summaryrefslogtreecommitdiff
path: root/darray.h
blob: ed6085fbcd5fff78775fc0aecbc2b81bd934f973 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#ifndef RUBY_DARRAY_H
#define RUBY_DARRAY_H

#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>

// Type for a dynamic array. Use to declare a dynamic array.
// It is a pointer so it fits in st_table nicely. Designed
// to be fairly type-safe.
//
// NULL is a valid empty dynamic array.
//
// Example:
//      rb_darray(char) char_array = NULL;
//      if (!rb_darray_append(&char_array, 'e')) abort();
//      printf("pushed %c\n", *rb_darray_ref(char_array, 0));
//      rb_darray_free(char_array);
//
#define rb_darray(T) struct { rb_darray_meta_t meta; T data[]; } *

// Copy an element out of the array. Warning: not bounds checked.
//
// T rb_darray_get(rb_darray(T) ary, int32_t idx);
//
#define rb_darray_get(ary, idx) ((ary)->data[(idx)])

// Assign to an element. Warning: not bounds checked.
//
// void rb_darray_set(rb_darray(T) ary, int32_t idx, T element);
//
#define rb_darray_set(ary, idx, element) ((ary)->data[(idx)] = (element))

// Get a pointer to an element. Warning: not bounds checked.
//
// T *rb_darray_ref(rb_darray(T) ary, int32_t idx);
//
#define rb_darray_ref(ary, idx) (&((ary)->data[(idx)]))

// Copy a new element into the array. Return 1 on success and 0 on failure.
// ptr_to_ary is evaluated multiple times.
//
// bool rb_darray_append(rb_darray(T) *ptr_to_ary, T element);
//
#define rb_darray_append(ptr_to_ary, element) (   \
    rb_darray_ensure_space((ptr_to_ary), sizeof(**(ptr_to_ary)), sizeof((*(ptr_to_ary))->data[0])) ? ( \
        rb_darray_set(*(ptr_to_ary),              \
                      (*(ptr_to_ary))->meta.size, \
                      (element)),                 \
        ++((*(ptr_to_ary))->meta.size),           \
        1                                         \
    ) : 0)

// Last element of the array
//
#define rb_darray_back(ary) ((ary)->data[(ary)->meta.size - 1])

// Remove the last element of the array.
//
#define rb_darray_pop_back(ary) ((ary)->meta.size--)

// Remove element at idx and replace it by the last element
#define rb_darray_remove_unordered(ary, idx) do {   \
    rb_darray_set(ary, idx, rb_darray_back(ary));   \
    rb_darray_pop_back(ary);                        \
} while (0);

// Iterate over items of the array in a for loop
//
#define rb_darray_foreach(ary, idx_name, elem_ptr_var) \
    for (int idx_name = 0; idx_name < rb_darray_size(ary) && ((elem_ptr_var) = rb_darray_ref(ary, idx_name)); ++idx_name)

// Iterate over valid indicies in the array in a for loop
//
#define rb_darray_for(ary, idx_name) \
    for (int idx_name = 0; idx_name < rb_darray_size(ary); ++idx_name)

// Make a dynamic array of a certain size. All bytes backing the elements are set to zero.
// Return 1 on success and 0 on failure.
//
// Note that NULL is a valid empty dynamic array.
//
// bool rb_darray_make(rb_darray(T) *ptr_to_ary, int32_t size);
//
#define rb_darray_make(ptr_to_ary, size) rb_darray_make_impl((ptr_to_ary), size, sizeof(**(ptr_to_ary)), sizeof((*(ptr_to_ary))->data[0]))

// Set the size of the array to zero without freeing the backing memory.
// Allows reusing the same array.
//
#define rb_darray_clear(ary) (ary->meta.size = 0)

typedef struct rb_darray_meta {
    int32_t size;
    int32_t capa;
} rb_darray_meta_t;

// Get the size of the dynamic array.
//
static inline int32_t
rb_darray_size(const void *ary)
{
    const rb_darray_meta_t *meta = ary;
    return meta ? meta->size : 0;
}

// Get the capacity of the dynamic array.
//
static inline int32_t
rb_darray_capa(const void *ary)
{
    const rb_darray_meta_t *meta = ary;
    return meta ? meta->capa : 0;
}

// Free the dynamic array.
//
static inline void
rb_darray_free(void *ary)
{
    free(ary);
}

// Internal function. Calculate buffer size on malloc heap.
static inline size_t
rb_darray_buffer_size(int32_t capacity, size_t header_size, size_t element_size)
{
    if (capacity == 0) return 0;
    return header_size + (size_t)capacity * element_size;
}

// Internal function
// Ensure there is space for one more element. Return 1 on success and 0 on failure.
// Note: header_size can be bigger than sizeof(rb_darray_meta_t) when T is __int128_t, for example.
static inline int
rb_darray_ensure_space(void *ptr_to_ary, size_t header_size, size_t element_size)
{
    rb_darray_meta_t **ptr_to_ptr_to_meta = ptr_to_ary;
    rb_darray_meta_t *meta = *ptr_to_ptr_to_meta;
    int32_t current_capa = rb_darray_capa(meta);
    if (rb_darray_size(meta) < current_capa) return 1;

    int32_t new_capa;
    // Calculate new capacity
    if (current_capa == 0) {
        new_capa = 1;
    }
    else {
        int64_t doubled = 2 * (int64_t)current_capa;
        new_capa = (int32_t)doubled;
        if (new_capa != doubled) return 0;
    }

    // Calculate new buffer size
    size_t current_buffer_size = rb_darray_buffer_size(current_capa, header_size, element_size);
    size_t new_buffer_size = rb_darray_buffer_size(new_capa, header_size, element_size);
    if (new_buffer_size <= current_buffer_size) return 0;

    rb_darray_meta_t *doubled_ary = realloc(meta, new_buffer_size);
    if (!doubled_ary) return 0;

    if (meta == NULL) {
        // First allocation. Initialize size. On subsequence allocations
        // realloc takes care of carrying over the size.
        doubled_ary->size = 0;
    }

    doubled_ary->capa = new_capa;

    // We don't have access to the type of the dynamic array in function context.
    // Write out result with memcpy to avoid strict aliasing issue.
    memcpy(ptr_to_ary, &doubled_ary, sizeof(doubled_ary));
    return 1;
}

static inline int
rb_darray_make_impl(void *ptr_to_ary, int32_t array_size, size_t header_size, size_t element_size)
{
    rb_darray_meta_t **ptr_to_ptr_to_meta = ptr_to_ary;
    if (array_size < 0) return 0;
    if (array_size == 0) {
        *ptr_to_ptr_to_meta = NULL;
        return 1;
    }

    size_t buffer_size = rb_darray_buffer_size(array_size, header_size, element_size);
    rb_darray_meta_t *meta = calloc(buffer_size, 1);
    if (!meta) return 0;

    meta->size = array_size;
    meta->capa = array_size;

    // We don't have access to the type of the dynamic array in function context.
    // Write out result with memcpy to avoid strict aliasing issue.
    memcpy(ptr_to_ary, &meta, sizeof(meta));
    return 1;
}

#endif /* RUBY_DARRAY_H */