summaryrefslogtreecommitdiff
path: root/util.c
diff options
context:
space:
mode:
authornobu <nobu@b2dd03c8-39d4-4d8f-98ff-823fe69b080e>2019-02-07 08:53:11 +0000
committernobu <nobu@b2dd03c8-39d4-4d8f-98ff-823fe69b080e>2019-02-07 08:53:11 +0000
commit867338c36ea8094b6c45ed3e081315c654fd3617 (patch)
tree1e81a788e2e36790ddab3e4553acfd9039eac6ea /util.c
parent7199685dc6741c08324adb31462657161499399f (diff)
Split dtoa.c
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@67022 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
Diffstat (limited to 'util.c')
-rw-r--r--util.c3423
1 files changed, 7 insertions, 3416 deletions
diff --git a/util.c b/util.c
index 7c83b50..aa8e7ef 100644
--- a/util.c
+++ b/util.c
@@ -581,3276 +581,6 @@ ruby_getcwd(void)
return buf;
}
-/****************************************************************
- *
- * The author of this software is David M. Gay.
- *
- * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose without fee is hereby granted, provided that this entire notice
- * is included in all copies of any software which is or includes a copy
- * or modification of this software and in all copies of the supporting
- * documentation for such software.
- *
- * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
- * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
- * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
- * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
- *
- ***************************************************************/
-
-/* Please send bug reports to David M. Gay (dmg at acm dot org,
- * with " at " changed at "@" and " dot " changed to "."). */
-
-/* On a machine with IEEE extended-precision registers, it is
- * necessary to specify double-precision (53-bit) rounding precision
- * before invoking strtod or dtoa. If the machine uses (the equivalent
- * of) Intel 80x87 arithmetic, the call
- * _control87(PC_53, MCW_PC);
- * does this with many compilers. Whether this or another call is
- * appropriate depends on the compiler; for this to work, it may be
- * necessary to #include "float.h" or another system-dependent header
- * file.
- */
-
-/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
- *
- * This strtod returns a nearest machine number to the input decimal
- * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
- * broken by the IEEE round-even rule. Otherwise ties are broken by
- * biased rounding (add half and chop).
- *
- * Inspired loosely by William D. Clinger's paper "How to Read Floating
- * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
- *
- * Modifications:
- *
- * 1. We only require IEEE, IBM, or VAX double-precision
- * arithmetic (not IEEE double-extended).
- * 2. We get by with floating-point arithmetic in a case that
- * Clinger missed -- when we're computing d * 10^n
- * for a small integer d and the integer n is not too
- * much larger than 22 (the maximum integer k for which
- * we can represent 10^k exactly), we may be able to
- * compute (d*10^k) * 10^(e-k) with just one roundoff.
- * 3. Rather than a bit-at-a-time adjustment of the binary
- * result in the hard case, we use floating-point
- * arithmetic to determine the adjustment to within
- * one bit; only in really hard cases do we need to
- * compute a second residual.
- * 4. Because of 3., we don't need a large table of powers of 10
- * for ten-to-e (just some small tables, e.g. of 10^k
- * for 0 <= k <= 22).
- */
-
-/*
- * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
- * significant byte has the lowest address.
- * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
- * significant byte has the lowest address.
- * #define Long int on machines with 32-bit ints and 64-bit longs.
- * #define IBM for IBM mainframe-style floating-point arithmetic.
- * #define VAX for VAX-style floating-point arithmetic (D_floating).
- * #define No_leftright to omit left-right logic in fast floating-point
- * computation of dtoa.
- * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
- * and strtod and dtoa should round accordingly.
- * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
- * and Honor_FLT_ROUNDS is not #defined.
- * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
- * that use extended-precision instructions to compute rounded
- * products and quotients) with IBM.
- * #define ROUND_BIASED for IEEE-format with biased rounding.
- * #define Inaccurate_Divide for IEEE-format with correctly rounded
- * products but inaccurate quotients, e.g., for Intel i860.
- * #define NO_LONG_LONG on machines that do not have a "long long"
- * integer type (of >= 64 bits). On such machines, you can
- * #define Just_16 to store 16 bits per 32-bit Long when doing
- * high-precision integer arithmetic. Whether this speeds things
- * up or slows things down depends on the machine and the number
- * being converted. If long long is available and the name is
- * something other than "long long", #define Llong to be the name,
- * and if "unsigned Llong" does not work as an unsigned version of
- * Llong, #define #ULLong to be the corresponding unsigned type.
- * #define KR_headers for old-style C function headers.
- * #define Bad_float_h if your system lacks a float.h or if it does not
- * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
- * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
- * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
- * if memory is available and otherwise does something you deem
- * appropriate. If MALLOC is undefined, malloc will be invoked
- * directly -- and assumed always to succeed.
- * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
- * memory allocations from a private pool of memory when possible.
- * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
- * unless #defined to be a different length. This default length
- * suffices to get rid of MALLOC calls except for unusual cases,
- * such as decimal-to-binary conversion of a very long string of
- * digits. The longest string dtoa can return is about 751 bytes
- * long. For conversions by strtod of strings of 800 digits and
- * all dtoa conversions in single-threaded executions with 8-byte
- * pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
- * pointers, PRIVATE_MEM >= 7112 appears adequate.
- * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
- * Infinity and NaN (case insensitively). On some systems (e.g.,
- * some HP systems), it may be necessary to #define NAN_WORD0
- * appropriately -- to the most significant word of a quiet NaN.
- * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
- * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
- * strtod also accepts (case insensitively) strings of the form
- * NaN(x), where x is a string of hexadecimal digits and spaces;
- * if there is only one string of hexadecimal digits, it is taken
- * for the 52 fraction bits of the resulting NaN; if there are two
- * or more strings of hex digits, the first is for the high 20 bits,
- * the second and subsequent for the low 32 bits, with intervening
- * white space ignored; but if this results in none of the 52
- * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
- * and NAN_WORD1 are used instead.
- * #define MULTIPLE_THREADS if the system offers preemptively scheduled
- * multiple threads. In this case, you must provide (or suitably
- * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
- * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
- * in pow5mult, ensures lazy evaluation of only one copy of high
- * powers of 5; omitting this lock would introduce a small
- * probability of wasting memory, but would otherwise be harmless.)
- * You must also invoke freedtoa(s) to free the value s returned by
- * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
- * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
- * avoids underflows on inputs whose result does not underflow.
- * If you #define NO_IEEE_Scale on a machine that uses IEEE-format
- * floating-point numbers and flushes underflows to zero rather
- * than implementing gradual underflow, then you must also #define
- * Sudden_Underflow.
- * #define YES_ALIAS to permit aliasing certain double values with
- * arrays of ULongs. This leads to slightly better code with
- * some compilers and was always used prior to 19990916, but it
- * is not strictly legal and can cause trouble with aggressively
- * optimizing compilers (e.g., gcc 2.95.1 under -O2).
- * #define USE_LOCALE to use the current locale's decimal_point value.
- * #define SET_INEXACT if IEEE arithmetic is being used and extra
- * computation should be done to set the inexact flag when the
- * result is inexact and avoid setting inexact when the result
- * is exact. In this case, dtoa.c must be compiled in
- * an environment, perhaps provided by #include "dtoa.c" in a
- * suitable wrapper, that defines two functions,
- * int get_inexact(void);
- * void clear_inexact(void);
- * such that get_inexact() returns a nonzero value if the
- * inexact bit is already set, and clear_inexact() sets the
- * inexact bit to 0. When SET_INEXACT is #defined, strtod
- * also does extra computations to set the underflow and overflow
- * flags when appropriate (i.e., when the result is tiny and
- * inexact or when it is a numeric value rounded to +-infinity).
- * #define NO_ERRNO if strtod should not assign errno = ERANGE when
- * the result overflows to +-Infinity or underflows to 0.
- */
-
-#ifdef WORDS_BIGENDIAN
-#define IEEE_BIG_ENDIAN
-#else
-#define IEEE_LITTLE_ENDIAN
-#endif
-
-#ifdef __vax__
-#define VAX
-#undef IEEE_BIG_ENDIAN
-#undef IEEE_LITTLE_ENDIAN
-#endif
-
-#if defined(__arm__) && !defined(__VFP_FP__)
-#define IEEE_BIG_ENDIAN
-#undef IEEE_LITTLE_ENDIAN
-#endif
-
-#undef Long
-#undef ULong
-
-#if SIZEOF_INT == 4
-#define Long int
-#define ULong unsigned int
-#elif SIZEOF_LONG == 4
-#define Long long int
-#define ULong unsigned long int
-#endif
-
-#if HAVE_LONG_LONG
-#define Llong LONG_LONG
-#else
-#define NO_LONG_LONG
-#endif
-
-#ifdef DEBUG
-#include "stdio.h"
-#define Bug(x) {fprintf(stderr, "%s\n", (x)); exit(EXIT_FAILURE);}
-#endif
-
-#include "stdlib.h"
-#include "string.h"
-
-#ifdef USE_LOCALE
-#include "locale.h"
-#endif
-
-#ifdef MALLOC
-extern void *MALLOC(size_t);
-#else
-#define MALLOC xmalloc
-#endif
-#ifdef FREE
-extern void FREE(void*);
-#else
-#define FREE xfree
-#endif
-
-#ifndef Omit_Private_Memory
-#ifndef PRIVATE_MEM
-#define PRIVATE_MEM 2304
-#endif
-#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
-static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
-#endif
-
-#undef IEEE_Arith
-#undef Avoid_Underflow
-#ifdef IEEE_BIG_ENDIAN
-#define IEEE_Arith
-#endif
-#ifdef IEEE_LITTLE_ENDIAN
-#define IEEE_Arith
-#endif
-
-#ifdef Bad_float_h
-
-#ifdef IEEE_Arith
-#define DBL_DIG 15
-#define DBL_MAX_10_EXP 308
-#define DBL_MAX_EXP 1024
-#define FLT_RADIX 2
-#endif /*IEEE_Arith*/
-
-#ifdef IBM
-#define DBL_DIG 16
-#define DBL_MAX_10_EXP 75
-#define DBL_MAX_EXP 63
-#define FLT_RADIX 16
-#define DBL_MAX 7.2370055773322621e+75
-#endif
-
-#ifdef VAX
-#define DBL_DIG 16
-#define DBL_MAX_10_EXP 38
-#define DBL_MAX_EXP 127
-#define FLT_RADIX 2
-#define DBL_MAX 1.7014118346046923e+38
-#endif
-
-#ifndef LONG_MAX
-#define LONG_MAX 2147483647
-#endif
-
-#else /* ifndef Bad_float_h */
-#include "float.h"
-#endif /* Bad_float_h */
-
-#ifndef __MATH_H__
-#include "math.h"
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-#if 0
-} /* satisfy cc-mode */
-#endif
-#endif
-
-#if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + defined(IBM) != 1
-Exactly one of IEEE_LITTLE_ENDIAN, IEEE_BIG_ENDIAN, VAX, or IBM should be defined.
-#endif
-
-typedef union { double d; ULong L[2]; } U;
-
-#ifdef YES_ALIAS
-typedef double double_u;
-# define dval(x) (x)
-# ifdef IEEE_LITTLE_ENDIAN
-# define word0(x) (((ULong *)&(x))[1])
-# define word1(x) (((ULong *)&(x))[0])
-# else
-# define word0(x) (((ULong *)&(x))[0])
-# define word1(x) (((ULong *)&(x))[1])
-# endif
-#else
-typedef U double_u;
-# ifdef IEEE_LITTLE_ENDIAN
-# define word0(x) ((x).L[1])
-# define word1(x) ((x).L[0])
-# else
-# define word0(x) ((x).L[0])
-# define word1(x) ((x).L[1])
-# endif
-# define dval(x) ((x).d)
-#endif
-
-/* The following definition of Storeinc is appropriate for MIPS processors.
- * An alternative that might be better on some machines is
- * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
- */
-#if defined(IEEE_LITTLE_ENDIAN) + defined(VAX) + defined(__arm__)
-#define Storeinc(a,b,c) (((unsigned short *)(a))[1] = (unsigned short)(b), \
-((unsigned short *)(a))[0] = (unsigned short)(c), (a)++)
-#else
-#define Storeinc(a,b,c) (((unsigned short *)(a))[0] = (unsigned short)(b), \
-((unsigned short *)(a))[1] = (unsigned short)(c), (a)++)
-#endif
-
-/* #define P DBL_MANT_DIG */
-/* Ten_pmax = floor(P*log(2)/log(5)) */
-/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
-/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
-/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
-
-#ifdef IEEE_Arith
-#define Exp_shift 20
-#define Exp_shift1 20
-#define Exp_msk1 0x100000
-#define Exp_msk11 0x100000
-#define Exp_mask 0x7ff00000
-#define P 53
-#define Bias 1023
-#define Emin (-1022)
-#define Exp_1 0x3ff00000
-#define Exp_11 0x3ff00000
-#define Ebits 11
-#define Frac_mask 0xfffff
-#define Frac_mask1 0xfffff
-#define Ten_pmax 22
-#define Bletch 0x10
-#define Bndry_mask 0xfffff
-#define Bndry_mask1 0xfffff
-#define LSB 1
-#define Sign_bit 0x80000000
-#define Log2P 1
-#define Tiny0 0
-#define Tiny1 1
-#define Quick_max 14
-#define Int_max 14
-#ifndef NO_IEEE_Scale
-#define Avoid_Underflow
-#ifdef Flush_Denorm /* debugging option */
-#undef Sudden_Underflow
-#endif
-#endif
-
-#ifndef Flt_Rounds
-#ifdef FLT_ROUNDS
-#define Flt_Rounds FLT_ROUNDS
-#else
-#define Flt_Rounds 1
-#endif
-#endif /*Flt_Rounds*/
-
-#ifdef Honor_FLT_ROUNDS
-#define Rounding rounding
-#undef Check_FLT_ROUNDS
-#define Check_FLT_ROUNDS
-#else
-#define Rounding Flt_Rounds
-#endif
-
-#else /* ifndef IEEE_Arith */
-#undef Check_FLT_ROUNDS
-#undef Honor_FLT_ROUNDS
-#undef SET_INEXACT
-#undef Sudden_Underflow
-#define Sudden_Underflow
-#ifdef IBM
-#undef Flt_Rounds
-#define Flt_Rounds 0
-#define Exp_shift 24
-#define Exp_shift1 24
-#define Exp_msk1 0x1000000
-#define Exp_msk11 0x1000000
-#define Exp_mask 0x7f000000
-#define P 14
-#define Bias 65
-#define Exp_1 0x41000000
-#define Exp_11 0x41000000
-#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
-#define Frac_mask 0xffffff
-#define Frac_mask1 0xffffff
-#define Bletch 4
-#define Ten_pmax 22
-#define Bndry_mask 0xefffff
-#define Bndry_mask1 0xffffff
-#define LSB 1
-#define Sign_bit 0x80000000
-#define Log2P 4
-#define Tiny0 0x100000
-#define Tiny1 0
-#define Quick_max 14
-#define Int_max 15
-#else /* VAX */
-#undef Flt_Rounds
-#define Flt_Rounds 1
-#define Exp_shift 23
-#define Exp_shift1 7
-#define Exp_msk1 0x80
-#define Exp_msk11 0x800000
-#define Exp_mask 0x7f80
-#define P 56
-#define Bias 129
-#define Exp_1 0x40800000
-#define Exp_11 0x4080
-#define Ebits 8
-#define Frac_mask 0x7fffff
-#define Frac_mask1 0xffff007f
-#define Ten_pmax 24
-#define Bletch 2
-#define Bndry_mask 0xffff007f
-#define Bndry_mask1 0xffff007f
-#define LSB 0x10000
-#define Sign_bit 0x8000
-#define Log2P 1
-#define Tiny0 0x80
-#define Tiny1 0
-#define Quick_max 15
-#define Int_max 15
-#endif /* IBM, VAX */
-#endif /* IEEE_Arith */
-
-#ifndef IEEE_Arith
-#define ROUND_BIASED
-#endif
-
-#ifdef RND_PRODQUOT
-#define rounded_product(a,b) ((a) = rnd_prod((a), (b)))
-#define rounded_quotient(a,b) ((a) = rnd_quot((a), (b)))
-extern double rnd_prod(double, double), rnd_quot(double, double);
-#else
-#define rounded_product(a,b) ((a) *= (b))
-#define rounded_quotient(a,b) ((a) /= (b))
-#endif
-
-#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
-#define Big1 0xffffffff
-
-#ifndef Pack_32
-#define Pack_32
-#endif
-
-#define FFFFFFFF 0xffffffffUL
-
-#ifdef NO_LONG_LONG
-#undef ULLong
-#ifdef Just_16
-#undef Pack_32
-/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
- * This makes some inner loops simpler and sometimes saves work
- * during multiplications, but it often seems to make things slightly
- * slower. Hence the default is now to store 32 bits per Long.
- */
-#endif
-#else /* long long available */
-#ifndef Llong
-#define Llong long long
-#endif
-#ifndef ULLong
-#define ULLong unsigned Llong
-#endif
-#endif /* NO_LONG_LONG */
-
-#define MULTIPLE_THREADS 1
-
-#ifndef MULTIPLE_THREADS
-#define ACQUIRE_DTOA_LOCK(n) /*nothing*/
-#define FREE_DTOA_LOCK(n) /*nothing*/
-#else
-#define ACQUIRE_DTOA_LOCK(n) /*unused right now*/
-#define FREE_DTOA_LOCK(n) /*unused right now*/
-#endif
-
-#define Kmax 15
-
-struct Bigint {
- struct Bigint *next;
- int k, maxwds, sign, wds;
- ULong x[1];
-};
-
-typedef struct Bigint Bigint;
-
-static Bigint *freelist[Kmax+1];
-
-static Bigint *
-Balloc(int k)
-{
- int x;
- Bigint *rv;
-#ifndef Omit_Private_Memory
- size_t len;
-#endif
-
- ACQUIRE_DTOA_LOCK(0);
- if (k <= Kmax && (rv = freelist[k]) != 0) {
- freelist[k] = rv->next;
- }
- else {
- x = 1 << k;
-#ifdef Omit_Private_Memory
- rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
-#else
- len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
- /sizeof(double);
- if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
- rv = (Bigint*)pmem_next;
- pmem_next += len;
- }
- else
- rv = (Bigint*)MALLOC(len*sizeof(double));
-#endif
- rv->k = k;
- rv->maxwds = x;
- }
- FREE_DTOA_LOCK(0);
- rv->sign = rv->wds = 0;
- return rv;
-}
-
-static void
-Bfree(Bigint *v)
-{
- if (v) {
- if (v->k > Kmax) {
- FREE(v);
- return;
- }
- ACQUIRE_DTOA_LOCK(0);
- v->next = freelist[v->k];
- freelist[v->k] = v;
- FREE_DTOA_LOCK(0);
- }
-}
-
-#define Bcopy(x,y) memcpy((char *)&(x)->sign, (char *)&(y)->sign, \
-(y)->wds*sizeof(Long) + 2*sizeof(int))
-
-static Bigint *
-multadd(Bigint *b, int m, int a) /* multiply by m and add a */
-{
- int i, wds;
- ULong *x;
-#ifdef ULLong
- ULLong carry, y;
-#else
- ULong carry, y;
-#ifdef Pack_32
- ULong xi, z;
-#endif
-#endif
- Bigint *b1;
-
- wds = b->wds;
- x = b->x;
- i = 0;
- carry = a;
- do {
-#ifdef ULLong
- y = *x * (ULLong)m + carry;
- carry = y >> 32;
- *x++ = (ULong)(y & FFFFFFFF);
-#else
-#ifdef Pack_32
- xi = *x;
- y = (xi & 0xffff) * m + carry;
- z = (xi >> 16) * m + (y >> 16);
- carry = z >> 16;
- *x++ = (z << 16) + (y & 0xffff);
-#else
- y = *x * m + carry;
- carry = y >> 16;
- *x++ = y & 0xffff;
-#endif
-#endif
- } while (++i < wds);
- if (carry) {
- if (wds >= b->maxwds) {
- b1 = Balloc(b->k+1);
- Bcopy(b1, b);
- Bfree(b);
- b = b1;
- }
- b->x[wds++] = (ULong)carry;
- b->wds = wds;
- }
- return b;
-}
-
-static Bigint *
-s2b(const char *s, int nd0, int nd, ULong y9)
-{
- Bigint *b;
- int i, k;
- Long x, y;
-
- x = (nd + 8) / 9;
- for (k = 0, y = 1; x > y; y <<= 1, k++) ;
-#ifdef Pack_32
- b = Balloc(k);
- b->x[0] = y9;
- b->wds = 1;
-#else
- b = Balloc(k+1);
- b->x[0] = y9 & 0xffff;
- b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
-#endif
-
- i = 9;
- if (9 < nd0) {
- s += 9;
- do {
- b = multadd(b, 10, *s++ - '0');
- } while (++i < nd0);
- s++;
- }
- else
- s += 10;
- for (; i < nd; i++)
- b = multadd(b, 10, *s++ - '0');
- return b;
-}
-
-static int
-hi0bits(register ULong x)
-{
- register int k = 0;
-
- if (!(x & 0xffff0000)) {
- k = 16;
- x <<= 16;
- }
- if (!(x & 0xff000000)) {
- k += 8;
- x <<= 8;
- }
- if (!(x & 0xf0000000)) {
- k += 4;
- x <<= 4;
- }
- if (!(x & 0xc0000000)) {
- k += 2;
- x <<= 2;
- }
- if (!(x & 0x80000000)) {
- k++;
- if (!(x & 0x40000000))
- return 32;
- }
- return k;
-}
-
-static int
-lo0bits(ULong *y)
-{
- register int k;
- register ULong x = *y;
-
- if (x & 7) {
- if (x & 1)
- return 0;
- if (x & 2) {
- *y = x >> 1;
- return 1;
- }
- *y = x >> 2;
- return 2;
- }
- k = 0;
- if (!(x & 0xffff)) {
- k = 16;
- x >>= 16;
- }
- if (!(x & 0xff)) {
- k += 8;
- x >>= 8;
- }
- if (!(x & 0xf)) {
- k += 4;
- x >>= 4;
- }
- if (!(x & 0x3)) {
- k += 2;
- x >>= 2;
- }
- if (!(x & 1)) {
- k++;
- x >>= 1;
- if (!x)
- return 32;
- }
- *y = x;
- return k;
-}
-
-static Bigint *
-i2b(int i)
-{
- Bigint *b;
-
- b = Balloc(1);
- b->x[0] = i;
- b->wds = 1;
- return b;
-}
-
-static Bigint *
-mult(Bigint *a, Bigint *b)
-{
- Bigint *c;
- int k, wa, wb, wc;
- ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
- ULong y;
-#ifdef ULLong
- ULLong carry, z;
-#else
- ULong carry, z;
-#ifdef Pack_32
- ULong z2;
-#endif
-#endif
-
- if (a->wds < b->wds) {
- c = a;
- a = b;
- b = c;
- }
- k = a->k;
- wa = a->wds;
- wb = b->wds;
- wc = wa + wb;
- if (wc > a->maxwds)
- k++;
- c = Balloc(k);
- for (x = c->x, xa = x + wc; x < xa; x++)
- *x = 0;
- xa = a->x;
- xae = xa + wa;
- xb = b->x;
- xbe = xb + wb;
- xc0 = c->x;
-#ifdef ULLong
- for (; xb < xbe; xc0++) {
- if ((y = *xb++) != 0) {
- x = xa;
- xc = xc0;
- carry = 0;
- do {
- z = *x++ * (ULLong)y + *xc + carry;
- carry = z >> 32;
- *xc++ = (ULong)(z & FFFFFFFF);
- } while (x < xae);
- *xc = (ULong)carry;
- }
- }
-#else
-#ifdef Pack_32
- for (; xb < xbe; xb++, xc0++) {
- if ((y = *xb & 0xffff) != 0) {
- x = xa;
- xc = xc0;
- carry = 0;
- do {
- z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
- carry = z >> 16;
- z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
- carry = z2 >> 16;
- Storeinc(xc, z2, z);
- } while (x < xae);
- *xc = (ULong)carry;
- }
- if ((y = *xb >> 16) != 0) {
- x = xa;
- xc = xc0;
- carry = 0;
- z2 = *xc;
- do {
- z = (*x & 0xffff) * y + (*xc >> 16) + carry;
- carry = z >> 16;
- Storeinc(xc, z, z2);
- z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
- carry = z2 >> 16;
- } while (x < xae);
- *xc = z2;
- }
- }
-#else
- for (; xb < xbe; xc0++) {
- if (y = *xb++) {
- x = xa;
- xc = xc0;
- carry = 0;
- do {
- z = *x++ * y + *xc + carry;
- carry = z >> 16;
- *xc++ = z & 0xffff;
- } while (x < xae);
- *xc = (ULong)carry;
- }
- }
-#endif
-#endif
- for (xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
- c->wds = wc;
- return c;
-}
-
-static Bigint *p5s;
-
-static Bigint *
-pow5mult(Bigint *b, int k)
-{
- Bigint *b1, *p5, *p51;
- int i;
- static int p05[3] = { 5, 25, 125 };
-
- if ((i = k & 3) != 0)
- b = multadd(b, p05[i-1], 0);
-
- if (!(k >>= 2))
- return b;
- if (!(p5 = p5s)) {
- /* first time */
-#ifdef MULTIPLE_THREADS
- ACQUIRE_DTOA_LOCK(1);
- if (!(p5 = p5s)) {
- p5 = p5s = i2b(625);
- p5->next = 0;
- }
- FREE_DTOA_LOCK(1);
-#else
- p5 = p5s = i2b(625);
- p5->next = 0;
-#endif
- }
- for (;;) {
- if (k & 1) {
- b1 = mult(b, p5);
- Bfree(b);
- b = b1;
- }
- if (!(k >>= 1))
- break;
- if (!(p51 = p5->next)) {
-#ifdef MULTIPLE_THREADS
- ACQUIRE_DTOA_LOCK(1);
- if (!(p51 = p5->next)) {
- p51 = p5->next = mult(p5,p5);
- p51->next = 0;
- }
- FREE_DTOA_LOCK(1);
-#else
- p51 = p5->next = mult(p5,p5);
- p51->next = 0;
-#endif
- }
- p5 = p51;
- }
- return b;
-}
-
-static Bigint *
-lshift(Bigint *b, int k)
-{
- int i, k1, n, n1;
- Bigint *b1;
- ULong *x, *x1, *xe, z;
-
-#ifdef Pack_32
- n = k >> 5;
-#else
- n = k >> 4;
-#endif
- k1 = b->k;
- n1 = n + b->wds + 1;
- for (i = b->maxwds; n1 > i; i <<= 1)
- k1++;
- b1 = Balloc(k1);
- x1 = b1->x;
- for (i = 0; i < n; i++)
- *x1++ = 0;
- x = b->x;
- xe = x + b->wds;
-#ifdef Pack_32
- if (k &= 0x1f) {
- k1 = 32 - k;
- z = 0;
- do {
- *x1++ = *x << k | z;
- z = *x++ >> k1;
- } while (x < xe);
- if ((*x1 = z) != 0)
- ++n1;
- }
-#else
- if (k &= 0xf) {
- k1 = 16 - k;
- z = 0;
- do {
- *x1++ = *x << k & 0xffff | z;
- z = *x++ >> k1;
- } while (x < xe);
- if (*x1 = z)
- ++n1;
- }
-#endif
- else
- do {
- *x1++ = *x++;
- } while (x < xe);
- b1->wds = n1 - 1;
- Bfree(b);
- return b1;
-}
-
-static int
-cmp(Bigint *a, Bigint *b)
-{
- ULong *xa, *xa0, *xb, *xb0;
- int i, j;
-
- i = a->wds;
- j = b->wds;
-#ifdef DEBUG
- if (i > 1 && !a->x[i-1])
- Bug("cmp called with a->x[a->wds-1] == 0");
- if (j > 1 && !b->x[j-1])
- Bug("cmp called with b->x[b->wds-1] == 0");
-#endif
- if (i -= j)
- return i;
- xa0 = a->x;
- xa = xa0 + j;
- xb0 = b->x;
- xb = xb0 + j;
- for (;;) {
- if (*--xa != *--xb)
- return *xa < *xb ? -1 : 1;
- if (xa <= xa0)
- break;
- }
- return 0;
-}
-
-NO_SANITIZE("unsigned-integer-overflow", static Bigint * diff(Bigint *a, Bigint *b));
-static Bigint *
-diff(Bigint *a, Bigint *b)
-{
- Bigint *c;
- int i, wa, wb;
- ULong *xa, *xae, *xb, *xbe, *xc;
-#ifdef ULLong
- ULLong borrow, y;
-#else
- ULong borrow, y;
-#ifdef Pack_32
- ULong z;
-#endif
-#endif
-
- i = cmp(a,b);
- if (!i) {
- c = Balloc(0);
- c->wds = 1;
- c->x[0] = 0;
- return c;
- }
- if (i < 0) {
- c = a;
- a = b;
- b = c;
- i = 1;
- }
- else
- i = 0;
- c = Balloc(a->k);
- c->sign = i;
- wa = a->wds;
- xa = a->x;
- xae = xa + wa;
- wb = b->wds;
- xb = b->x;
- xbe = xb + wb;
- xc = c->x;
- borrow = 0;
-#ifdef ULLong
- do {
- y = (ULLong)*xa++ - *xb++ - borrow;
- borrow = y >> 32 & (ULong)1;
- *xc++ = (ULong)(y & FFFFFFFF);
- } while (xb < xbe);
- while (xa < xae) {
- y = *xa++ - borrow;
- borrow = y >> 32 & (ULong)1;
- *xc++ = (ULong)(y & FFFFFFFF);
- }
-#else
-#ifdef Pack_32
- do {
- y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
- borrow = (y & 0x10000) >> 16;
- z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
- borrow = (z & 0x10000) >> 16;
- Storeinc(xc, z, y);
- } while (xb < xbe);
- while (xa < xae) {
- y = (*xa & 0xffff) - borrow;
- borrow = (y & 0x10000) >> 16;
- z = (*xa++ >> 16) - borrow;
- borrow = (z & 0x10000) >> 16;
- Storeinc(xc, z, y);
- }
-#else
- do {
- y = *xa++ - *xb++ - borrow;
- borrow = (y & 0x10000) >> 16;
- *xc++ = y & 0xffff;
- } while (xb < xbe);
- while (xa < xae) {
- y = *xa++ - borrow;
- borrow = (y & 0x10000) >> 16;
- *xc++ = y & 0xffff;
- }
-#endif
-#endif
- while (!*--xc)
- wa--;
- c->wds = wa;
- return c;
-}
-
-static double
-ulp(double x_)
-{
- register Long L;
- double_u x, a;
- dval(x) = x_;
-
- L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
-#ifndef Avoid_Underflow
-#ifndef Sudden_Underflow
- if (L > 0) {
-#endif
-#endif
-#ifdef IBM
- L |= Exp_msk1 >> 4;
-#endif
- word0(a) = L;
- word1(a) = 0;
-#ifndef Avoid_Underflow
-#ifndef Sudden_Underflow
- }
- else {
- L = -L >> Exp_shift;
- if (L < Exp_shift) {
- word0(a) = 0x80000 >> L;
- word1(a) = 0;
- }
- else {
- word0(a) = 0;
- L -= Exp_shift;
- word1(a) = L >= 31 ? 1 : 1 << 31 - L;
- }
- }
-#endif
-#endif
- return dval(a);
-}
-
-static double
-b2d(Bigint *a, int *e)
-{
- ULong *xa, *xa0, w, y, z;
- int k;
- double_u d;
-#ifdef VAX
- ULong d0, d1;
-#else
-#define d0 word0(d)
-#define d1 word1(d)
-#endif
-
- xa0 = a->x;
- xa = xa0 + a->wds;
- y = *--xa;
-#ifdef DEBUG
- if (!y) Bug("zero y in b2d");
-#endif
- k = hi0bits(y);
- *e = 32 - k;
-#ifdef Pack_32
- if (k < Ebits) {
- d0 = Exp_1 | y >> (Ebits - k);
- w = xa > xa0 ? *--xa : 0;
- d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
- goto ret_d;
- }
- z = xa > xa0 ? *--xa : 0;
- if (k -= Ebits) {
- d0 = Exp_1 | y << k | z >> (32 - k);
- y = xa > xa0 ? *--xa : 0;
- d1 = z << k | y >> (32 - k);
- }
- else {
- d0 = Exp_1 | y;
- d1 = z;
- }
-#else
- if (k < Ebits + 16) {
- z = xa > xa0 ? *--xa : 0;
- d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
- w = xa > xa0 ? *--xa : 0;
- y = xa > xa0 ? *--xa : 0;
- d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
- goto ret_d;
- }
- z = xa > xa0 ? *--xa : 0;
- w = xa > xa0 ? *--xa : 0;
- k -= Ebits + 16;
- d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
- y = xa > xa0 ? *--xa : 0;
- d1 = w << k + 16 | y << k;
-#endif
-ret_d:
-#ifdef VAX
- word0(d) = d0 >> 16 | d0 << 16;
- word1(d) = d1 >> 16 | d1 << 16;
-#else
-#undef d0
-#undef d1
-#endif
- return dval(d);
-}
-
-static Bigint *
-d2b(double d_, int *e, int *bits)
-{
- double_u d;
- Bigint *b;
- int de, k;
- ULong *x, y, z;
-#ifndef Sudden_Underflow
- int i;
-#endif
-#ifdef VAX
- ULong d0, d1;
-#endif
- dval(d) = d_;
-#ifdef VAX
- d0 = word0(d) >> 16 | word0(d) << 16;
- d1 = word1(d) >> 16 | word1(d) << 16;
-#else
-#define d0 word0(d)
-#define d1 word1(d)
-#endif
-
-#ifdef Pack_32
- b = Balloc(1);
-#else
- b = Balloc(2);
-#endif
- x = b->x;
-
- z = d0 & Frac_mask;
- d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
-#ifdef Sudden_Underflow
- de = (int)(d0 >> Exp_shift);
-#ifndef IBM
- z |= Exp_msk11;
-#endif
-#else
- if ((de = (int)(d0 >> Exp_shift)) != 0)
- z |= Exp_msk1;
-#endif
-#ifdef Pack_32
- if ((y = d1) != 0) {
- if ((k = lo0bits(&y)) != 0) {
- x[0] = y | z << (32 - k);
- z >>= k;
- }
- else
- x[0] = y;
-#ifndef Sudden_Underflow
- i =
-#endif
- b->wds = (x[1] = z) ? 2 : 1;
- }
- else {
-#ifdef DEBUG
- if (!z)
- Bug("Zero passed to d2b");
-#endif
- k = lo0bits(&z);
- x[0] = z;
-#ifndef Sudden_Underflow
- i =
-#endif
- b->wds = 1;
- k += 32;
- }
-#else
- if (y = d1) {
- if (k = lo0bits(&y))
- if (k >= 16) {
- x[0] = y | z << 32 - k & 0xffff;
- x[1] = z >> k - 16 & 0xffff;
- x[2] = z >> k;
- i = 2;
- }
- else {
- x[0] = y & 0xffff;
- x[1] = y >> 16 | z << 16 - k & 0xffff;
- x[2] = z >> k & 0xffff;
- x[3] = z >> k+16;
- i = 3;
- }
- else {
- x[0] = y & 0xffff;
- x[1] = y >> 16;
- x[2] = z & 0xffff;
- x[3] = z >> 16;
- i = 3;
- }
- }
- else {
-#ifdef DEBUG
- if (!z)
- Bug("Zero passed to d2b");
-#endif
- k = lo0bits(&z);
- if (k >= 16) {
- x[0] = z;
- i = 0;
- }
- else {
- x[0] = z & 0xffff;
- x[1] = z >> 16;
- i = 1;
- }
- k += 32;
- }
- while (!x[i])
- --i;
- b->wds = i + 1;
-#endif
-#ifndef Sudden_Underflow
- if (de) {
-#endif
-#ifdef IBM
- *e = (de - Bias - (P-1) << 2) + k;
- *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
-#else
- *e = de - Bias - (P-1) + k;
- *bits = P - k;
-#endif
-#ifndef Sudden_Underflow
- }
- else {
- *e = de - Bias - (P-1) + 1 + k;
-#ifdef Pack_32
- *bits = 32*i - hi0bits(x[i-1]);
-#else
- *bits = (i+2)*16 - hi0bits(x[i]);
-#endif
- }
-#endif
- return b;
-}
-#undef d0
-#undef d1
-
-static double
-ratio(Bigint *a, Bigint *b)
-{
- double_u da, db;
- int k, ka, kb;
-
- dval(da) = b2d(a, &ka);
- dval(db) = b2d(b, &kb);
-#ifdef Pack_32
- k = ka - kb + 32*(a->wds - b->wds);
-#else
- k = ka - kb + 16*(a->wds - b->wds);
-#endif
-#ifdef IBM
- if (k > 0) {
- word0(da) += (k >> 2)*Exp_msk1;
- if (k &= 3)
- dval(da) *= 1 << k;
- }
- else {
- k = -k;
- word0(db) += (k >> 2)*Exp_msk1;
- if (k &= 3)
- dval(db) *= 1 << k;
- }
-#else
- if (k > 0)
- word0(da) += k*Exp_msk1;
- else {
- k = -k;
- word0(db) += k*Exp_msk1;
- }
-#endif
- return dval(da) / dval(db);
-}
-
-static const double
-tens[] = {
- 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
- 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
- 1e20, 1e21, 1e22
-#ifdef VAX
- , 1e23, 1e24
-#endif
-};
-
-static const double
-#ifdef IEEE_Arith
-bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
-static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
-#ifdef Avoid_Underflow
- 9007199254740992.*9007199254740992.e-256
- /* = 2^106 * 1e-53 */
-#else
- 1e-256
-#endif
-};
-/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
-/* flag unnecessarily. It leads to a song and dance at the end of strtod. */
-#define Scale_Bit 0x10
-#define n_bigtens 5
-#else
-#ifdef IBM
-bigtens[] = { 1e16, 1e32, 1e64 };
-static const double tinytens[] = { 1e-16, 1e-32, 1e-64 };
-#define n_bigtens 3
-#else
-bigtens[] = { 1e16, 1e32 };
-static const double tinytens[] = { 1e-16, 1e-32 };
-#define n_bigtens 2
-#endif
-#endif
-
-#ifndef IEEE_Arith
-#undef INFNAN_CHECK
-#endif
-
-#ifdef INFNAN_CHECK
-
-#ifndef NAN_WORD0
-#define NAN_WORD0 0x7ff80000
-#endif
-
-#ifndef NAN_WORD1
-#define NAN_WORD1 0
-#endif
-
-static int
-match(const char **sp, char *t)
-{
- int c, d;
- const char *s = *sp;
-
- while (d = *t++) {
- if ((c = *++s) >= 'A' && c <= 'Z')
- c += 'a' - 'A';
- if (c != d)
- return 0;
- }
- *sp = s + 1;
- return 1;
-}
-
-#ifndef No_Hex_NaN
-static void
-hexnan(double *rvp, const char **sp)
-{
- ULong c, x[2];
- const char *s;
- int havedig, udx0, xshift;
-
- x[0] = x[1] = 0;
- havedig = xshift = 0;
- udx0 = 1;
- s = *sp;
- while (c = *(const unsigned char*)++s) {
- if (c >= '0' && c <= '9')
- c -= '0';
- else if (c >= 'a' && c <= 'f')
- c += 10 - 'a';
- else if (c >= 'A' && c <= 'F')
- c += 10 - 'A';
- else if (c <= ' ') {
- if (udx0 && havedig) {
- udx0 = 0;
- xshift = 1;
- }
- continue;
- }
- else if (/*(*/ c == ')' && havedig) {
- *sp = s + 1;
- break;
- }
- else
- return; /* invalid form: don't change *sp */
- havedig = 1;
- if (xshift) {
- xshift = 0;
- x[0] = x[1];
- x[1] = 0;
- }
- if (udx0)
- x[0] = (x[0] << 4) | (x[1] >> 28);
- x[1] = (x[1] << 4) | c;
- }
- if ((x[0] &= 0xfffff) || x[1]) {
- word0(*rvp) = Exp_mask | x[0];
- word1(*rvp) = x[1];
- }
-}
-#endif /*No_Hex_NaN*/
-#endif /* INFNAN_CHECK */
-
-NO_SANITIZE("unsigned-integer-overflow", double ruby_strtod(const char *s00, char **se));
-double
-ruby_strtod(const char *s00, char **se)
-{
-#ifdef Avoid_Underflow
- int scale;
-#endif
- int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
- e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
- const char *s, *s0, *s1;
- double aadj, adj;
- double_u aadj1, rv, rv0;
- Long L;
- ULong y, z;
- Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
-#ifdef SET_INEXACT
- int inexact, oldinexact;
-#endif
-#ifdef Honor_FLT_ROUNDS
- int rounding;
-#endif
-#ifdef USE_LOCALE
- const char *s2;
-#endif
-
- errno = 0;
- sign = nz0 = nz = 0;
- dval(rv) = 0.;
- for (s = s00;;s++)
- switch (*s) {
- case '-':
- sign = 1;
- /* no break */
- case '+':
- if (*++s)
- goto break2;
- /* no break */
- case 0:
- goto ret0;
- case '\t':
- case '\n':
- case '\v':
- case '\f':
- case '\r':
- case ' ':
- continue;
- default:
- goto break2;
- }
-break2:
- if (*s == '0') {
- if (s[1] == 'x' || s[1] == 'X') {
- s0 = ++s;
- adj = 0;
- aadj = 1.0;
- nd0 = -4;
-
- if (!*++s || !(s1 = strchr(hexdigit, *s))) goto ret0;
- if (*s == '0') {
- while (*++s == '0');
- s1 = strchr(hexdigit, *s);
- }
- if (s1 != NULL) {
- do {
- adj += aadj * ((s1 - hexdigit) & 15);
- nd0 += 4;
- aadj /= 16;
- } while (*++s && (s1 = strchr(hexdigit, *s)));
- }
-
- if (*s == '.') {
- dsign = 1;
- if (!*++s || !(s1 = strchr(hexdigit, *s))) goto ret0;
- if (nd0 < 0) {
- while (*s == '0') {
- s++;
- nd0 -= 4;
- }
- }
- for (; *s && (s1 = strchr(hexdigit, *s)); ++s) {
- adj += aadj * ((s1 - hexdigit) & 15);
- if ((aadj /= 16) == 0.0) {
- while (strchr(hexdigit, *++s));
- break;
- }
- }
- }
- else {
- dsign = 0;
- }
-
- if (*s == 'P' || *s == 'p') {
- dsign = 0x2C - *++s; /* +: 2B, -: 2D */
- if (abs(dsign) == 1) s++;
- else dsign = 1;
-
- nd = 0;
- c = *s;
- if (c < '0' || '9' < c) goto ret0;
- do {
- nd *= 10;
- nd += c;
- nd -= '0';
- c = *++s;
- /* Float("0x0."+("0"*267)+"1fp2095") */
- if (nd + dsign * nd0 > 2095) {
- while ('0' <= c && c <= '9') c = *++s;
- break;
- }
- } while ('0' <= c && c <= '9');
- nd0 += nd * dsign;
- }
- else {
- if (dsign) goto ret0;
- }
- dval(rv) = ldexp(adj, nd0);
- goto ret;
- }
- nz0 = 1;
- while (*++s == '0') ;
- if (!*s)
- goto ret;
- }
- s0 = s;
- y = z = 0;
- for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
- if (nd < 9)
- y = 10*y + c - '0';
- else if (nd < DBL_DIG + 2)
- z = 10*z + c - '0';
- nd0 = nd;
-#ifdef USE_LOCALE
- s1 = localeconv()->decimal_point;
- if (c == *s1) {
- c = '.';
- if (*++s1) {
- s2 = s;
- for (;;) {
- if (*++s2 != *s1) {
- c = 0;
- break;
- }
- if (!*++s1) {
- s = s2;
- break;
- }
- }
- }
- }
-#endif
- if (c == '.') {
- if (!ISDIGIT(s[1]))
- goto dig_done;
- c = *++s;
- if (!nd) {
- for (; c == '0'; c = *++s)
- nz++;
- if (c > '0' && c <= '9') {
- s0 = s;
- nf += nz;
- nz = 0;
- goto have_dig;
- }
- goto dig_done;
- }
- for (; c >= '0' && c <= '9'; c = *++s) {
-have_dig:
- nz++;
- if (nd > DBL_DIG * 4) {
- continue;
- }
- if (c -= '0') {
- nf += nz;
- for (i = 1; i < nz; i++)
- if (nd++ < 9)
- y *= 10;
- else if (nd <= DBL_DIG + 2)
- z *= 10;
- if (nd++ < 9)
- y = 10*y + c;
- else if (nd <= DBL_DIG + 2)
- z = 10*z + c;
- nz = 0;
- }
- }
- }
-dig_done:
- e = 0;
- if (c == 'e' || c == 'E') {
- if (!nd && !nz && !nz0) {
- goto ret0;
- }
- s00 = s;
- esign = 0;
- switch (c = *++s) {
- case '-':
- esign = 1;
- case '+':
- c = *++s;
- }
- if (c >= '0' && c <= '9') {
- while (c == '0')
- c = *++s;
- if (c > '0' && c <= '9') {
- L = c - '0';
- s1 = s;
- while ((c = *++s) >= '0' && c <= '9')
- L = 10*L + c - '0';
- if (s - s1 > 8 || L > 19999)
- /* Avoid confusion from exponents
- * so large that e might overflow.
- */
- e = 19999; /* safe for 16 bit ints */
- else
- e = (int)L;
- if (esign)
- e = -e;
- }
- else
- e = 0;
- }
- else
- s = s00;
- }
- if (!nd) {
- if (!nz && !nz0) {
-#ifdef INFNAN_CHECK
- /* Check for Nan and Infinity */
- switch (c) {
- case 'i':
- case 'I':
- if (match(&s,"nf")) {
- --s;
- if (!match(&s,"inity"))
- ++s;
- word0(rv) = 0x7ff00000;
- word1(rv) = 0;
- goto ret;
- }
- break;
- case 'n':
- case 'N':
- if (match(&s, "an")) {
- word0(rv) = NAN_WORD0;
- word1(rv) = NAN_WORD1;
-#ifndef No_Hex_NaN
- if (*s == '(') /*)*/
- hexnan(&rv, &s);
-#endif
- goto ret;
- }
- }
-#endif /* INFNAN_CHECK */
-ret0:
- s = s00;
- sign = 0;
- }
- goto ret;
- }
- e1 = e -= nf;
-
- /* Now we have nd0 digits, starting at s0, followed by a
- * decimal point, followed by nd-nd0 digits. The number we're
- * after is the integer represented by those digits times
- * 10**e */
-
- if (!nd0)
- nd0 = nd;
- k = nd < DBL_DIG + 2 ? nd : DBL_DIG + 2;
- dval(rv) = y;
- if (k > 9) {
-#ifdef SET_INEXACT
- if (k > DBL_DIG)
- oldinexact = get_inexact();
-#endif
- dval(rv) = tens[k - 9] * dval(rv) + z;
- }
- bd0 = bb = bd = bs = delta = 0;
- if (nd <= DBL_DIG
-#ifndef RND_PRODQUOT
-#ifndef Honor_FLT_ROUNDS
- && Flt_Rounds == 1
-#endif
-#endif
- ) {
- if (!e)
- goto ret;
- if (e > 0) {
- if (e <= Ten_pmax) {
-#ifdef VAX
- goto vax_ovfl_check;
-#else
-#ifdef Honor_FLT_ROUNDS
- /* round correctly FLT_ROUNDS = 2 or 3 */
- if (sign) {
- dval(rv) = -dval(rv);
- sign = 0;
- }
-#endif
- /* rv = */ rounded_product(dval(rv), tens[e]);
- goto ret;
-#endif
- }
- i = DBL_DIG - nd;
- if (e <= Ten_pmax + i) {
- /* A fancier test would sometimes let us do
- * this for larger i values.
- */
-#ifdef Honor_FLT_ROUNDS
- /* round correctly FLT_ROUNDS = 2 or 3 */
- if (sign) {
- dval(rv) = -dval(rv);
- sign = 0;
- }
-#endif
- e -= i;
- dval(rv) *= tens[i];
-#ifdef VAX
- /* VAX exponent range is so narrow we must
- * worry about overflow here...
- */
-vax_ovfl_check:
- word0(rv) -= P*Exp_msk1;
- /* rv = */ rounded_product(dval(rv), tens[e]);
- if ((word0(rv) & Exp_mask)
- > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
- goto ovfl;
- word0(rv) += P*Exp_msk1;
-#else
- /* rv = */ rounded_product(dval(rv), tens[e]);
-#endif
- goto ret;
- }
- }
-#ifndef Inaccurate_Divide
- else if (e >= -Ten_pmax) {
-#ifdef Honor_FLT_ROUNDS
- /* round correctly FLT_ROUNDS = 2 or 3 */
- if (sign) {
- dval(rv) = -dval(rv);
- sign = 0;
- }
-#endif
- /* rv = */ rounded_quotient(dval(rv), tens[-e]);
- goto ret;
- }
-#endif
- }
- e1 += nd - k;
-
-#ifdef IEEE_Arith
-#ifdef SET_INEXACT
- inexact = 1;
- if (k <= DBL_DIG)
- oldinexact = get_inexact();
-#endif
-#ifdef Avoid_Underflow
- scale = 0;
-#endif
-#ifdef Honor_FLT_ROUNDS
- if ((rounding = Flt_Rounds) >= 2) {
- if (sign)
- rounding = rounding == 2 ? 0 : 2;
- else
- if (rounding != 2)
- rounding = 0;
- }
-#endif
-#endif /*IEEE_Arith*/
-
- /* Get starting approximation = rv * 10**e1 */
-
- if (e1 > 0) {
- if ((i = e1 & 15) != 0)
- dval(rv) *= tens[i];
- if (e1 &= ~15) {
- if (e1 > DBL_MAX_10_EXP) {
-ovfl:
-#ifndef NO_ERRNO
- errno = ERANGE;
-#endif
- /* Can't trust HUGE_VAL */
-#ifdef IEEE_Arith
-#ifdef Honor_FLT_ROUNDS
- switch (rounding) {
- case 0: /* toward 0 */
- case 3: /* toward -infinity */
- word0(rv) = Big0;
- word1(rv) = Big1;
- break;
- default:
- word0(rv) = Exp_mask;
- word1(rv) = 0;
- }
-#else /*Honor_FLT_ROUNDS*/
- word0(rv) = Exp_mask;
- word1(rv) = 0;
-#endif /*Honor_FLT_ROUNDS*/
-#ifdef SET_INEXACT
- /* set overflow bit */
- dval(rv0) = 1e300;
- dval(rv0) *= dval(rv0);
-#endif
-#else /*IEEE_Arith*/
- word0(rv) = Big0;
- word1(rv) = Big1;
-#endif /*IEEE_Arith*/
- if (bd0)
- goto retfree;
- goto ret;
- }
- e1 >>= 4;
- for (j = 0; e1 > 1; j++, e1 >>= 1)
- if (e1 & 1)
- dval(rv) *= bigtens[j];
- /* The last multiplication could overflow. */
- word0(rv) -= P*Exp_msk1;
- dval(rv) *= bigtens[j];
- if ((z = word0(rv) & Exp_mask)
- > Exp_msk1*(DBL_MAX_EXP+Bias-P))
- goto ovfl;
- if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
- /* set to largest number */
- /* (Can't trust DBL_MAX) */
- word0(rv) = Big0;
- word1(rv) = Big1;
- }
- else
- word0(rv) += P*Exp_msk1;
- }
- }
- else if (e1 < 0) {
- e1 = -e1;
- if ((i = e1 & 15) != 0)
- dval(rv) /= tens[i];
- if (e1 >>= 4) {
- if (e1 >= 1 << n_bigtens)
- goto undfl;
-#ifdef Avoid_Underflow
- if (e1 & Scale_Bit)
- scale = 2*P;
- for (j = 0; e1 > 0; j++, e1 >>= 1)
- if (e1 & 1)
- dval(rv) *= tinytens[j];
- if (scale && (j = 2*P + 1 - ((word0(rv) & Exp_mask)
- >> Exp_shift)) > 0) {
- /* scaled rv is denormal; zap j low bits */
- if (j >= 32) {
- word1(rv) = 0;
- if (j >= 53)
- word0(rv) = (P+2)*Exp_msk1;
- else
- word0(rv) &= 0xffffffff << (j-32);
- }
- else
- word1(rv) &= 0xffffffff << j;
- }
-#else
- for (j = 0; e1 > 1; j++, e1 >>= 1)
- if (e1 & 1)
- dval(rv) *= tinytens[j];
- /* The last multiplication could underflow. */
- dval(rv0) = dval(rv);
- dval(rv) *= tinytens[j];
- if (!dval(rv)) {
- dval(rv) = 2.*dval(rv0);
- dval(rv) *= tinytens[j];
-#endif
- if (!dval(rv)) {
-undfl:
- dval(rv) = 0.;
-#ifndef NO_ERRNO
- errno = ERANGE;
-#endif
- if (bd0)
- goto retfree;
- goto ret;
- }
-#ifndef Avoid_Underflow
- word0(rv) = Tiny0;
- word1(rv) = Tiny1;
- /* The refinement below will clean
- * this approximation up.
- */
- }
-#endif
- }
- }
-
- /* Now the hard part -- adjusting rv to the correct value.*/
-
- /* Put digits into bd: true value = bd * 10^e */
-
- bd0 = s2b(s0, nd0, nd, y);
-
- for (;;) {
- bd = Balloc(bd0->k);
- Bcopy(bd, bd0);
- bb = d2b(dval(rv), &bbe, &bbbits); /* rv = bb * 2^bbe */
- bs = i2b(1);
-
- if (e >= 0) {
- bb2 = bb5 = 0;
- bd2 = bd5 = e;
- }
- else {
- bb2 = bb5 = -e;
- bd2 = bd5 = 0;
- }
- if (bbe >= 0)
- bb2 += bbe;
- else
- bd2 -= bbe;
- bs2 = bb2;
-#ifdef Honor_FLT_ROUNDS
- if (rounding != 1)
- bs2++;
-#endif
-#ifdef Avoid_Underflow
- j = bbe - scale;
- i = j + bbbits - 1; /* logb(rv) */
- if (i < Emin) /* denormal */
- j += P - Emin;
- else
- j = P + 1 - bbbits;
-#else /*Avoid_Underflow*/
-#ifdef Sudden_Underflow
-#ifdef IBM
- j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
-#else
- j = P + 1 - bbbits;
-#endif
-#else /*Sudden_Underflow*/
- j = bbe;
- i = j + bbbits - 1; /* logb(rv) */
- if (i < Emin) /* denormal */
- j += P - Emin;
- else
- j = P + 1 - bbbits;
-#endif /*Sudden_Underflow*/
-#endif /*Avoid_Underflow*/
- bb2 += j;
- bd2 += j;
-#ifdef Avoid_Underflow
- bd2 += scale;
-#endif
- i = bb2 < bd2 ? bb2 : bd2;
- if (i > bs2)
- i = bs2;
- if (i > 0) {
- bb2 -= i;
- bd2 -= i;
- bs2 -= i;
- }
- if (bb5 > 0) {
- bs = pow5mult(bs, bb5);
- bb1 = mult(bs, bb);
- Bfree(bb);
- bb = bb1;
- }
- if (bb2 > 0)
- bb = lshift(bb, bb2);
- if (bd5 > 0)
- bd = pow5mult(bd, bd5);
- if (bd2 > 0)
- bd = lshift(bd, bd2);
- if (bs2 > 0)
- bs = lshift(bs, bs2);
- delta = diff(bb, bd);
- dsign = delta->sign;
- delta->sign = 0;
- i = cmp(delta, bs);
-#ifdef Honor_FLT_ROUNDS
- if (rounding != 1) {
- if (i < 0) {
- /* Error is less than an ulp */
- if (!delta->x[0] && delta->wds <= 1) {
- /* exact */
-#ifdef SET_INEXACT
- inexact = 0;
-#endif
- break;
- }
- if (rounding) {
- if (dsign) {
- adj = 1.;
- goto apply_adj;
- }
- }
- else if (!dsign) {
- adj = -1.;
- if (!word1(rv)
- && !(word0(rv) & Frac_mask)) {
- y = word0(rv) & Exp_mask;
-#ifdef Avoid_Underflow
- if (!scale || y > 2*P*Exp_msk1)
-#else
- if (y)
-#endif
- {
- delta = lshift(delta,Log2P);
- if (cmp(delta, bs) <= 0)
- adj = -0.5;
- }
- }
-apply_adj:
-#ifdef Avoid_Underflow
- if (scale && (y = word0(rv) & Exp_mask)
- <= 2*P*Exp_msk1)
- word0(adj) += (2*P+1)*Exp_msk1 - y;
-#else
-#ifdef Sudden_Underflow
- if ((word0(rv) & Exp_mask) <=
- P*Exp_msk1) {
- word0(rv) += P*Exp_msk1;
- dval(rv) += adj*ulp(dval(rv));
- word0(rv) -= P*Exp_msk1;
- }
- else
-#endif /*Sudden_Underflow*/
-#endif /*Avoid_Underflow*/
- dval(rv) += adj*ulp(dval(rv));
- }
- break;
- }
- adj = ratio(delta, bs);
- if (adj < 1.)
- adj = 1.;
- if (adj <= 0x7ffffffe) {
- /* adj = rounding ? ceil(adj) : floor(adj); */
- y = adj;
- if (y != adj) {
- if (!((rounding>>1) ^ dsign))
- y++;
- adj = y;
- }
- }
-#ifdef Avoid_Underflow
- if (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
- word0(adj) += (2*P+1)*Exp_msk1 - y;
-#else
-#ifdef Sudden_Underflow
- if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
- word0(rv) += P*Exp_msk1;
- adj *= ulp(dval(rv));
- if (dsign)
- dval(rv) += adj;
- else
- dval(rv) -= adj;
- word0(rv) -= P*Exp_msk1;
- goto cont;
- }
-#endif /*Sudden_Underflow*/
-#endif /*Avoid_Underflow*/
- adj *= ulp(dval(rv));
- if (dsign)
- dval(rv) += adj;
- else
- dval(rv) -= adj;
- goto cont;
- }
-#endif /*Honor_FLT_ROUNDS*/
-
- if (i < 0) {
- /* Error is less than half an ulp -- check for
- * special case of mantissa a power of two.
- */
- if (dsign || word1(rv) || word0(rv) & Bndry_mask
-#ifdef IEEE_Arith
-#ifdef Avoid_Underflow
- || (word0(rv) & Exp_mask) <= (2*P+1)*Exp_msk1
-#else
- || (word0(rv) & Exp_mask) <= Exp_msk1
-#endif
-#endif
- ) {
-#ifdef SET_INEXACT
- if (!delta->x[0] && delta->wds <= 1)
- inexact = 0;
-#endif
- break;
- }
- if (!delta->x[0] && delta->wds <= 1) {
- /* exact result */
-#ifdef SET_INEXACT
- inexact = 0;
-#endif
- break;
- }
- delta = lshift(delta,Log2P);
- if (cmp(delta, bs) > 0)
- goto drop_down;
- break;
- }
- if (i == 0) {
- /* exactly half-way between */
- if (dsign) {
- if ((word0(rv) & Bndry_mask1) == Bndry_mask1
- && word1(rv) == (
-#ifdef Avoid_Underflow
- (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
- ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
-#endif
- 0xffffffff)) {
- /*boundary case -- increment exponent*/
- word0(rv) = (word0(rv) & Exp_mask)
- + Exp_msk1
-#ifdef IBM
- | Exp_msk1 >> 4
-#endif
- ;
- word1(rv) = 0;
-#ifdef Avoid_Underflow
- dsign = 0;
-#endif
- break;
- }
- }
- else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
-drop_down:
- /* boundary case -- decrement exponent */
-#ifdef Sudden_Underflow /*{{*/
- L = word0(rv) & Exp_mask;
-#ifdef IBM
- if (L < Exp_msk1)
-#else
-#ifdef Avoid_Underflow
- if (L <= (scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
-#else
- if (L <= Exp_msk1)
-#endif /*Avoid_Underflow*/
-#endif /*IBM*/
- goto undfl;
- L -= Exp_msk1;
-#else /*Sudden_Underflow}{*/
-#ifdef Avoid_Underflow
- if (scale) {
- L = word0(rv) & Exp_mask;
- if (L <= (2*P+1)*Exp_msk1) {
- if (L > (P+2)*Exp_msk1)
- /* round even ==> */
- /* accept rv */
- break;
- /* rv = smallest denormal */
- goto undfl;
- }
- }
-#endif /*Avoid_Underflow*/
- L = (word0(rv) & Exp_mask) - Exp_msk1;
-#endif /*Sudden_Underflow}}*/
- word0(rv) = L | Bndry_mask1;
- word1(rv) = 0xffffffff;
-#ifdef IBM
- goto cont;
-#else
- break;
-#endif
- }
-#ifndef ROUND_BIASED
- if (!(word1(rv) & LSB))
- break;
-#endif
- if (dsign)
- dval(rv) += ulp(dval(rv));
-#ifndef ROUND_BIASED
- else {
- dval(rv) -= ulp(dval(rv));
-#ifndef Sudden_Underflow
- if (!dval(rv))
- goto undfl;
-#endif
- }
-#ifdef Avoid_Underflow
- dsign = 1 - dsign;
-#endif
-#endif
- break;
- }
- if ((aadj = ratio(delta, bs)) <= 2.) {
- if (dsign)
- aadj = dval(aadj1) = 1.;
- else if (word1(rv) || word0(rv) & Bndry_mask) {
-#ifndef Sudden_Underflow
- if (word1(rv) == Tiny1 && !word0(rv))
- goto undfl;
-#endif
- aadj = 1.;
- dval(aadj1) = -1.;
- }
- else {
- /* special case -- power of FLT_RADIX to be */
- /* rounded down... */
-
- if (aadj < 2./FLT_RADIX)
- aadj = 1./FLT_RADIX;
- else
- aadj *= 0.5;
- dval(aadj1) = -aadj;
- }
- }
- else {
- aadj *= 0.5;
- dval(aadj1) = dsign ? aadj : -aadj;
-#ifdef Check_FLT_ROUNDS
- switch (Rounding) {
- case 2: /* towards +infinity */
- dval(aadj1) -= 0.5;
- break;
- case 0: /* towards 0 */
- case 3: /* towards -infinity */
- dval(aadj1) += 0.5;
- }
-#else
- if (Flt_Rounds == 0)
- dval(aadj1) += 0.5;
-#endif /*Check_FLT_ROUNDS*/
- }
- y = word0(rv) & Exp_mask;
-
- /* Check for overflow */
-
- if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
- dval(rv0) = dval(rv);
- word0(rv) -= P*Exp_msk1;
- adj = dval(aadj1) * ulp(dval(rv));
- dval(rv) += adj;
- if ((word0(rv) & Exp_mask) >=
- Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
- if (word0(rv0) == Big0 && word1(rv0) == Big1)
- goto ovfl;
- word0(rv) = Big0;
- word1(rv) = Big1;
- goto cont;
- }
- else
- word0(rv) += P*Exp_msk1;
- }
- else {
-#ifdef Avoid_Underflow
- if (scale && y <= 2*P*Exp_msk1) {
- if (aadj <= 0x7fffffff) {
- if ((z = (int)aadj) <= 0)
- z = 1;
- aadj = z;
- dval(aadj1) = dsign ? aadj : -aadj;
- }
- word0(aadj1) += (2*P+1)*Exp_msk1 - y;
- }
- adj = dval(aadj1) * ulp(dval(rv));
- dval(rv) += adj;
-#else
-#ifdef Sudden_Underflow
- if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
- dval(rv0) = dval(rv);
- word0(rv) += P*Exp_msk1;
- adj = dval(aadj1) * ulp(dval(rv));
- dval(rv) += adj;
-#ifdef IBM
- if ((word0(rv) & Exp_mask) < P*Exp_msk1)
-#else
- if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
-#endif
- {
- if (word0(rv0) == Tiny0 && word1(rv0) == Tiny1)
- goto undfl;
- word0(rv) = Tiny0;
- word1(rv) = Tiny1;
- goto cont;
- }
- else
- word0(rv) -= P*Exp_msk1;
- }
- else {
- adj = dval(aadj1) * ulp(dval(rv));
- dval(rv) += adj;
- }
-#else /*Sudden_Underflow*/
- /* Compute adj so that the IEEE rounding rules will
- * correctly round rv + adj in some half-way cases.
- * If rv * ulp(rv) is denormalized (i.e.,
- * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
- * trouble from bits lost to denormalization;
- * example: 1.2e-307 .
- */
- if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
- dval(aadj1) = (double)(int)(aadj + 0.5);
- if (!dsign)
- dval(aadj1) = -dval(aadj1);
- }
- adj = dval(aadj1) * ulp(dval(rv));
- dval(rv) += adj;
-#endif /*Sudden_Underflow*/
-#endif /*Avoid_Underflow*/
- }
- z = word0(rv) & Exp_mask;
-#ifndef SET_INEXACT
-#ifdef Avoid_Underflow
- if (!scale)
-#endif
- if (y == z) {
- /* Can we stop now? */
- L = (Long)aadj;
- aadj -= L;
- /* The tolerances below are conservative. */
- if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
- if (aadj < .4999999 || aadj > .5000001)
- break;
- }
- else if (aadj < .4999999/FLT_RADIX)
- break;
- }
-#endif
-cont:
- Bfree(bb);
- Bfree(bd);
- Bfree(bs);
- Bfree(delta);
- }
-#ifdef SET_INEXACT
- if (inexact) {
- if (!oldinexact) {
- word0(rv0) = Exp_1 + (70 << Exp_shift);
- word1(rv0) = 0;
- dval(rv0) += 1.;
- }
- }
- else if (!oldinexact)
- clear_inexact();
-#endif
-#ifdef Avoid_Underflow
- if (scale) {
- word0(rv0) = Exp_1 - 2*P*Exp_msk1;
- word1(rv0) = 0;
- dval(rv) *= dval(rv0);
-#ifndef NO_ERRNO
- /* try to avoid the bug of testing an 8087 register value */
- if (word0(rv) == 0 && word1(rv) == 0)
- errno = ERANGE;
-#endif
- }
-#endif /* Avoid_Underflow */
-#ifdef SET_INEXACT
- if (inexact && !(word0(rv) & Exp_mask)) {
- /* set underflow bit */
- dval(rv0) = 1e-300;
- dval(rv0) *= dval(rv0);
- }
-#endif
-retfree:
- Bfree(bb);
- Bfree(bd);
- Bfree(bs);
- Bfree(bd0);
- Bfree(delta);
-ret:
- if (se)
- *se = (char *)s;
- return sign ? -dval(rv) : dval(rv);
-}
-
-NO_SANITIZE("unsigned-integer-overflow", static int quorem(Bigint *b, Bigint *S));
-static int
-quorem(Bigint *b, Bigint *S)
-{
- int n;
- ULong *bx, *bxe, q, *sx, *sxe;
-#ifdef ULLong
- ULLong borrow, carry, y, ys;
-#else
- ULong borrow, carry, y, ys;
-#ifdef Pack_32
- ULong si, z, zs;
-#endif
-#endif
-
- n = S->wds;
-#ifdef DEBUG
- /*debug*/ if (b->wds > n)
- /*debug*/ Bug("oversize b in quorem");
-#endif
- if (b->wds < n)
- return 0;
- sx = S->x;
- sxe = sx + --n;
- bx = b->x;
- bxe = bx + n;
- q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
-#ifdef DEBUG
- /*debug*/ if (q > 9)
- /*debug*/ Bug("oversized quotient in quorem");
-#endif
- if (q) {
- borrow = 0;
- carry = 0;
- do {
-#ifdef ULLong
- ys = *sx++ * (ULLong)q + carry;
- carry = ys >> 32;
- y = *bx - (ys & FFFFFFFF) - borrow;
- borrow = y >> 32 & (ULong)1;
- *bx++ = (ULong)(y & FFFFFFFF);
-#else
-#ifdef Pack_32
- si = *sx++;
- ys = (si & 0xffff) * q + carry;
- zs = (si >> 16) * q + (ys >> 16);
- carry = zs >> 16;
- y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
- borrow = (y & 0x10000) >> 16;
- z = (*bx >> 16) - (zs & 0xffff) - borrow;
- borrow = (z & 0x10000) >> 16;
- Storeinc(bx, z, y);
-#else
- ys = *sx++ * q + carry;
- carry = ys >> 16;
- y = *bx - (ys & 0xffff) - borrow;
- borrow = (y & 0x10000) >> 16;
- *bx++ = y & 0xffff;
-#endif
-#endif
- } while (sx <= sxe);
- if (!*bxe) {
- bx = b->x;
- while (--bxe > bx && !*bxe)
- --n;
- b->wds = n;
- }
- }
- if (cmp(b, S) >= 0) {
- q++;
- borrow = 0;
- carry = 0;
- bx = b->x;
- sx = S->x;
- do {
-#ifdef ULLong
- ys = *sx++ + carry;
- carry = ys >> 32;
- y = *bx - (ys & FFFFFFFF) - borrow;
- borrow = y >> 32 & (ULong)1;
- *bx++ = (ULong)(y & FFFFFFFF);
-#else
-#ifdef Pack_32
- si = *sx++;
- ys = (si & 0xffff) + carry;
- zs = (si >> 16) + (ys >> 16);
- carry = zs >> 16;
- y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
- borrow = (y & 0x10000) >> 16;
- z = (*bx >> 16) - (zs & 0xffff) - borrow;
- borrow = (z & 0x10000) >> 16;
- Storeinc(bx, z, y);
-#else
- ys = *sx++ + carry;
- carry = ys >> 16;
- y = *bx - (ys & 0xffff) - borrow;
- borrow = (y & 0x10000) >> 16;
- *bx++ = y & 0xffff;
-#endif
-#endif
- } while (sx <= sxe);
- bx = b->x;
- bxe = bx + n;
- if (!*bxe) {
- while (--bxe > bx && !*bxe)
- --n;
- b->wds = n;
- }
- }
- return q;
-}
-
-#ifndef MULTIPLE_THREADS
-static char *dtoa_result;
-#endif
-
-#ifndef MULTIPLE_THREADS
-static char *
-rv_alloc(int i)
-{
- return dtoa_result = xmalloc(i);
-}
-#else
-#define rv_alloc(i) xmalloc(i)
-#endif
-
-static char *
-nrv_alloc(const char *s, char **rve, size_t n)
-{
- char *rv, *t;
-
- t = rv = rv_alloc(n);
- while ((*t = *s++) != 0) t++;
- if (rve)
- *rve = t;
- return rv;
-}
-
-#define rv_strdup(s, rve) nrv_alloc((s), (rve), strlen(s)+1)
-
-#ifndef MULTIPLE_THREADS
-/* freedtoa(s) must be used to free values s returned by dtoa
- * when MULTIPLE_THREADS is #defined. It should be used in all cases,
- * but for consistency with earlier versions of dtoa, it is optional
- * when MULTIPLE_THREADS is not defined.
- */
-
-static void
-freedtoa(char *s)
-{
- xfree(s);
-}
-#endif
-
-static const char INFSTR[] = "Infinity";
-static const char NANSTR[] = "NaN";
-static const char ZEROSTR[] = "0";
-
-/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
- *
- * Inspired by "How to Print Floating-Point Numbers Accurately" by
- * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
- *
- * Modifications:
- * 1. Rather than iterating, we use a simple numeric overestimate
- * to determine k = floor(log10(d)). We scale relevant
- * quantities using O(log2(k)) rather than O(k) multiplications.
- * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
- * try to generate digits strictly left to right. Instead, we
- * compute with fewer bits and propagate the carry if necessary
- * when rounding the final digit up. This is often faster.
- * 3. Under the assumption that input will be rounded nearest,
- * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
- * That is, we allow equality in stopping tests when the
- * round-nearest rule will give the same floating-point value
- * as would satisfaction of the stopping test with strict
- * inequality.
- * 4. We remove common factors of powers of 2 from relevant
- * quantities.
- * 5. When converting floating-point integers less than 1e16,
- * we use floating-point arithmetic rather than resorting
- * to multiple-precision integers.
- * 6. When asked to produce fewer than 15 digits, we first try
- * to get by with floating-point arithmetic; we resort to
- * multiple-precision integer arithmetic only if we cannot
- * guarantee that the floating-point calculation has given
- * the correctly rounded result. For k requested digits and
- * "uniformly" distributed input, the probability is
- * something like 10^(k-15) that we must resort to the Long
- * calculation.
- */
-
-char *
-ruby_dtoa(double d_, int mode, int ndigits, int *decpt, int *sign, char **rve)
-{
- /* Arguments ndigits, decpt, sign are similar to those
- of ecvt and fcvt; trailing zeros are suppressed from
- the returned string. If not null, *rve is set to point
- to the end of the return value. If d is +-Infinity or NaN,
- then *decpt is set to 9999.
-
- mode:
- 0 ==> shortest string that yields d when read in
- and rounded to nearest.
- 1 ==> like 0, but with Steele & White stopping rule;
- e.g. with IEEE P754 arithmetic , mode 0 gives
- 1e23 whereas mode 1 gives 9.999999999999999e22.
- 2 ==> max(1,ndigits) significant digits. This gives a
- return value similar to that of ecvt, except
- that trailing zeros are suppressed.
- 3 ==> through ndigits past the decimal point. This
- gives a return value similar to that from fcvt,
- except that trailing zeros are suppressed, and
- ndigits can be negative.
- 4,5 ==> similar to 2 and 3, respectively, but (in
- round-nearest mode) with the tests of mode 0 to
- possibly return a shorter string that rounds to d.
- With IEEE arithmetic and compilation with
- -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
- as modes 2 and 3 when FLT_ROUNDS != 1.
- 6-9 ==> Debugging modes similar to mode - 4: don't try
- fast floating-point estimate (if applicable).
-
- Values of mode other than 0-9 are treated as mode 0.
-
- Sufficient space is allocated to the return value
- to hold the suppressed trailing zeros.
- */
-
- int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
- j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
- spec_case, try_quick, half = 0;
- Long L;
-#ifndef Sudden_Underflow
- int denorm;
- ULong x;
-#endif
- Bigint *b, *b1, *delta, *mlo = 0, *mhi = 0, *S;
- double ds;
- double_u d, d2, eps;
- char *s, *s0;
-#ifdef Honor_FLT_ROUNDS
- int rounding;
-#endif
-#ifdef SET_INEXACT
- int inexact, oldinexact;
-#endif
-
- dval(d) = d_;
-
-#ifndef MULTIPLE_THREADS
- if (dtoa_result) {
- freedtoa(dtoa_result);
- dtoa_result = 0;
- }
-#endif
-
- if (word0(d) & Sign_bit) {
- /* set sign for everything, including 0's and NaNs */
- *sign = 1;
- word0(d) &= ~Sign_bit; /* clear sign bit */
- }
- else
- *sign = 0;
-
-#if defined(IEEE_Arith) + defined(VAX)
-#ifdef IEEE_Arith
- if ((word0(d) & Exp_mask) == Exp_mask)
-#else
- if (word0(d) == 0x8000)
-#endif
- {
- /* Infinity or NaN */
- *decpt = 9999;
-#ifdef IEEE_Arith
- if (!word1(d) && !(word0(d) & 0xfffff))
- return rv_strdup(INFSTR, rve);
-#endif
- return rv_strdup(NANSTR, rve);
- }
-#endif
-#ifdef IBM
- dval(d) += 0; /* normalize */
-#endif
- if (!dval(d)) {
- *decpt = 1;
- return rv_strdup(ZEROSTR, rve);
- }
-
-#ifdef SET_INEXACT
- try_quick = oldinexact = get_inexact();
- inexact = 1;
-#endif
-#ifdef Honor_FLT_ROUNDS
- if ((rounding = Flt_Rounds) >= 2) {
- if (*sign)
- rounding = rounding == 2 ? 0 : 2;
- else
- if (rounding != 2)
- rounding = 0;
- }
-#endif
-
- b = d2b(dval(d), &be, &bbits);
-#ifdef Sudden_Underflow
- i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
-#else
- if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {
-#endif
- dval(d2) = dval(d);
- word0(d2) &= Frac_mask1;
- word0(d2) |= Exp_11;
-#ifdef IBM
- if (j = 11 - hi0bits(word0(d2) & Frac_mask))
- dval(d2) /= 1 << j;
-#endif
-
- /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
- * log10(x) = log(x) / log(10)
- * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
- * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
- *
- * This suggests computing an approximation k to log10(d) by
- *
- * k = (i - Bias)*0.301029995663981
- * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
- *
- * We want k to be too large rather than too small.
- * The error in the first-order Taylor series approximation
- * is in our favor, so we just round up the constant enough
- * to compensate for any error in the multiplication of
- * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
- * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
- * adding 1e-13 to the constant term more than suffices.
- * Hence we adjust the constant term to 0.1760912590558.
- * (We could get a more accurate k by invoking log10,
- * but this is probably not worthwhile.)
- */
-
- i -= Bias;
-#ifdef IBM
- i <<= 2;
- i += j;
-#endif
-#ifndef Sudden_Underflow
- denorm = 0;
- }
- else {
- /* d is denormalized */
-
- i = bbits + be + (Bias + (P-1) - 1);
- x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32)
- : word1(d) << (32 - i);
- dval(d2) = x;
- word0(d2) -= 31*Exp_msk1; /* adjust exponent */
- i -= (Bias + (P-1) - 1) + 1;
- denorm = 1;
- }
-#endif
- ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
- k = (int)ds;
- if (ds < 0. && ds != k)
- k--; /* want k = floor(ds) */
- k_check = 1;
- if (k >= 0 && k <= Ten_pmax) {
- if (dval(d) < tens[k])
- k--;
- k_check = 0;
- }
- j = bbits - i - 1;
- if (j >= 0) {
- b2 = 0;
- s2 = j;
- }
- else {
- b2 = -j;
- s2 = 0;
- }
- if (k >= 0) {
- b5 = 0;
- s5 = k;
- s2 += k;
- }
- else {
- b2 -= k;
- b5 = -k;
- s5 = 0;
- }
- if (mode < 0 || mode > 9)
- mode = 0;
-
-#ifndef SET_INEXACT
-#ifdef Check_FLT_ROUNDS
- try_quick = Rounding == 1;
-#else
- try_quick = 1;
-#endif
-#endif /*SET_INEXACT*/
-
- if (mode > 5) {
- mode -= 4;
- try_quick = 0;
- }
- leftright = 1;
- ilim = ilim1 = -1;
- switch (mode) {
- case 0:
- case 1:
- i = 18;
- ndigits = 0;
- break;
- case 2:
- leftright = 0;
- /* no break */
- case 4:
- if (ndigits <= 0)
- ndigits = 1;
- ilim = ilim1 = i = ndigits;
- break;
- case 3:
- leftright = 0;
- /* no break */
- case 5:
- i = ndigits + k + 1;
- ilim = i;
- ilim1 = i - 1;
- if (i <= 0)
- i = 1;
- }
- s = s0 = rv_alloc(i+1);
-
-#ifdef Honor_FLT_ROUNDS
- if (mode > 1 && rounding != 1)
- leftright = 0;
-#endif
-
- if (ilim >= 0 && ilim <= Quick_max && try_quick) {
-
- /* Try to get by with floating-point arithmetic. */
-
- i = 0;
- dval(d2) = dval(d);
- k0 = k;
- ilim0 = ilim;
- ieps = 2; /* conservative */
- if (k > 0) {
- ds = tens[k&0xf];
- j = k >> 4;
- if (j & Bletch) {
- /* prevent overflows */
- j &= Bletch - 1;
- dval(d) /= bigtens[n_bigtens-1];
- ieps++;
- }
- for (; j; j >>= 1, i++)
- if (j & 1) {
- ieps++;
- ds *= bigtens[i];
- }
- dval(d) /= ds;
- }
- else if ((j1 = -k) != 0) {
- dval(d) *= tens[j1 & 0xf];
- for (j = j1 >> 4; j; j >>= 1, i++)
- if (j & 1) {
- ieps++;
- dval(d) *= bigtens[i];
- }
- }
- if (k_check && dval(d) < 1. && ilim > 0) {
- if (ilim1 <= 0)
- goto fast_failed;
- ilim = ilim1;
- k--;
- dval(d) *= 10.;
- ieps++;
- }
- dval(eps) = ieps*dval(d) + 7.;
- word0(eps) -= (P-1)*Exp_msk1;
- if (ilim == 0) {
- S = mhi = 0;
- dval(d) -= 5.;
- if (dval(d) > dval(eps))
- goto one_digit;
- if (dval(d) < -dval(eps))
- goto no_digits;
- goto fast_failed;
- }
-#ifndef No_leftright
- if (leftright) {
- /* Use Steele & White method of only
- * generating digits needed.
- */
- dval(eps) = 0.5/tens[ilim-1] - dval(eps);
- for (i = 0;;) {
- L = (int)dval(d);
- dval(d) -= L;
- *s++ = '0' + (int)L;
- if (dval(d) < dval(eps))
- goto ret1;
- if (1. - dval(d) < dval(eps))
- goto bump_up;
- if (++i >= ilim)
- break;
- dval(eps) *= 10.;
- dval(d) *= 10.;
- }
- }
- else {
-#endif
- /* Generate ilim digits, then fix them up. */
- dval(eps) *= tens[ilim-1];
- for (i = 1;; i++, dval(d) *= 10.) {
- L = (Long)(dval(d));
- if (!(dval(d) -= L))
- ilim = i;
- *s++ = '0' + (int)L;
- if (i == ilim) {
- if (dval(d) > 0.5 + dval(eps))
- goto bump_up;
- else if (dval(d) < 0.5 - dval(eps)) {
- while (*--s == '0') ;
- s++;
- goto ret1;
- }
- half = 1;
- if ((*(s-1) - '0') & 1) {
- goto bump_up;
- }
- break;
- }
- }
-#ifndef No_leftright
- }
-#endif
-fast_failed:
- s = s0;
- dval(d) = dval(d2);
- k = k0;
- ilim = ilim0;
- }
-
- /* Do we have a "small" integer? */
-
- if (be >= 0 && k <= Int_max) {
- /* Yes. */
- ds = tens[k];
- if (ndigits < 0 && ilim <= 0) {
- S = mhi = 0;
- if (ilim < 0 || dval(d) <= 5*ds)
- goto no_digits;
- goto one_digit;
- }
- for (i = 1;; i++, dval(d) *= 10.) {
- L = (Long)(dval(d) / ds);
- dval(d) -= L*ds;
-#ifdef Check_FLT_ROUNDS
- /* If FLT_ROUNDS == 2, L will usually be high by 1 */
- if (dval(d) < 0) {
- L--;
- dval(d) += ds;
- }
-#endif
- *s++ = '0' + (int)L;
- if (!dval(d)) {
-#ifdef SET_INEXACT
- inexact = 0;
-#endif
- break;
- }
- if (i == ilim) {
-#ifdef Honor_FLT_ROUNDS
- if (mode > 1)
- switch (rounding) {
- case 0: goto ret1;
- case 2: goto bump_up;
- }
-#endif
- dval(d) += dval(d);
- if (dval(d) > ds || (dval(d) == ds && (L & 1))) {
-bump_up:
- while (*--s == '9')
- if (s == s0) {
- k++;
- *s = '0';
- break;
- }
- ++*s++;
- }
- break;
- }
- }
- goto ret1;
- }
-
- m2 = b2;
- m5 = b5;
- if (leftright) {
- i =
-#ifndef Sudden_Underflow
- denorm ? be + (Bias + (P-1) - 1 + 1) :
-#endif
-#ifdef IBM
- 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
-#else
- 1 + P - bbits;
-#endif
- b2 += i;
- s2 += i;
- mhi = i2b(1);
- }
- if (m2 > 0 && s2 > 0) {
- i = m2 < s2 ? m2 : s2;
- b2 -= i;
- m2 -= i;
- s2 -= i;
- }
- if (b5 > 0) {
- if (leftright) {
- if (m5 > 0) {
- mhi = pow5mult(mhi, m5);
- b1 = mult(mhi, b);
- Bfree(b);
- b = b1;
- }
- if ((j = b5 - m5) != 0)
- b = pow5mult(b, j);
- }
- else
- b = pow5mult(b, b5);
- }
- S = i2b(1);
- if (s5 > 0)
- S = pow5mult(S, s5);
-
- /* Check for special case that d is a normalized power of 2. */
-
- spec_case = 0;
- if ((mode < 2 || leftright)
-#ifdef Honor_FLT_ROUNDS
- && rounding == 1
-#endif
- ) {
- if (!word1(d) && !(word0(d) & Bndry_mask)
-#ifndef Sudden_Underflow
- && word0(d) & (Exp_mask & ~Exp_msk1)
-#endif
- ) {
- /* The special case */
- b2 += Log2P;
- s2 += Log2P;
- spec_case = 1;
- }
- }
-
- /* Arrange for convenient computation of quotients:
- * shift left if necessary so divisor has 4 leading 0 bits.
- *
- * Perhaps we should just compute leading 28 bits of S once
- * and for all and pass them and a shift to quorem, so it
- * can do shifts and ors to compute the numerator for q.
- */
-#ifdef Pack_32
- if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0)
- i = 32 - i;
-#else
- if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) != 0)
- i = 16 - i;
-#endif
- if (i > 4) {
- i -= 4;
- b2 += i;
- m2 += i;
- s2 += i;
- }
- else if (i < 4) {
- i += 28;
- b2 += i;
- m2 += i;
- s2 += i;
- }
- if (b2 > 0)
- b = lshift(b, b2);
- if (s2 > 0)
- S = lshift(S, s2);
- if (k_check) {
- if (cmp(b,S) < 0) {
- k--;
- b = multadd(b, 10, 0); /* we botched the k estimate */
- if (leftright)
- mhi = multadd(mhi, 10, 0);
- ilim = ilim1;
- }
- }
- if (ilim <= 0 && (mode == 3 || mode == 5)) {
- if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
- /* no digits, fcvt style */
-no_digits:
- k = -1 - ndigits;
- goto ret;
- }
-one_digit:
- *s++ = '1';
- k++;
- goto ret;
- }
- if (leftright) {
- if (m2 > 0)
- mhi = lshift(mhi, m2);
-
- /* Compute mlo -- check for special case
- * that d is a normalized power of 2.
- */
-
- mlo = mhi;
- if (spec_case) {
- mhi = Balloc(mhi->k);
- Bcopy(mhi, mlo);
- mhi = lshift(mhi, Log2P);
- }
-
- for (i = 1;;i++) {
- dig = quorem(b,S) + '0';
- /* Do we yet have the shortest decimal string
- * that will round to d?
- */
- j = cmp(b, mlo);
- delta = diff(S, mhi);
- j1 = delta->sign ? 1 : cmp(b, delta);
- Bfree(delta);
-#ifndef ROUND_BIASED
- if (j1 == 0 && mode != 1 && !(word1(d) & 1)
-#ifdef Honor_FLT_ROUNDS
- && rounding >= 1
-#endif
- ) {
- if (dig == '9')
- goto round_9_up;
- if (j > 0)
- dig++;
-#ifdef SET_INEXACT
- else if (!b->x[0] && b->wds <= 1)
- inexact = 0;
-#endif
- *s++ = dig;
- goto ret;
- }
-#endif
- if (j < 0 || (j == 0 && mode != 1
-#ifndef ROUND_BIASED
- && !(word1(d) & 1)
-#endif
- )) {
- if (!b->x[0] && b->wds <= 1) {
-#ifdef SET_INEXACT
- inexact = 0;
-#endif
- goto accept_dig;
- }
-#ifdef Honor_FLT_ROUNDS
- if (mode > 1)
- switch (rounding) {
- case 0: goto accept_dig;
- case 2: goto keep_dig;
- }
-#endif /*Honor_FLT_ROUNDS*/
- if (j1 > 0) {
- b = lshift(b, 1);
- j1 = cmp(b, S);
- if ((j1 > 0 || (j1 == 0 && (dig & 1))) && dig++ == '9')
- goto round_9_up;
- }
-accept_dig:
- *s++ = dig;
- goto ret;
- }
- if (j1 > 0) {
-#ifdef Honor_FLT_ROUNDS
- if (!rounding)
- goto accept_dig;
-#endif
- if (dig == '9') { /* possible if i == 1 */
-round_9_up:
- *s++ = '9';
- goto roundoff;
- }
- *s++ = dig + 1;
- goto ret;
- }
-#ifdef Honor_FLT_ROUNDS
-keep_dig:
-#endif
- *s++ = dig;
- if (i == ilim)
- break;
- b = multadd(b, 10, 0);
- if (mlo == mhi)
- mlo = mhi = multadd(mhi, 10, 0);
- else {
- mlo = multadd(mlo, 10, 0);
- mhi = multadd(mhi, 10, 0);
- }
- }
- }
- else
- for (i = 1;; i++) {
- *s++ = dig = quorem(b,S) + '0';
- if (!b->x[0] && b->wds <= 1) {
-#ifdef SET_INEXACT
- inexact = 0;
-#endif
- goto ret;
- }
- if (i >= ilim)
- break;
- b = multadd(b, 10, 0);
- }
-
- /* Round off last digit */
-
-#ifdef Honor_FLT_ROUNDS
- switch (rounding) {
- case 0: goto trimzeros;
- case 2: goto roundoff;
- }
-#endif
- b = lshift(b, 1);
- j = cmp(b, S);
- if (j > 0 || (j == 0 && (dig & 1))) {
- roundoff:
- while (*--s == '9')
- if (s == s0) {
- k++;
- *s++ = '1';
- goto ret;
- }
- if (!half || (*s - '0') & 1)
- ++*s;
- }
- else {
- while (*--s == '0') ;
- }
- s++;
-ret:
- Bfree(S);
- if (mhi) {
- if (mlo && mlo != mhi)
- Bfree(mlo);
- Bfree(mhi);
- }
-ret1:
-#ifdef SET_INEXACT
- if (inexact) {
- if (!oldinexact) {
- word0(d) = Exp_1 + (70 << Exp_shift);
- word1(d) = 0;
- dval(d) += 1.;
- }
- }
- else if (!oldinexact)
- clear_inexact();
-#endif
- Bfree(b);
- *s = 0;
- *decpt = k + 1;
- if (rve)
- *rve = s;
- return s0;
-}
-
void
ruby_each_words(const char *str, void (*func)(const char*, int, void*), void *arg)
{
@@ -3868,149 +598,10 @@ ruby_each_words(const char *str, void (*func)(const char*, int, void*), void *ar
}
}
-/*-
- * Copyright (c) 2004-2008 David Schultz <das@FreeBSD.ORG>
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
-
-#define DBL_MANH_SIZE 20
-#define DBL_MANL_SIZE 32
-#define DBL_ADJ (DBL_MAX_EXP - 2)
-#define SIGFIGS ((DBL_MANT_DIG + 3) / 4 + 1)
-#define dexp_get(u) ((int)(word0(u) >> Exp_shift) & ~Exp_msk1)
-#define dexp_set(u,v) (word0(u) = (((int)(word0(u)) & ~Exp_mask) | ((v) << Exp_shift)))
-#define dmanh_get(u) ((uint32_t)(word0(u) & Frac_mask))
-#define dmanl_get(u) ((uint32_t)word1(u))
-
-
-/*
- * This procedure converts a double-precision number in IEEE format
- * into a string of hexadecimal digits and an exponent of 2. Its
- * behavior is bug-for-bug compatible with dtoa() in mode 2, with the
- * following exceptions:
- *
- * - An ndigits < 0 causes it to use as many digits as necessary to
- * represent the number exactly.
- * - The additional xdigs argument should point to either the string
- * "0123456789ABCDEF" or the string "0123456789abcdef", depending on
- * which case is desired.
- * - This routine does not repeat dtoa's mistake of setting decpt
- * to 9999 in the case of an infinity or NaN. INT_MAX is used
- * for this purpose instead.
- *
- * Note that the C99 standard does not specify what the leading digit
- * should be for non-zero numbers. For instance, 0x1.3p3 is the same
- * as 0x2.6p2 is the same as 0x4.cp3. This implementation always makes
- * the leading digit a 1. This ensures that the exponent printed is the
- * actual base-2 exponent, i.e., ilogb(d).
- *
- * Inputs: d, xdigs, ndigits
- * Outputs: decpt, sign, rve
- */
-char *
-ruby_hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign,
- char **rve)
-{
- U u;
- char *s, *s0;
- int bufsize;
- uint32_t manh, manl;
-
- u.d = d;
- if (word0(u) & Sign_bit) {
- /* set sign for everything, including 0's and NaNs */
- *sign = 1;
- word0(u) &= ~Sign_bit; /* clear sign bit */
- }
- else
- *sign = 0;
-
- if (isinf(d)) { /* FP_INFINITE */
- *decpt = INT_MAX;
- return rv_strdup(INFSTR, rve);
- }
- else if (isnan(d)) { /* FP_NAN */
- *decpt = INT_MAX;
- return rv_strdup(NANSTR, rve);
- }
- else if (d == 0.0) { /* FP_ZERO */
- *decpt = 1;
- return rv_strdup(ZEROSTR, rve);
- }
- else if (dexp_get(u)) { /* FP_NORMAL */
- *decpt = dexp_get(u) - DBL_ADJ;
- }
- else { /* FP_SUBNORMAL */
- u.d *= 5.363123171977039e+154 /* 0x1p514 */;
- *decpt = dexp_get(u) - (514 + DBL_ADJ);
- }
-
- if (ndigits == 0) /* dtoa() compatibility */
- ndigits = 1;
-
- /*
- * If ndigits < 0, we are expected to auto-size, so we allocate
- * enough space for all the digits.
- */
- bufsize = (ndigits > 0) ? ndigits : SIGFIGS;
- s0 = rv_alloc(bufsize+1);
-
- /* Round to the desired number of digits. */
- if (SIGFIGS > ndigits && ndigits > 0) {
- float redux = 1.0f;
- int offset = 4 * ndigits + DBL_MAX_EXP - 4 - DBL_MANT_DIG;
- dexp_set(u, offset);
- u.d += redux;
- u.d -= redux;
- *decpt += dexp_get(u) - offset;
- }
-
- manh = dmanh_get(u);
- manl = dmanl_get(u);
- *s0 = '1';
- for (s = s0 + 1; s < s0 + bufsize; s++) {
- *s = xdigs[(manh >> (DBL_MANH_SIZE - 4)) & 0xf];
- manh = (manh << 4) | (manl >> (DBL_MANL_SIZE - 4));
- manl <<= 4;
- }
-
- /* If ndigits < 0, we are expected to auto-size the precision. */
- if (ndigits < 0) {
- for (ndigits = SIGFIGS; s0[ndigits - 1] == '0'; ndigits--)
- ;
- }
-
- s = s0 + ndigits;
- *s = '\0';
- if (rve != NULL)
- *rve = s;
- return (s0);
-}
-
-#ifdef __cplusplus
-#if 0
-{ /* satisfy cc-mode */
-#endif
-}
-#endif
+#undef strtod
+#define strtod ruby_strtod
+#undef dtoa
+#define dtoa ruby_dtoa
+#undef hdtoa
+#define hdtoa ruby_hdtoa
+#include "missing/dtoa.c"