| Age | Commit message (Collapse) | Author |
|
|
|
* Initial setup for aarch64
* ADDS and SUBS
* ADD and SUB for immediates
* Revert moved code
* Documentation
* Rename Arm64* to A64*
* Comments on shift types
* Share sig_imm_size and unsig_imm_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* Split instructions if necessary
* Add a reusable transform_insns function
* Split out comments labels from transform_insns
* Refactor alloc_regs to use transform_insns
|
|
PR: https://github.com/Shopify/ruby/pull/289
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/6278
|
|
* Rename mjit_exec to jit_exec
* Rename mjit_exec_slowpath to mjit_check_iseq
* Remove mjit_exec references from comments
Notes:
Merged-By: k0kubun <takashikkbn@gmail.com>
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/6158
|
|
Allow str-concat arg to be any string subtype, not just rb_cString
Notes:
Merged-By: maximecb <maximecb@ruby-lang.org>
|
|
* YJIT: Add known_* helpers for Type
This adds a few helpers to Type which all return Options representing
what is known, from a Ruby perspective, about the type.
This includes:
* known_class_of: If known, the class represented by this type
* known_value_type: If known, the T_ value type
* known_exact_value: If known, the exact VALUE represented by this type
(currently this is only available for true/false/nil)
* known_truthy: If known, whether or not this value evaluates as true
(not false or nil)
The goal of this is to abstract away the specifics of the mappings
between types wherever possible from the codegen. For example previously
by introducing Type::CString as a more specific version of
Type::TString, uses of Type::TString in codegen needed to be updated to
check either case. Now by using known_value_type, at least in theory we
can introduce new types with minimal (if any) codegen changes.
I think rust's Option type allows us to represent this uncertainty
fairly well, and should help avoid mistakes, and the matching using this
turned out pretty cleanly.
* YJIT: Use known_value_type for checktype
* YJIT: Use known_value_type for T_STRING check
* YJIT: Use known_class_of in guard_known_klass
* YJIT: Use known truthyness in jit_rb_obj_not
* YJIT: Rename known_class_of => known_class
Notes:
Merged-By: maximecb <maximecb@ruby-lang.org>
|
|
(#6191)
Teach getblockparamproxy to handle the no-block case without exiting
Co-authored-by: John Hawthorn <john@hawthorn.email>
Co-authored-by: John Hawthorn <john@hawthorn.email>
Notes:
Merged-By: maximecb <maximecb@ruby-lang.org>
|
|
Write barriers may be required when VM_ENV_FLAG_WB_REQUIRED is set,
however write barriers only affect heap objects being written. If we
know an immediate value is being written we can skip this check.
Notes:
Merged-By: maximecb <maximecb@ruby-lang.org>
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/5978
|
|
This commit implements Objects on Variable Width Allocation. This allows
Objects with more ivars to be embedded (i.e. contents directly follow the
object header) which improves performance through better cache locality.
Notes:
Merged: https://github.com/ruby/ruby/pull/6117
|
|
In a small script the speed of this feature isn't really noticeable but
on Rails it's very noticeable how slow this can be. This PR aims to
speed up two parts of the functionality.
1) The Rust exit recording code
Instead of adding all samples as we see them to the yjit_raw_samples and
yjit_line_samples, we can increment the counter on the ones we've seen
before. This will be faster on traces where we are hitting the same
stack often. In a crude measurement of booting just the active record
base test (`test/cases/base_test.rb`) we found that this improved the
speed by 1 second.
This also results in a smaller marshal dump file which sped up the test
boot time by 4 seconds with trace exits on.
2) The Ruby parsing code
Previously we were allocating new arrays using `shift` and
`each_with_index`. This change avoids allocating new arrays by using an
index. This change saves us the most amount of time, gaining 11 seconds.
Before this change the test boot time took 62 seconds, after it took 47
seconds. This is still too long but it's a step closer to faster
functionality. Next we're going to tackle allowing you to collect trace
exits for a specific instruction. There is also some potential slowness
in the GC code that I'd like to take a second look at.
Co-authored-by: Aaron Patterson <tenderlove@ruby-lang.org>
Co-authored-by: Aaron Patterson <tenderlove@ruby-lang.org>
Notes:
Merged-By: maximecb <maximecb@ruby-lang.org>
|
|
encodings don't match, as discussed with byroot
Notes:
Merged: https://github.com/ruby/ruby/pull/6095
|
|
Add a counter for gc object refs in the machine code
This is to gather data for the eventual implementation of
a constant pool.
Notes:
Merged-By: maximecb <maximecb@ruby-lang.org>
|
|
Refactor gen_opt_mod in YJIT
Notes:
Merged-By: maximecb <maximecb@ruby-lang.org>
|
|
Also slightly broaden the cases where << on two strings will generate
specialised code rather than a plain method call.
Notes:
Merged: https://github.com/ruby/ruby/pull/6022
|
|
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/5643
|
|
This commit makes YJIT allocate memory for generated code gradually as
needed. Previously, YJIT allocates all the memory it needs on boot in
one go, leading to higher than necessary resident set size (RSS) and
time spent on boot initializing the memory with a large memset().
Users should no longer need to search for a magic number to pass to
`--yjit-exec-mem` since physical memory consumption should now more
accurately reflect the requirement of the workload.
YJIT now reserves a range of addresses on boot. This region start out
with no access permission at all so buggy attempts to jump to the region
crashes like before this change. To get this hardening at finer
granularity than the page size, we fill each page with trapping
instructions when we first allocate physical memory for the page.
Most of the time applications don't need 256 MiB of executable code, so
allocating on-demand ends up doing less total work than before. Case in
point, a simple `ruby --yjit-call-threshold=1 -eitself` takes about
half as long after this change. In terms of memory consumption, here is
a table to give a rough summary of the impact:
| Peak RSS in MiB | -eitself example | railsbench once |
| :-------------: | ---------------: | --------------: |
| before | 265 | 377 |
| after | 11 | 143 |
| no YJIT | 10 | 101 |
A new module is introduced to handle allocation bookkeeping.
`CodePtr` is moved into the module since it has a close relationship
with the new `VirtualMemory` struct. This new interface has a slightly
smaller surface than before in that marking a region as writable is no
longer a public operation.
Notes:
Merged-By: maximecb <maximecb@ruby-lang.org>
|
|
This way YJIT has to match CRuby for each of them.
Remove unused string_p() Rust function
Notes:
Merged-By: maximecb <maximecb@ruby-lang.org>
|
|
but true at this point and we don't usually check the returned value. (#6000)
Notes:
Merged-By: maximecb <maximecb@ruby-lang.org>
|
|
When running with `--yjit-stats` turned on, yjit can inform the user
what the most common exits are. While this is useful information it
doesn't tell you the source location of the code that exited or what the
code that exited looks like. This change intends to fix that.
To use the feature, run yjit with the `--yjit-trace-exits` option,
which will record the backtrace for every exit that occurs. This functionality
requires the stats feature to be turned on. Calling `--yjit-trace-exits`
will automatically set the `--yjit-stats` option.
Users must call `RubyVM::YJIT.dump_exit_locations(filename)` which will
Marshal dump the contents of `RubyVM::YJIT.exit_locations` into a file
based on the passed filename.
*Example usage:*
Given the following script, we write to a file called
`concat_array.dump` the results of `RubyVM::YJIT.exit_locations`.
```ruby
def concat_array
["t", "r", *x = "u", "e"].join
end
1000.times do
concat_array
end
RubyVM::YJIT.dump_exit_locations("concat_array.dump")
```
When we run the file with this branch and the appropriate flags the
stacktrace will be recorded. Note Stackprof needs to be installed or you
need to point to the library directly.
```
./ruby --yjit --yjit-call-threshold=1 --yjit-trace-exits -I/Users/eileencodes/open_source/stackprof/lib test.rb
```
We can then read the dump file with Stackprof:
```
./ruby -I/Users/eileencodes/open_source/stackprof/lib/ /Users/eileencodes/open_source/stackprof/bin/stackprof --text concat_array.dump
```
Results will look similar to the following:
```
==================================
Mode: ()
Samples: 1817 (0.00% miss rate)
GC: 0 (0.00%)
==================================
TOTAL (pct) SAMPLES (pct) FRAME
1001 (55.1%) 1001 (55.1%) concatarray
335 (18.4%) 335 (18.4%) invokeblock
178 (9.8%) 178 (9.8%) send
140 (7.7%) 140 (7.7%) opt_getinlinecache
...etc...
```
Simply inspecting the `concatarray` method will give `SOURCE
UNAVAILABLE` because the source is insns.def.
```
./ruby -I/Users/eileencodes/open_source/stackprof/lib/ /Users/eileencodes/open_source/stackprof/bin/stackprof --text concat_array.dump --method concatarray
```
Result:
```
concatarray (nonexistent.def:1)
samples: 1001 self (55.1%) / 1001 total (55.1%)
callers:
1000 ( 99.9%) Object#concat_array
1 ( 0.1%) Gem.suffixes
callees (0 total):
code:
SOURCE UNAVAILABLE
```
However if we go deeper to the callee we can see the exact
source of the `concatarray` exit.
```
./ruby -I/Users/eileencodes/open_source/stackprof/lib/ /Users/eileencodes/open_source/stackprof/bin/stackprof --text concat_array.dump --method Object#concat_array
```
```
Object#concat_array (/Users/eileencodes/open_source/rust_ruby/test.rb:1)
samples: 0 self (0.0%) / 1000 total (55.0%)
callers:
1000 ( 100.0%) block in <main>
callees (1000 total):
1000 ( 100.0%) concatarray
code:
| 1 | def concat_array
1000 (55.0%) | 2 | ["t", "r", *x = "u", "e"].join
| 3 | end
```
The `--walk` option is recommended for this feature as it make it
easier to traverse the tree of exits.
*Goals of this feature:*
This feature is meant to give more information when working on YJIT.
The idea is that if we know what code is exiting we can decide what
areas to prioritize when fixing exits. In some cases this means adding
prioritizing avoiding certain exits in yjit. In more complex cases it
might mean changing the Ruby code to be more performant when run with
yjit. Ultimately the more information we have about what code is exiting
AND why, the better we can make yjit.
*Known limitations:*
* Due to tracing exits, running this on large codebases like Rails
can be quite slow.
* On complex methods it can still be difficult to pinpoint the exact cause of
an exit.
* Stackprof is a requirement to to view the backtrace information from
the dump file.
Co-authored-by: Aaron Patterson <tenderlove@ruby-lang.org>
Co-authored-by: Aaron Patterson <tenderlove@ruby-lang.org>
Notes:
Merged-By: maximecb <maximecb@ruby-lang.org>
|
|
Notes:
Merged-By: maximecb <maximecb@ruby-lang.org>
|
|
Constants that can't be imported via bindgen should have
a comment saying why not.
Notes:
Merged-By: maximecb <maximecb@ruby-lang.org>
|
|
Also add jhawthorn's test to for this bug.
Fix String#to_s invalidation test
Notes:
Merged-By: maximecb <maximecb@ruby-lang.org>
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/5948
|