summaryrefslogtreecommitdiff
path: root/signal.c
diff options
context:
space:
mode:
authornormal <normal@b2dd03c8-39d4-4d8f-98ff-823fe69b080e>2018-07-29 20:47:33 +0000
committernormal <normal@b2dd03c8-39d4-4d8f-98ff-823fe69b080e>2018-07-29 20:47:33 +0000
commit708bfd21156828526fe72de2cedecfaca6647dc1 (patch)
tree3a29a7e3edf47618e8cf8f1159d27993e12e66ce /signal.c
parent822e54a527b6be1f4cda7c48cf723e02b51fadc9 (diff)
thread_pthread: remove timer-thread by restructuring GVL
To reduce resource use and reduce CI failure; remove timer-thread. Single-threaded Ruby processes (including forked children) will never see extra thread overhead. This prevents glibc and jemalloc from going into multi-threaded mode and initializing locks or causing fragmentation via arena explosion. The GVL is implements its own wait-queue as a ccan/list to permit controlling wakeup order. Timeslice under contention is handled by a designated timer thread (similar to choosing a "patrol_thread" for current deadlock checking). There is only one self-pipe, now, as wakeups for timeslice are done independently using condition variables. This reduces FD pressure slightly. Signal handling is handled directly by a Ruby Thread (instead of timer-thread) by exposing signal self-pipe to callers of rb_thread_fd_select, native_sleep, rb_wait_for_single_fd, etc... Acquiring, using, and releasing the self-pipe is exposed via 4 new internal functions: 1) rb_sigwait_fd_get - exclusively acquire timer_thread_pipe.normal[0] 2) rb_sigwait_fd_sleep - sleep and wait for signal (and no other FDs) 3) rb_sigwait_fd_put - release acquired result from rb_sigwait_fd_get 4) rb_sigwait_fd_migrate - migrate signal handling to another thread after calling rb_sigwait_fd_put. rb_sigwait_fd_migrate is necessary for waitpid callers because only one thread can wait on self-pipe at a time, otherwise a deadlock will occur if threads fight over the self-pipe. TRAP_INTERRUPT_MASK is now set for the main thread directly in signal handler via rb_thread_wakeup_timer_thread. Originally, I wanted to use POSIX timers (timer_create/timer_settime) for this. Unfortunately, this proved unfeasible as Mutex#sleep resumes on spurious wakeups and test/thread/test_cv.rb::test_condvar_timed_wait failed. Using pthread_sigmask to mask out SIGVTALRM fixed that test, but test/fiddle/test_function.rb::test_nogvl_poll proved there'd be some unavoidable (and frequent) incompatibilities from that approach. Finally, this allows us to drop thread_destruct_lock and interrupt current ec directly. We don't need to rely on vm->thread_destruct_lock or a coherent vm->running_thread on any platform. Separate timer-thread for time slice and signal handling is relegated to thread_win32.c, now. [ruby-core:88088] [Misc #14937] git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@64107 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
Diffstat (limited to 'signal.c')
-rw-r--r--signal.c7
1 files changed, 1 insertions, 6 deletions
diff --git a/signal.c b/signal.c
index 6393273adf..65b45cf6bd 100644
--- a/signal.c
+++ b/signal.c
@@ -709,9 +709,6 @@ signal_enque(int sig)
static rb_atomic_t sigchld_hit;
-/* Prevent compiler from reordering access */
-#define ACCESS_ONCE(type,x) (*((volatile type *)&(x)))
-
static RETSIGTYPE
sighandler(int sig)
{
@@ -730,7 +727,7 @@ sighandler(int sig)
else {
signal_enque(sig);
}
- rb_thread_wakeup_timer_thread();
+ rb_thread_wakeup_timer_thread(sig);
#if !defined(BSD_SIGNAL) && !defined(POSIX_SIGNAL)
ruby_signal(sig, sighandler);
#endif
@@ -764,7 +761,6 @@ rb_enable_interrupt(void)
#ifdef HAVE_PTHREAD_SIGMASK
sigset_t mask;
sigemptyset(&mask);
- sigaddset(&mask, RUBY_SIGCHLD); /* timer-thread handles this */
pthread_sigmask(SIG_SETMASK, &mask, NULL);
#endif
}
@@ -1077,7 +1073,6 @@ rb_trap_exit(void)
void ruby_waitpid_all(rb_vm_t *); /* process.c */
-/* only runs in the timer-thread */
void
ruby_sigchld_handler(rb_vm_t *vm)
{