUE x = med3_val(ptr_begin->v,
+ ptr_begin[(ptr_end - ptr_begin)>>1].v,
+ ptr_end[-1].v);
+ struct rb_uniform_sort_data *i = ptr_begin;
+ struct rb_uniform_sort_data *j = ptr_end-1;
+
+ do {
+ while (uless(i->v, x)) i++;
+ while (uless(x, j->v)) j--;
+ if (i <= j) {
+ UNIFORM_SWAP(*i, *j);
+ i++;
+ j--;
+ }
+ } while (i <= j);
+ j++;
+ if (ptr_end - j > 1) rb_uniform_quicksort_intro_2(j, ptr_end, d-1);
+ if (i - ptr_begin > 1) rb_uniform_quicksort_intro_2(ptr_begin, i, d-1);
+}
+
+/**
+ * Direct primitive data compare sort. Implement with intro sort.
+ * @param[in] ptr_begin The begin address of target rb_ary's raw pointer.
+ * @param[in] ptr_end The end address of target rb_ary's raw pointer.
+**/
+static void
+rb_uniform_intro_sort_2(struct rb_uniform_sort_data* ptr_begin,
+ struct rb_uniform_sort_data* ptr_end)
+{
+ size_t n = ptr_end - ptr_begin;
+ size_t d = CHAR_BIT * sizeof(n) - nlz_intptr(n) - 1;
+ bool sorted_flag = true;
+
+ for (struct rb_uniform_sort_data* ptr = ptr_begin+1; ptr < ptr_end; ptr++) {
+ if (rb_uniform_is_larger((ptr-1)->v, (ptr)->v)) {
+ sorted_flag = false;
+ break;
+ }
+ }
+
+ if (sorted_flag) {
+ return;
+ }
+ rb_uniform_quicksort_intro_2(ptr_begin, ptr_end, d<<1);
+}
+
+#undef uless
+
+
/*
* call-seq:
* sort_by {|element| ... } -> array
@@ -1486,11 +1722,14 @@ enum_sort_by(VALUE obj)
RBASIC_CLEAR_CLASS(ary);
buf = rb_ary_hidden_new(SORT_BY_BUFSIZE*2);
rb_ary_store(buf, SORT_BY_BUFSIZE*2-1, Qnil);
- memo = MEMO_NEW(0, 0, 0);
+ memo = rb_imemo_memo_new(0, 0, 0);
data = (struct sort_by_data *)&memo->v1;
RB_OBJ_WRITE(memo, &data->ary, ary);
RB_OBJ_WRITE(memo, &data->buf, buf);
data->n = 0;
+ data->primitive_uniformed = SORT_BY_UNIFORMED((CMP_OPTIMIZABLE(FLOAT) && CMP_OPTIMIZABLE(INTEGER)),
+ CMP_OPTIMIZABLE(FLOAT),
+ CMP_OPTIMIZABLE(INTEGER));
rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo);
ary = data->ary;
buf = data->buf;
@@ -1499,9 +1738,16 @@ enum_sort_by(VALUE obj)
rb_ary_concat(ary, buf);
}
if (RARRAY_LEN(ary) > 2) {
- RARRAY_PTR_USE(ary, ptr,
- ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE),
- sort_by_cmp, (void *)ary));
+ if (data->primitive_uniformed) {
+ RARRAY_PTR_USE(ary, ptr,
+ rb_uniform_intro_sort_2((struct rb_uniform_sort_data*)ptr,
+ (struct rb_uniform_sort_data*)(ptr + RARRAY_LEN(ary))));
+ }
+ else {
+ RARRAY_PTR_USE(ary, ptr,
+ ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE),
+ sort_by_cmp, (void *)ary));
+ }
}
if (RBASIC(ary)->klass) {
rb_raise(rb_eRuntimeError, "sort_by reentered");
@@ -1517,7 +1763,10 @@ enum_sort_by(VALUE obj)
#define ENUMFUNC(name) argc ? name##_eqq : rb_block_given_p() ? name##_iter_i : name##_i
-#define MEMO_ENUM_NEW(v1) (rb_check_arity(argc, 0, 1), MEMO_NEW((v1), (argc ? *argv : 0), 0))
+#define ENUM_BLOCK_CALL(name) \
+ rb_block_call2(obj, id_each, 0, 0, ENUMFUNC(name), (VALUE)memo, rb_block_given_p() && rb_block_pair_yield_optimizable() ? RB_BLOCK_NO_USE_PACKED_ARGS : 0);
+
+#define MEMO_ENUM_NEW(v1) (rb_check_arity(argc, 0, 1), rb_imemo_memo_new((v1), (argc ? *argv : 0), 0))
#define DEFINE_ENUMFUNCS(name) \
static VALUE enum_##name##_func(VALUE result, struct MEMO *memo); \
@@ -1567,6 +1816,9 @@ DEFINE_ENUMFUNCS(all)
*
* Returns whether every element meets a given criterion.
*
+ * If +self+ has no element, returns +true+ and argument or block
+ * are not used.
+ *
* With no argument and no block,
* returns whether every element is truthy:
*
@@ -1607,7 +1859,7 @@ enum_all(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);
WARN_UNUSED_BLOCK(argc);
- rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)memo);
+ ENUM_BLOCK_CALL(all);
return memo->v1;
}
@@ -1628,6 +1880,9 @@ DEFINE_ENUMFUNCS(any)
*
* Returns whether any element meets a given criterion.
*
+ * If +self+ has no element, returns +false+ and argument or block
+ * are not used.
+ *
* With no argument and no block,
* returns whether any element is truthy:
*
@@ -1658,7 +1913,6 @@ DEFINE_ENUMFUNCS(any)
* {foo: 0, bar: 1, baz: 2}.any? {|key, value| value < 1 } # => true
* {foo: 0, bar: 1, baz: 2}.any? {|key, value| value < 0 } # => false
*
- *
* Related: #all?, #none?, #one?.
*/
@@ -1667,7 +1921,7 @@ enum_any(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo = MEMO_ENUM_NEW(Qfalse);
WARN_UNUSED_BLOCK(argc);
- rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)memo);
+ ENUM_BLOCK_CALL(any);
return memo->v1;
}
@@ -1956,7 +2210,7 @@ enum_one(int argc, VALUE *argv, VALUE obj)
VALUE result;
WARN_UNUSED_BLOCK(argc);
- rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)memo);
+ ENUM_BLOCK_CALL(one);
result = memo->v1;
if (UNDEF_P(result)) return Qfalse;
return result;
@@ -2017,7 +2271,7 @@ enum_none(int argc, VALUE *argv, VALUE obj)
struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);
WARN_UNUSED_BLOCK(argc);
- rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)memo);
+ ENUM_BLOCK_CALL(none);
return memo->v1;
}
@@ -2075,7 +2329,7 @@ min_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
* The ordering of equal elements is indeterminate and may be unstable.
*
* With no argument and no block, returns the minimum element,
- * using the elements' own method <tt><=></tt> for comparison:
+ * using the elements' own method <tt>#<=></tt> for comparison:
*
* (1..4).min # => 1
* (-4..-1).min # => -4
@@ -2197,7 +2451,7 @@ max_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
* The ordering of equal elements is indeterminate and may be unstable.
*
* With no argument and no block, returns the maximum element,
- * using the elements' own method <tt><=></tt> for comparison:
+ * using the elements' own method <tt>#<=></tt> for comparison:
*
* (1..4).max # => 4
* (-4..-1).max # => -1
@@ -2386,7 +2640,7 @@ minmax_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
* The ordering of equal elements is indeterminate and may be unstable.
*
* With no argument and no block, returns the minimum and maximum elements,
- * using the elements' own method <tt><=></tt> for comparison:
+ * using the elements' own method <tt>#<=></tt> for comparison:
*
* (1..4).minmax # => [1, 4]
* (-4..-1).minmax # => [-4, -1]
@@ -2500,7 +2754,7 @@ enum_min_by(int argc, VALUE *argv, VALUE obj)
if (argc && !NIL_P(num = argv[0]))
return rb_nmin_run(obj, num, 1, 0, 0);
- memo = MEMO_NEW(Qundef, Qnil, 0);
+ memo = rb_imemo_memo_new(Qundef, Qnil, 0);
rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo);
return memo->v2;
}
@@ -2574,7 +2828,7 @@ enum_max_by(int argc, VALUE *argv, VALUE obj)
if (argc && !NIL_P(num = argv[0]))
return rb_nmin_run(obj, num, 1, 1, 0);
- memo = MEMO_NEW(Qundef, Qnil, 0);
+ memo = rb_imemo_memo_new(Qundef, Qnil, 0);
rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo);
return memo->v2;
}
@@ -2725,20 +2979,19 @@ member_i(RB_BLOCK_CALL_FUNC_ARGLIST(iter, args))
static VALUE
enum_member(VALUE obj, VALUE val)
{
- struct MEMO *memo = MEMO_NEW(val, Qfalse, 0);
+ struct MEMO *memo = rb_imemo_memo_new(val, Qfalse, 0);
rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
return memo->v2;
}
static VALUE
-each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo))
+each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(_, index))
{
- struct MEMO *m = MEMO_CAST(memo);
- VALUE n = imemo_count_value(m);
+ struct vm_ifunc *ifunc = rb_current_ifunc();
+ ifunc->data = (const void *)rb_int_succ(index);
- imemo_count_up(m);
- return rb_yield_values(2, rb_enum_values_pack(argc, argv), n);
+ return rb_yield_values(2, rb_enum_values_pack(argc, argv), index);
}
/*
@@ -2746,7 +2999,8 @@ each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo))
* each_with_index(*args) {|element, i| ..... } -> self
* each_with_index(*args) -> enumerator
*
- * With a block given, calls the block with each element and its index;
+ * Invoke <tt>self.each</tt> with <tt>*args</tt>.
+ * With a block given, the block receives each element and its index;
* returns +self+:
*
* h = {}
@@ -2771,12 +3025,9 @@ each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo))
static VALUE
enum_each_with_index(int argc, VALUE *argv, VALUE obj)
{
- struct MEMO *memo;
-
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
- memo = MEMO_NEW(0, 0, 0);
- rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)memo);
+ rb_block_call(obj, id_each, argc, argv, each_with_index_i, INT2FIX(0));
return obj;
}
@@ -2980,7 +3231,7 @@ enum_each_slice(VALUE obj, VALUE n)
size = limit_by_enum_size(obj, size);
ary = rb_ary_new2(size);
arity = rb_block_arity();
- memo = MEMO_NEW(ary, dont_recycle_block_arg(arity), size);
+ memo = rb_imemo_memo_new(ary, dont_recycle_block_arg(arity), size);
rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo);
ary = memo->v1;
if (RARRAY_LEN(ary) > 0) rb_yield(ary);
@@ -3056,7 +3307,7 @@ enum_each_cons(VALUE obj, VALUE n)
RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_cons_size);
arity = rb_block_arity();
if (enum_size_over_p(obj, size)) return obj;
- memo = MEMO_NEW(rb_ary_new2(size), dont_recycle_block_arg(arity), size);
+ memo = rb_imemo_memo_new(rb_ary_new2(size), dont_recycle_block_arg(arity), size);
rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo);
return obj;
@@ -3285,7 +3536,7 @@ enum_zip(int argc, VALUE *argv, VALUE obj)
}
/* TODO: use NODE_DOT2 as memo(v, v, -) */
- memo = MEMO_NEW(result, args, 0);
+ memo = rb_imemo_memo_new(result, args, 0);
rb_block_call(obj, id_each, 0, 0, allary ? zip_ary : zip_i, (VALUE)memo);
return result;
@@ -3328,7 +3579,7 @@ enum_take(VALUE obj, VALUE n)
if (len == 0) return rb_ary_new2(0);
result = rb_ary_new2(len);
- memo = MEMO_NEW(result, 0, len);
+ memo = rb_imemo_memo_new(result, 0, len);
rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo);
return result;
}
@@ -3416,7 +3667,7 @@ enum_drop(VALUE obj, VALUE n)
}
result = rb_ary_new();
- memo = MEMO_NEW(result, 0, len);
+ memo = rb_imemo_memo_new(result, 0, len);
rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo);
return result;
}
@@ -3454,6 +3705,17 @@ drop_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
*
* With no block given, returns an Enumerator.
*
+ * e = (1..4).drop_while
+ * p e #=> #<Enumerator: 1..4:drop_while>
+ * i = e.next; p i; e.feed(i < 3) #=> 1
+ * i = e.next; p i; e.feed(i < 3) #=> 2
+ * i = e.next; p i; e.feed(i < 3) #=> 3
+ * begin
+ * e.next
+ * rescue StopIteration
+ * p $!.result #=> [3, 4]
+ * end
+ *
*/
static VALUE
@@ -3464,7 +3726,7 @@ enum_drop_while(VALUE obj)
RETURN_ENUMERATOR(obj, 0, 0);
result = rb_ary_new();
- memo = MEMO_NEW(result, 0, FALSE);
+ memo = rb_imemo_memo_new(result, 0, FALSE);
rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo);
return result;
}
@@ -3663,7 +3925,7 @@ chunk_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
* e.next # => [2, [6, 7, 8]]
* e.next # => [3, [9, 10]]
*
- * \Method +chunk+ is especially useful for an enumerable that is already sorted.
+ * Method +chunk+ is especially useful for an enumerable that is already sorted.
* This example counts words for each initial letter in a large array of words:
*
* # Get sorted words from a web page.
@@ -3684,7 +3946,7 @@ chunk_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
* ["F", 6860]
*
* You can use the special symbol <tt>:_alone</tt> to force an element
- * into its own separate chuck:
+ * into its own separate chunk:
*
* a = [0, 0, 1, 1]
* e = a.chunk{|i| i.even? ? :_alone : true }
@@ -4343,7 +4605,7 @@ struct enum_sum_memo {
static void
sum_iter_normalize_memo(struct enum_sum_memo *memo)
{
- assert(FIXABLE(memo->n));
+ RUBY_ASSERT(FIXABLE(memo->n));
memo->v = rb_fix_plus(LONG2FIX(memo->n), memo->v);
memo->n = 0;
@@ -4445,7 +4707,7 @@ sum_iter_Kahan_Babuska(VALUE i, struct enum_sum_memo *memo)
static void
sum_iter(VALUE i, struct enum_sum_memo *memo)
{
- assert(memo != NULL);
+ RUBY_ASSERT(memo != NULL);
if (memo->block_given) {
i = rb_yield(i);
}
@@ -4455,7 +4717,7 @@ sum_iter(VALUE i, struct enum_sum_memo *memo)
}
else switch (TYPE(memo->v)) {
default: sum_iter_some_value(i, memo); return;
- case T_FLOAT: sum_iter_Kahan_Babuska(i, memo); return;
+ case T_FLOAT:
case T_FIXNUM:
case T_BIGNUM:
case T_RATIONAL:
@@ -4496,8 +4758,8 @@ hash_sum_i(VALUE key, VALUE value, VALUE arg)
static void
hash_sum(VALUE hash, struct enum_sum_memo *memo)
{
- assert(RB_TYPE_P(hash, T_HASH));
- assert(memo != NULL);
+ RUBY_ASSERT(RB_TYPE_P(hash, T_HASH));
+ RUBY_ASSERT(memo != NULL);
rb_hash_foreach(hash, hash_sum_i, (VALUE)memo);
}
@@ -4629,13 +4891,13 @@ uniq_iter(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
* %w[a b c c b a a b c].uniq # => ["a", "b", "c"]
* [0, 1, 2, 2, 1, 0, 0, 1, 2].uniq # => [0, 1, 2]
*
- * With a block, returns a new array containing only for which the block
+ * With a block, returns a new array containing elements only for which the block
* returns a unique value:
*
* a = [0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1]
* a.uniq {|i| i.even? ? i : 0 } # => [0, 2, 4]
* a = %w[a b c d e e d c b a a b c d e]
- a.uniq {|c| c < 'c' } # => ["a", "c"]
+ * a.uniq {|c| c < 'c' } # => ["a", "c"]
*
*/
@@ -4690,11 +4952,11 @@ enum_compact(VALUE obj)
/*
* == What's Here
*
- * \Module \Enumerable provides methods that are useful to a collection class for:
+ * Module \Enumerable provides methods that are useful to a collection class for:
*
* - {Querying}[rdoc-ref:Enumerable@Methods+for+Querying]
* - {Fetching}[rdoc-ref:Enumerable@Methods+for+Fetching]
- * - {Searching}[rdoc-ref:Enumerable@Methods+for+Searching]
+ * - {Searching and Filtering}[rdoc-ref:Enumerable@Methods+for+Searching+and+Filtering]
* - {Sorting}[rdoc-ref:Enumerable@Methods+for+Sorting]
* - {Iterating}[rdoc-ref:Enumerable@Methods+for+Iterating]
* - {And more....}[rdoc-ref:Enumerable@Other+Methods]
@@ -4703,14 +4965,14 @@ enum_compact(VALUE obj)
*
* These methods return information about the \Enumerable other than the elements themselves:
*
- * - #include?, #member?: Returns +true+ if <tt>self == object</tt>, +false+ otherwise.
+ * - #member? (aliased as #include?): Returns +true+ if <tt>self == object</tt>, +false+ otherwise.
* - #all?: Returns +true+ if all elements meet a specified criterion; +false+ otherwise.
* - #any?: Returns +true+ if any element meets a specified criterion; +false+ otherwise.
* - #none?: Returns +true+ if no element meets a specified criterion; +false+ otherwise.
* - #one?: Returns +true+ if exactly one element meets a specified criterion; +false+ otherwise.
* - #count: Returns the count of elements,
* based on an argument or block criterion, if given.
- * - #tally: Returns a new \Hash containing the counts of occurrences of each element.
+ * - #tally: Returns a new Hash containing the counts of occurrences of each element.
*
* === Methods for Fetching
*
@@ -4718,7 +4980,7 @@ enum_compact(VALUE obj)
*
* <i>Leading, trailing, or all elements</i>:
*
- * - #entries, #to_a: Returns all elements.
+ * - #to_a (aliased as #entries): Returns all elements.
* - #first: Returns the first element or leading elements.
* - #take: Returns a specified number of leading elements.
* - #drop: Returns a specified number of trailing elements.
@@ -4728,24 +4990,24 @@ enum_compact(VALUE obj)
* <i>Minimum and maximum value elements</i>:
*
* - #min: Returns the elements whose values are smallest among the elements,
- * as determined by <tt><=></tt> or a given block.
+ * as determined by <tt>#<=></tt> or a given block.
* - #max: Returns the elements whose values are largest among the elements,
- * as determined by <tt><=></tt> or a given block.
- * - #minmax: Returns a 2-element \Array containing the smallest and largest elements.
+ * as determined by <tt>#<=></tt> or a given block.
+ * - #minmax: Returns a 2-element Array containing the smallest and largest elements.
* - #min_by: Returns the smallest element, as determined by the given block.
* - #max_by: Returns the largest element, as determined by the given block.
* - #minmax_by: Returns the smallest and largest elements, as determined by the given block.
*
* <i>Groups, slices, and partitions</i>:
*
- * - #group_by: Returns a \Hash that partitions the elements into groups.
+ * - #group_by: Returns a Hash that partitions the elements into groups.
* - #partition: Returns elements partitioned into two new Arrays, as determined by the given block.
- * - #slice_after: Returns a new \Enumerator whose entries are a partition of +self+,
- based either on a given +object+ or a given block.
- * - #slice_before: Returns a new \Enumerator whose entries are a partition of +self+,
- based either on a given +object+ or a given block.
- * - #slice_when: Returns a new \Enumerator whose entries are a partition of +self+
- based on the given block.
+ * - #slice_after: Returns a new Enumerator whose entries are a partition of +self+,
+ * based either on a given +object+ or a given block.
+ * - #slice_before: Returns a new Enumerator whose entries are a partition of +self+,
+ * based either on a given +object+ or a given block.
+ * - #slice_when: Returns a new Enumerator whose entries are a partition of +self+
+ * based on the given block.
* - #chunk: Returns elements organized into chunks as specified by the given block.
* - #chunk_while: Returns elements organized into chunks as specified by the given block.
*
@@ -4753,8 +5015,8 @@ enum_compact(VALUE obj)
*
* These methods return elements that meet a specified criterion:
*
- * - #find, #detect: Returns an element selected by the block.
- * - #find_all, #filter, #select: Returns elements selected by the block.
+ * - #find (aliased as #detect): Returns an element selected by the block.
+ * - #find_all (aliased as #filter, #select): Returns elements selected by the block.
* - #find_index: Returns the index of an element selected by a given object or block.
* - #reject: Returns elements not rejected by the block.
* - #uniq: Returns elements that are not duplicates.
@@ -4763,7 +5025,7 @@ enum_compact(VALUE obj)
*
* These methods return elements in sorted order:
*
- * - #sort: Returns the elements, sorted by <tt><=></tt> or the given block.
+ * - #sort: Returns the elements, sorted by <tt>#<=></tt> or the given block.
* - #sort_by: Returns the elements, sorted by the given block.
*
* === Methods for Iterating
@@ -4779,14 +5041,14 @@ enum_compact(VALUE obj)
*
* === Other Methods
*
- * - #map, #collect: Returns objects returned by the block.
+ * - #collect (aliased as #map): Returns objects returned by the block.
* - #filter_map: Returns truthy objects returned by the block.
- * - #flat_map, #collect_concat: Returns flattened objects returned by the block.
+ * - #flat_map (aliased as #collect_concat): Returns flattened objects returned by the block.
* - #grep: Returns elements selected by a given object
* or objects returned by a given block.
- * - #grep_v: Returns elements selected by a given object
+ * - #grep_v: Returns elements not selected by a given object
* or objects returned by a given block.
- * - #reduce, #inject: Returns the object formed by combining all elements.
+ * - #inject (aliased as #reduce): Returns the object formed by combining all elements.
* - #sum: Returns the sum of the elements, using method <tt>+</tt>.
* - #zip: Combines each element with elements from other enumerables;
* returns the n-tuples or calls the block with each.
@@ -4845,18 +5107,94 @@ enum_compact(VALUE obj)
*
* Virtually all methods in \Enumerable call method +#each+ in the including class:
*
- * - <tt>Hash#each</tt> yields the next key-value pair as a 2-element \Array.
- * - <tt>Struct#each</tt> yields the next name-value pair as a 2-element \Array.
+ * - <tt>Hash#each</tt> yields the next key-value pair as a 2-element Array.
+ * - <tt>Struct#each</tt> yields the next name-value pair as a 2-element Array.
* - For the other classes above, +#each+ yields the next object from the collection.
*
* == About the Examples
*
* The example code snippets for the \Enumerable methods:
*
- * - Always show the use of one or more \Array-like classes (often \Array itself).
- * - Sometimes show the use of a \Hash-like class.
+ * - Always show the use of one or more Array-like classes (often Array itself).
+ * - Sometimes show the use of a Hash-like class.
* For some methods, though, the usage would not make sense,
- * and so it is not shown. Example: #tally would find exactly one of each \Hash entry.
+ * and so it is not shown. Example: #tally would find exactly one of each Hash entry.
+ *
+ * == Extended Methods
+ *
+ * A Enumerable class may define extended methods. This section describes the standard
+ * behavior of extension methods for reference purposes.
+ *
+ * === #size
+ *
+ * \Enumerator has a #size method.
+ * It uses the size function argument passed to +Enumerator.new+.
+ *
+ * e = Enumerator.new(-> { 3 }) {|y| p y; y.yield :a; y.yield :b; y.yield :c; :z }
+ * p e.size #=> 3
+ * p e.next #=> :a
+ * p e.next #=> :b
+ * p e.next #=> :c
+ * begin
+ * e.next
+ * rescue StopIteration
+ * p $!.result #=> :z
+ * end
+ *
+ * The result of the size function should represent the number of iterations
+ * (i.e., the number of times Enumerator::Yielder#yield is called).
+ * In the above example, the block calls #yield three times, and
+ * the size function, +-> { 3 }+, returns 3 accordingly.
+ * The result of the size function can be an integer, +Float::INFINITY+,
+ * or +nil+.
+ * An integer means the exact number of times #yield will be called,
+ * as shown above.
+ * +Float::INFINITY+ indicates an infinite number of #yield calls.
+ * +nil+ means the number of #yield calls is difficult or impossible to
+ * determine.
+ *
+ * Many iteration methods return an \Enumerator object with an
+ * appropriate size function if no block is given.
+ *
+ * Examples:
+ *
+ * ["a", "b", "c"].each.size #=> 3
+ * {a: "x", b: "y", c: "z"}.each.size #=> 3
+ * (0..20).to_a.permutation.size #=> 51090942171709440000
+ * loop.size #=> Float::INFINITY
+ * (1..100).drop_while.size #=> nil # size depends on the block's behavior
+ * STDIN.each.size #=> nil # cannot be computed without consuming input
+ * File.open("/etc/resolv.conf").each.size #=> nil # cannot be computed without reading the file
+ *
+ * The behavior of #size for Range-based enumerators depends on the #begin element:
+ *
+ * - If the #begin element is an Integer, the #size method returns an Integer or +Float::INFINITY+.
+ * - If the #begin element is an object with a #succ method (other than Integer), #size returns +nil+.
+ * (Computing the size would require repeatedly calling #succ, which may be too slow.)
+ * - If the #begin element does not have a #succ method, #size raises a TypeError.
+ *
+ * Examples:
+ *
+ * (10..42).each.size #=> 33
+ * (10..42.9).each.size #=> 33 (the #end element may be a non-integer numeric)
+ * (10..).each.size #=> Float::INFINITY
+ * ("a".."z").each.size #=> nil
+ * ("a"..).each.size #=> nil
+ * (1.0..9.0).each.size # raises TypeError (Float does not have #succ)
+ * (..10).each.size # raises TypeError (beginless range has nil as its #begin)
+ *
+ * The \Enumerable module itself does not define a #size method.
+ * A class that includes \Enumerable may define its own #size method.
+ * It is recommended that such a #size method be consistent with
+ * Enumerator#size.
+ *
+ * Array and Hash implement #size and return values consistent with
+ * Enumerator#size.
+ * IO and Dir do not define #size, which is also consistent because the
+ * corresponding enumerator's size function returns +nil+.
+ *
+ * However, it is not strictly required for a class's #size method to match Enumerator#size.
+ * For example, File#size returns the number of bytes in the file, not the number of lines.
*
*/