summaryrefslogtreecommitdiff
path: root/complex.c
diff options
context:
space:
mode:
Diffstat (limited to 'complex.c')
-rw-r--r--complex.c1118
1 files changed, 772 insertions, 346 deletions
diff --git a/complex.c b/complex.c
index 686114b292..85d724f273 100644
--- a/complex.c
+++ b/complex.c
@@ -24,6 +24,7 @@
#include "internal/numeric.h"
#include "internal/object.h"
#include "internal/rational.h"
+#include "internal/string.h"
#include "ruby_assert.h"
#define ZERO INT2FIX(0)
@@ -391,11 +392,12 @@ k_numeric_p(VALUE x)
inline static VALUE
nucomp_s_new_internal(VALUE klass, VALUE real, VALUE imag)
{
- NEWOBJ_OF(obj, struct RComplex, klass, T_COMPLEX | (RGENGC_WB_PROTECTED_COMPLEX ? FL_WB_PROTECTED : 0));
+ NEWOBJ_OF(obj, struct RComplex, klass,
+ T_COMPLEX | (RGENGC_WB_PROTECTED_COMPLEX ? FL_WB_PROTECTED : 0), sizeof(struct RComplex), 0);
RCOMPLEX_SET_REAL(obj, real);
RCOMPLEX_SET_IMAG(obj, imag);
- OBJ_FREEZE_RAW((VALUE)obj);
+ OBJ_FREEZE((VALUE)obj);
return (VALUE)obj;
}
@@ -409,15 +411,15 @@ nucomp_s_alloc(VALUE klass)
inline static VALUE
f_complex_new_bang1(VALUE klass, VALUE x)
{
- assert(!RB_TYPE_P(x, T_COMPLEX));
+ RUBY_ASSERT(!RB_TYPE_P(x, T_COMPLEX));
return nucomp_s_new_internal(klass, x, ZERO);
}
inline static VALUE
f_complex_new_bang2(VALUE klass, VALUE x, VALUE y)
{
- assert(!RB_TYPE_P(x, T_COMPLEX));
- assert(!RB_TYPE_P(y, T_COMPLEX));
+ RUBY_ASSERT(!RB_TYPE_P(x, T_COMPLEX));
+ RUBY_ASSERT(!RB_TYPE_P(y, T_COMPLEX));
return nucomp_s_new_internal(klass, x, y);
}
@@ -430,7 +432,7 @@ nucomp_real_check(VALUE num)
!RB_TYPE_P(num, T_RATIONAL)) {
if (RB_TYPE_P(num, T_COMPLEX) && nucomp_real_p(num)) {
VALUE real = RCOMPLEX(num)->real;
- assert(!RB_TYPE_P(real, T_COMPLEX));
+ RUBY_ASSERT(!RB_TYPE_P(real, T_COMPLEX));
return real;
}
if (!k_numeric_p(num) || !f_real_p(num))
@@ -473,12 +475,19 @@ nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE imag)
/*
* call-seq:
- * Complex.rect(real[, imag]) -> complex
- * Complex.rectangular(real[, imag]) -> complex
+ * Complex.rect(real, imag = 0) -> complex
*
- * Returns a complex object which denotes the given rectangular form.
+ * Returns a new \Complex object formed from the arguments,
+ * each of which must be an instance of Numeric,
+ * or an instance of one of its subclasses:
+ * \Complex, Float, Integer, Rational;
+ * see {Rectangular Coordinates}[rdoc-ref:Complex@Rectangular+Coordinates]:
*
- * Complex.rectangular(1, 2) #=> (1+2i)
+ * Complex.rect(3) # => (3+0i)
+ * Complex.rect(3, Math::PI) # => (3+3.141592653589793i)
+ * Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)
+ *
+ * \Complex.rectangular is an alias for \Complex.rect.
*/
static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
@@ -515,39 +524,54 @@ static VALUE nucomp_s_convert(int argc, VALUE *argv, VALUE klass);
/*
* call-seq:
- * Complex(x[, y], exception: true) -> numeric or nil
- *
- * Returns x+i*y;
- *
- * Complex(1, 2) #=> (1+2i)
- * Complex('1+2i') #=> (1+2i)
- * Complex(nil) #=> TypeError
- * Complex(1, nil) #=> TypeError
- *
- * Complex(1, nil, exception: false) #=> nil
- * Complex('1+2', exception: false) #=> nil
- *
- * Syntax of string form:
- *
- * string form = extra spaces , complex , extra spaces ;
- * complex = real part | [ sign ] , imaginary part
- * | real part , sign , imaginary part
- * | rational , "@" , rational ;
- * real part = rational ;
- * imaginary part = imaginary unit | unsigned rational , imaginary unit ;
- * rational = [ sign ] , unsigned rational ;
- * unsigned rational = numerator | numerator , "/" , denominator ;
- * numerator = integer part | fractional part | integer part , fractional part ;
- * denominator = digits ;
- * integer part = digits ;
- * fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ;
- * imaginary unit = "i" | "I" | "j" | "J" ;
- * sign = "-" | "+" ;
- * digits = digit , { digit | "_" , digit };
- * digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
- * extra spaces = ? \s* ? ;
- *
- * See String#to_c.
+ * Complex(real, imag = 0, exception: true) -> complex or nil
+ * Complex(s, exception: true) -> complex or nil
+ *
+ * Returns a new \Complex object if the arguments are valid;
+ * otherwise raises an exception if +exception+ is +true+;
+ * otherwise returns +nil+.
+ *
+ * With Numeric arguments +real+ and +imag+,
+ * returns <tt>Complex.rect(real, imag)</tt> if the arguments are valid.
+ *
+ * With string argument +s+, returns a new \Complex object if the argument is valid;
+ * the string may have:
+ *
+ * - One or two numeric substrings,
+ * each of which specifies a Complex, Float, Integer, Numeric, or Rational value,
+ * specifying {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates]:
+ *
+ * - Sign-separated real and imaginary numeric substrings
+ * (with trailing character <tt>'i'</tt>):
+ *
+ * Complex('1+2i') # => (1+2i)
+ * Complex('+1+2i') # => (1+2i)
+ * Complex('+1-2i') # => (1-2i)
+ * Complex('-1+2i') # => (-1+2i)
+ * Complex('-1-2i') # => (-1-2i)
+ *
+ * - Real-only numeric string (without trailing character <tt>'i'</tt>):
+ *
+ * Complex('1') # => (1+0i)
+ * Complex('+1') # => (1+0i)
+ * Complex('-1') # => (-1+0i)
+ *
+ * - Imaginary-only numeric string (with trailing character <tt>'i'</tt>):
+ *
+ * Complex('1i') # => (0+1i)
+ * Complex('+1i') # => (0+1i)
+ * Complex('-1i') # => (0-1i)
+ *
+ * - At-sign separated real and imaginary rational substrings,
+ * each of which specifies a Rational value,
+ * specifying {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
+ *
+ * Complex('1/2@3/4') # => (0.36584443443691045+0.34081938001166706i)
+ * Complex('+1/2@+3/4') # => (0.36584443443691045+0.34081938001166706i)
+ * Complex('+1/2@-3/4') # => (0.36584443443691045-0.34081938001166706i)
+ * Complex('-1/2@+3/4') # => (-0.36584443443691045-0.34081938001166706i)
+ * Complex('-1/2@-3/4') # => (-0.36584443443691045+0.34081938001166706i)
+ *
*/
static VALUE
nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
@@ -697,14 +721,19 @@ rb_dbl_complex_new_polar_pi(double abs, double ang)
/*
* call-seq:
- * Complex.polar(abs[, arg]) -> complex
+ * Complex.polar(abs, arg = 0) -> complex
+ *
+ * Returns a new \Complex object formed from the arguments,
+ * each of which must be an instance of Numeric,
+ * or an instance of one of its subclasses:
+ * \Complex, Float, Integer, Rational.
+ * Argument +arg+ is given in radians;
+ * see {Polar Coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
*
- * Returns a complex object which denotes the given polar form.
+ * Complex.polar(3) # => (3+0i)
+ * Complex.polar(3, 2.0) # => (-1.2484405096414273+2.727892280477045i)
+ * Complex.polar(-3, -2.0) # => (1.2484405096414273+2.727892280477045i)
*
- * Complex.polar(3, 0) #=> (3.0+0.0i)
- * Complex.polar(3, Math::PI/2) #=> (1.836909530733566e-16+3.0i)
- * Complex.polar(3, Math::PI) #=> (-3.0+3.673819061467132e-16i)
- * Complex.polar(3, -Math::PI/2) #=> (1.836909530733566e-16-3.0i)
*/
static VALUE
nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
@@ -724,12 +753,19 @@ nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
/*
* call-seq:
- * cmp.real -> real
+ * real -> numeric
+ *
+ * Returns the real value for +self+:
*
- * Returns the real part.
+ * Complex.rect(7).real # => 7
+ * Complex.rect(9, -4).real # => 9
+ *
+ * If +self+ was created with
+ * {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates], the returned value
+ * is computed, and may be inexact:
+ *
+ * Complex.polar(1, Math::PI/4).real # => 0.7071067811865476 # Square root of 2.
*
- * Complex(7).real #=> 7
- * Complex(9, -4).real #=> 9
*/
VALUE
rb_complex_real(VALUE self)
@@ -740,13 +776,19 @@ rb_complex_real(VALUE self)
/*
* call-seq:
- * cmp.imag -> real
- * cmp.imaginary -> real
+ * imag -> numeric
+ *
+ * Returns the imaginary value for +self+:
+ *
+ * Complex.rect(7).imag # => 0
+ * Complex.rect(9, -4).imag # => -4
+ *
+ * If +self+ was created with
+ * {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates], the returned value
+ * is computed, and may be inexact:
*
- * Returns the imaginary part.
+ * Complex.polar(1, Math::PI/4).imag # => 0.7071067811865476 # Square root of 2.
*
- * Complex(7).imaginary #=> 0
- * Complex(9, -4).imaginary #=> -4
*/
VALUE
rb_complex_imag(VALUE self)
@@ -757,11 +799,13 @@ rb_complex_imag(VALUE self)
/*
* call-seq:
- * -cmp -> complex
+ * -self -> complex
*
- * Returns negation of the value.
+ * Returns +self+, negated, which is the negation of each of its parts:
+ *
+ * -Complex.rect(1, 2) # => (-1-2i)
+ * -Complex.rect(-1, -2) # => (1+2i)
*
- * -Complex(1, 2) #=> (-1-2i)
*/
VALUE
rb_complex_uminus(VALUE self)
@@ -772,16 +816,26 @@ rb_complex_uminus(VALUE self)
}
/*
- * call-seq:
- * cmp + numeric -> complex
+ * call-seq:
+ * self + other -> numeric
+ *
+ * Returns the sum of +self+ and +other+:
+ *
+ * Complex(1, 2) + 0 # => (1+2i)
+ * Complex(1, 2) + 1 # => (2+2i)
+ * Complex(1, 2) + -1 # => (0+2i)
+ *
+ * Complex(1, 2) + 1.0 # => (2.0+2i)
+ *
+ * Complex(1, 2) + Complex(2, 1) # => (3+3i)
+ * Complex(1, 2) + Complex(2.0, 1.0) # => (3.0+3.0i)
*
- * Performs addition.
+ * Complex(1, 2) + Rational(1, 1) # => ((2/1)+2i)
+ * Complex(1, 2) + Rational(1, 2) # => ((3/2)+2i)
*
- * Complex(2, 3) + Complex(2, 3) #=> (4+6i)
- * Complex(900) + Complex(1) #=> (901+0i)
- * Complex(-2, 9) + Complex(-9, 2) #=> (-11+11i)
- * Complex(9, 8) + 4 #=> (13+8i)
- * Complex(20, 9) + 9.8 #=> (29.8+9i)
+ * For a computation involving Floats, the result may be inexact (see Float#+):
+ *
+ * Complex(1, 2) + 3.14 # => (4.140000000000001+2i)
*/
VALUE
rb_complex_plus(VALUE self, VALUE other)
@@ -807,15 +861,16 @@ rb_complex_plus(VALUE self, VALUE other)
/*
* call-seq:
- * cmp - numeric -> complex
+ * self - other -> complex
+ *
+ * Returns the difference of +self+ and +other+:
*
- * Performs subtraction.
+ * Complex.rect(2, 3) - Complex.rect(2, 3) # => (0+0i)
+ * Complex.rect(900) - Complex.rect(1) # => (899+0i)
+ * Complex.rect(-2, 9) - Complex.rect(-9, 2) # => (7+7i)
+ * Complex.rect(9, 8) - 4 # => (5+8i)
+ * Complex.rect(20, 9) - 9.8 # => (10.2+9i)
*
- * Complex(2, 3) - Complex(2, 3) #=> (0+0i)
- * Complex(900) - Complex(1) #=> (899+0i)
- * Complex(-2, 9) - Complex(-9, 2) #=> (7+7i)
- * Complex(9, 8) - 4 #=> (5+8i)
- * Complex(20, 9) - 9.8 #=> (10.2+9i)
*/
VALUE
rb_complex_minus(VALUE self, VALUE other)
@@ -867,15 +922,17 @@ comp_mul(VALUE areal, VALUE aimag, VALUE breal, VALUE bimag, VALUE *real, VALUE
/*
* call-seq:
- * cmp * numeric -> complex
+ * self * other -> numeric
+ *
+ * Returns the numeric product of +self+ and +other+:
*
- * Performs multiplication.
+ * Complex.rect(9, 8) * 4 # => (36+32i)
+ * Complex.rect(20, 9) * 9.8 # => (196.0+88.2i)
+ * Complex.rect(2, 3) * Complex.rect(2, 3) # => (-5+12i)
+ * Complex.rect(900) * Complex.rect(1) # => (900+0i)
+ * Complex.rect(-2, 9) * Complex.rect(-9, 2) # => (0-85i)
+ * Complex.rect(9, 8) * Rational(2, 3) # => ((6/1)+(16/3)*i)
*
- * Complex(2, 3) * Complex(2, 3) #=> (-5+12i)
- * Complex(900) * Complex(1) #=> (900+0i)
- * Complex(-2, 9) * Complex(-9, 2) #=> (0-85i)
- * Complex(9, 8) * 4 #=> (36+32i)
- * Complex(20, 9) * 9.8 #=> (196.0+88.2i)
*/
VALUE
rb_complex_mul(VALUE self, VALUE other)
@@ -942,16 +999,16 @@ f_divide(VALUE self, VALUE other,
/*
* call-seq:
- * cmp / numeric -> complex
- * cmp.quo(numeric) -> complex
+ * self / other -> complex
*
- * Performs division.
+ * Returns the quotient of +self+ and +other+:
+ *
+ * Complex.rect(2, 3) / Complex.rect(2, 3) # => (1+0i)
+ * Complex.rect(900) / Complex.rect(1) # => (900+0i)
+ * Complex.rect(-2, 9) / Complex.rect(-9, 2) # => ((36/85)-(77/85)*i)
+ * Complex.rect(9, 8) / 4 # => ((9/4)+2i)
+ * Complex.rect(20, 9) / 9.8 # => (2.0408163265306123+0.9183673469387754i)
*
- * Complex(2, 3) / Complex(2, 3) #=> ((1/1)+(0/1)*i)
- * Complex(900) / Complex(1) #=> ((900/1)+(0/1)*i)
- * Complex(-2, 9) / Complex(-9, 2) #=> ((36/85)-(77/85)*i)
- * Complex(9, 8) / 4 #=> ((9/4)+(2/1)*i)
- * Complex(20, 9) / 9.8 #=> (2.0408163265306123+0.9183673469387754i)
*/
VALUE
rb_complex_div(VALUE self, VALUE other)
@@ -963,11 +1020,12 @@ rb_complex_div(VALUE self, VALUE other)
/*
* call-seq:
- * cmp.fdiv(numeric) -> complex
+ * fdiv(numeric) -> new_complex
+ *
+ * Returns <tt>Complex.rect(self.real/numeric, self.imag/numeric)</tt>:
*
- * Performs division as each part is a float, never returns a float.
+ * Complex.rect(11, 22).fdiv(3) # => (3.6666666666666665+7.333333333333333i)
*
- * Complex(11, 22).fdiv(3) #=> (3.6666666666666665+7.333333333333333i)
*/
static VALUE
nucomp_fdiv(VALUE self, VALUE other)
@@ -981,14 +1039,96 @@ f_reciprocal(VALUE x)
return f_quo(ONE, x);
}
+static VALUE
+zero_for(VALUE x)
+{
+ if (RB_FLOAT_TYPE_P(x))
+ return DBL2NUM(0);
+ if (RB_TYPE_P(x, T_RATIONAL))
+ return rb_rational_new(INT2FIX(0), INT2FIX(1));
+
+ return INT2FIX(0);
+}
+
+static VALUE
+complex_pow_for_special_angle(VALUE self, VALUE other)
+{
+ if (!rb_integer_type_p(other)) {
+ return Qundef;
+ }
+
+ get_dat1(self);
+ VALUE x = Qundef;
+ int dir;
+ if (f_zero_p(dat->imag)) {
+ x = dat->real;
+ dir = 0;
+ }
+ else if (f_zero_p(dat->real)) {
+ x = dat->imag;
+ dir = 2;
+ }
+ else if (f_eqeq_p(dat->real, dat->imag)) {
+ x = dat->real;
+ dir = 1;
+ }
+ else if (f_eqeq_p(dat->real, f_negate(dat->imag))) {
+ x = dat->imag;
+ dir = 3;
+ }
+ else {
+ dir = 0;
+ }
+
+ if (UNDEF_P(x)) return x;
+
+ if (f_negative_p(x)) {
+ x = f_negate(x);
+ dir += 4;
+ }
+
+ VALUE zx;
+ if (dir % 2 == 0) {
+ zx = rb_num_pow(x, other);
+ }
+ else {
+ zx = rb_num_pow(
+ rb_funcall(rb_int_mul(TWO, x), '*', 1, x),
+ rb_int_div(other, TWO)
+ );
+ if (rb_int_odd_p(other)) {
+ zx = rb_funcall(zx, '*', 1, x);
+ }
+ }
+ static const int dirs[][2] = {
+ {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}
+ };
+ int z_dir = FIX2INT(rb_int_modulo(rb_int_mul(INT2FIX(dir), other), INT2FIX(8)));
+
+ VALUE zr = Qfalse, zi = Qfalse;
+ switch (dirs[z_dir][0]) {
+ case 0: zr = zero_for(zx); break;
+ case 1: zr = zx; break;
+ case -1: zr = f_negate(zx); break;
+ }
+ switch (dirs[z_dir][1]) {
+ case 0: zi = zero_for(zx); break;
+ case 1: zi = zx; break;
+ case -1: zi = f_negate(zx); break;
+ }
+ return nucomp_s_new_internal(CLASS_OF(self), zr, zi);
+}
+
+
/*
* call-seq:
- * cmp ** numeric -> complex
+ * self ** exponent -> complex
+ *
+ * Returns +self+ raised to the power +exponent+:
*
- * Performs exponentiation.
+ * Complex.rect(0, 1) ** 2 # => (-1+0i)
+ * Complex.rect(-8) ** Rational(1, 3) # => (1.0000000000000002+1.7320508075688772i)
*
- * Complex('i') ** 2 #=> (-1+0i)
- * Complex(-8) ** Rational(1, 3) #=> (1.0000000000000002+1.7320508075688772i)
*/
VALUE
rb_complex_pow(VALUE self, VALUE other)
@@ -1006,6 +1146,14 @@ rb_complex_pow(VALUE self, VALUE other)
other = dat->real; /* c14n */
}
+ if (other == ONE) {
+ get_dat1(self);
+ return nucomp_s_new_internal(CLASS_OF(self), dat->real, dat->imag);
+ }
+
+ VALUE result = complex_pow_for_special_angle(self, other);
+ if (!UNDEF_P(result)) return result;
+
if (RB_TYPE_P(other, T_COMPLEX)) {
VALUE r, theta, nr, ntheta;
@@ -1078,15 +1226,13 @@ rb_complex_pow(VALUE self, VALUE other)
/*
* call-seq:
- * cmp == object -> true or false
+ * self == other -> true or false
+ *
+ * Returns whether both <tt>self.real == other.real</tt>
+ * and <tt>self.imag == other.imag</tt>:
*
- * Returns true if cmp equals object numerically.
+ * Complex.rect(2, 3) == Complex.rect(2.0, 3.0) # => true
*
- * Complex(2, 3) == Complex(2, 3) #=> true
- * Complex(5) == 5 #=> true
- * Complex(0) == 0.0 #=> true
- * Complex('1/3') == 0.33 #=> false
- * Complex('1/2') == '1/2' #=> false
*/
static VALUE
nucomp_eqeq_p(VALUE self, VALUE other)
@@ -1114,17 +1260,30 @@ nucomp_real_p(VALUE self)
/*
* call-seq:
- * cmp <=> object -> 0, 1, -1, or nil
+ * self <=> other -> -1, 0, 1, or nil
+ *
+ * Compares +self+ and +other+.
+ *
+ * Returns:
+ *
+ * - <tt>self.real <=> other.real</tt> if both of the following are true:
*
- * If +cmp+'s imaginary part is zero, and +object+ is also a
- * real number (or a Complex number where the imaginary part is zero),
- * compare the real part of +cmp+ to object. Otherwise, return nil.
+ * - <tt>self.imag == 0</tt>.
+ * - <tt>other.imag == 0</tt> (always true if +other+ is numeric but not complex).
*
- * Complex(2, 3) <=> Complex(2, 3) #=> nil
- * Complex(2, 3) <=> 1 #=> nil
- * Complex(2) <=> 1 #=> 1
- * Complex(2) <=> 2 #=> 0
- * Complex(2) <=> 3 #=> -1
+ * - +nil+ otherwise.
+ *
+ * Examples:
+ *
+ * Complex.rect(2) <=> 3 # => -1
+ * Complex.rect(2) <=> 2 # => 0
+ * Complex.rect(2) <=> 1 # => 1
+ * Complex.rect(2, 1) <=> 1 # => nil # self.imag not zero.
+ * Complex.rect(1) <=> Complex.rect(1, 1) # => nil # object.imag not zero.
+ * Complex.rect(1) <=> 'Foo' # => nil # object.imag not defined.
+ *
+ * \Class \Complex includes module Comparable,
+ * each of whose methods uses Complex#<=> for comparison.
*/
static VALUE
nucomp_cmp(VALUE self, VALUE other)
@@ -1169,13 +1328,19 @@ nucomp_coerce(VALUE self, VALUE other)
/*
* call-seq:
- * cmp.abs -> real
- * cmp.magnitude -> real
+ * abs -> float
+ *
+ * Returns the absolute value (magnitude) for +self+;
+ * see {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
+ *
+ * Complex.polar(-1, 0).abs # => 1.0
+ *
+ * If +self+ was created with
+ * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value
+ * is computed, and may be inexact:
*
- * Returns the absolute part of its polar form.
+ * Complex.rectangular(1, 1).abs # => 1.4142135623730951 # The square root of 2.
*
- * Complex(-1).abs #=> 1
- * Complex(3.0, -4.0).abs #=> 5.0
*/
VALUE
rb_complex_abs(VALUE self)
@@ -1199,12 +1364,19 @@ rb_complex_abs(VALUE self)
/*
* call-seq:
- * cmp.abs2 -> real
+ * abs2 -> float
*
- * Returns square of the absolute value.
+ * Returns square of the absolute value (magnitude) for +self+;
+ * see {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
+ *
+ * Complex.polar(2, 2).abs2 # => 4.0
+ *
+ * If +self+ was created with
+ * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value
+ * is computed, and may be inexact:
+ *
+ * Complex.rectangular(1.0/3, 1.0/3).abs2 # => 0.2222222222222222
*
- * Complex(-1).abs2 #=> 1
- * Complex(3.0, -4.0).abs2 #=> 25.0
*/
static VALUE
nucomp_abs2(VALUE self)
@@ -1216,13 +1388,19 @@ nucomp_abs2(VALUE self)
/*
* call-seq:
- * cmp.arg -> float
- * cmp.angle -> float
- * cmp.phase -> float
+ * arg -> float
+ *
+ * Returns the argument (angle) for +self+ in radians;
+ * see {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
+ *
+ * Complex.polar(3, Math::PI/2).arg # => 1.57079632679489660
*
- * Returns the angle part of its polar form.
+ * If +self+ was created with
+ * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value
+ * is computed, and may be inexact:
+ *
+ * Complex.polar(1, 1.0/3).arg # => 0.33333333333333326
*
- * Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966
*/
VALUE
rb_complex_arg(VALUE self)
@@ -1233,12 +1411,22 @@ rb_complex_arg(VALUE self)
/*
* call-seq:
- * cmp.rect -> array
- * cmp.rectangular -> array
+ * rect -> array
+ *
+ * Returns the array <tt>[self.real, self.imag]</tt>:
+ *
+ * Complex.rect(1, 2).rect # => [1, 2]
+ *
+ * See {Rectangular Coordinates}[rdoc-ref:Complex@Rectangular+Coordinates].
+ *
+ * If +self+ was created with
+ * {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates], the returned value
+ * is computed, and may be inexact:
+ *
+ * Complex.polar(1.0, 1.0).rect # => [0.5403023058681398, 0.8414709848078965]
*
- * Returns an array; [cmp.real, cmp.imag].
*
- * Complex(1, 2).rectangular #=> [1, 2]
+ * Complex#rectangular is an alias for Complex#rect.
*/
static VALUE
nucomp_rect(VALUE self)
@@ -1249,11 +1437,20 @@ nucomp_rect(VALUE self)
/*
* call-seq:
- * cmp.polar -> array
+ * polar -> array
*
- * Returns an array; [cmp.abs, cmp.arg].
+ * Returns the array <tt>[self.abs, self.arg]</tt>:
+ *
+ * Complex.polar(1, 2).polar # => [1.0, 2.0]
+ *
+ * See {Polar Coordinates}[rdoc-ref:Complex@Polar+Coordinates].
+ *
+ * If +self+ was created with
+ * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value
+ * is computed, and may be inexact:
+ *
+ * Complex.rect(1, 1).polar # => [1.4142135623730951, 0.7853981633974483]
*
- * Complex(1, 2).polar #=> [2.23606797749979, 1.1071487177940904]
*/
static VALUE
nucomp_polar(VALUE self)
@@ -1263,12 +1460,12 @@ nucomp_polar(VALUE self)
/*
* call-seq:
- * cmp.conj -> complex
- * cmp.conjugate -> complex
+ * conj -> complex
+ *
+ * Returns the conjugate of +self+, <tt>Complex.rect(self.imag, self.real)</tt>:
*
- * Returns the complex conjugate.
+ * Complex.rect(1, 2).conj # => (1-2i)
*
- * Complex(1, 2).conjugate #=> (1-2i)
*/
VALUE
rb_complex_conjugate(VALUE self)
@@ -1279,10 +1476,9 @@ rb_complex_conjugate(VALUE self)
/*
* call-seq:
- * Complex(1).real? -> false
- * Complex(1, 2).real? -> false
+ * real? -> false
*
- * Returns false, even if the complex number has no imaginary part.
+ * Returns +false+; for compatibility with Numeric#real?.
*/
static VALUE
nucomp_real_p_m(VALUE self)
@@ -1292,11 +1488,17 @@ nucomp_real_p_m(VALUE self)
/*
* call-seq:
- * cmp.denominator -> integer
+ * denominator -> integer
*
- * Returns the denominator (lcm of both denominator - real and imag).
+ * Returns the denominator of +self+, which is
+ * the {least common multiple}[https://en.wikipedia.org/wiki/Least_common_multiple]
+ * of <tt>self.real.denominator</tt> and <tt>self.imag.denominator</tt>:
*
- * See numerator.
+ * Complex.rect(Rational(1, 2), Rational(2, 3)).denominator # => 6
+ *
+ * Note that <tt>n.denominator</tt> of a non-rational numeric is +1+.
+ *
+ * Related: Complex#numerator.
*/
static VALUE
nucomp_denominator(VALUE self)
@@ -1307,21 +1509,23 @@ nucomp_denominator(VALUE self)
/*
* call-seq:
- * cmp.numerator -> numeric
+ * numerator -> new_complex
+ *
+ * Returns the \Complex object created from the numerators
+ * of the real and imaginary parts of +self+,
+ * after converting each part to the
+ * {lowest common denominator}[https://en.wikipedia.org/wiki/Lowest_common_denominator]
+ * of the two:
*
- * Returns the numerator.
+ * c = Complex.rect(Rational(2, 3), Rational(3, 4)) # => ((2/3)+(3/4)*i)
+ * c.numerator # => (8+9i)
*
- * 1 2 3+4i <- numerator
- * - + -i -> ----
- * 2 3 6 <- denominator
+ * In this example, the lowest common denominator of the two parts is 12;
+ * the two converted parts may be thought of as \Rational(8, 12) and \Rational(9, 12),
+ * whose numerators, respectively, are 8 and 9;
+ * so the returned value of <tt>c.numerator</tt> is <tt>Complex.rect(8, 9)</tt>.
*
- * c = Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i)
- * n = c.numerator #=> (3+4i)
- * d = c.denominator #=> 6
- * n / d #=> ((1/2)+(2/3)*i)
- * Complex(Rational(n.real, d), Rational(n.imag, d))
- * #=> ((1/2)+(2/3)*i)
- * See denominator.
+ * Related: Complex#denominator.
*/
static VALUE
nucomp_numerator(VALUE self)
@@ -1354,6 +1558,18 @@ rb_complex_hash(VALUE self)
return v;
}
+/*
+ * :call-seq:
+ * hash -> integer
+ *
+ * Returns the integer hash value for +self+.
+ *
+ * Two \Complex objects created from the same values will have the same hash value
+ * (and will compare using #eql?):
+ *
+ * Complex.rect(1, 2).hash == Complex.rect(1, 2).hash # => true
+ *
+ */
static VALUE
nucomp_hash(VALUE self)
{
@@ -1392,16 +1608,15 @@ f_tpositive_p(VALUE x)
}
static VALUE
-f_format(VALUE self, VALUE (*func)(VALUE))
+f_format(VALUE self, VALUE s, VALUE (*func)(VALUE))
{
- VALUE s;
int impos;
get_dat1(self);
impos = f_tpositive_p(dat->imag);
- s = (*func)(dat->real);
+ rb_str_concat(s, (*func)(dat->real));
rb_str_cat2(s, !impos ? "-" : "+");
rb_str_concat(s, (*func)(f_abs(dat->imag)));
@@ -1414,33 +1629,35 @@ f_format(VALUE self, VALUE (*func)(VALUE))
/*
* call-seq:
- * cmp.to_s -> string
+ * to_s -> string
+ *
+ * Returns a string representation of +self+:
*
- * Returns the value as a string.
+ * Complex.rect(2).to_s # => "2+0i"
+ * Complex.rect(-8, 6).to_s # => "-8+6i"
+ * Complex.rect(0, Rational(1, 2)).to_s # => "0+1/2i"
+ * Complex.rect(0, Float::INFINITY).to_s # => "0+Infinity*i"
+ * Complex.rect(Float::NAN, Float::NAN).to_s # => "NaN+NaN*i"
*
- * Complex(2).to_s #=> "2+0i"
- * Complex('-8/6').to_s #=> "-4/3+0i"
- * Complex('1/2i').to_s #=> "0+1/2i"
- * Complex(0, Float::INFINITY).to_s #=> "0+Infinity*i"
- * Complex(Float::NAN, Float::NAN).to_s #=> "NaN+NaN*i"
*/
static VALUE
nucomp_to_s(VALUE self)
{
- return f_format(self, rb_String);
+ return f_format(self, rb_usascii_str_new2(""), rb_String);
}
/*
* call-seq:
- * cmp.inspect -> string
+ * inspect -> string
*
- * Returns the value as a string for inspection.
+ * Returns a string representation of +self+:
+ *
+ * Complex.rect(2).inspect # => "(2+0i)"
+ * Complex.rect(-8, 6).inspect # => "(-8+6i)"
+ * Complex.rect(0, Rational(1, 2)).inspect # => "(0+(1/2)*i)"
+ * Complex.rect(0, Float::INFINITY).inspect # => "(0+Infinity*i)"
+ * Complex.rect(Float::NAN, Float::NAN).inspect # => "(NaN+NaN*i)"
*
- * Complex(2).inspect #=> "(2+0i)"
- * Complex('-8/6').inspect #=> "((-4/3)+0i)"
- * Complex('1/2i').inspect #=> "(0+(1/2)*i)"
- * Complex(0, Float::INFINITY).inspect #=> "(0+Infinity*i)"
- * Complex(Float::NAN, Float::NAN).inspect #=> "(NaN+NaN*i)"
*/
static VALUE
nucomp_inspect(VALUE self)
@@ -1448,7 +1665,7 @@ nucomp_inspect(VALUE self)
VALUE s;
s = rb_usascii_str_new2("(");
- rb_str_concat(s, f_format(self, rb_inspect));
+ f_format(self, s, rb_inspect);
rb_str_cat2(s, ")");
return s;
@@ -1458,10 +1675,15 @@ nucomp_inspect(VALUE self)
/*
* call-seq:
- * cmp.finite? -> true or false
+ * finite? -> true or false
+ *
+ * Returns +true+ if both <tt>self.real.finite?</tt> and <tt>self.imag.finite?</tt>
+ * are true, +false+ otherwise:
+ *
+ * Complex.rect(1, 1).finite? # => true
+ * Complex.rect(Float::INFINITY, 0).finite? # => false
*
- * Returns +true+ if +cmp+'s real and imaginary parts are both finite numbers,
- * otherwise returns +false+.
+ * Related: Numeric#finite?, Float#finite?.
*/
static VALUE
rb_complex_finite_p(VALUE self)
@@ -1473,15 +1695,15 @@ rb_complex_finite_p(VALUE self)
/*
* call-seq:
- * cmp.infinite? -> nil or 1
+ * infinite? -> 1 or nil
*
- * Returns +1+ if +cmp+'s real or imaginary part is an infinite number,
- * otherwise returns +nil+.
+ * Returns +1+ if either <tt>self.real.infinite?</tt> or <tt>self.imag.infinite?</tt>
+ * is true, +nil+ otherwise:
*
- * For example:
+ * Complex.rect(Float::INFINITY, 0).infinite? # => 1
+ * Complex.rect(1, 1).infinite? # => nil
*
- * (1+1i).infinite? #=> nil
- * (Float::INFINITY + 1i).infinite? #=> 1
+ * Related: Numeric#infinite?, Float#infinite?.
*/
static VALUE
rb_complex_infinite_p(VALUE self)
@@ -1509,7 +1731,7 @@ nucomp_loader(VALUE self, VALUE a)
RCOMPLEX_SET_REAL(dat, rb_ivar_get(a, id_i_real));
RCOMPLEX_SET_IMAG(dat, rb_ivar_get(a, id_i_imag));
- OBJ_FREEZE_RAW(self);
+ OBJ_FREEZE(self);
return self;
}
@@ -1557,12 +1779,6 @@ rb_complex_new_polar(VALUE x, VALUE y)
}
VALUE
-rb_complex_polar(VALUE x, VALUE y)
-{
- return rb_complex_new_polar(x, y);
-}
-
-VALUE
rb_Complex(VALUE x, VALUE y)
{
VALUE a[2];
@@ -1579,14 +1795,15 @@ rb_dbl_complex_new(double real, double imag)
/*
* call-seq:
- * cmp.to_i -> integer
+ * to_i -> integer
+ *
+ * Returns the value of <tt>self.real</tt> as an Integer, if possible:
*
- * Returns the value as an integer if possible (the imaginary part
- * should be exactly zero).
+ * Complex.rect(1, 0).to_i # => 1
+ * Complex.rect(1, Rational(0, 1)).to_i # => 1
*
- * Complex(1, 0).to_i #=> 1
- * Complex(1, 0.0).to_i # RangeError
- * Complex(1, 2).to_i # RangeError
+ * Raises RangeError if <tt>self.imag</tt> is not exactly zero
+ * (either <tt>Integer(0)</tt> or <tt>Rational(0, n)</tt>).
*/
static VALUE
nucomp_to_i(VALUE self)
@@ -1602,14 +1819,15 @@ nucomp_to_i(VALUE self)
/*
* call-seq:
- * cmp.to_f -> float
+ * to_f -> float
*
- * Returns the value as a float if possible (the imaginary part should
- * be exactly zero).
+ * Returns the value of <tt>self.real</tt> as a Float, if possible:
*
- * Complex(1, 0).to_f #=> 1.0
- * Complex(1, 0.0).to_f # RangeError
- * Complex(1, 2).to_f # RangeError
+ * Complex.rect(1, 0).to_f # => 1.0
+ * Complex.rect(1, Rational(0, 1)).to_f # => 1.0
+ *
+ * Raises RangeError if <tt>self.imag</tt> is not exactly zero
+ * (either <tt>Integer(0)</tt> or <tt>Rational(0, n)</tt>).
*/
static VALUE
nucomp_to_f(VALUE self)
@@ -1625,41 +1843,69 @@ nucomp_to_f(VALUE self)
/*
* call-seq:
- * cmp.to_r -> rational
+ * to_r -> rational
+ *
+ * Returns the value of <tt>self.real</tt> as a Rational, if possible:
*
- * Returns the value as a rational if possible (the imaginary part
- * should be exactly zero).
+ * Complex.rect(1, 0).to_r # => (1/1)
+ * Complex.rect(1, Rational(0, 1)).to_r # => (1/1)
+ * Complex.rect(1, 0.0).to_r # => (1/1)
*
- * Complex(1, 0).to_r #=> (1/1)
- * Complex(1, 0.0).to_r # RangeError
- * Complex(1, 2).to_r # RangeError
+ * Raises RangeError if <tt>self.imag</tt> is not exactly zero
+ * (either <tt>Integer(0)</tt> or <tt>Rational(0, n)</tt>)
+ * and <tt>self.imag.to_r</tt> is not exactly zero.
*
- * See rationalize.
+ * Related: Complex#rationalize.
*/
static VALUE
nucomp_to_r(VALUE self)
{
get_dat1(self);
- if (!k_exact_zero_p(dat->imag)) {
- rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
- self);
+ if (RB_FLOAT_TYPE_P(dat->imag) && FLOAT_ZERO_P(dat->imag)) {
+ /* Do nothing here */
+ }
+ else if (!k_exact_zero_p(dat->imag)) {
+ VALUE imag = rb_check_convert_type_with_id(dat->imag, T_RATIONAL, "Rational", idTo_r);
+ if (NIL_P(imag) || !k_exact_zero_p(imag)) {
+ rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
+ self);
+ }
}
return f_to_r(dat->real);
}
/*
* call-seq:
- * cmp.rationalize([eps]) -> rational
- *
- * Returns the value as a rational if possible (the imaginary part
- * should be exactly zero).
- *
- * Complex(1.0/3, 0).rationalize #=> (1/3)
- * Complex(1, 0.0).rationalize # RangeError
- * Complex(1, 2).rationalize # RangeError
- *
- * See to_r.
+ * rationalize(epsilon = nil) -> rational
+ *
+ * Returns a Rational object whose value is exactly or approximately
+ * equivalent to that of <tt>self.real</tt>.
+ *
+ * With no argument +epsilon+ given, returns a \Rational object
+ * whose value is exactly equal to that of <tt>self.real.rationalize</tt>:
+ *
+ * Complex.rect(1, 0).rationalize # => (1/1)
+ * Complex.rect(1, Rational(0, 1)).rationalize # => (1/1)
+ * Complex.rect(3.14159, 0).rationalize # => (314159/100000)
+ *
+ * With argument +epsilon+ given, returns a \Rational object
+ * whose value is exactly or approximately equal to that of <tt>self.real</tt>
+ * to the given precision:
+ *
+ * Complex.rect(3.14159, 0).rationalize(0.1) # => (16/5)
+ * Complex.rect(3.14159, 0).rationalize(0.01) # => (22/7)
+ * Complex.rect(3.14159, 0).rationalize(0.001) # => (201/64)
+ * Complex.rect(3.14159, 0).rationalize(0.0001) # => (333/106)
+ * Complex.rect(3.14159, 0).rationalize(0.00001) # => (355/113)
+ * Complex.rect(3.14159, 0).rationalize(0.000001) # => (7433/2366)
+ * Complex.rect(3.14159, 0).rationalize(0.0000001) # => (9208/2931)
+ * Complex.rect(3.14159, 0).rationalize(0.00000001) # => (47460/15107)
+ * Complex.rect(3.14159, 0).rationalize(0.000000001) # => (76149/24239)
+ * Complex.rect(3.14159, 0).rationalize(0.0000000001) # => (314159/100000)
+ * Complex.rect(3.14159, 0).rationalize(0.0) # => (3537115888337719/1125899906842624)
+ *
+ * Related: Complex#to_r.
*/
static VALUE
nucomp_rationalize(int argc, VALUE *argv, VALUE self)
@@ -1677,12 +1923,9 @@ nucomp_rationalize(int argc, VALUE *argv, VALUE self)
/*
* call-seq:
- * complex.to_c -> self
- *
- * Returns self.
+ * to_c -> self
*
- * Complex(2).to_c #=> (2+0i)
- * Complex(-8, 6).to_c #=> (-8+6i)
+ * Returns +self+.
*/
static VALUE
nucomp_to_c(VALUE self)
@@ -1692,24 +1935,9 @@ nucomp_to_c(VALUE self)
/*
* call-seq:
- * to_c -> (0+0i)
- *
- * Returns zero as a Complex:
- *
- * nil.to_c # => (0+0i)
+ * to_c -> complex
*
- */
-static VALUE
-nilclass_to_c(VALUE self)
-{
- return rb_complex_new1(INT2FIX(0));
-}
-
-/*
- * call-seq:
- * num.to_c -> complex
- *
- * Returns the value as a complex.
+ * Returns +self+ as a Complex object.
*/
static VALUE
numeric_to_c(VALUE self)
@@ -1989,23 +2217,14 @@ string_to_c_strict(VALUE self, int raise)
rb_must_asciicompat(self);
- s = RSTRING_PTR(self);
-
- if (!s || memchr(s, '\0', RSTRING_LEN(self))) {
- if (!raise) return Qnil;
- rb_raise(rb_eArgError, "string contains null byte");
+ if (raise) {
+ s = StringValueCStr(self);
}
-
- if (s && s[RSTRING_LEN(self)]) {
- rb_str_modify(self);
- s = RSTRING_PTR(self);
- s[RSTRING_LEN(self)] = '\0';
+ else if (!(s = rb_str_to_cstr(self))) {
+ return Qnil;
}
- if (!s)
- s = (char *)"";
-
- if (!parse_comp(s, 1, &num)) {
+ if (!parse_comp(s, TRUE, &num)) {
if (!raise) return Qnil;
rb_raise(rb_eArgError, "invalid value for convert(): %+"PRIsVALUE,
self);
@@ -2016,53 +2235,167 @@ string_to_c_strict(VALUE self, int raise)
/*
* call-seq:
- * str.to_c -> complex
- *
- * Returns a complex which denotes the string form. The parser
- * ignores leading whitespaces and trailing garbage. Any digit
- * sequences can be separated by an underscore. Returns zero for null
- * or garbage string.
- *
- * '9'.to_c #=> (9+0i)
- * '2.5'.to_c #=> (2.5+0i)
- * '2.5/1'.to_c #=> ((5/2)+0i)
- * '-3/2'.to_c #=> ((-3/2)+0i)
- * '-i'.to_c #=> (0-1i)
- * '45i'.to_c #=> (0+45i)
- * '3-4i'.to_c #=> (3-4i)
- * '-4e2-4e-2i'.to_c #=> (-400.0-0.04i)
- * '-0.0-0.0i'.to_c #=> (-0.0-0.0i)
- * '1/2+3/4i'.to_c #=> ((1/2)+(3/4)*i)
- * 'ruby'.to_c #=> (0+0i)
- *
- * Polar form:
- * include Math
- * "1.0@0".to_c #=> (1+0.0i)
- * "1.0@#{PI/2}".to_c #=> (0.0+1i)
- * "1.0@#{PI}".to_c #=> (-1+0.0i)
- *
- * See Kernel.Complex.
+ * to_c -> complex
+ *
+ * Returns a Complex object:
+ * parses the leading substring of +self+
+ * to extract two numeric values that become the coordinates of the complex object.
+ *
+ * The substring is interpreted as containing
+ * either rectangular coordinates (real and imaginary parts)
+ * or polar coordinates (magnitude and angle parts),
+ * depending on an included or implied "separator" character:
+ *
+ * - <tt>'+'</tt>, <tt>'-'</tt>, or no separator: rectangular coordinates.
+ * - <tt>'@'</tt>: polar coordinates.
+ *
+ * <b>In Brief</b>
+ *
+ * In these examples, we use method Complex#rect to display rectangular coordinates,
+ * and method Complex#polar to display polar coordinates.
+ *
+ * # Rectangular coordinates.
+ *
+ * # Real-only: no separator; imaginary part is zero.
+ * '9'.to_c.rect # => [9, 0] # Integer.
+ * '-9'.to_c.rect # => [-9, 0] # Integer (negative).
+ * '2.5'.to_c.rect # => [2.5, 0] # Float.
+ * '1.23e-14'.to_c.rect # => [1.23e-14, 0] # Float with exponent.
+ * '2.5/1'.to_c.rect # => [(5/2), 0] # Rational.
+ *
+ * # Some things are ignored.
+ * 'foo1'.to_c.rect # => [0, 0] # Unparsed entire substring.
+ * '1foo'.to_c.rect # => [1, 0] # Unparsed trailing substring.
+ * ' 1 '.to_c.rect # => [1, 0] # Leading and trailing whitespace.
+ * *
+ * # Imaginary only: trailing 'i' required; real part is zero.
+ * '9i'.to_c.rect # => [0, 9]
+ * '-9i'.to_c.rect # => [0, -9]
+ * '2.5i'.to_c.rect # => [0, 2.5]
+ * '1.23e-14i'.to_c.rect # => [0, 1.23e-14]
+ * '2.5/1i'.to_c.rect # => [0, (5/2)]
+ *
+ * # Real and imaginary; '+' or '-' separator; trailing 'i' required.
+ * '2+3i'.to_c.rect # => [2, 3]
+ * '-2-3i'.to_c.rect # => [-2, -3]
+ * '2.5+3i'.to_c.rect # => [2.5, 3]
+ * '2.5+3/2i'.to_c.rect # => [2.5, (3/2)]
+ *
+ * # Polar coordinates; '@' separator; magnitude required.
+ * '1.0@0'.to_c.polar # => [1.0, 0.0]
+ * '1.0@'.to_c.polar # => [1.0, 0.0]
+ * "1.0@#{Math::PI}".to_c.polar # => [1.0, 3.141592653589793]
+ * "1.0@#{Math::PI/2}".to_c.polar # => [1.0, 1.5707963267948966]
+ *
+ * <b>Parsed Values</b>
+ *
+ * The parsing may be thought of as searching for numeric literals
+ * embedded in the substring.
+ *
+ * This section shows how the method parses numeric values from leading substrings.
+ * The examples show real-only or imaginary-only parsing;
+ * the parsing is the same for each part.
+ *
+ * '1foo'.to_c # => (1+0i) # Ignores trailing unparsed characters.
+ * ' 1 '.to_c # => (1+0i) # Ignores leading and trailing whitespace.
+ * 'x1'.to_c # => (0+0i) # Finds no leading numeric.
+ *
+ * # Integer literal embedded in the substring.
+ * '1'.to_c # => (1+0i)
+ * '-1'.to_c # => (-1+0i)
+ * '1i'.to_c # => (0+1i)
+ *
+ * # Integer literals that don't work.
+ * '0b100'.to_c # => (0+0i) # Not parsed as binary.
+ * '0o100'.to_c # => (0+0i) # Not parsed as octal.
+ * '0d100'.to_c # => (0+0i) # Not parsed as decimal.
+ * '0x100'.to_c # => (0+0i) # Not parsed as hexadecimal.
+ * '010'.to_c # => (10+0i) # Not parsed as octal.
+ *
+ * # Float literals:
+ * '3.14'.to_c # => (3.14+0i)
+ * '3.14i'.to_c # => (0+3.14i)
+ * '1.23e4'.to_c # => (12300.0+0i)
+ * '1.23e+4'.to_c # => (12300.0+0i)
+ * '1.23e-4'.to_c # => (0.000123+0i)
+ *
+ * # Rational literals:
+ * '1/2'.to_c # => ((1/2)+0i)
+ * '-1/2'.to_c # => ((-1/2)+0i)
+ * '1/2r'.to_c # => ((1/2)+0i)
+ * '-1/2r'.to_c # => ((-1/2)+0i)
+ *
+ * <b>Rectangular Coordinates</b>
+ *
+ * With separator <tt>'+'</tt> or <tt>'-'</tt>,
+ * or with no separator,
+ * interprets the values as rectangular coordinates: real and imaginary.
+ *
+ * With no separator, assigns a single value to either the real or the imaginary part:
+ *
+ * ''.to_c # => (0+0i) # Defaults to zero.
+ * '1'.to_c # => (1+0i) # Real (no trailing 'i').
+ * '1i'.to_c # => (0+1i) # Imaginary (trailing 'i').
+ * 'i'.to_c # => (0+1i) # Special case (imaginary 1).
+ *
+ * With separator <tt>'+'</tt>, both parts positive (or zero):
+ *
+ * # Without trailing 'i'.
+ * '+'.to_c # => (0+0i) # No values: defaults to zero.
+ * '+1'.to_c # => (1+0i) # Value after '+': real only.
+ * '1+'.to_c # => (1+0i) # Value before '+': real only.
+ * '2+1'.to_c # => (2+0i) # Values before and after '+': real and imaginary.
+ * # With trailing 'i'.
+ * '+1i'.to_c # => (0+1i) # Value after '+': imaginary only.
+ * '2+i'.to_c # => (2+1i) # Value before '+': real and imaginary 1.
+ * '2+1i'.to_c # => (2+1i) # Values before and after '+': real and imaginary.
+ *
+ * With separator <tt>'-'</tt>, negative imaginary part:
+ *
+ * # Without trailing 'i'.
+ * '-'.to_c # => (0+0i) # No values: defaults to zero.
+ * '-1'.to_c # => (-1+0i) # Value after '-': negative real, zero imaginary.
+ * '1-'.to_c # => (1+0i) # Value before '-': positive real, zero imaginary.
+ * '2-1'.to_c # => (2+0i) # Values before and after '-': positive real, zero imaginary.
+ * # With trailing 'i'.
+ * '-1i'.to_c # => (0-1i) # Value after '-': negative real, zero imaginary.
+ * '2-i'.to_c # => (2-1i) # Value before '-': positive real, negative imaginary.
+ * '2-1i'.to_c # => (2-1i) # Values before and after '-': positive real, negative imaginary.
+ *
+ * Note that the suffixed character <tt>'i'</tt>
+ * may instead be one of <tt>'I'</tt>, <tt>'j'</tt>, or <tt>'J'</tt>,
+ * with the same effect.
+ *
+ * <b>Polar Coordinates</b>
+ *
+ * With separator <tt>'@'</tt>)
+ * interprets the values as polar coordinates: magnitude and angle.
+ *
+ * '2@'.to_c.polar # => [2, 0.0] # Value before '@': magnitude only.
+ * # Values before and after '@': magnitude and angle.
+ * '2@1'.to_c.polar # => [2.0, 1.0]
+ * "1.0@#{Math::PI/2}".to_c # => (0.0+1i)
+ * "1.0@#{Math::PI}".to_c # => (-1+0.0i)
+ * # Magnitude not given: defaults to zero.
+ * '@'.to_c.polar # => [0, 0.0]
+ * '@1'.to_c.polar # => [0, 0.0]
+ *
+ * '1.0@0'.to_c # => (1+0.0i)
+ *
+ * Note that in all cases, the suffixed character <tt>'i'</tt>
+ * may instead be one of <tt>'I'</tt>, <tt>'j'</tt>, <tt>'J'</tt>,
+ * with the same effect.
+ *
+ * See {Converting to Non-String}[rdoc-ref:String@Converting+to+Non--5CString].
*/
static VALUE
string_to_c(VALUE self)
{
- char *s;
VALUE num;
rb_must_asciicompat(self);
- s = RSTRING_PTR(self);
-
- if (s && s[RSTRING_LEN(self)]) {
- rb_str_modify(self);
- s = RSTRING_PTR(self);
- s[RSTRING_LEN(self)] = '\0';
- }
-
- if (!s)
- s = (char *)"";
-
- (void)parse_comp(s, 0, &num);
+ (void)parse_comp(rb_str_fill_terminator(self, 1), FALSE, &num);
return num;
}
@@ -2119,8 +2452,11 @@ nucomp_convert(VALUE klass, VALUE a1, VALUE a2, int raise)
return a1;
/* should raise exception for consistency */
if (!k_numeric_p(a1)) {
- if (!raise)
- return rb_protect(to_complex, a1, NULL);
+ if (!raise) {
+ a1 = rb_protect(to_complex, a1, NULL);
+ rb_set_errinfo(Qnil);
+ return a1;
+ }
return to_complex(a1);
}
}
@@ -2164,9 +2500,9 @@ nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
/*
* call-seq:
- * num.abs2 -> real
+ * abs2 -> real
*
- * Returns square of self.
+ * Returns the square of +self+.
*/
static VALUE
numeric_abs2(VALUE self)
@@ -2176,11 +2512,9 @@ numeric_abs2(VALUE self)
/*
* call-seq:
- * num.arg -> 0 or float
- * num.angle -> 0 or float
- * num.phase -> 0 or float
+ * arg -> 0 or Math::PI
*
- * Returns 0 if the value is positive, pi otherwise.
+ * Returns zero if +self+ is positive, Math::PI otherwise.
*/
static VALUE
numeric_arg(VALUE self)
@@ -2192,10 +2526,9 @@ numeric_arg(VALUE self)
/*
* call-seq:
- * num.rect -> array
- * num.rectangular -> array
+ * rect -> array
*
- * Returns an array; [num, 0].
+ * Returns array <tt>[self, 0]</tt>.
*/
static VALUE
numeric_rect(VALUE self)
@@ -2205,9 +2538,9 @@ numeric_rect(VALUE self)
/*
* call-seq:
- * num.polar -> array
+ * polar -> array
*
- * Returns an array; [num.abs, num.arg].
+ * Returns array <tt>[self.abs, self.arg]</tt>.
*/
static VALUE
numeric_polar(VALUE self)
@@ -2235,11 +2568,9 @@ numeric_polar(VALUE self)
/*
* call-seq:
- * flo.arg -> 0 or float
- * flo.angle -> 0 or float
- * flo.phase -> 0 or float
+ * arg -> 0 or Math::PI
*
- * Returns 0 if the value is positive, pi otherwise.
+ * Returns 0 if +self+ is positive, Math::PI otherwise.
*/
static VALUE
float_arg(VALUE self)
@@ -2252,45 +2583,137 @@ float_arg(VALUE self)
}
/*
- * A complex number can be represented as a paired real number with
- * imaginary unit; a+bi. Where a is real part, b is imaginary part
- * and i is imaginary unit. Real a equals complex a+0i
- * mathematically.
+ * A \Complex object houses a pair of values,
+ * given when the object is created as either <i>rectangular coordinates</i>
+ * or <i>polar coordinates</i>.
+ *
+ * == Rectangular Coordinates
+ *
+ * The rectangular coordinates of a complex number
+ * are called the _real_ and _imaginary_ parts;
+ * see {Complex number definition}[https://en.wikipedia.org/wiki/Complex_number#Definition_and_basic_operations].
*
- * You can create a \Complex object explicitly with:
+ * You can create a \Complex object from rectangular coordinates with:
*
* - A {complex literal}[rdoc-ref:syntax/literals.rdoc@Complex+Literals].
+ * - Method Complex.rect.
+ * - Method Kernel#Complex, either with numeric arguments or with certain string arguments.
+ * - Method String#to_c, for certain strings.
+ *
+ * Note that each of the stored parts may be a an instance one of the classes
+ * Complex, Float, Integer, or Rational;
+ * they may be retrieved:
+ *
+ * - Separately, with methods Complex#real and Complex#imaginary.
+ * - Together, with method Complex#rect.
+ *
+ * The corresponding (computed) polar values may be retrieved:
+ *
+ * - Separately, with methods Complex#abs and Complex#arg.
+ * - Together, with method Complex#polar.
+ *
+ * == Polar Coordinates
+ *
+ * The polar coordinates of a complex number
+ * are called the _absolute_ and _argument_ parts;
+ * see {Complex polar plane}[https://en.wikipedia.org/wiki/Complex_number#Polar_form].
+ *
+ * In this class, the argument part
+ * in expressed {radians}[https://en.wikipedia.org/wiki/Radian]
+ * (not {degrees}[https://en.wikipedia.org/wiki/Degree_(angle)]).
+ *
+ * You can create a \Complex object from polar coordinates with:
+ *
+ * - Method Complex.polar.
+ * - Method Kernel#Complex, with certain string arguments.
+ * - Method String#to_c, for certain strings.
+ *
+ * Note that each of the stored parts may be a an instance one of the classes
+ * Complex, Float, Integer, or Rational;
+ * they may be retrieved:
+ *
+ * - Separately, with methods Complex#abs and Complex#arg.
+ * - Together, with method Complex#polar.
+ *
+ * The corresponding (computed) rectangular values may be retrieved:
+ *
+ * - Separately, with methods Complex#real and Complex#imag.
+ * - Together, with method Complex#rect.
+ *
+ * == What's Here
+ *
+ * First, what's elsewhere:
+ *
+ * - Class \Complex inherits (directly or indirectly)
+ * from classes {Numeric}[rdoc-ref:Numeric@What-27s+Here]
+ * and {Object}[rdoc-ref:Object@What-27s+Here].
+ * - Includes (indirectly) module {Comparable}[rdoc-ref:Comparable@What-27s+Here].
+ *
+ * Here, class \Complex has methods for:
+ *
+ * === Creating \Complex Objects
+ *
+ * - ::polar: Returns a new \Complex object based on given polar coordinates.
+ * - ::rect (and its alias ::rectangular):
+ * Returns a new \Complex object based on given rectangular coordinates.
+ *
+ * === Querying
+ *
+ * - #abs (and its alias #magnitude): Returns the absolute value for +self+.
+ * - #arg (and its aliases #angle and #phase):
+ * Returns the argument (angle) for +self+ in radians.
+ * - #denominator: Returns the denominator of +self+.
+ * - #finite?: Returns whether both +self.real+ and +self.image+ are finite.
+ * - #hash: Returns the integer hash value for +self+.
+ * - #imag (and its alias #imaginary): Returns the imaginary value for +self+.
+ * - #infinite?: Returns whether +self.real+ or +self.image+ is infinite.
+ * - #numerator: Returns the numerator of +self+.
+ * - #polar: Returns the array <tt>[self.abs, self.arg]</tt>.
+ * - #inspect: Returns a string representation of +self+.
+ * - #real: Returns the real value for +self+.
+ * - #real?: Returns +false+; for compatibility with Numeric#real?.
+ * - #rect (and its alias #rectangular):
+ * Returns the array <tt>[self.real, self.imag]</tt>.
+ *
+ * === Comparing
+ *
+ * - #<=>: Returns whether +self+ is less than, equal to, or greater than the given argument.
+ * - #==: Returns whether +self+ is equal to the given argument.
*
- * You can convert certain objects to \Complex objects with:
+ * === Converting
*
- * - \Method #Complex.
+ * - #rationalize: Returns a Rational object whose value is exactly
+ * or approximately equivalent to that of <tt>self.real</tt>.
+ * - #to_c: Returns +self+.
+ * - #to_d: Returns the value as a BigDecimal object.
+ * - #to_f: Returns the value of <tt>self.real</tt> as a Float, if possible.
+ * - #to_i: Returns the value of <tt>self.real</tt> as an Integer, if possible.
+ * - #to_r: Returns the value of <tt>self.real</tt> as a Rational, if possible.
+ * - #to_s: Returns a string representation of +self+.
*
- * Complex object can be created as literal, and also by using
- * Kernel#Complex, Complex::rect, Complex::polar or to_c method.
+ * === Performing Complex Arithmetic
*
- * 2+1i #=> (2+1i)
- * Complex(1) #=> (1+0i)
- * Complex(2, 3) #=> (2+3i)
- * Complex.polar(2, 3) #=> (-1.9799849932008908+0.2822400161197344i)
- * 3.to_c #=> (3+0i)
+ * - #*: Returns the product of +self+ and the given numeric.
+ * - #**: Returns +self+ raised to power of the given numeric.
+ * - #+: Returns the sum of +self+ and the given numeric.
+ * - #-: Returns the difference of +self+ and the given numeric.
+ * - #-@: Returns the negation of +self+.
+ * - #/: Returns the quotient of +self+ and the given numeric.
+ * - #abs2: Returns square of the absolute value (magnitude) for +self+.
+ * - #conj (and its alias #conjugate): Returns the conjugate of +self+.
+ * - #fdiv: Returns <tt>Complex.rect(self.real/numeric, self.imag/numeric)</tt>.
*
- * You can also create complex object from floating-point numbers or
- * strings.
+ * === Working with JSON
*
- * Complex(0.3) #=> (0.3+0i)
- * Complex('0.3-0.5i') #=> (0.3-0.5i)
- * Complex('2/3+3/4i') #=> ((2/3)+(3/4)*i)
- * Complex('1@2') #=> (-0.4161468365471424+0.9092974268256817i)
+ * - ::json_create: Returns a new \Complex object,
+ * deserialized from the given serialized hash.
+ * - #as_json: Returns a serialized hash constructed from +self+.
+ * - #to_json: Returns a JSON string representing +self+.
*
- * 0.3.to_c #=> (0.3+0i)
- * '0.3-0.5i'.to_c #=> (0.3-0.5i)
- * '2/3+3/4i'.to_c #=> ((2/3)+(3/4)*i)
- * '1@2'.to_c #=> (-0.4161468365471424+0.9092974268256817i)
+ * These methods are provided by the {JSON gem}[https://github.com/ruby/json]. To make these methods available:
*
- * A complex object is either an exact or an inexact number.
+ * require 'json/add/complex'
*
- * Complex(1, 1) / 2 #=> ((1/2)+(1/2)*i)
- * Complex(1, 1) / 2.0 #=> (0.5+0.5i)
*/
void
Init_Complex(void)
@@ -2391,7 +2814,6 @@ Init_Complex(void)
rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0);
rb_define_method(rb_cComplex, "rationalize", nucomp_rationalize, -1);
rb_define_method(rb_cComplex, "to_c", nucomp_to_c, 0);
- rb_define_method(rb_cNilClass, "to_c", nilclass_to_c, 0);
rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0);
rb_define_method(rb_cString, "to_c", string_to_c, 0);
@@ -2411,13 +2833,17 @@ Init_Complex(void)
rb_define_method(rb_cFloat, "phase", float_arg, 0);
/*
- * The imaginary unit.
+ * Equivalent
+ * to <tt>Complex.rect(0, 1)</tt>:
+ *
+ * Complex::I # => (0+1i)
+ *
*/
rb_define_const(rb_cComplex, "I",
f_complex_new_bang2(rb_cComplex, ZERO, ONE));
#if !USE_FLONUM
- rb_gc_register_mark_object(RFLOAT_0 = DBL2NUM(0.0));
+ rb_vm_register_global_object(RFLOAT_0 = DBL2NUM(0.0));
#endif
rb_provide("complex.so"); /* for backward compatibility */