summaryrefslogtreecommitdiff
path: root/lib/mathn.rb
blob: a5a121c6c6a437f4cdb062f4f17e485f105f160f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#
#   mathn.rb - 
#   	$Release Version: 0.5 $
#   	$Revision: 1.1.1.1.4.1 $
#   	$Date: 1998/01/16 12:36:05 $
#   	by Keiju ISHITSUKA(SHL Japan Inc.)
#
# --
#
#   
#

require "complex.rb"
require "rational.rb"
require "matrix.rb"

class Integer

  def gcd2(int)
    a = self.abs
    b = int.abs
    a, b = b, a if a < b
    
    pd_a = a.prime_division
    pd_b = b.prime_division
    
    gcd = 1
    for pair in pd_a
      as = pd_b.assoc(pair[0])
      if as
	gcd *= as[0] ** [as[1], pair[1]].min
      end
    end
    return gcd
  end
  
  def Integer.from_prime_division(pd)
    value = 1
    for prime, index in pd
      value *= prime**index
    end
    value
  end
  
  def prime_division
    raise ZeroDivisionError if self == 0
    ps = Prime.new
    value = self
    pv = []
    for prime in ps
      count = 0
      while (value1, mod = value.divmod(prime)
	     mod) == 0
	value = value1
	count += 1
      end
      if count != 0
	pv.push [prime, count]
      end
      break if prime * prime  >= value
    end
    if value > 1
      pv.push [value, 1]
    end
    return pv
  end
end
  
class Prime
  include Enumerable

  def initialize
    @seed = 1
    @primes = []
    @counts = []
  end
  
  def succ
    i = -1
    size = @primes.size
    while i < size
      if i == -1
	@seed += 1
	i += 1
      else
	while @seed > @counts[i]
	  @counts[i] += @primes[i]
	end
	if @seed != @counts[i]
	  i += 1
	else
	  i = -1
	end
      end
    end
    @primes.push @seed
    @counts.push @seed + @seed
    return @seed
  end
  alias next succ

  def each
    loop do
      yield succ
    end
  end
end

class Fixnum
  alias / quo
end

class Bignum
  alias / quo
end

class Rational
  Unify = true

  def inspect
    format "%s/%s", numerator.inspect, denominator.inspect
  end

  alias power! **

  def ** (other)
    if other.kind_of?(Rational)
      other2 = other
      if self < 0
	return Complex.new!(self, 0) ** other
      elsif other == 0
	return Rational(1,1)
      elsif self == 0
	return Rational(0,1)
      elsif self == 1
	return Rational(1,1)
      end
      
      npd = numerator.prime_division
      dpd = denominator.prime_division
      if other < 0
	other = -other
	npd, dpd = dpd, npd
      end
      
      for elm in npd
	elm[1] = elm[1] * other
	if !elm[1].kind_of?(Integer) and elm[1].denominator != 1
         return Float(self) ** other2
	end
	elm[1] = elm[1].to_i
      end
      
      for elm in dpd
	elm[1] = elm[1] * other
	if !elm[1].kind_of?(Integer) and elm[1].denominator != 1
         return Float(self) ** other2
	end
	elm[1] = elm[1].to_i
      end
      
      num = Integer.from_prime_division(npd)
      den = Integer.from_prime_division(dpd)
      
      Rational(num,den)
      
    elsif other.kind_of?(Integer)
      if other > 0
	num = numerator ** other
	den = denominator ** other
      elsif other < 0
	num = denominator ** -other
	den = numerator ** -other
      elsif other == 0
	num = 1
	den = 1
      end
      Rational.new!(num, den)
    elsif other.kind_of?(Float)
      Float(self) ** other
    else
      x , y = other.coerce(self)
      x ** y
    end
  end

  def power2(other)
    if other.kind_of?(Rational)
      if self < 0
	return Complex(self, 0) ** other
      elsif other == 0
	return Rational(1,1)
      elsif self == 0
	return Rational(0,1)
      elsif self == 1
	return Rational(1,1)
      end
      
      dem = nil
      x = self.denominator.to_f.to_i
      neard = self.denominator.to_f ** (1.0/other.denominator.to_f)
      loop do
	if (neard**other.denominator == self.denominator)
	  dem = neaed
	  break
	end
      end
      nearn = self.numerator.to_f ** (1.0/other.denominator.to_f)
      Rational(num,den)
      
    elsif other.kind_of?(Integer)
      if other > 0
	num = numerator ** other
	den = denominator ** other
      elsif other < 0
	num = denominator ** -other
	den = numerator ** -other
      elsif other == 0
	num = 1
	den = 1
      end
      Rational.new!(num, den)
    elsif other.kind_of?(Float)
      Float(self) ** other
    else
      x , y = other.coerce(self)
      x ** y
    end
  end
end

module Math
  def sqrt(a)
    if a.kind_of?(Complex)
      abs = sqrt(a.real*a.real + a.image*a.image)
#      if not abs.kind_of?(Rational)
#	return a**Rational(1,2)
#      end
      x = sqrt((a.real + abs)/Rational(2))
      y = sqrt((-a.real + abs)/Rational(2))
#      if !(x.kind_of?(Rational) and y.kind_of?(Rational))
#	return a**Rational(1,2)
#      end
      if a.image >= 0 
	Complex(x, y)
      else
	Complex(x, -y)
      end
    elsif a >= 0
      rsqrt(a)
    else
      Complex(0,rsqrt(-a))
    end
  end
  
  def rsqrt(a)
    if a.kind_of?(Float)
      sqrt!(a)
    elsif a.kind_of?(Rational)
      rsqrt(a.numerator)/rsqrt(a.denominator)
    else
      src = a
      max = 2 ** 32
      byte_a = [src & 0xffffffff]
      # ruby's bug
      while (src >= max) and (src >>= 32)
	byte_a.unshift src & 0xffffffff
      end
      
      answer = 0
      main = 0
      side = 0
      for elm in byte_a
	main = (main << 32) + elm
	side <<= 16
	if answer != 0
	  if main * 4  < side * side
	    applo = main.div(side)
	  else 
	    applo = ((sqrt!(side * side + 4 * main) - side)/2.0).to_i + 1
	  end
	else
	  applo = sqrt!(main).to_i + 1
	end
	
	while (x = (side + applo) * applo) > main
	  applo -= 1
	end
	main -= x
	answer = (answer << 16) + applo
	side += applo * 2
      end
      if main == 0
	answer
      else
	sqrt!(a)
      end
    end
  end

  module_function :sqrt
  module_function :rsqrt
end

class Complex
  Unify = true
end