diff options
| author | Yusuke Endoh <mame@ruby-lang.org> | 2025-08-02 20:15:06 +0900 |
|---|---|---|
| committer | Yusuke Endoh <mame@ruby-lang.org> | 2025-08-21 20:05:52 +0900 |
| commit | f2b1017b3df5f93aaf1d4ccd758d341298aa8dcc (patch) | |
| tree | 456c92abfccb2a5b75fee87709e46881a2f403e4 /math.c | |
| parent | feb83316730548d31b4be8076b8316e8e17d8b00 (diff) | |
Add `Math.log1p` and `Math.expm1`
This commit adds two new methods to the `Math` module:
* `Math.log1p(x)`: Computes `Math.log(x + 1)`
* `Math.expm1(x)`: Computes `Math.exp(x) - 1`
These methods are often more accurate than the straightforward
computation, especially when `x` is close to zero.
The corresponding functions, `log1p` and `expm1`, are defined in the C99
standard math library.
[Feature #21527]
Diffstat (limited to 'math.c')
| -rw-r--r-- | math.c | 71 |
1 files changed, 71 insertions, 0 deletions
@@ -457,6 +457,34 @@ math_exp(VALUE unused_obj, VALUE x) return DBL2NUM(exp(Get_Double(x))); } +/* + * call-seq: + * Math.expm1(x) -> float + * + * Returns "exp(x) - 1", +e+ raised to the +x+ power, minus 1. + * + * + * - Domain: <tt>[-INFINITY, INFINITY]</tt>. + * - Range: <tt>[-1.0, INFINITY]</tt>. + * + * Examples: + * + * expm1(-INFINITY) # => 0.0 + * expm1(-1.0) # => -0.6321205588285577 # 1.0/E - 1 + * expm1(0.0) # => 0.0 + * expm1(0.5) # => 0.6487212707001282 # sqrt(E) - 1 + * expm1(1.0) # => 1.718281828459045 # E - 1 + * expm1(2.0) # => 6.38905609893065 # E**2 - 1 + * expm1(INFINITY) # => Infinity + * + */ + +static VALUE +math_expm1(VALUE unused_obj, VALUE x) +{ + return DBL2NUM(expm1(Get_Double(x))); +} + #if defined __CYGWIN__ # include <cygwin/version.h> # if CYGWIN_VERSION_DLL_MAJOR < 1005 @@ -646,6 +674,47 @@ math_log10(VALUE unused_obj, VALUE x) return DBL2NUM(log10(d) + numbits * log10(2)); /* log10(d * 2 ** numbits) */ } +/* + * call-seq: + * Math.log1p(x) -> float + * + * Returns "log(x + 1)", the base E {logarithm}[https://en.wikipedia.org/wiki/Logarithm] of (+x+ + 1). + * + * - Domain: <tt>[-1, INFINITY]</tt>. + * - Range: <tt>[-INFINITY, INFINITY]</tt>. + * + * Examples: + * + * log1p(-1.0) # => -Infinity + * log1p(0.0) # => 0.0 + * log1p(E - 1) # => 1.0 + * log1p(INFINITY) # => Infinity + * + */ + +static VALUE +math_log1p(VALUE unused_obj, VALUE x) +{ + size_t numbits; + double d = get_double_rshift(x, &numbits); + + if (numbits != 0) { + x = rb_big_plus(x, INT2FIX(1)); + d = math_log_split(x, &numbits); + /* check for pole error */ + if (d == 0.0) return DBL2NUM(-HUGE_VAL); + d = log(d); + d += numbits * M_LN2; + return DBL2NUM(d); + } + + domain_check_min(d, -1.0, "log1p"); + /* check for pole error */ + if (d == -1.0) return DBL2NUM(-HUGE_VAL); + + return DBL2NUM(log1p(d)); /* log10(d * 2 ** numbits) */ +} + static VALUE rb_math_sqrt(VALUE x); /* @@ -1120,9 +1189,11 @@ InitVM_Math(void) rb_define_module_function(rb_mMath, "atanh", math_atanh, 1); rb_define_module_function(rb_mMath, "exp", math_exp, 1); + rb_define_module_function(rb_mMath, "expm1", math_expm1, 1); rb_define_module_function(rb_mMath, "log", math_log, -1); rb_define_module_function(rb_mMath, "log2", math_log2, 1); rb_define_module_function(rb_mMath, "log10", math_log10, 1); + rb_define_module_function(rb_mMath, "log1p", math_log1p, 1); rb_define_module_function(rb_mMath, "sqrt", math_sqrt, 1); rb_define_module_function(rb_mMath, "cbrt", math_cbrt, 1); |
