summaryrefslogtreecommitdiff
path: root/complex.c
diff options
context:
space:
mode:
Diffstat (limited to 'complex.c')
-rw-r--r--complex.c2850
1 files changed, 2850 insertions, 0 deletions
diff --git a/complex.c b/complex.c
new file mode 100644
index 0000000000..85d724f273
--- /dev/null
+++ b/complex.c
@@ -0,0 +1,2850 @@
+/*
+ complex.c: Coded by Tadayoshi Funaba 2008-2012
+
+ This implementation is based on Keiju Ishitsuka's Complex library
+ which is written in ruby.
+*/
+
+#include "ruby/internal/config.h"
+
+#if defined _MSC_VER
+/* Microsoft Visual C does not define M_PI and others by default */
+# define _USE_MATH_DEFINES 1
+#endif
+
+#include <ctype.h>
+#include <math.h>
+
+#include "id.h"
+#include "internal.h"
+#include "internal/array.h"
+#include "internal/class.h"
+#include "internal/complex.h"
+#include "internal/math.h"
+#include "internal/numeric.h"
+#include "internal/object.h"
+#include "internal/rational.h"
+#include "internal/string.h"
+#include "ruby_assert.h"
+
+#define ZERO INT2FIX(0)
+#define ONE INT2FIX(1)
+#define TWO INT2FIX(2)
+#if USE_FLONUM
+#define RFLOAT_0 DBL2NUM(0)
+#else
+static VALUE RFLOAT_0;
+#endif
+
+VALUE rb_cComplex;
+
+static ID id_abs, id_arg,
+ id_denominator, id_numerator,
+ id_real_p, id_i_real, id_i_imag,
+ id_finite_p, id_infinite_p, id_rationalize,
+ id_PI;
+#define id_to_i idTo_i
+#define id_to_r idTo_r
+#define id_negate idUMinus
+#define id_expt idPow
+#define id_to_f idTo_f
+#define id_quo idQuo
+#define id_fdiv idFdiv
+
+#define fun1(n) \
+inline static VALUE \
+f_##n(VALUE x)\
+{\
+ return rb_funcall(x, id_##n, 0);\
+}
+
+#define fun2(n) \
+inline static VALUE \
+f_##n(VALUE x, VALUE y)\
+{\
+ return rb_funcall(x, id_##n, 1, y);\
+}
+
+#define PRESERVE_SIGNEDZERO
+
+inline static VALUE
+f_add(VALUE x, VALUE y)
+{
+ if (RB_INTEGER_TYPE_P(x) &&
+ LIKELY(rb_method_basic_definition_p(rb_cInteger, idPLUS))) {
+ if (FIXNUM_ZERO_P(x))
+ return y;
+ if (FIXNUM_ZERO_P(y))
+ return x;
+ return rb_int_plus(x, y);
+ }
+ else if (RB_FLOAT_TYPE_P(x) &&
+ LIKELY(rb_method_basic_definition_p(rb_cFloat, idPLUS))) {
+ if (FIXNUM_ZERO_P(y))
+ return x;
+ return rb_float_plus(x, y);
+ }
+ else if (RB_TYPE_P(x, T_RATIONAL) &&
+ LIKELY(rb_method_basic_definition_p(rb_cRational, idPLUS))) {
+ if (FIXNUM_ZERO_P(y))
+ return x;
+ return rb_rational_plus(x, y);
+ }
+
+ return rb_funcall(x, '+', 1, y);
+}
+
+inline static VALUE
+f_div(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y) && FIX2LONG(y) == 1)
+ return x;
+ return rb_funcall(x, '/', 1, y);
+}
+
+inline static int
+f_gt_p(VALUE x, VALUE y)
+{
+ if (RB_INTEGER_TYPE_P(x)) {
+ if (FIXNUM_P(x) && FIXNUM_P(y))
+ return (SIGNED_VALUE)x > (SIGNED_VALUE)y;
+ return RTEST(rb_int_gt(x, y));
+ }
+ else if (RB_FLOAT_TYPE_P(x))
+ return RTEST(rb_float_gt(x, y));
+ else if (RB_TYPE_P(x, T_RATIONAL)) {
+ int const cmp = rb_cmpint(rb_rational_cmp(x, y), x, y);
+ return cmp > 0;
+ }
+ return RTEST(rb_funcall(x, '>', 1, y));
+}
+
+inline static VALUE
+f_mul(VALUE x, VALUE y)
+{
+ if (RB_INTEGER_TYPE_P(x) &&
+ LIKELY(rb_method_basic_definition_p(rb_cInteger, idMULT))) {
+ if (FIXNUM_ZERO_P(y))
+ return ZERO;
+ if (FIXNUM_ZERO_P(x) && RB_INTEGER_TYPE_P(y))
+ return ZERO;
+ if (x == ONE) return y;
+ if (y == ONE) return x;
+ return rb_int_mul(x, y);
+ }
+ else if (RB_FLOAT_TYPE_P(x) &&
+ LIKELY(rb_method_basic_definition_p(rb_cFloat, idMULT))) {
+ if (y == ONE) return x;
+ return rb_float_mul(x, y);
+ }
+ else if (RB_TYPE_P(x, T_RATIONAL) &&
+ LIKELY(rb_method_basic_definition_p(rb_cRational, idMULT))) {
+ if (y == ONE) return x;
+ return rb_rational_mul(x, y);
+ }
+ else if (LIKELY(rb_method_basic_definition_p(CLASS_OF(x), idMULT))) {
+ if (y == ONE) return x;
+ }
+ return rb_funcall(x, '*', 1, y);
+}
+
+inline static VALUE
+f_sub(VALUE x, VALUE y)
+{
+ if (FIXNUM_ZERO_P(y) &&
+ LIKELY(rb_method_basic_definition_p(CLASS_OF(x), idMINUS))) {
+ return x;
+ }
+ return rb_funcall(x, '-', 1, y);
+}
+
+inline static VALUE
+f_abs(VALUE x)
+{
+ if (RB_INTEGER_TYPE_P(x)) {
+ return rb_int_abs(x);
+ }
+ else if (RB_FLOAT_TYPE_P(x)) {
+ return rb_float_abs(x);
+ }
+ else if (RB_TYPE_P(x, T_RATIONAL)) {
+ return rb_rational_abs(x);
+ }
+ else if (RB_TYPE_P(x, T_COMPLEX)) {
+ return rb_complex_abs(x);
+ }
+ return rb_funcall(x, id_abs, 0);
+}
+
+static VALUE numeric_arg(VALUE self);
+static VALUE float_arg(VALUE self);
+
+inline static VALUE
+f_arg(VALUE x)
+{
+ if (RB_INTEGER_TYPE_P(x)) {
+ return numeric_arg(x);
+ }
+ else if (RB_FLOAT_TYPE_P(x)) {
+ return float_arg(x);
+ }
+ else if (RB_TYPE_P(x, T_RATIONAL)) {
+ return numeric_arg(x);
+ }
+ else if (RB_TYPE_P(x, T_COMPLEX)) {
+ return rb_complex_arg(x);
+ }
+ return rb_funcall(x, id_arg, 0);
+}
+
+inline static VALUE
+f_numerator(VALUE x)
+{
+ if (RB_TYPE_P(x, T_RATIONAL)) {
+ return RRATIONAL(x)->num;
+ }
+ if (RB_FLOAT_TYPE_P(x)) {
+ return rb_float_numerator(x);
+ }
+ return x;
+}
+
+inline static VALUE
+f_denominator(VALUE x)
+{
+ if (RB_TYPE_P(x, T_RATIONAL)) {
+ return RRATIONAL(x)->den;
+ }
+ if (RB_FLOAT_TYPE_P(x)) {
+ return rb_float_denominator(x);
+ }
+ return INT2FIX(1);
+}
+
+inline static VALUE
+f_negate(VALUE x)
+{
+ if (RB_INTEGER_TYPE_P(x)) {
+ return rb_int_uminus(x);
+ }
+ else if (RB_FLOAT_TYPE_P(x)) {
+ return rb_float_uminus(x);
+ }
+ else if (RB_TYPE_P(x, T_RATIONAL)) {
+ return rb_rational_uminus(x);
+ }
+ else if (RB_TYPE_P(x, T_COMPLEX)) {
+ return rb_complex_uminus(x);
+ }
+ return rb_funcall(x, id_negate, 0);
+}
+
+static bool nucomp_real_p(VALUE self);
+
+static inline bool
+f_real_p(VALUE x)
+{
+ if (RB_INTEGER_TYPE_P(x)) {
+ return true;
+ }
+ else if (RB_FLOAT_TYPE_P(x)) {
+ return true;
+ }
+ else if (RB_TYPE_P(x, T_RATIONAL)) {
+ return true;
+ }
+ else if (RB_TYPE_P(x, T_COMPLEX)) {
+ return nucomp_real_p(x);
+ }
+ return rb_funcall(x, id_real_p, 0);
+}
+
+inline static VALUE
+f_to_i(VALUE x)
+{
+ if (RB_TYPE_P(x, T_STRING))
+ return rb_str_to_inum(x, 10, 0);
+ return rb_funcall(x, id_to_i, 0);
+}
+
+inline static VALUE
+f_to_f(VALUE x)
+{
+ if (RB_TYPE_P(x, T_STRING))
+ return DBL2NUM(rb_str_to_dbl(x, 0));
+ return rb_funcall(x, id_to_f, 0);
+}
+
+fun1(to_r)
+
+inline static int
+f_eqeq_p(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(x) && FIXNUM_P(y))
+ return x == y;
+ else if (RB_FLOAT_TYPE_P(x) || RB_FLOAT_TYPE_P(y))
+ return NUM2DBL(x) == NUM2DBL(y);
+ return (int)rb_equal(x, y);
+}
+
+fun2(expt)
+fun2(fdiv)
+
+static VALUE
+f_quo(VALUE x, VALUE y)
+{
+ if (RB_INTEGER_TYPE_P(x))
+ return rb_numeric_quo(x, y);
+ if (RB_FLOAT_TYPE_P(x))
+ return rb_float_div(x, y);
+ if (RB_TYPE_P(x, T_RATIONAL))
+ return rb_numeric_quo(x, y);
+
+ return rb_funcallv(x, id_quo, 1, &y);
+}
+
+inline static int
+f_negative_p(VALUE x)
+{
+ if (RB_INTEGER_TYPE_P(x))
+ return INT_NEGATIVE_P(x);
+ else if (RB_FLOAT_TYPE_P(x))
+ return RFLOAT_VALUE(x) < 0.0;
+ else if (RB_TYPE_P(x, T_RATIONAL))
+ return INT_NEGATIVE_P(RRATIONAL(x)->num);
+ return rb_num_negative_p(x);
+}
+
+#define f_positive_p(x) (!f_negative_p(x))
+
+inline static bool
+f_zero_p(VALUE x)
+{
+ if (RB_FLOAT_TYPE_P(x)) {
+ return FLOAT_ZERO_P(x);
+ }
+ else if (RB_INTEGER_TYPE_P(x)) {
+ return FIXNUM_ZERO_P(x);
+ }
+ else if (RB_TYPE_P(x, T_RATIONAL)) {
+ const VALUE num = RRATIONAL(x)->num;
+ return FIXNUM_ZERO_P(num);
+ }
+ return rb_equal(x, ZERO) != 0;
+}
+
+#define f_nonzero_p(x) (!f_zero_p(x))
+
+static inline bool
+always_finite_type_p(VALUE x)
+{
+ if (FIXNUM_P(x)) return true;
+ if (FLONUM_P(x)) return true; /* Infinity can't be a flonum */
+ return (RB_INTEGER_TYPE_P(x) || RB_TYPE_P(x, T_RATIONAL));
+}
+
+inline static int
+f_finite_p(VALUE x)
+{
+ if (always_finite_type_p(x)) {
+ return TRUE;
+ }
+ else if (RB_FLOAT_TYPE_P(x)) {
+ return isfinite(RFLOAT_VALUE(x));
+ }
+ return RTEST(rb_funcallv(x, id_finite_p, 0, 0));
+}
+
+inline static int
+f_infinite_p(VALUE x)
+{
+ if (always_finite_type_p(x)) {
+ return FALSE;
+ }
+ else if (RB_FLOAT_TYPE_P(x)) {
+ return isinf(RFLOAT_VALUE(x));
+ }
+ return RTEST(rb_funcallv(x, id_infinite_p, 0, 0));
+}
+
+inline static int
+f_kind_of_p(VALUE x, VALUE c)
+{
+ return (int)rb_obj_is_kind_of(x, c);
+}
+
+inline static int
+k_numeric_p(VALUE x)
+{
+ return f_kind_of_p(x, rb_cNumeric);
+}
+
+#define k_exact_p(x) (!RB_FLOAT_TYPE_P(x))
+
+#define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x))
+
+#define get_dat1(x) \
+ struct RComplex *dat = RCOMPLEX(x)
+
+#define get_dat2(x,y) \
+ struct RComplex *adat = RCOMPLEX(x), *bdat = RCOMPLEX(y)
+
+inline static VALUE
+nucomp_s_new_internal(VALUE klass, VALUE real, VALUE imag)
+{
+ NEWOBJ_OF(obj, struct RComplex, klass,
+ T_COMPLEX | (RGENGC_WB_PROTECTED_COMPLEX ? FL_WB_PROTECTED : 0), sizeof(struct RComplex), 0);
+
+ RCOMPLEX_SET_REAL(obj, real);
+ RCOMPLEX_SET_IMAG(obj, imag);
+ OBJ_FREEZE((VALUE)obj);
+
+ return (VALUE)obj;
+}
+
+static VALUE
+nucomp_s_alloc(VALUE klass)
+{
+ return nucomp_s_new_internal(klass, ZERO, ZERO);
+}
+
+inline static VALUE
+f_complex_new_bang1(VALUE klass, VALUE x)
+{
+ RUBY_ASSERT(!RB_TYPE_P(x, T_COMPLEX));
+ return nucomp_s_new_internal(klass, x, ZERO);
+}
+
+inline static VALUE
+f_complex_new_bang2(VALUE klass, VALUE x, VALUE y)
+{
+ RUBY_ASSERT(!RB_TYPE_P(x, T_COMPLEX));
+ RUBY_ASSERT(!RB_TYPE_P(y, T_COMPLEX));
+ return nucomp_s_new_internal(klass, x, y);
+}
+
+WARN_UNUSED_RESULT(inline static VALUE nucomp_real_check(VALUE num));
+inline static VALUE
+nucomp_real_check(VALUE num)
+{
+ if (!RB_INTEGER_TYPE_P(num) &&
+ !RB_FLOAT_TYPE_P(num) &&
+ !RB_TYPE_P(num, T_RATIONAL)) {
+ if (RB_TYPE_P(num, T_COMPLEX) && nucomp_real_p(num)) {
+ VALUE real = RCOMPLEX(num)->real;
+ RUBY_ASSERT(!RB_TYPE_P(real, T_COMPLEX));
+ return real;
+ }
+ if (!k_numeric_p(num) || !f_real_p(num))
+ rb_raise(rb_eTypeError, "not a real");
+ }
+ return num;
+}
+
+inline static VALUE
+nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE imag)
+{
+ int complex_r, complex_i;
+ complex_r = RB_TYPE_P(real, T_COMPLEX);
+ complex_i = RB_TYPE_P(imag, T_COMPLEX);
+ if (!complex_r && !complex_i) {
+ return nucomp_s_new_internal(klass, real, imag);
+ }
+ else if (!complex_r) {
+ get_dat1(imag);
+
+ return nucomp_s_new_internal(klass,
+ f_sub(real, dat->imag),
+ f_add(ZERO, dat->real));
+ }
+ else if (!complex_i) {
+ get_dat1(real);
+
+ return nucomp_s_new_internal(klass,
+ dat->real,
+ f_add(dat->imag, imag));
+ }
+ else {
+ get_dat2(real, imag);
+
+ return nucomp_s_new_internal(klass,
+ f_sub(adat->real, bdat->imag),
+ f_add(adat->imag, bdat->real));
+ }
+}
+
+/*
+ * call-seq:
+ * Complex.rect(real, imag = 0) -> complex
+ *
+ * Returns a new \Complex object formed from the arguments,
+ * each of which must be an instance of Numeric,
+ * or an instance of one of its subclasses:
+ * \Complex, Float, Integer, Rational;
+ * see {Rectangular Coordinates}[rdoc-ref:Complex@Rectangular+Coordinates]:
+ *
+ * Complex.rect(3) # => (3+0i)
+ * Complex.rect(3, Math::PI) # => (3+3.141592653589793i)
+ * Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)
+ *
+ * \Complex.rectangular is an alias for \Complex.rect.
+ */
+static VALUE
+nucomp_s_new(int argc, VALUE *argv, VALUE klass)
+{
+ VALUE real, imag;
+
+ switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
+ case 1:
+ real = nucomp_real_check(real);
+ imag = ZERO;
+ break;
+ default:
+ real = nucomp_real_check(real);
+ imag = nucomp_real_check(imag);
+ break;
+ }
+
+ return nucomp_s_new_internal(klass, real, imag);
+}
+
+inline static VALUE
+f_complex_new2(VALUE klass, VALUE x, VALUE y)
+{
+ if (RB_TYPE_P(x, T_COMPLEX)) {
+ get_dat1(x);
+ x = dat->real;
+ y = f_add(dat->imag, y);
+ }
+ return nucomp_s_canonicalize_internal(klass, x, y);
+}
+
+static VALUE nucomp_convert(VALUE klass, VALUE a1, VALUE a2, int raise);
+static VALUE nucomp_s_convert(int argc, VALUE *argv, VALUE klass);
+
+/*
+ * call-seq:
+ * Complex(real, imag = 0, exception: true) -> complex or nil
+ * Complex(s, exception: true) -> complex or nil
+ *
+ * Returns a new \Complex object if the arguments are valid;
+ * otherwise raises an exception if +exception+ is +true+;
+ * otherwise returns +nil+.
+ *
+ * With Numeric arguments +real+ and +imag+,
+ * returns <tt>Complex.rect(real, imag)</tt> if the arguments are valid.
+ *
+ * With string argument +s+, returns a new \Complex object if the argument is valid;
+ * the string may have:
+ *
+ * - One or two numeric substrings,
+ * each of which specifies a Complex, Float, Integer, Numeric, or Rational value,
+ * specifying {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates]:
+ *
+ * - Sign-separated real and imaginary numeric substrings
+ * (with trailing character <tt>'i'</tt>):
+ *
+ * Complex('1+2i') # => (1+2i)
+ * Complex('+1+2i') # => (1+2i)
+ * Complex('+1-2i') # => (1-2i)
+ * Complex('-1+2i') # => (-1+2i)
+ * Complex('-1-2i') # => (-1-2i)
+ *
+ * - Real-only numeric string (without trailing character <tt>'i'</tt>):
+ *
+ * Complex('1') # => (1+0i)
+ * Complex('+1') # => (1+0i)
+ * Complex('-1') # => (-1+0i)
+ *
+ * - Imaginary-only numeric string (with trailing character <tt>'i'</tt>):
+ *
+ * Complex('1i') # => (0+1i)
+ * Complex('+1i') # => (0+1i)
+ * Complex('-1i') # => (0-1i)
+ *
+ * - At-sign separated real and imaginary rational substrings,
+ * each of which specifies a Rational value,
+ * specifying {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
+ *
+ * Complex('1/2@3/4') # => (0.36584443443691045+0.34081938001166706i)
+ * Complex('+1/2@+3/4') # => (0.36584443443691045+0.34081938001166706i)
+ * Complex('+1/2@-3/4') # => (0.36584443443691045-0.34081938001166706i)
+ * Complex('-1/2@+3/4') # => (-0.36584443443691045-0.34081938001166706i)
+ * Complex('-1/2@-3/4') # => (-0.36584443443691045+0.34081938001166706i)
+ *
+ */
+static VALUE
+nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
+{
+ VALUE a1, a2, opts = Qnil;
+ int raise = TRUE;
+
+ if (rb_scan_args(argc, argv, "11:", &a1, &a2, &opts) == 1) {
+ a2 = Qundef;
+ }
+ if (!NIL_P(opts)) {
+ raise = rb_opts_exception_p(opts, raise);
+ }
+ if (argc > 0 && CLASS_OF(a1) == rb_cComplex && UNDEF_P(a2)) {
+ return a1;
+ }
+ return nucomp_convert(rb_cComplex, a1, a2, raise);
+}
+
+#define imp1(n) \
+inline static VALUE \
+m_##n##_bang(VALUE x)\
+{\
+ return rb_math_##n(x);\
+}
+
+imp1(cos)
+imp1(cosh)
+imp1(exp)
+
+static VALUE
+m_log_bang(VALUE x)
+{
+ return rb_math_log(1, &x);
+}
+
+imp1(sin)
+imp1(sinh)
+
+static VALUE
+m_cos(VALUE x)
+{
+ if (!RB_TYPE_P(x, T_COMPLEX))
+ return m_cos_bang(x);
+ {
+ get_dat1(x);
+ return f_complex_new2(rb_cComplex,
+ f_mul(m_cos_bang(dat->real),
+ m_cosh_bang(dat->imag)),
+ f_mul(f_negate(m_sin_bang(dat->real)),
+ m_sinh_bang(dat->imag)));
+ }
+}
+
+static VALUE
+m_sin(VALUE x)
+{
+ if (!RB_TYPE_P(x, T_COMPLEX))
+ return m_sin_bang(x);
+ {
+ get_dat1(x);
+ return f_complex_new2(rb_cComplex,
+ f_mul(m_sin_bang(dat->real),
+ m_cosh_bang(dat->imag)),
+ f_mul(m_cos_bang(dat->real),
+ m_sinh_bang(dat->imag)));
+ }
+}
+
+static VALUE
+f_complex_polar_real(VALUE klass, VALUE x, VALUE y)
+{
+ if (f_zero_p(x) || f_zero_p(y)) {
+ return nucomp_s_new_internal(klass, x, RFLOAT_0);
+ }
+ if (RB_FLOAT_TYPE_P(y)) {
+ const double arg = RFLOAT_VALUE(y);
+ if (arg == M_PI) {
+ x = f_negate(x);
+ y = RFLOAT_0;
+ }
+ else if (arg == M_PI_2) {
+ y = x;
+ x = RFLOAT_0;
+ }
+ else if (arg == M_PI_2+M_PI) {
+ y = f_negate(x);
+ x = RFLOAT_0;
+ }
+ else if (RB_FLOAT_TYPE_P(x)) {
+ const double abs = RFLOAT_VALUE(x);
+ const double real = abs * cos(arg), imag = abs * sin(arg);
+ x = DBL2NUM(real);
+ y = DBL2NUM(imag);
+ }
+ else {
+ const double ax = sin(arg), ay = cos(arg);
+ y = f_mul(x, DBL2NUM(ax));
+ x = f_mul(x, DBL2NUM(ay));
+ }
+ return nucomp_s_new_internal(klass, x, y);
+ }
+ return nucomp_s_canonicalize_internal(klass,
+ f_mul(x, m_cos(y)),
+ f_mul(x, m_sin(y)));
+}
+
+static VALUE
+f_complex_polar(VALUE klass, VALUE x, VALUE y)
+{
+ x = nucomp_real_check(x);
+ y = nucomp_real_check(y);
+ return f_complex_polar_real(klass, x, y);
+}
+
+#ifdef HAVE___COSPI
+# define cospi(x) __cospi(x)
+#else
+# define cospi(x) cos((x) * M_PI)
+#endif
+#ifdef HAVE___SINPI
+# define sinpi(x) __sinpi(x)
+#else
+# define sinpi(x) sin((x) * M_PI)
+#endif
+/* returns a Complex or Float of ang*PI-rotated abs */
+VALUE
+rb_dbl_complex_new_polar_pi(double abs, double ang)
+{
+ double fi;
+ const double fr = modf(ang, &fi);
+ int pos = fr == +0.5;
+
+ if (pos || fr == -0.5) {
+ if ((modf(fi / 2.0, &fi) != fr) ^ pos) abs = -abs;
+ return rb_complex_new(RFLOAT_0, DBL2NUM(abs));
+ }
+ else if (fr == 0.0) {
+ if (modf(fi / 2.0, &fi) != 0.0) abs = -abs;
+ return DBL2NUM(abs);
+ }
+ else {
+ const double real = abs * cospi(ang), imag = abs * sinpi(ang);
+ return rb_complex_new(DBL2NUM(real), DBL2NUM(imag));
+ }
+}
+
+/*
+ * call-seq:
+ * Complex.polar(abs, arg = 0) -> complex
+ *
+ * Returns a new \Complex object formed from the arguments,
+ * each of which must be an instance of Numeric,
+ * or an instance of one of its subclasses:
+ * \Complex, Float, Integer, Rational.
+ * Argument +arg+ is given in radians;
+ * see {Polar Coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
+ *
+ * Complex.polar(3) # => (3+0i)
+ * Complex.polar(3, 2.0) # => (-1.2484405096414273+2.727892280477045i)
+ * Complex.polar(-3, -2.0) # => (1.2484405096414273+2.727892280477045i)
+ *
+ */
+static VALUE
+nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
+{
+ VALUE abs, arg;
+
+ argc = rb_scan_args(argc, argv, "11", &abs, &arg);
+ abs = nucomp_real_check(abs);
+ if (argc == 2) {
+ arg = nucomp_real_check(arg);
+ }
+ else {
+ arg = ZERO;
+ }
+ return f_complex_polar_real(klass, abs, arg);
+}
+
+/*
+ * call-seq:
+ * real -> numeric
+ *
+ * Returns the real value for +self+:
+ *
+ * Complex.rect(7).real # => 7
+ * Complex.rect(9, -4).real # => 9
+ *
+ * If +self+ was created with
+ * {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates], the returned value
+ * is computed, and may be inexact:
+ *
+ * Complex.polar(1, Math::PI/4).real # => 0.7071067811865476 # Square root of 2.
+ *
+ */
+VALUE
+rb_complex_real(VALUE self)
+{
+ get_dat1(self);
+ return dat->real;
+}
+
+/*
+ * call-seq:
+ * imag -> numeric
+ *
+ * Returns the imaginary value for +self+:
+ *
+ * Complex.rect(7).imag # => 0
+ * Complex.rect(9, -4).imag # => -4
+ *
+ * If +self+ was created with
+ * {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates], the returned value
+ * is computed, and may be inexact:
+ *
+ * Complex.polar(1, Math::PI/4).imag # => 0.7071067811865476 # Square root of 2.
+ *
+ */
+VALUE
+rb_complex_imag(VALUE self)
+{
+ get_dat1(self);
+ return dat->imag;
+}
+
+/*
+ * call-seq:
+ * -self -> complex
+ *
+ * Returns +self+, negated, which is the negation of each of its parts:
+ *
+ * -Complex.rect(1, 2) # => (-1-2i)
+ * -Complex.rect(-1, -2) # => (1+2i)
+ *
+ */
+VALUE
+rb_complex_uminus(VALUE self)
+{
+ get_dat1(self);
+ return f_complex_new2(CLASS_OF(self),
+ f_negate(dat->real), f_negate(dat->imag));
+}
+
+/*
+ * call-seq:
+ * self + other -> numeric
+ *
+ * Returns the sum of +self+ and +other+:
+ *
+ * Complex(1, 2) + 0 # => (1+2i)
+ * Complex(1, 2) + 1 # => (2+2i)
+ * Complex(1, 2) + -1 # => (0+2i)
+ *
+ * Complex(1, 2) + 1.0 # => (2.0+2i)
+ *
+ * Complex(1, 2) + Complex(2, 1) # => (3+3i)
+ * Complex(1, 2) + Complex(2.0, 1.0) # => (3.0+3.0i)
+ *
+ * Complex(1, 2) + Rational(1, 1) # => ((2/1)+2i)
+ * Complex(1, 2) + Rational(1, 2) # => ((3/2)+2i)
+ *
+ * For a computation involving Floats, the result may be inexact (see Float#+):
+ *
+ * Complex(1, 2) + 3.14 # => (4.140000000000001+2i)
+ */
+VALUE
+rb_complex_plus(VALUE self, VALUE other)
+{
+ if (RB_TYPE_P(other, T_COMPLEX)) {
+ VALUE real, imag;
+
+ get_dat2(self, other);
+
+ real = f_add(adat->real, bdat->real);
+ imag = f_add(adat->imag, bdat->imag);
+
+ return f_complex_new2(CLASS_OF(self), real, imag);
+ }
+ if (k_numeric_p(other) && f_real_p(other)) {
+ get_dat1(self);
+
+ return f_complex_new2(CLASS_OF(self),
+ f_add(dat->real, other), dat->imag);
+ }
+ return rb_num_coerce_bin(self, other, '+');
+}
+
+/*
+ * call-seq:
+ * self - other -> complex
+ *
+ * Returns the difference of +self+ and +other+:
+ *
+ * Complex.rect(2, 3) - Complex.rect(2, 3) # => (0+0i)
+ * Complex.rect(900) - Complex.rect(1) # => (899+0i)
+ * Complex.rect(-2, 9) - Complex.rect(-9, 2) # => (7+7i)
+ * Complex.rect(9, 8) - 4 # => (5+8i)
+ * Complex.rect(20, 9) - 9.8 # => (10.2+9i)
+ *
+ */
+VALUE
+rb_complex_minus(VALUE self, VALUE other)
+{
+ if (RB_TYPE_P(other, T_COMPLEX)) {
+ VALUE real, imag;
+
+ get_dat2(self, other);
+
+ real = f_sub(adat->real, bdat->real);
+ imag = f_sub(adat->imag, bdat->imag);
+
+ return f_complex_new2(CLASS_OF(self), real, imag);
+ }
+ if (k_numeric_p(other) && f_real_p(other)) {
+ get_dat1(self);
+
+ return f_complex_new2(CLASS_OF(self),
+ f_sub(dat->real, other), dat->imag);
+ }
+ return rb_num_coerce_bin(self, other, '-');
+}
+
+static VALUE
+safe_mul(VALUE a, VALUE b, bool az, bool bz)
+{
+ double v;
+ if (!az && bz && RB_FLOAT_TYPE_P(a) && (v = RFLOAT_VALUE(a), !isnan(v))) {
+ a = signbit(v) ? DBL2NUM(-1.0) : DBL2NUM(1.0);
+ }
+ if (!bz && az && RB_FLOAT_TYPE_P(b) && (v = RFLOAT_VALUE(b), !isnan(v))) {
+ b = signbit(v) ? DBL2NUM(-1.0) : DBL2NUM(1.0);
+ }
+ return f_mul(a, b);
+}
+
+static void
+comp_mul(VALUE areal, VALUE aimag, VALUE breal, VALUE bimag, VALUE *real, VALUE *imag)
+{
+ bool arzero = f_zero_p(areal);
+ bool aizero = f_zero_p(aimag);
+ bool brzero = f_zero_p(breal);
+ bool bizero = f_zero_p(bimag);
+ *real = f_sub(safe_mul(areal, breal, arzero, brzero),
+ safe_mul(aimag, bimag, aizero, bizero));
+ *imag = f_add(safe_mul(areal, bimag, arzero, bizero),
+ safe_mul(aimag, breal, aizero, brzero));
+}
+
+/*
+ * call-seq:
+ * self * other -> numeric
+ *
+ * Returns the numeric product of +self+ and +other+:
+ *
+ * Complex.rect(9, 8) * 4 # => (36+32i)
+ * Complex.rect(20, 9) * 9.8 # => (196.0+88.2i)
+ * Complex.rect(2, 3) * Complex.rect(2, 3) # => (-5+12i)
+ * Complex.rect(900) * Complex.rect(1) # => (900+0i)
+ * Complex.rect(-2, 9) * Complex.rect(-9, 2) # => (0-85i)
+ * Complex.rect(9, 8) * Rational(2, 3) # => ((6/1)+(16/3)*i)
+ *
+ */
+VALUE
+rb_complex_mul(VALUE self, VALUE other)
+{
+ if (RB_TYPE_P(other, T_COMPLEX)) {
+ VALUE real, imag;
+ get_dat2(self, other);
+
+ comp_mul(adat->real, adat->imag, bdat->real, bdat->imag, &real, &imag);
+
+ return f_complex_new2(CLASS_OF(self), real, imag);
+ }
+ if (k_numeric_p(other) && f_real_p(other)) {
+ get_dat1(self);
+
+ return f_complex_new2(CLASS_OF(self),
+ f_mul(dat->real, other),
+ f_mul(dat->imag, other));
+ }
+ return rb_num_coerce_bin(self, other, '*');
+}
+
+inline static VALUE
+f_divide(VALUE self, VALUE other,
+ VALUE (*func)(VALUE, VALUE), ID id)
+{
+ if (RB_TYPE_P(other, T_COMPLEX)) {
+ VALUE r, n, x, y;
+ int flo;
+ get_dat2(self, other);
+
+ flo = (RB_FLOAT_TYPE_P(adat->real) || RB_FLOAT_TYPE_P(adat->imag) ||
+ RB_FLOAT_TYPE_P(bdat->real) || RB_FLOAT_TYPE_P(bdat->imag));
+
+ if (f_gt_p(f_abs(bdat->real), f_abs(bdat->imag))) {
+ r = (*func)(bdat->imag, bdat->real);
+ n = f_mul(bdat->real, f_add(ONE, f_mul(r, r)));
+ x = (*func)(f_add(adat->real, f_mul(adat->imag, r)), n);
+ y = (*func)(f_sub(adat->imag, f_mul(adat->real, r)), n);
+ }
+ else {
+ r = (*func)(bdat->real, bdat->imag);
+ n = f_mul(bdat->imag, f_add(ONE, f_mul(r, r)));
+ x = (*func)(f_add(f_mul(adat->real, r), adat->imag), n);
+ y = (*func)(f_sub(f_mul(adat->imag, r), adat->real), n);
+ }
+ if (!flo) {
+ x = rb_rational_canonicalize(x);
+ y = rb_rational_canonicalize(y);
+ }
+ return f_complex_new2(CLASS_OF(self), x, y);
+ }
+ if (k_numeric_p(other) && f_real_p(other)) {
+ VALUE x, y;
+ get_dat1(self);
+ x = rb_rational_canonicalize((*func)(dat->real, other));
+ y = rb_rational_canonicalize((*func)(dat->imag, other));
+ return f_complex_new2(CLASS_OF(self), x, y);
+ }
+ return rb_num_coerce_bin(self, other, id);
+}
+
+#define rb_raise_zerodiv() rb_raise(rb_eZeroDivError, "divided by 0")
+
+/*
+ * call-seq:
+ * self / other -> complex
+ *
+ * Returns the quotient of +self+ and +other+:
+ *
+ * Complex.rect(2, 3) / Complex.rect(2, 3) # => (1+0i)
+ * Complex.rect(900) / Complex.rect(1) # => (900+0i)
+ * Complex.rect(-2, 9) / Complex.rect(-9, 2) # => ((36/85)-(77/85)*i)
+ * Complex.rect(9, 8) / 4 # => ((9/4)+2i)
+ * Complex.rect(20, 9) / 9.8 # => (2.0408163265306123+0.9183673469387754i)
+ *
+ */
+VALUE
+rb_complex_div(VALUE self, VALUE other)
+{
+ return f_divide(self, other, f_quo, id_quo);
+}
+
+#define nucomp_quo rb_complex_div
+
+/*
+ * call-seq:
+ * fdiv(numeric) -> new_complex
+ *
+ * Returns <tt>Complex.rect(self.real/numeric, self.imag/numeric)</tt>:
+ *
+ * Complex.rect(11, 22).fdiv(3) # => (3.6666666666666665+7.333333333333333i)
+ *
+ */
+static VALUE
+nucomp_fdiv(VALUE self, VALUE other)
+{
+ return f_divide(self, other, f_fdiv, id_fdiv);
+}
+
+inline static VALUE
+f_reciprocal(VALUE x)
+{
+ return f_quo(ONE, x);
+}
+
+static VALUE
+zero_for(VALUE x)
+{
+ if (RB_FLOAT_TYPE_P(x))
+ return DBL2NUM(0);
+ if (RB_TYPE_P(x, T_RATIONAL))
+ return rb_rational_new(INT2FIX(0), INT2FIX(1));
+
+ return INT2FIX(0);
+}
+
+static VALUE
+complex_pow_for_special_angle(VALUE self, VALUE other)
+{
+ if (!rb_integer_type_p(other)) {
+ return Qundef;
+ }
+
+ get_dat1(self);
+ VALUE x = Qundef;
+ int dir;
+ if (f_zero_p(dat->imag)) {
+ x = dat->real;
+ dir = 0;
+ }
+ else if (f_zero_p(dat->real)) {
+ x = dat->imag;
+ dir = 2;
+ }
+ else if (f_eqeq_p(dat->real, dat->imag)) {
+ x = dat->real;
+ dir = 1;
+ }
+ else if (f_eqeq_p(dat->real, f_negate(dat->imag))) {
+ x = dat->imag;
+ dir = 3;
+ }
+ else {
+ dir = 0;
+ }
+
+ if (UNDEF_P(x)) return x;
+
+ if (f_negative_p(x)) {
+ x = f_negate(x);
+ dir += 4;
+ }
+
+ VALUE zx;
+ if (dir % 2 == 0) {
+ zx = rb_num_pow(x, other);
+ }
+ else {
+ zx = rb_num_pow(
+ rb_funcall(rb_int_mul(TWO, x), '*', 1, x),
+ rb_int_div(other, TWO)
+ );
+ if (rb_int_odd_p(other)) {
+ zx = rb_funcall(zx, '*', 1, x);
+ }
+ }
+ static const int dirs[][2] = {
+ {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}
+ };
+ int z_dir = FIX2INT(rb_int_modulo(rb_int_mul(INT2FIX(dir), other), INT2FIX(8)));
+
+ VALUE zr = Qfalse, zi = Qfalse;
+ switch (dirs[z_dir][0]) {
+ case 0: zr = zero_for(zx); break;
+ case 1: zr = zx; break;
+ case -1: zr = f_negate(zx); break;
+ }
+ switch (dirs[z_dir][1]) {
+ case 0: zi = zero_for(zx); break;
+ case 1: zi = zx; break;
+ case -1: zi = f_negate(zx); break;
+ }
+ return nucomp_s_new_internal(CLASS_OF(self), zr, zi);
+}
+
+
+/*
+ * call-seq:
+ * self ** exponent -> complex
+ *
+ * Returns +self+ raised to the power +exponent+:
+ *
+ * Complex.rect(0, 1) ** 2 # => (-1+0i)
+ * Complex.rect(-8) ** Rational(1, 3) # => (1.0000000000000002+1.7320508075688772i)
+ *
+ */
+VALUE
+rb_complex_pow(VALUE self, VALUE other)
+{
+ if (k_numeric_p(other) && k_exact_zero_p(other))
+ return f_complex_new_bang1(CLASS_OF(self), ONE);
+
+ if (RB_TYPE_P(other, T_RATIONAL) && RRATIONAL(other)->den == LONG2FIX(1))
+ other = RRATIONAL(other)->num; /* c14n */
+
+ if (RB_TYPE_P(other, T_COMPLEX)) {
+ get_dat1(other);
+
+ if (k_exact_zero_p(dat->imag))
+ other = dat->real; /* c14n */
+ }
+
+ if (other == ONE) {
+ get_dat1(self);
+ return nucomp_s_new_internal(CLASS_OF(self), dat->real, dat->imag);
+ }
+
+ VALUE result = complex_pow_for_special_angle(self, other);
+ if (!UNDEF_P(result)) return result;
+
+ if (RB_TYPE_P(other, T_COMPLEX)) {
+ VALUE r, theta, nr, ntheta;
+
+ get_dat1(other);
+
+ r = f_abs(self);
+ theta = f_arg(self);
+
+ nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
+ f_mul(dat->imag, theta)));
+ ntheta = f_add(f_mul(theta, dat->real),
+ f_mul(dat->imag, m_log_bang(r)));
+ return f_complex_polar(CLASS_OF(self), nr, ntheta);
+ }
+ if (FIXNUM_P(other)) {
+ long n = FIX2LONG(other);
+ if (n == 0) {
+ return nucomp_s_new_internal(CLASS_OF(self), ONE, ZERO);
+ }
+ if (n < 0) {
+ self = f_reciprocal(self);
+ other = rb_int_uminus(other);
+ n = -n;
+ }
+ {
+ get_dat1(self);
+ VALUE xr = dat->real, xi = dat->imag, zr = xr, zi = xi;
+
+ if (f_zero_p(xi)) {
+ zr = rb_num_pow(zr, other);
+ }
+ else if (f_zero_p(xr)) {
+ zi = rb_num_pow(zi, other);
+ if (n & 2) zi = f_negate(zi);
+ if (!(n & 1)) {
+ VALUE tmp = zr;
+ zr = zi;
+ zi = tmp;
+ }
+ }
+ else {
+ while (--n) {
+ long q, r;
+
+ for (; q = n / 2, r = n % 2, r == 0; n = q) {
+ VALUE tmp = f_sub(f_mul(xr, xr), f_mul(xi, xi));
+ xi = f_mul(f_mul(TWO, xr), xi);
+ xr = tmp;
+ }
+ comp_mul(zr, zi, xr, xi, &zr, &zi);
+ }
+ }
+ return nucomp_s_new_internal(CLASS_OF(self), zr, zi);
+ }
+ }
+ if (k_numeric_p(other) && f_real_p(other)) {
+ VALUE r, theta;
+
+ if (RB_BIGNUM_TYPE_P(other))
+ rb_warn("in a**b, b may be too big");
+
+ r = f_abs(self);
+ theta = f_arg(self);
+
+ return f_complex_polar(CLASS_OF(self), f_expt(r, other),
+ f_mul(theta, other));
+ }
+ return rb_num_coerce_bin(self, other, id_expt);
+}
+
+/*
+ * call-seq:
+ * self == other -> true or false
+ *
+ * Returns whether both <tt>self.real == other.real</tt>
+ * and <tt>self.imag == other.imag</tt>:
+ *
+ * Complex.rect(2, 3) == Complex.rect(2.0, 3.0) # => true
+ *
+ */
+static VALUE
+nucomp_eqeq_p(VALUE self, VALUE other)
+{
+ if (RB_TYPE_P(other, T_COMPLEX)) {
+ get_dat2(self, other);
+
+ return RBOOL(f_eqeq_p(adat->real, bdat->real) &&
+ f_eqeq_p(adat->imag, bdat->imag));
+ }
+ if (k_numeric_p(other) && f_real_p(other)) {
+ get_dat1(self);
+
+ return RBOOL(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
+ }
+ return RBOOL(f_eqeq_p(other, self));
+}
+
+static bool
+nucomp_real_p(VALUE self)
+{
+ get_dat1(self);
+ return f_zero_p(dat->imag);
+}
+
+/*
+ * call-seq:
+ * self <=> other -> -1, 0, 1, or nil
+ *
+ * Compares +self+ and +other+.
+ *
+ * Returns:
+ *
+ * - <tt>self.real <=> other.real</tt> if both of the following are true:
+ *
+ * - <tt>self.imag == 0</tt>.
+ * - <tt>other.imag == 0</tt> (always true if +other+ is numeric but not complex).
+ *
+ * - +nil+ otherwise.
+ *
+ * Examples:
+ *
+ * Complex.rect(2) <=> 3 # => -1
+ * Complex.rect(2) <=> 2 # => 0
+ * Complex.rect(2) <=> 1 # => 1
+ * Complex.rect(2, 1) <=> 1 # => nil # self.imag not zero.
+ * Complex.rect(1) <=> Complex.rect(1, 1) # => nil # object.imag not zero.
+ * Complex.rect(1) <=> 'Foo' # => nil # object.imag not defined.
+ *
+ * \Class \Complex includes module Comparable,
+ * each of whose methods uses Complex#<=> for comparison.
+ */
+static VALUE
+nucomp_cmp(VALUE self, VALUE other)
+{
+ if (!k_numeric_p(other)) {
+ return rb_num_coerce_cmp(self, other, idCmp);
+ }
+ if (!nucomp_real_p(self)) {
+ return Qnil;
+ }
+ if (RB_TYPE_P(other, T_COMPLEX)) {
+ if (nucomp_real_p(other)) {
+ get_dat2(self, other);
+ return rb_funcall(adat->real, idCmp, 1, bdat->real);
+ }
+ }
+ else {
+ get_dat1(self);
+ if (f_real_p(other)) {
+ return rb_funcall(dat->real, idCmp, 1, other);
+ }
+ else {
+ return rb_num_coerce_cmp(dat->real, other, idCmp);
+ }
+ }
+ return Qnil;
+}
+
+/* :nodoc: */
+static VALUE
+nucomp_coerce(VALUE self, VALUE other)
+{
+ if (RB_TYPE_P(other, T_COMPLEX))
+ return rb_assoc_new(other, self);
+ if (k_numeric_p(other) && f_real_p(other))
+ return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
+
+ rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE,
+ rb_obj_class(other), rb_obj_class(self));
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * abs -> float
+ *
+ * Returns the absolute value (magnitude) for +self+;
+ * see {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
+ *
+ * Complex.polar(-1, 0).abs # => 1.0
+ *
+ * If +self+ was created with
+ * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value
+ * is computed, and may be inexact:
+ *
+ * Complex.rectangular(1, 1).abs # => 1.4142135623730951 # The square root of 2.
+ *
+ */
+VALUE
+rb_complex_abs(VALUE self)
+{
+ get_dat1(self);
+
+ if (f_zero_p(dat->real)) {
+ VALUE a = f_abs(dat->imag);
+ if (RB_FLOAT_TYPE_P(dat->real) && !RB_FLOAT_TYPE_P(dat->imag))
+ a = f_to_f(a);
+ return a;
+ }
+ if (f_zero_p(dat->imag)) {
+ VALUE a = f_abs(dat->real);
+ if (!RB_FLOAT_TYPE_P(dat->real) && RB_FLOAT_TYPE_P(dat->imag))
+ a = f_to_f(a);
+ return a;
+ }
+ return rb_math_hypot(dat->real, dat->imag);
+}
+
+/*
+ * call-seq:
+ * abs2 -> float
+ *
+ * Returns square of the absolute value (magnitude) for +self+;
+ * see {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
+ *
+ * Complex.polar(2, 2).abs2 # => 4.0
+ *
+ * If +self+ was created with
+ * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value
+ * is computed, and may be inexact:
+ *
+ * Complex.rectangular(1.0/3, 1.0/3).abs2 # => 0.2222222222222222
+ *
+ */
+static VALUE
+nucomp_abs2(VALUE self)
+{
+ get_dat1(self);
+ return f_add(f_mul(dat->real, dat->real),
+ f_mul(dat->imag, dat->imag));
+}
+
+/*
+ * call-seq:
+ * arg -> float
+ *
+ * Returns the argument (angle) for +self+ in radians;
+ * see {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
+ *
+ * Complex.polar(3, Math::PI/2).arg # => 1.57079632679489660
+ *
+ * If +self+ was created with
+ * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value
+ * is computed, and may be inexact:
+ *
+ * Complex.polar(1, 1.0/3).arg # => 0.33333333333333326
+ *
+ */
+VALUE
+rb_complex_arg(VALUE self)
+{
+ get_dat1(self);
+ return rb_math_atan2(dat->imag, dat->real);
+}
+
+/*
+ * call-seq:
+ * rect -> array
+ *
+ * Returns the array <tt>[self.real, self.imag]</tt>:
+ *
+ * Complex.rect(1, 2).rect # => [1, 2]
+ *
+ * See {Rectangular Coordinates}[rdoc-ref:Complex@Rectangular+Coordinates].
+ *
+ * If +self+ was created with
+ * {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates], the returned value
+ * is computed, and may be inexact:
+ *
+ * Complex.polar(1.0, 1.0).rect # => [0.5403023058681398, 0.8414709848078965]
+ *
+ *
+ * Complex#rectangular is an alias for Complex#rect.
+ */
+static VALUE
+nucomp_rect(VALUE self)
+{
+ get_dat1(self);
+ return rb_assoc_new(dat->real, dat->imag);
+}
+
+/*
+ * call-seq:
+ * polar -> array
+ *
+ * Returns the array <tt>[self.abs, self.arg]</tt>:
+ *
+ * Complex.polar(1, 2).polar # => [1.0, 2.0]
+ *
+ * See {Polar Coordinates}[rdoc-ref:Complex@Polar+Coordinates].
+ *
+ * If +self+ was created with
+ * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value
+ * is computed, and may be inexact:
+ *
+ * Complex.rect(1, 1).polar # => [1.4142135623730951, 0.7853981633974483]
+ *
+ */
+static VALUE
+nucomp_polar(VALUE self)
+{
+ return rb_assoc_new(f_abs(self), f_arg(self));
+}
+
+/*
+ * call-seq:
+ * conj -> complex
+ *
+ * Returns the conjugate of +self+, <tt>Complex.rect(self.imag, self.real)</tt>:
+ *
+ * Complex.rect(1, 2).conj # => (1-2i)
+ *
+ */
+VALUE
+rb_complex_conjugate(VALUE self)
+{
+ get_dat1(self);
+ return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
+}
+
+/*
+ * call-seq:
+ * real? -> false
+ *
+ * Returns +false+; for compatibility with Numeric#real?.
+ */
+static VALUE
+nucomp_real_p_m(VALUE self)
+{
+ return Qfalse;
+}
+
+/*
+ * call-seq:
+ * denominator -> integer
+ *
+ * Returns the denominator of +self+, which is
+ * the {least common multiple}[https://en.wikipedia.org/wiki/Least_common_multiple]
+ * of <tt>self.real.denominator</tt> and <tt>self.imag.denominator</tt>:
+ *
+ * Complex.rect(Rational(1, 2), Rational(2, 3)).denominator # => 6
+ *
+ * Note that <tt>n.denominator</tt> of a non-rational numeric is +1+.
+ *
+ * Related: Complex#numerator.
+ */
+static VALUE
+nucomp_denominator(VALUE self)
+{
+ get_dat1(self);
+ return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
+}
+
+/*
+ * call-seq:
+ * numerator -> new_complex
+ *
+ * Returns the \Complex object created from the numerators
+ * of the real and imaginary parts of +self+,
+ * after converting each part to the
+ * {lowest common denominator}[https://en.wikipedia.org/wiki/Lowest_common_denominator]
+ * of the two:
+ *
+ * c = Complex.rect(Rational(2, 3), Rational(3, 4)) # => ((2/3)+(3/4)*i)
+ * c.numerator # => (8+9i)
+ *
+ * In this example, the lowest common denominator of the two parts is 12;
+ * the two converted parts may be thought of as \Rational(8, 12) and \Rational(9, 12),
+ * whose numerators, respectively, are 8 and 9;
+ * so the returned value of <tt>c.numerator</tt> is <tt>Complex.rect(8, 9)</tt>.
+ *
+ * Related: Complex#denominator.
+ */
+static VALUE
+nucomp_numerator(VALUE self)
+{
+ VALUE cd;
+
+ get_dat1(self);
+
+ cd = nucomp_denominator(self);
+ return f_complex_new2(CLASS_OF(self),
+ f_mul(f_numerator(dat->real),
+ f_div(cd, f_denominator(dat->real))),
+ f_mul(f_numerator(dat->imag),
+ f_div(cd, f_denominator(dat->imag))));
+}
+
+/* :nodoc: */
+st_index_t
+rb_complex_hash(VALUE self)
+{
+ st_index_t v, h[2];
+ VALUE n;
+
+ get_dat1(self);
+ n = rb_hash(dat->real);
+ h[0] = NUM2LONG(n);
+ n = rb_hash(dat->imag);
+ h[1] = NUM2LONG(n);
+ v = rb_memhash(h, sizeof(h));
+ return v;
+}
+
+/*
+ * :call-seq:
+ * hash -> integer
+ *
+ * Returns the integer hash value for +self+.
+ *
+ * Two \Complex objects created from the same values will have the same hash value
+ * (and will compare using #eql?):
+ *
+ * Complex.rect(1, 2).hash == Complex.rect(1, 2).hash # => true
+ *
+ */
+static VALUE
+nucomp_hash(VALUE self)
+{
+ return ST2FIX(rb_complex_hash(self));
+}
+
+/* :nodoc: */
+static VALUE
+nucomp_eql_p(VALUE self, VALUE other)
+{
+ if (RB_TYPE_P(other, T_COMPLEX)) {
+ get_dat2(self, other);
+
+ return RBOOL((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) &&
+ (CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) &&
+ f_eqeq_p(self, other));
+
+ }
+ return Qfalse;
+}
+
+inline static int
+f_signbit(VALUE x)
+{
+ if (RB_FLOAT_TYPE_P(x)) {
+ double f = RFLOAT_VALUE(x);
+ return !isnan(f) && signbit(f);
+ }
+ return f_negative_p(x);
+}
+
+inline static int
+f_tpositive_p(VALUE x)
+{
+ return !f_signbit(x);
+}
+
+static VALUE
+f_format(VALUE self, VALUE s, VALUE (*func)(VALUE))
+{
+ int impos;
+
+ get_dat1(self);
+
+ impos = f_tpositive_p(dat->imag);
+
+ rb_str_concat(s, (*func)(dat->real));
+ rb_str_cat2(s, !impos ? "-" : "+");
+
+ rb_str_concat(s, (*func)(f_abs(dat->imag)));
+ if (!rb_isdigit(RSTRING_PTR(s)[RSTRING_LEN(s) - 1]))
+ rb_str_cat2(s, "*");
+ rb_str_cat2(s, "i");
+
+ return s;
+}
+
+/*
+ * call-seq:
+ * to_s -> string
+ *
+ * Returns a string representation of +self+:
+ *
+ * Complex.rect(2).to_s # => "2+0i"
+ * Complex.rect(-8, 6).to_s # => "-8+6i"
+ * Complex.rect(0, Rational(1, 2)).to_s # => "0+1/2i"
+ * Complex.rect(0, Float::INFINITY).to_s # => "0+Infinity*i"
+ * Complex.rect(Float::NAN, Float::NAN).to_s # => "NaN+NaN*i"
+ *
+ */
+static VALUE
+nucomp_to_s(VALUE self)
+{
+ return f_format(self, rb_usascii_str_new2(""), rb_String);
+}
+
+/*
+ * call-seq:
+ * inspect -> string
+ *
+ * Returns a string representation of +self+:
+ *
+ * Complex.rect(2).inspect # => "(2+0i)"
+ * Complex.rect(-8, 6).inspect # => "(-8+6i)"
+ * Complex.rect(0, Rational(1, 2)).inspect # => "(0+(1/2)*i)"
+ * Complex.rect(0, Float::INFINITY).inspect # => "(0+Infinity*i)"
+ * Complex.rect(Float::NAN, Float::NAN).inspect # => "(NaN+NaN*i)"
+ *
+ */
+static VALUE
+nucomp_inspect(VALUE self)
+{
+ VALUE s;
+
+ s = rb_usascii_str_new2("(");
+ f_format(self, s, rb_inspect);
+ rb_str_cat2(s, ")");
+
+ return s;
+}
+
+#define FINITE_TYPE_P(v) (RB_INTEGER_TYPE_P(v) || RB_TYPE_P(v, T_RATIONAL))
+
+/*
+ * call-seq:
+ * finite? -> true or false
+ *
+ * Returns +true+ if both <tt>self.real.finite?</tt> and <tt>self.imag.finite?</tt>
+ * are true, +false+ otherwise:
+ *
+ * Complex.rect(1, 1).finite? # => true
+ * Complex.rect(Float::INFINITY, 0).finite? # => false
+ *
+ * Related: Numeric#finite?, Float#finite?.
+ */
+static VALUE
+rb_complex_finite_p(VALUE self)
+{
+ get_dat1(self);
+
+ return RBOOL(f_finite_p(dat->real) && f_finite_p(dat->imag));
+}
+
+/*
+ * call-seq:
+ * infinite? -> 1 or nil
+ *
+ * Returns +1+ if either <tt>self.real.infinite?</tt> or <tt>self.imag.infinite?</tt>
+ * is true, +nil+ otherwise:
+ *
+ * Complex.rect(Float::INFINITY, 0).infinite? # => 1
+ * Complex.rect(1, 1).infinite? # => nil
+ *
+ * Related: Numeric#infinite?, Float#infinite?.
+ */
+static VALUE
+rb_complex_infinite_p(VALUE self)
+{
+ get_dat1(self);
+
+ if (!f_infinite_p(dat->real) && !f_infinite_p(dat->imag)) {
+ return Qnil;
+ }
+ return ONE;
+}
+
+/* :nodoc: */
+static VALUE
+nucomp_dumper(VALUE self)
+{
+ return self;
+}
+
+/* :nodoc: */
+static VALUE
+nucomp_loader(VALUE self, VALUE a)
+{
+ get_dat1(self);
+
+ RCOMPLEX_SET_REAL(dat, rb_ivar_get(a, id_i_real));
+ RCOMPLEX_SET_IMAG(dat, rb_ivar_get(a, id_i_imag));
+ OBJ_FREEZE(self);
+
+ return self;
+}
+
+/* :nodoc: */
+static VALUE
+nucomp_marshal_dump(VALUE self)
+{
+ VALUE a;
+ get_dat1(self);
+
+ a = rb_assoc_new(dat->real, dat->imag);
+ rb_copy_generic_ivar(a, self);
+ return a;
+}
+
+/* :nodoc: */
+static VALUE
+nucomp_marshal_load(VALUE self, VALUE a)
+{
+ Check_Type(a, T_ARRAY);
+ if (RARRAY_LEN(a) != 2)
+ rb_raise(rb_eArgError, "marshaled complex must have an array whose length is 2 but %ld", RARRAY_LEN(a));
+ rb_ivar_set(self, id_i_real, RARRAY_AREF(a, 0));
+ rb_ivar_set(self, id_i_imag, RARRAY_AREF(a, 1));
+ return self;
+}
+
+VALUE
+rb_complex_raw(VALUE x, VALUE y)
+{
+ return nucomp_s_new_internal(rb_cComplex, x, y);
+}
+
+VALUE
+rb_complex_new(VALUE x, VALUE y)
+{
+ return nucomp_s_canonicalize_internal(rb_cComplex, x, y);
+}
+
+VALUE
+rb_complex_new_polar(VALUE x, VALUE y)
+{
+ return f_complex_polar(rb_cComplex, x, y);
+}
+
+VALUE
+rb_Complex(VALUE x, VALUE y)
+{
+ VALUE a[2];
+ a[0] = x;
+ a[1] = y;
+ return nucomp_s_convert(2, a, rb_cComplex);
+}
+
+VALUE
+rb_dbl_complex_new(double real, double imag)
+{
+ return rb_complex_raw(DBL2NUM(real), DBL2NUM(imag));
+}
+
+/*
+ * call-seq:
+ * to_i -> integer
+ *
+ * Returns the value of <tt>self.real</tt> as an Integer, if possible:
+ *
+ * Complex.rect(1, 0).to_i # => 1
+ * Complex.rect(1, Rational(0, 1)).to_i # => 1
+ *
+ * Raises RangeError if <tt>self.imag</tt> is not exactly zero
+ * (either <tt>Integer(0)</tt> or <tt>Rational(0, n)</tt>).
+ */
+static VALUE
+nucomp_to_i(VALUE self)
+{
+ get_dat1(self);
+
+ if (!k_exact_zero_p(dat->imag)) {
+ rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer",
+ self);
+ }
+ return f_to_i(dat->real);
+}
+
+/*
+ * call-seq:
+ * to_f -> float
+ *
+ * Returns the value of <tt>self.real</tt> as a Float, if possible:
+ *
+ * Complex.rect(1, 0).to_f # => 1.0
+ * Complex.rect(1, Rational(0, 1)).to_f # => 1.0
+ *
+ * Raises RangeError if <tt>self.imag</tt> is not exactly zero
+ * (either <tt>Integer(0)</tt> or <tt>Rational(0, n)</tt>).
+ */
+static VALUE
+nucomp_to_f(VALUE self)
+{
+ get_dat1(self);
+
+ if (!k_exact_zero_p(dat->imag)) {
+ rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float",
+ self);
+ }
+ return f_to_f(dat->real);
+}
+
+/*
+ * call-seq:
+ * to_r -> rational
+ *
+ * Returns the value of <tt>self.real</tt> as a Rational, if possible:
+ *
+ * Complex.rect(1, 0).to_r # => (1/1)
+ * Complex.rect(1, Rational(0, 1)).to_r # => (1/1)
+ * Complex.rect(1, 0.0).to_r # => (1/1)
+ *
+ * Raises RangeError if <tt>self.imag</tt> is not exactly zero
+ * (either <tt>Integer(0)</tt> or <tt>Rational(0, n)</tt>)
+ * and <tt>self.imag.to_r</tt> is not exactly zero.
+ *
+ * Related: Complex#rationalize.
+ */
+static VALUE
+nucomp_to_r(VALUE self)
+{
+ get_dat1(self);
+
+ if (RB_FLOAT_TYPE_P(dat->imag) && FLOAT_ZERO_P(dat->imag)) {
+ /* Do nothing here */
+ }
+ else if (!k_exact_zero_p(dat->imag)) {
+ VALUE imag = rb_check_convert_type_with_id(dat->imag, T_RATIONAL, "Rational", idTo_r);
+ if (NIL_P(imag) || !k_exact_zero_p(imag)) {
+ rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
+ self);
+ }
+ }
+ return f_to_r(dat->real);
+}
+
+/*
+ * call-seq:
+ * rationalize(epsilon = nil) -> rational
+ *
+ * Returns a Rational object whose value is exactly or approximately
+ * equivalent to that of <tt>self.real</tt>.
+ *
+ * With no argument +epsilon+ given, returns a \Rational object
+ * whose value is exactly equal to that of <tt>self.real.rationalize</tt>:
+ *
+ * Complex.rect(1, 0).rationalize # => (1/1)
+ * Complex.rect(1, Rational(0, 1)).rationalize # => (1/1)
+ * Complex.rect(3.14159, 0).rationalize # => (314159/100000)
+ *
+ * With argument +epsilon+ given, returns a \Rational object
+ * whose value is exactly or approximately equal to that of <tt>self.real</tt>
+ * to the given precision:
+ *
+ * Complex.rect(3.14159, 0).rationalize(0.1) # => (16/5)
+ * Complex.rect(3.14159, 0).rationalize(0.01) # => (22/7)
+ * Complex.rect(3.14159, 0).rationalize(0.001) # => (201/64)
+ * Complex.rect(3.14159, 0).rationalize(0.0001) # => (333/106)
+ * Complex.rect(3.14159, 0).rationalize(0.00001) # => (355/113)
+ * Complex.rect(3.14159, 0).rationalize(0.000001) # => (7433/2366)
+ * Complex.rect(3.14159, 0).rationalize(0.0000001) # => (9208/2931)
+ * Complex.rect(3.14159, 0).rationalize(0.00000001) # => (47460/15107)
+ * Complex.rect(3.14159, 0).rationalize(0.000000001) # => (76149/24239)
+ * Complex.rect(3.14159, 0).rationalize(0.0000000001) # => (314159/100000)
+ * Complex.rect(3.14159, 0).rationalize(0.0) # => (3537115888337719/1125899906842624)
+ *
+ * Related: Complex#to_r.
+ */
+static VALUE
+nucomp_rationalize(int argc, VALUE *argv, VALUE self)
+{
+ get_dat1(self);
+
+ rb_check_arity(argc, 0, 1);
+
+ if (!k_exact_zero_p(dat->imag)) {
+ rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
+ self);
+ }
+ return rb_funcallv(dat->real, id_rationalize, argc, argv);
+}
+
+/*
+ * call-seq:
+ * to_c -> self
+ *
+ * Returns +self+.
+ */
+static VALUE
+nucomp_to_c(VALUE self)
+{
+ return self;
+}
+
+/*
+ * call-seq:
+ * to_c -> complex
+ *
+ * Returns +self+ as a Complex object.
+ */
+static VALUE
+numeric_to_c(VALUE self)
+{
+ return rb_complex_new1(self);
+}
+
+inline static int
+issign(int c)
+{
+ return (c == '-' || c == '+');
+}
+
+static int
+read_sign(const char **s,
+ char **b)
+{
+ int sign = '?';
+
+ if (issign(**s)) {
+ sign = **b = **s;
+ (*s)++;
+ (*b)++;
+ }
+ return sign;
+}
+
+inline static int
+isdecimal(int c)
+{
+ return isdigit((unsigned char)c);
+}
+
+static int
+read_digits(const char **s, int strict,
+ char **b)
+{
+ int us = 1;
+
+ if (!isdecimal(**s))
+ return 0;
+
+ while (isdecimal(**s) || **s == '_') {
+ if (**s == '_') {
+ if (us) {
+ if (strict) return 0;
+ break;
+ }
+ us = 1;
+ }
+ else {
+ **b = **s;
+ (*b)++;
+ us = 0;
+ }
+ (*s)++;
+ }
+ if (us)
+ do {
+ (*s)--;
+ } while (**s == '_');
+ return 1;
+}
+
+inline static int
+islettere(int c)
+{
+ return (c == 'e' || c == 'E');
+}
+
+static int
+read_num(const char **s, int strict,
+ char **b)
+{
+ if (**s != '.') {
+ if (!read_digits(s, strict, b))
+ return 0;
+ }
+
+ if (**s == '.') {
+ **b = **s;
+ (*s)++;
+ (*b)++;
+ if (!read_digits(s, strict, b)) {
+ (*b)--;
+ return 0;
+ }
+ }
+
+ if (islettere(**s)) {
+ **b = **s;
+ (*s)++;
+ (*b)++;
+ read_sign(s, b);
+ if (!read_digits(s, strict, b)) {
+ (*b)--;
+ return 0;
+ }
+ }
+ return 1;
+}
+
+inline static int
+read_den(const char **s, int strict,
+ char **b)
+{
+ if (!read_digits(s, strict, b))
+ return 0;
+ return 1;
+}
+
+static int
+read_rat_nos(const char **s, int strict,
+ char **b)
+{
+ if (!read_num(s, strict, b))
+ return 0;
+ if (**s == '/') {
+ **b = **s;
+ (*s)++;
+ (*b)++;
+ if (!read_den(s, strict, b)) {
+ (*b)--;
+ return 0;
+ }
+ }
+ return 1;
+}
+
+static int
+read_rat(const char **s, int strict,
+ char **b)
+{
+ read_sign(s, b);
+ if (!read_rat_nos(s, strict, b))
+ return 0;
+ return 1;
+}
+
+inline static int
+isimagunit(int c)
+{
+ return (c == 'i' || c == 'I' ||
+ c == 'j' || c == 'J');
+}
+
+static VALUE
+str2num(char *s)
+{
+ if (strchr(s, '/'))
+ return rb_cstr_to_rat(s, 0);
+ if (strpbrk(s, ".eE"))
+ return DBL2NUM(rb_cstr_to_dbl(s, 0));
+ return rb_cstr_to_inum(s, 10, 0);
+}
+
+static int
+read_comp(const char **s, int strict,
+ VALUE *ret, char **b)
+{
+ char *bb;
+ int sign;
+ VALUE num, num2;
+
+ bb = *b;
+
+ sign = read_sign(s, b);
+
+ if (isimagunit(**s)) {
+ (*s)++;
+ num = INT2FIX((sign == '-') ? -1 : + 1);
+ *ret = rb_complex_new2(ZERO, num);
+ return 1; /* e.g. "i" */
+ }
+
+ if (!read_rat_nos(s, strict, b)) {
+ **b = '\0';
+ num = str2num(bb);
+ *ret = rb_complex_new2(num, ZERO);
+ return 0; /* e.g. "-" */
+ }
+ **b = '\0';
+ num = str2num(bb);
+
+ if (isimagunit(**s)) {
+ (*s)++;
+ *ret = rb_complex_new2(ZERO, num);
+ return 1; /* e.g. "3i" */
+ }
+
+ if (**s == '@') {
+ int st;
+
+ (*s)++;
+ bb = *b;
+ st = read_rat(s, strict, b);
+ **b = '\0';
+ if (strlen(bb) < 1 ||
+ !isdecimal(*(bb + strlen(bb) - 1))) {
+ *ret = rb_complex_new2(num, ZERO);
+ return 0; /* e.g. "1@-" */
+ }
+ num2 = str2num(bb);
+ *ret = rb_complex_new_polar(num, num2);
+ if (!st)
+ return 0; /* e.g. "1@2." */
+ else
+ return 1; /* e.g. "1@2" */
+ }
+
+ if (issign(**s)) {
+ bb = *b;
+ sign = read_sign(s, b);
+ if (isimagunit(**s))
+ num2 = INT2FIX((sign == '-') ? -1 : + 1);
+ else {
+ if (!read_rat_nos(s, strict, b)) {
+ *ret = rb_complex_new2(num, ZERO);
+ return 0; /* e.g. "1+xi" */
+ }
+ **b = '\0';
+ num2 = str2num(bb);
+ }
+ if (!isimagunit(**s)) {
+ *ret = rb_complex_new2(num, ZERO);
+ return 0; /* e.g. "1+3x" */
+ }
+ (*s)++;
+ *ret = rb_complex_new2(num, num2);
+ return 1; /* e.g. "1+2i" */
+ }
+ /* !(@, - or +) */
+ {
+ *ret = rb_complex_new2(num, ZERO);
+ return 1; /* e.g. "3" */
+ }
+}
+
+inline static void
+skip_ws(const char **s)
+{
+ while (isspace((unsigned char)**s))
+ (*s)++;
+}
+
+static int
+parse_comp(const char *s, int strict, VALUE *num)
+{
+ char *buf, *b;
+ VALUE tmp;
+ int ret = 1;
+
+ buf = ALLOCV_N(char, tmp, strlen(s) + 1);
+ b = buf;
+
+ skip_ws(&s);
+ if (!read_comp(&s, strict, num, &b)) {
+ ret = 0;
+ }
+ else {
+ skip_ws(&s);
+
+ if (strict)
+ if (*s != '\0')
+ ret = 0;
+ }
+ ALLOCV_END(tmp);
+
+ return ret;
+}
+
+static VALUE
+string_to_c_strict(VALUE self, int raise)
+{
+ char *s;
+ VALUE num;
+
+ rb_must_asciicompat(self);
+
+ if (raise) {
+ s = StringValueCStr(self);
+ }
+ else if (!(s = rb_str_to_cstr(self))) {
+ return Qnil;
+ }
+
+ if (!parse_comp(s, TRUE, &num)) {
+ if (!raise) return Qnil;
+ rb_raise(rb_eArgError, "invalid value for convert(): %+"PRIsVALUE,
+ self);
+ }
+
+ return num;
+}
+
+/*
+ * call-seq:
+ * to_c -> complex
+ *
+ * Returns a Complex object:
+ * parses the leading substring of +self+
+ * to extract two numeric values that become the coordinates of the complex object.
+ *
+ * The substring is interpreted as containing
+ * either rectangular coordinates (real and imaginary parts)
+ * or polar coordinates (magnitude and angle parts),
+ * depending on an included or implied "separator" character:
+ *
+ * - <tt>'+'</tt>, <tt>'-'</tt>, or no separator: rectangular coordinates.
+ * - <tt>'@'</tt>: polar coordinates.
+ *
+ * <b>In Brief</b>
+ *
+ * In these examples, we use method Complex#rect to display rectangular coordinates,
+ * and method Complex#polar to display polar coordinates.
+ *
+ * # Rectangular coordinates.
+ *
+ * # Real-only: no separator; imaginary part is zero.
+ * '9'.to_c.rect # => [9, 0] # Integer.
+ * '-9'.to_c.rect # => [-9, 0] # Integer (negative).
+ * '2.5'.to_c.rect # => [2.5, 0] # Float.
+ * '1.23e-14'.to_c.rect # => [1.23e-14, 0] # Float with exponent.
+ * '2.5/1'.to_c.rect # => [(5/2), 0] # Rational.
+ *
+ * # Some things are ignored.
+ * 'foo1'.to_c.rect # => [0, 0] # Unparsed entire substring.
+ * '1foo'.to_c.rect # => [1, 0] # Unparsed trailing substring.
+ * ' 1 '.to_c.rect # => [1, 0] # Leading and trailing whitespace.
+ * *
+ * # Imaginary only: trailing 'i' required; real part is zero.
+ * '9i'.to_c.rect # => [0, 9]
+ * '-9i'.to_c.rect # => [0, -9]
+ * '2.5i'.to_c.rect # => [0, 2.5]
+ * '1.23e-14i'.to_c.rect # => [0, 1.23e-14]
+ * '2.5/1i'.to_c.rect # => [0, (5/2)]
+ *
+ * # Real and imaginary; '+' or '-' separator; trailing 'i' required.
+ * '2+3i'.to_c.rect # => [2, 3]
+ * '-2-3i'.to_c.rect # => [-2, -3]
+ * '2.5+3i'.to_c.rect # => [2.5, 3]
+ * '2.5+3/2i'.to_c.rect # => [2.5, (3/2)]
+ *
+ * # Polar coordinates; '@' separator; magnitude required.
+ * '1.0@0'.to_c.polar # => [1.0, 0.0]
+ * '1.0@'.to_c.polar # => [1.0, 0.0]
+ * "1.0@#{Math::PI}".to_c.polar # => [1.0, 3.141592653589793]
+ * "1.0@#{Math::PI/2}".to_c.polar # => [1.0, 1.5707963267948966]
+ *
+ * <b>Parsed Values</b>
+ *
+ * The parsing may be thought of as searching for numeric literals
+ * embedded in the substring.
+ *
+ * This section shows how the method parses numeric values from leading substrings.
+ * The examples show real-only or imaginary-only parsing;
+ * the parsing is the same for each part.
+ *
+ * '1foo'.to_c # => (1+0i) # Ignores trailing unparsed characters.
+ * ' 1 '.to_c # => (1+0i) # Ignores leading and trailing whitespace.
+ * 'x1'.to_c # => (0+0i) # Finds no leading numeric.
+ *
+ * # Integer literal embedded in the substring.
+ * '1'.to_c # => (1+0i)
+ * '-1'.to_c # => (-1+0i)
+ * '1i'.to_c # => (0+1i)
+ *
+ * # Integer literals that don't work.
+ * '0b100'.to_c # => (0+0i) # Not parsed as binary.
+ * '0o100'.to_c # => (0+0i) # Not parsed as octal.
+ * '0d100'.to_c # => (0+0i) # Not parsed as decimal.
+ * '0x100'.to_c # => (0+0i) # Not parsed as hexadecimal.
+ * '010'.to_c # => (10+0i) # Not parsed as octal.
+ *
+ * # Float literals:
+ * '3.14'.to_c # => (3.14+0i)
+ * '3.14i'.to_c # => (0+3.14i)
+ * '1.23e4'.to_c # => (12300.0+0i)
+ * '1.23e+4'.to_c # => (12300.0+0i)
+ * '1.23e-4'.to_c # => (0.000123+0i)
+ *
+ * # Rational literals:
+ * '1/2'.to_c # => ((1/2)+0i)
+ * '-1/2'.to_c # => ((-1/2)+0i)
+ * '1/2r'.to_c # => ((1/2)+0i)
+ * '-1/2r'.to_c # => ((-1/2)+0i)
+ *
+ * <b>Rectangular Coordinates</b>
+ *
+ * With separator <tt>'+'</tt> or <tt>'-'</tt>,
+ * or with no separator,
+ * interprets the values as rectangular coordinates: real and imaginary.
+ *
+ * With no separator, assigns a single value to either the real or the imaginary part:
+ *
+ * ''.to_c # => (0+0i) # Defaults to zero.
+ * '1'.to_c # => (1+0i) # Real (no trailing 'i').
+ * '1i'.to_c # => (0+1i) # Imaginary (trailing 'i').
+ * 'i'.to_c # => (0+1i) # Special case (imaginary 1).
+ *
+ * With separator <tt>'+'</tt>, both parts positive (or zero):
+ *
+ * # Without trailing 'i'.
+ * '+'.to_c # => (0+0i) # No values: defaults to zero.
+ * '+1'.to_c # => (1+0i) # Value after '+': real only.
+ * '1+'.to_c # => (1+0i) # Value before '+': real only.
+ * '2+1'.to_c # => (2+0i) # Values before and after '+': real and imaginary.
+ * # With trailing 'i'.
+ * '+1i'.to_c # => (0+1i) # Value after '+': imaginary only.
+ * '2+i'.to_c # => (2+1i) # Value before '+': real and imaginary 1.
+ * '2+1i'.to_c # => (2+1i) # Values before and after '+': real and imaginary.
+ *
+ * With separator <tt>'-'</tt>, negative imaginary part:
+ *
+ * # Without trailing 'i'.
+ * '-'.to_c # => (0+0i) # No values: defaults to zero.
+ * '-1'.to_c # => (-1+0i) # Value after '-': negative real, zero imaginary.
+ * '1-'.to_c # => (1+0i) # Value before '-': positive real, zero imaginary.
+ * '2-1'.to_c # => (2+0i) # Values before and after '-': positive real, zero imaginary.
+ * # With trailing 'i'.
+ * '-1i'.to_c # => (0-1i) # Value after '-': negative real, zero imaginary.
+ * '2-i'.to_c # => (2-1i) # Value before '-': positive real, negative imaginary.
+ * '2-1i'.to_c # => (2-1i) # Values before and after '-': positive real, negative imaginary.
+ *
+ * Note that the suffixed character <tt>'i'</tt>
+ * may instead be one of <tt>'I'</tt>, <tt>'j'</tt>, or <tt>'J'</tt>,
+ * with the same effect.
+ *
+ * <b>Polar Coordinates</b>
+ *
+ * With separator <tt>'@'</tt>)
+ * interprets the values as polar coordinates: magnitude and angle.
+ *
+ * '2@'.to_c.polar # => [2, 0.0] # Value before '@': magnitude only.
+ * # Values before and after '@': magnitude and angle.
+ * '2@1'.to_c.polar # => [2.0, 1.0]
+ * "1.0@#{Math::PI/2}".to_c # => (0.0+1i)
+ * "1.0@#{Math::PI}".to_c # => (-1+0.0i)
+ * # Magnitude not given: defaults to zero.
+ * '@'.to_c.polar # => [0, 0.0]
+ * '@1'.to_c.polar # => [0, 0.0]
+ *
+ * '1.0@0'.to_c # => (1+0.0i)
+ *
+ * Note that in all cases, the suffixed character <tt>'i'</tt>
+ * may instead be one of <tt>'I'</tt>, <tt>'j'</tt>, <tt>'J'</tt>,
+ * with the same effect.
+ *
+ * See {Converting to Non-String}[rdoc-ref:String@Converting+to+Non--5CString].
+ */
+static VALUE
+string_to_c(VALUE self)
+{
+ VALUE num;
+
+ rb_must_asciicompat(self);
+
+ (void)parse_comp(rb_str_fill_terminator(self, 1), FALSE, &num);
+
+ return num;
+}
+
+static VALUE
+to_complex(VALUE val)
+{
+ return rb_convert_type(val, T_COMPLEX, "Complex", "to_c");
+}
+
+static VALUE
+nucomp_convert(VALUE klass, VALUE a1, VALUE a2, int raise)
+{
+ if (NIL_P(a1) || NIL_P(a2)) {
+ if (!raise) return Qnil;
+ rb_raise(rb_eTypeError, "can't convert nil into Complex");
+ }
+
+ if (RB_TYPE_P(a1, T_STRING)) {
+ a1 = string_to_c_strict(a1, raise);
+ if (NIL_P(a1)) return Qnil;
+ }
+
+ if (RB_TYPE_P(a2, T_STRING)) {
+ a2 = string_to_c_strict(a2, raise);
+ if (NIL_P(a2)) return Qnil;
+ }
+
+ if (RB_TYPE_P(a1, T_COMPLEX)) {
+ {
+ get_dat1(a1);
+
+ if (k_exact_zero_p(dat->imag))
+ a1 = dat->real;
+ }
+ }
+
+ if (RB_TYPE_P(a2, T_COMPLEX)) {
+ {
+ get_dat1(a2);
+
+ if (k_exact_zero_p(dat->imag))
+ a2 = dat->real;
+ }
+ }
+
+ if (RB_TYPE_P(a1, T_COMPLEX)) {
+ if (UNDEF_P(a2) || (k_exact_zero_p(a2)))
+ return a1;
+ }
+
+ if (UNDEF_P(a2)) {
+ if (k_numeric_p(a1) && !f_real_p(a1))
+ return a1;
+ /* should raise exception for consistency */
+ if (!k_numeric_p(a1)) {
+ if (!raise) {
+ a1 = rb_protect(to_complex, a1, NULL);
+ rb_set_errinfo(Qnil);
+ return a1;
+ }
+ return to_complex(a1);
+ }
+ }
+ else {
+ if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
+ (!f_real_p(a1) || !f_real_p(a2)))
+ return f_add(a1,
+ f_mul(a2,
+ f_complex_new_bang2(rb_cComplex, ZERO, ONE)));
+ }
+
+ {
+ int argc;
+ VALUE argv2[2];
+ argv2[0] = a1;
+ if (UNDEF_P(a2)) {
+ argv2[1] = Qnil;
+ argc = 1;
+ }
+ else {
+ if (!raise && !RB_INTEGER_TYPE_P(a2) && !RB_FLOAT_TYPE_P(a2) && !RB_TYPE_P(a2, T_RATIONAL))
+ return Qnil;
+ argv2[1] = a2;
+ argc = 2;
+ }
+ return nucomp_s_new(argc, argv2, klass);
+ }
+}
+
+static VALUE
+nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
+{
+ VALUE a1, a2;
+
+ if (rb_scan_args(argc, argv, "11", &a1, &a2) == 1) {
+ a2 = Qundef;
+ }
+
+ return nucomp_convert(klass, a1, a2, TRUE);
+}
+
+/*
+ * call-seq:
+ * abs2 -> real
+ *
+ * Returns the square of +self+.
+ */
+static VALUE
+numeric_abs2(VALUE self)
+{
+ return f_mul(self, self);
+}
+
+/*
+ * call-seq:
+ * arg -> 0 or Math::PI
+ *
+ * Returns zero if +self+ is positive, Math::PI otherwise.
+ */
+static VALUE
+numeric_arg(VALUE self)
+{
+ if (f_positive_p(self))
+ return INT2FIX(0);
+ return DBL2NUM(M_PI);
+}
+
+/*
+ * call-seq:
+ * rect -> array
+ *
+ * Returns array <tt>[self, 0]</tt>.
+ */
+static VALUE
+numeric_rect(VALUE self)
+{
+ return rb_assoc_new(self, INT2FIX(0));
+}
+
+/*
+ * call-seq:
+ * polar -> array
+ *
+ * Returns array <tt>[self.abs, self.arg]</tt>.
+ */
+static VALUE
+numeric_polar(VALUE self)
+{
+ VALUE abs, arg;
+
+ if (RB_INTEGER_TYPE_P(self)) {
+ abs = rb_int_abs(self);
+ arg = numeric_arg(self);
+ }
+ else if (RB_FLOAT_TYPE_P(self)) {
+ abs = rb_float_abs(self);
+ arg = float_arg(self);
+ }
+ else if (RB_TYPE_P(self, T_RATIONAL)) {
+ abs = rb_rational_abs(self);
+ arg = numeric_arg(self);
+ }
+ else {
+ abs = f_abs(self);
+ arg = f_arg(self);
+ }
+ return rb_assoc_new(abs, arg);
+}
+
+/*
+ * call-seq:
+ * arg -> 0 or Math::PI
+ *
+ * Returns 0 if +self+ is positive, Math::PI otherwise.
+ */
+static VALUE
+float_arg(VALUE self)
+{
+ if (isnan(RFLOAT_VALUE(self)))
+ return self;
+ if (f_tpositive_p(self))
+ return INT2FIX(0);
+ return rb_const_get(rb_mMath, id_PI);
+}
+
+/*
+ * A \Complex object houses a pair of values,
+ * given when the object is created as either <i>rectangular coordinates</i>
+ * or <i>polar coordinates</i>.
+ *
+ * == Rectangular Coordinates
+ *
+ * The rectangular coordinates of a complex number
+ * are called the _real_ and _imaginary_ parts;
+ * see {Complex number definition}[https://en.wikipedia.org/wiki/Complex_number#Definition_and_basic_operations].
+ *
+ * You can create a \Complex object from rectangular coordinates with:
+ *
+ * - A {complex literal}[rdoc-ref:syntax/literals.rdoc@Complex+Literals].
+ * - Method Complex.rect.
+ * - Method Kernel#Complex, either with numeric arguments or with certain string arguments.
+ * - Method String#to_c, for certain strings.
+ *
+ * Note that each of the stored parts may be a an instance one of the classes
+ * Complex, Float, Integer, or Rational;
+ * they may be retrieved:
+ *
+ * - Separately, with methods Complex#real and Complex#imaginary.
+ * - Together, with method Complex#rect.
+ *
+ * The corresponding (computed) polar values may be retrieved:
+ *
+ * - Separately, with methods Complex#abs and Complex#arg.
+ * - Together, with method Complex#polar.
+ *
+ * == Polar Coordinates
+ *
+ * The polar coordinates of a complex number
+ * are called the _absolute_ and _argument_ parts;
+ * see {Complex polar plane}[https://en.wikipedia.org/wiki/Complex_number#Polar_form].
+ *
+ * In this class, the argument part
+ * in expressed {radians}[https://en.wikipedia.org/wiki/Radian]
+ * (not {degrees}[https://en.wikipedia.org/wiki/Degree_(angle)]).
+ *
+ * You can create a \Complex object from polar coordinates with:
+ *
+ * - Method Complex.polar.
+ * - Method Kernel#Complex, with certain string arguments.
+ * - Method String#to_c, for certain strings.
+ *
+ * Note that each of the stored parts may be a an instance one of the classes
+ * Complex, Float, Integer, or Rational;
+ * they may be retrieved:
+ *
+ * - Separately, with methods Complex#abs and Complex#arg.
+ * - Together, with method Complex#polar.
+ *
+ * The corresponding (computed) rectangular values may be retrieved:
+ *
+ * - Separately, with methods Complex#real and Complex#imag.
+ * - Together, with method Complex#rect.
+ *
+ * == What's Here
+ *
+ * First, what's elsewhere:
+ *
+ * - Class \Complex inherits (directly or indirectly)
+ * from classes {Numeric}[rdoc-ref:Numeric@What-27s+Here]
+ * and {Object}[rdoc-ref:Object@What-27s+Here].
+ * - Includes (indirectly) module {Comparable}[rdoc-ref:Comparable@What-27s+Here].
+ *
+ * Here, class \Complex has methods for:
+ *
+ * === Creating \Complex Objects
+ *
+ * - ::polar: Returns a new \Complex object based on given polar coordinates.
+ * - ::rect (and its alias ::rectangular):
+ * Returns a new \Complex object based on given rectangular coordinates.
+ *
+ * === Querying
+ *
+ * - #abs (and its alias #magnitude): Returns the absolute value for +self+.
+ * - #arg (and its aliases #angle and #phase):
+ * Returns the argument (angle) for +self+ in radians.
+ * - #denominator: Returns the denominator of +self+.
+ * - #finite?: Returns whether both +self.real+ and +self.image+ are finite.
+ * - #hash: Returns the integer hash value for +self+.
+ * - #imag (and its alias #imaginary): Returns the imaginary value for +self+.
+ * - #infinite?: Returns whether +self.real+ or +self.image+ is infinite.
+ * - #numerator: Returns the numerator of +self+.
+ * - #polar: Returns the array <tt>[self.abs, self.arg]</tt>.
+ * - #inspect: Returns a string representation of +self+.
+ * - #real: Returns the real value for +self+.
+ * - #real?: Returns +false+; for compatibility with Numeric#real?.
+ * - #rect (and its alias #rectangular):
+ * Returns the array <tt>[self.real, self.imag]</tt>.
+ *
+ * === Comparing
+ *
+ * - #<=>: Returns whether +self+ is less than, equal to, or greater than the given argument.
+ * - #==: Returns whether +self+ is equal to the given argument.
+ *
+ * === Converting
+ *
+ * - #rationalize: Returns a Rational object whose value is exactly
+ * or approximately equivalent to that of <tt>self.real</tt>.
+ * - #to_c: Returns +self+.
+ * - #to_d: Returns the value as a BigDecimal object.
+ * - #to_f: Returns the value of <tt>self.real</tt> as a Float, if possible.
+ * - #to_i: Returns the value of <tt>self.real</tt> as an Integer, if possible.
+ * - #to_r: Returns the value of <tt>self.real</tt> as a Rational, if possible.
+ * - #to_s: Returns a string representation of +self+.
+ *
+ * === Performing Complex Arithmetic
+ *
+ * - #*: Returns the product of +self+ and the given numeric.
+ * - #**: Returns +self+ raised to power of the given numeric.
+ * - #+: Returns the sum of +self+ and the given numeric.
+ * - #-: Returns the difference of +self+ and the given numeric.
+ * - #-@: Returns the negation of +self+.
+ * - #/: Returns the quotient of +self+ and the given numeric.
+ * - #abs2: Returns square of the absolute value (magnitude) for +self+.
+ * - #conj (and its alias #conjugate): Returns the conjugate of +self+.
+ * - #fdiv: Returns <tt>Complex.rect(self.real/numeric, self.imag/numeric)</tt>.
+ *
+ * === Working with JSON
+ *
+ * - ::json_create: Returns a new \Complex object,
+ * deserialized from the given serialized hash.
+ * - #as_json: Returns a serialized hash constructed from +self+.
+ * - #to_json: Returns a JSON string representing +self+.
+ *
+ * These methods are provided by the {JSON gem}[https://github.com/ruby/json]. To make these methods available:
+ *
+ * require 'json/add/complex'
+ *
+ */
+void
+Init_Complex(void)
+{
+ VALUE compat;
+ id_abs = rb_intern_const("abs");
+ id_arg = rb_intern_const("arg");
+ id_denominator = rb_intern_const("denominator");
+ id_numerator = rb_intern_const("numerator");
+ id_real_p = rb_intern_const("real?");
+ id_i_real = rb_intern_const("@real");
+ id_i_imag = rb_intern_const("@image"); /* @image, not @imag */
+ id_finite_p = rb_intern_const("finite?");
+ id_infinite_p = rb_intern_const("infinite?");
+ id_rationalize = rb_intern_const("rationalize");
+ id_PI = rb_intern_const("PI");
+
+ rb_cComplex = rb_define_class("Complex", rb_cNumeric);
+
+ rb_define_alloc_func(rb_cComplex, nucomp_s_alloc);
+ rb_undef_method(CLASS_OF(rb_cComplex), "allocate");
+
+ rb_undef_method(CLASS_OF(rb_cComplex), "new");
+
+ rb_define_singleton_method(rb_cComplex, "rectangular", nucomp_s_new, -1);
+ rb_define_singleton_method(rb_cComplex, "rect", nucomp_s_new, -1);
+ rb_define_singleton_method(rb_cComplex, "polar", nucomp_s_polar, -1);
+
+ rb_define_global_function("Complex", nucomp_f_complex, -1);
+
+ rb_undef_methods_from(rb_cComplex, RCLASS_ORIGIN(rb_mComparable));
+ rb_undef_method(rb_cComplex, "%");
+ rb_undef_method(rb_cComplex, "div");
+ rb_undef_method(rb_cComplex, "divmod");
+ rb_undef_method(rb_cComplex, "floor");
+ rb_undef_method(rb_cComplex, "ceil");
+ rb_undef_method(rb_cComplex, "modulo");
+ rb_undef_method(rb_cComplex, "remainder");
+ rb_undef_method(rb_cComplex, "round");
+ rb_undef_method(rb_cComplex, "step");
+ rb_undef_method(rb_cComplex, "truncate");
+ rb_undef_method(rb_cComplex, "i");
+
+ rb_define_method(rb_cComplex, "real", rb_complex_real, 0);
+ rb_define_method(rb_cComplex, "imaginary", rb_complex_imag, 0);
+ rb_define_method(rb_cComplex, "imag", rb_complex_imag, 0);
+
+ rb_define_method(rb_cComplex, "-@", rb_complex_uminus, 0);
+ rb_define_method(rb_cComplex, "+", rb_complex_plus, 1);
+ rb_define_method(rb_cComplex, "-", rb_complex_minus, 1);
+ rb_define_method(rb_cComplex, "*", rb_complex_mul, 1);
+ rb_define_method(rb_cComplex, "/", rb_complex_div, 1);
+ rb_define_method(rb_cComplex, "quo", nucomp_quo, 1);
+ rb_define_method(rb_cComplex, "fdiv", nucomp_fdiv, 1);
+ rb_define_method(rb_cComplex, "**", rb_complex_pow, 1);
+
+ rb_define_method(rb_cComplex, "==", nucomp_eqeq_p, 1);
+ rb_define_method(rb_cComplex, "<=>", nucomp_cmp, 1);
+ rb_define_method(rb_cComplex, "coerce", nucomp_coerce, 1);
+
+ rb_define_method(rb_cComplex, "abs", rb_complex_abs, 0);
+ rb_define_method(rb_cComplex, "magnitude", rb_complex_abs, 0);
+ rb_define_method(rb_cComplex, "abs2", nucomp_abs2, 0);
+ rb_define_method(rb_cComplex, "arg", rb_complex_arg, 0);
+ rb_define_method(rb_cComplex, "angle", rb_complex_arg, 0);
+ rb_define_method(rb_cComplex, "phase", rb_complex_arg, 0);
+ rb_define_method(rb_cComplex, "rectangular", nucomp_rect, 0);
+ rb_define_method(rb_cComplex, "rect", nucomp_rect, 0);
+ rb_define_method(rb_cComplex, "polar", nucomp_polar, 0);
+ rb_define_method(rb_cComplex, "conjugate", rb_complex_conjugate, 0);
+ rb_define_method(rb_cComplex, "conj", rb_complex_conjugate, 0);
+
+ rb_define_method(rb_cComplex, "real?", nucomp_real_p_m, 0);
+
+ rb_define_method(rb_cComplex, "numerator", nucomp_numerator, 0);
+ rb_define_method(rb_cComplex, "denominator", nucomp_denominator, 0);
+
+ rb_define_method(rb_cComplex, "hash", nucomp_hash, 0);
+ rb_define_method(rb_cComplex, "eql?", nucomp_eql_p, 1);
+
+ rb_define_method(rb_cComplex, "to_s", nucomp_to_s, 0);
+ rb_define_method(rb_cComplex, "inspect", nucomp_inspect, 0);
+
+ rb_undef_method(rb_cComplex, "positive?");
+ rb_undef_method(rb_cComplex, "negative?");
+
+ rb_define_method(rb_cComplex, "finite?", rb_complex_finite_p, 0);
+ rb_define_method(rb_cComplex, "infinite?", rb_complex_infinite_p, 0);
+
+ rb_define_private_method(rb_cComplex, "marshal_dump", nucomp_marshal_dump, 0);
+ /* :nodoc: */
+ compat = rb_define_class_under(rb_cComplex, "compatible", rb_cObject);
+ rb_define_private_method(compat, "marshal_load", nucomp_marshal_load, 1);
+ rb_marshal_define_compat(rb_cComplex, compat, nucomp_dumper, nucomp_loader);
+
+ rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0);
+ rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0);
+ rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0);
+ rb_define_method(rb_cComplex, "rationalize", nucomp_rationalize, -1);
+ rb_define_method(rb_cComplex, "to_c", nucomp_to_c, 0);
+ rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0);
+
+ rb_define_method(rb_cString, "to_c", string_to_c, 0);
+
+ rb_define_private_method(CLASS_OF(rb_cComplex), "convert", nucomp_s_convert, -1);
+
+ rb_define_method(rb_cNumeric, "abs2", numeric_abs2, 0);
+ rb_define_method(rb_cNumeric, "arg", numeric_arg, 0);
+ rb_define_method(rb_cNumeric, "angle", numeric_arg, 0);
+ rb_define_method(rb_cNumeric, "phase", numeric_arg, 0);
+ rb_define_method(rb_cNumeric, "rectangular", numeric_rect, 0);
+ rb_define_method(rb_cNumeric, "rect", numeric_rect, 0);
+ rb_define_method(rb_cNumeric, "polar", numeric_polar, 0);
+
+ rb_define_method(rb_cFloat, "arg", float_arg, 0);
+ rb_define_method(rb_cFloat, "angle", float_arg, 0);
+ rb_define_method(rb_cFloat, "phase", float_arg, 0);
+
+ /*
+ * Equivalent
+ * to <tt>Complex.rect(0, 1)</tt>:
+ *
+ * Complex::I # => (0+1i)
+ *
+ */
+ rb_define_const(rb_cComplex, "I",
+ f_complex_new_bang2(rb_cComplex, ZERO, ONE));
+
+#if !USE_FLONUM
+ rb_vm_register_global_object(RFLOAT_0 = DBL2NUM(0.0));
+#endif
+
+ rb_provide("complex.so"); /* for backward compatibility */
+}