summaryrefslogtreecommitdiff
path: root/trunk/numeric.c
diff options
context:
space:
mode:
Diffstat (limited to 'trunk/numeric.c')
-rw-r--r--trunk/numeric.c3285
1 files changed, 0 insertions, 3285 deletions
diff --git a/trunk/numeric.c b/trunk/numeric.c
deleted file mode 100644
index 25e169acb7..0000000000
--- a/trunk/numeric.c
+++ /dev/null
@@ -1,3285 +0,0 @@
-/**********************************************************************
-
- numeric.c -
-
- $Author$
- created at: Fri Aug 13 18:33:09 JST 1993
-
- Copyright (C) 1993-2007 Yukihiro Matsumoto
-
-**********************************************************************/
-
-#include "ruby/ruby.h"
-#include "ruby/encoding.h"
-#include <ctype.h>
-#include <math.h>
-#include <stdio.h>
-
-#if defined(__FreeBSD__) && __FreeBSD__ < 4
-#include <floatingpoint.h>
-#endif
-
-#ifdef HAVE_FLOAT_H
-#include <float.h>
-#endif
-
-#ifdef HAVE_IEEEFP_H
-#include <ieeefp.h>
-#endif
-
-/* use IEEE 64bit values if not defined */
-#ifndef FLT_RADIX
-#define FLT_RADIX 2
-#endif
-#ifndef FLT_ROUNDS
-#define FLT_ROUNDS 1
-#endif
-#ifndef DBL_MIN
-#define DBL_MIN 2.2250738585072014e-308
-#endif
-#ifndef DBL_MAX
-#define DBL_MAX 1.7976931348623157e+308
-#endif
-#ifndef DBL_MIN_EXP
-#define DBL_MIN_EXP (-1021)
-#endif
-#ifndef DBL_MAX_EXP
-#define DBL_MAX_EXP 1024
-#endif
-#ifndef DBL_MIN_10_EXP
-#define DBL_MIN_10_EXP (-307)
-#endif
-#ifndef DBL_MAX_10_EXP
-#define DBL_MAX_10_EXP 308
-#endif
-#ifndef DBL_DIG
-#define DBL_DIG 15
-#endif
-#ifndef DBL_MANT_DIG
-#define DBL_MANT_DIG 53
-#endif
-#ifndef DBL_EPSILON
-#define DBL_EPSILON 2.2204460492503131e-16
-#endif
-
-#ifndef HAVE_ROUND
-double
-round(double x)
-{
- double f;
-
- if (x > 0.0) {
- f = floor(x);
- x = f + (x - f >= 0.5);
- }
- else if (x < 0.0) {
- f = ceil(x);
- x = f - (f - x >= 0.5);
- }
- return x;
-}
-#endif
-
-static ID id_coerce, id_to_i, id_eq;
-
-VALUE rb_cNumeric;
-VALUE rb_cFloat;
-VALUE rb_cInteger;
-VALUE rb_cFixnum;
-
-VALUE rb_eZeroDivError;
-VALUE rb_eFloatDomainError;
-
-void
-rb_num_zerodiv(void)
-{
- rb_raise(rb_eZeroDivError, "divided by 0");
-}
-
-
-/*
- * call-seq:
- * num.coerce(numeric) => array
- *
- * If <i>aNumeric</i> is the same type as <i>num</i>, returns an array
- * containing <i>aNumeric</i> and <i>num</i>. Otherwise, returns an
- * array with both <i>aNumeric</i> and <i>num</i> represented as
- * <code>Float</code> objects. This coercion mechanism is used by
- * Ruby to handle mixed-type numeric operations: it is intended to
- * find a compatible common type between the two operands of the operator.
- *
- * 1.coerce(2.5) #=> [2.5, 1.0]
- * 1.2.coerce(3) #=> [3.0, 1.2]
- * 1.coerce(2) #=> [2, 1]
- */
-
-static VALUE
-num_coerce(VALUE x, VALUE y)
-{
- if (CLASS_OF(x) == CLASS_OF(y))
- return rb_assoc_new(y, x);
- x = rb_Float(x);
- y = rb_Float(y);
- return rb_assoc_new(y, x);
-}
-
-static VALUE
-coerce_body(VALUE *x)
-{
- return rb_funcall(x[1], id_coerce, 1, x[0]);
-}
-
-static VALUE
-coerce_rescue(VALUE *x)
-{
- volatile VALUE v = rb_inspect(x[1]);
-
- rb_raise(rb_eTypeError, "%s can't be coerced into %s",
- rb_special_const_p(x[1])?
- RSTRING_PTR(v):
- rb_obj_classname(x[1]),
- rb_obj_classname(x[0]));
- return Qnil; /* dummy */
-}
-
-static int
-do_coerce(VALUE *x, VALUE *y, int err)
-{
- VALUE ary;
- VALUE a[2];
-
- a[0] = *x; a[1] = *y;
-
- ary = rb_rescue(coerce_body, (VALUE)a, err?coerce_rescue:0, (VALUE)a);
- if (TYPE(ary) != T_ARRAY || RARRAY_LEN(ary) != 2) {
- if (err) {
- rb_raise(rb_eTypeError, "coerce must return [x, y]");
- }
- return Qfalse;
- }
-
- *x = RARRAY_PTR(ary)[0];
- *y = RARRAY_PTR(ary)[1];
- return Qtrue;
-}
-
-VALUE
-rb_num_coerce_bin(VALUE x, VALUE y, ID func)
-{
- do_coerce(&x, &y, Qtrue);
- return rb_funcall(x, func, 1, y);
-}
-
-VALUE
-rb_num_coerce_cmp(VALUE x, VALUE y, ID func)
-{
- if (do_coerce(&x, &y, Qfalse))
- return rb_funcall(x, func, 1, y);
- return Qnil;
-}
-
-VALUE
-rb_num_coerce_relop(VALUE x, VALUE y, ID func)
-{
- VALUE c, x0 = x, y0 = y;
-
- if (!do_coerce(&x, &y, Qfalse) ||
- NIL_P(c = rb_funcall(x, func, 1, y))) {
- rb_cmperr(x0, y0);
- return Qnil; /* not reached */
- }
- return c;
-}
-
-/*
- * Trap attempts to add methods to <code>Numeric</code> objects. Always
- * raises a <code>TypeError</code>
- */
-
-static VALUE
-num_sadded(VALUE x, VALUE name)
-{
- /* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
- /* Numerics should be values; singleton_methods should not be added to them */
- rb_raise(rb_eTypeError,
- "can't define singleton method \"%s\" for %s",
- rb_id2name(rb_to_id(name)),
- rb_obj_classname(x));
- return Qnil; /* not reached */
-}
-
-/* :nodoc: */
-static VALUE
-num_init_copy(VALUE x, VALUE y)
-{
- /* Numerics are immutable values, which should not be copied */
- rb_raise(rb_eTypeError, "can't copy %s", rb_obj_classname(x));
- return Qnil; /* not reached */
-}
-
-/*
- * call-seq:
- * +num => num
- *
- * Unary Plus---Returns the receiver's value.
- */
-
-static VALUE
-num_uplus(VALUE num)
-{
- return num;
-}
-
-/*
- * call-seq:
- * -num => numeric
- *
- * Unary Minus---Returns the receiver's value, negated.
- */
-
-static VALUE
-num_uminus(VALUE num)
-{
- VALUE zero;
-
- zero = INT2FIX(0);
- do_coerce(&zero, &num, Qtrue);
-
- return rb_funcall(zero, '-', 1, num);
-}
-
-/*
- * call-seq:
- * num.quo(numeric) => result
- *
- * Returns most exact division (rational for integers, float for floats).
- */
-
-static VALUE
-num_quo(VALUE x, VALUE y)
-{
- return rb_funcall(rb_rational_raw1(x), '/', 1, y);
-}
-
-
-/*
- * call-seq:
- * num.fdiv(numeric) => float
- *
- * Returns float division.
- */
-
-static VALUE
-num_fdiv(VALUE x, VALUE y)
-{
- return rb_funcall(rb_Float(x), '/', 1, y);
-}
-
-
-static VALUE num_floor(VALUE num);
-
-/*
- * call-seq:
- * num.div(numeric) => integer
- *
- * Uses <code>/</code> to perform division, then converts the result to
- * an integer. <code>Numeric</code> does not define the <code>/</code>
- * operator; this is left to subclasses.
- */
-
-static VALUE
-num_div(VALUE x, VALUE y)
-{
- if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
- return num_floor(rb_funcall(x, '/', 1, y));
-}
-
-
-/*
- * call-seq:
- * num.divmod( aNumeric ) -> anArray
- *
- * Returns an array containing the quotient and modulus obtained by
- * dividing <i>num</i> by <i>aNumeric</i>. If <code>q, r =
- * x.divmod(y)</code>, then
- *
- * q = floor(float(x)/float(y))
- * x = q*y + r
- *
- * The quotient is rounded toward -infinity, as shown in the following table:
- *
- * a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b)
- * ------+-----+---------------+---------+-------------+---------------
- * 13 | 4 | 3, 1 | 3 | 1 | 1
- * ------+-----+---------------+---------+-------------+---------------
- * 13 | -4 | -4, -3 | -3 | -3 | 1
- * ------+-----+---------------+---------+-------------+---------------
- * -13 | 4 | -4, 3 | -4 | 3 | -1
- * ------+-----+---------------+---------+-------------+---------------
- * -13 | -4 | 3, -1 | 3 | -1 | -1
- * ------+-----+---------------+---------+-------------+---------------
- * 11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5
- * ------+-----+---------------+---------+-------------+---------------
- * 11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5
- * ------+-----+---------------+---------+-------------+---------------
- * -11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5
- * ------+-----+---------------+---------+-------------+---------------
- * -11.5 | -4 | 2, -3.5 | 2.875 | -3.5 | -3.5
- *
- *
- * Examples
- *
- * 11.divmod(3) #=> [3, 2]
- * 11.divmod(-3) #=> [-4, -1]
- * 11.divmod(3.5) #=> [3, 0.5]
- * (-11).divmod(3.5) #=> [-4, 3.0]
- * (11.5).divmod(3.5) #=> [3, 1.0]
- */
-
-static VALUE
-num_divmod(VALUE x, VALUE y)
-{
- return rb_assoc_new(num_div(x, y), rb_funcall(x, '%', 1, y));
-}
-
-/*
- * call-seq:
- * num.modulo(numeric) => result
- *
- * Equivalent to
- * <i>num</i>.<code>divmod(</code><i>aNumeric</i><code>)[1]</code>.
- */
-
-static VALUE
-num_modulo(VALUE x, VALUE y)
-{
- return rb_funcall(x, '%', 1, y);
-}
-
-/*
- * call-seq:
- * num.remainder(numeric) => result
- *
- * If <i>num</i> and <i>numeric</i> have different signs, returns
- * <em>mod</em>-<i>numeric</i>; otherwise, returns <em>mod</em>. In
- * both cases <em>mod</em> is the value
- * <i>num</i>.<code>modulo(</code><i>numeric</i><code>)</code>. The
- * differences between <code>remainder</code> and modulo
- * (<code>%</code>) are shown in the table under <code>Numeric#divmod</code>.
- */
-
-static VALUE
-num_remainder(VALUE x, VALUE y)
-{
- VALUE z = rb_funcall(x, '%', 1, y);
-
- if ((!rb_equal(z, INT2FIX(0))) &&
- ((RTEST(rb_funcall(x, '<', 1, INT2FIX(0))) &&
- RTEST(rb_funcall(y, '>', 1, INT2FIX(0)))) ||
- (RTEST(rb_funcall(x, '>', 1, INT2FIX(0))) &&
- RTEST(rb_funcall(y, '<', 1, INT2FIX(0)))))) {
- return rb_funcall(z, '-', 1, y);
- }
- return z;
-}
-
-/*
- * call-seq:
- * num.scalar? -> true or false
- *
- * Returns <code>true</code> if <i>num</i> is an <code>Scalar</code>
- * (i.e. non <code>Complex</code>).
- */
-
-static VALUE
-num_scalar_p(VALUE num)
-{
- return Qtrue;
-}
-
-/*
- * call-seq:
- * num.integer? -> true or false
- *
- * Returns <code>true</code> if <i>num</i> is an <code>Integer</code>
- * (including <code>Fixnum</code> and <code>Bignum</code>).
- */
-
-static VALUE
-num_int_p(VALUE num)
-{
- return Qfalse;
-}
-
-/*
- * call-seq:
- * num.abs => num or numeric
- *
- * Returns the absolute value of <i>num</i>.
- *
- * 12.abs #=> 12
- * (-34.56).abs #=> 34.56
- * -34.56.abs #=> 34.56
- */
-
-static VALUE
-num_abs(VALUE num)
-{
- if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) {
- return rb_funcall(num, rb_intern("-@"), 0);
- }
- return num;
-}
-
-
-/*
- * call-seq:
- * num.zero? => true or false
- *
- * Returns <code>true</code> if <i>num</i> has a zero value.
- */
-
-static VALUE
-num_zero_p(VALUE num)
-{
- if (rb_equal(num, INT2FIX(0))) {
- return Qtrue;
- }
- return Qfalse;
-}
-
-
-/*
- * call-seq:
- * num.nonzero? => num or nil
- *
- * Returns <i>num</i> if <i>num</i> is not zero, <code>nil</code>
- * otherwise. This behavior is useful when chaining comparisons:
- *
- * a = %w( z Bb bB bb BB a aA Aa AA A )
- * b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
- * b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
- */
-
-static VALUE
-num_nonzero_p(VALUE num)
-{
- if (RTEST(rb_funcall(num, rb_intern("zero?"), 0, 0))) {
- return Qnil;
- }
- return num;
-}
-
-/*
- * call-seq:
- * num.to_int => integer
- *
- * Invokes the child class's <code>to_i</code> method to convert
- * <i>num</i> to an integer.
- */
-
-static VALUE
-num_to_int(VALUE num)
-{
- return rb_funcall(num, id_to_i, 0, 0);
-}
-
-
-/********************************************************************
- *
- * Document-class: Float
- *
- * <code>Float</code> objects represent real numbers using the native
- * architecture's double-precision floating point representation.
- */
-
-VALUE
-rb_float_new(double d)
-{
- NEWOBJ(flt, struct RFloat);
- OBJSETUP(flt, rb_cFloat, T_FLOAT);
-
- flt->float_value = d;
- return (VALUE)flt;
-}
-
-/*
- * call-seq:
- * flt.to_s => string
- *
- * Returns a string containing a representation of self. As well as a
- * fixed or exponential form of the number, the call may return
- * ``<code>NaN</code>'', ``<code>Infinity</code>'', and
- * ``<code>-Infinity</code>''.
- */
-
-static VALUE
-flo_to_s(VALUE flt)
-{
- char buf[32];
- double value = RFLOAT_VALUE(flt);
- char *p, *e;
-
- if (isinf(value))
- return rb_usascii_str_new2(value < 0 ? "-Infinity" : "Infinity");
- else if(isnan(value))
- return rb_usascii_str_new2("NaN");
-
- sprintf(buf, "%#.15g", value); /* ensure to print decimal point */
- if (!(e = strchr(buf, 'e'))) {
- e = buf + strlen(buf);
- }
- if (!ISDIGIT(e[-1])) { /* reformat if ended with decimal point (ex 111111111111111.) */
- sprintf(buf, "%#.14e", value);
- if (!(e = strchr(buf, 'e'))) {
- e = buf + strlen(buf);
- }
- }
- p = e;
- while (p[-1]=='0' && ISDIGIT(p[-2]))
- p--;
- memmove(p, e, strlen(e)+1);
- return rb_usascii_str_new2(buf);
-}
-
-/*
- * MISSING: documentation
- */
-
-static VALUE
-flo_coerce(VALUE x, VALUE y)
-{
- return rb_assoc_new(rb_Float(y), x);
-}
-
-/*
- * call-seq:
- * -float => float
- *
- * Returns float, negated.
- */
-
-static VALUE
-flo_uminus(VALUE flt)
-{
- return DOUBLE2NUM(-RFLOAT_VALUE(flt));
-}
-
-/*
- * call-seq:
- * float + other => float
- *
- * Returns a new float which is the sum of <code>float</code>
- * and <code>other</code>.
- */
-
-static VALUE
-flo_plus(VALUE x, VALUE y)
-{
- switch (TYPE(y)) {
- case T_FIXNUM:
- return DOUBLE2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
- case T_BIGNUM:
- return DOUBLE2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
- case T_FLOAT:
- return DOUBLE2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
- default:
- return rb_num_coerce_bin(x, y, '+');
- }
-}
-
-/*
- * call-seq:
- * float + other => float
- *
- * Returns a new float which is the difference of <code>float</code>
- * and <code>other</code>.
- */
-
-static VALUE
-flo_minus(VALUE x, VALUE y)
-{
- switch (TYPE(y)) {
- case T_FIXNUM:
- return DOUBLE2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
- case T_BIGNUM:
- return DOUBLE2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
- case T_FLOAT:
- return DOUBLE2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
- default:
- return rb_num_coerce_bin(x, y, '-');
- }
-}
-
-/*
- * call-seq:
- * float * other => float
- *
- * Returns a new float which is the product of <code>float</code>
- * and <code>other</code>.
- */
-
-static VALUE
-flo_mul(VALUE x, VALUE y)
-{
- switch (TYPE(y)) {
- case T_FIXNUM:
- return DOUBLE2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
- case T_BIGNUM:
- return DOUBLE2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
- case T_FLOAT:
- return DOUBLE2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
- default:
- return rb_num_coerce_bin(x, y, '*');
- }
-}
-
-/*
- * call-seq:
- * float / other => float
- *
- * Returns a new float which is the result of dividing
- * <code>float</code> by <code>other</code>.
- */
-
-static VALUE
-flo_div(VALUE x, VALUE y)
-{
- long f_y;
- double d;
-
- switch (TYPE(y)) {
- case T_FIXNUM:
- f_y = FIX2LONG(y);
- return DOUBLE2NUM(RFLOAT_VALUE(x) / (double)f_y);
- case T_BIGNUM:
- d = rb_big2dbl(y);
- return DOUBLE2NUM(RFLOAT_VALUE(x) / d);
- case T_FLOAT:
- return DOUBLE2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y));
- default:
- return rb_num_coerce_bin(x, y, '/');
- }
-}
-
-static VALUE
-flo_quo(VALUE x, VALUE y)
-{
- return rb_funcall(x, '/', 1, y);
-}
-
-static void
-flodivmod(double x, double y, double *divp, double *modp)
-{
- double div, mod;
-
-#ifdef HAVE_FMOD
- mod = fmod(x, y);
-#else
- {
- double z;
-
- modf(x/y, &z);
- mod = x - z * y;
- }
-#endif
- if (isinf(x) && !isinf(y) && !isnan(y))
- div = x;
- else
- div = (x - mod) / y;
- if (y*mod < 0) {
- mod += y;
- div -= 1.0;
- }
- if (modp) *modp = mod;
- if (divp) *divp = div;
-}
-
-
-/*
- * call-seq:
- * flt % other => float
- * flt.modulo(other) => float
- *
- * Return the modulo after division of <code>flt</code> by <code>other</code>.
- *
- * 6543.21.modulo(137) #=> 104.21
- * 6543.21.modulo(137.24) #=> 92.9299999999996
- */
-
-static VALUE
-flo_mod(VALUE x, VALUE y)
-{
- double fy, mod;
-
- switch (TYPE(y)) {
- case T_FIXNUM:
- fy = (double)FIX2LONG(y);
- break;
- case T_BIGNUM:
- fy = rb_big2dbl(y);
- break;
- case T_FLOAT:
- fy = RFLOAT_VALUE(y);
- break;
- default:
- return rb_num_coerce_bin(x, y, '%');
- }
- flodivmod(RFLOAT_VALUE(x), fy, 0, &mod);
- return DOUBLE2NUM(mod);
-}
-
-static VALUE
-dbl2ival(double d)
-{
- if (FIXABLE(d)) {
- d = round(d);
- return LONG2FIX((long)d);
- }
- else if (isnan(d) || isinf(d)) {
- /* special case: cannot return integer value */
- return rb_float_new(d);
- }
- else {
- return rb_dbl2big(d);
- }
-}
-
-/*
- * call-seq:
- * flt.divmod(numeric) => array
- *
- * See <code>Numeric#divmod</code>.
- */
-
-static VALUE
-flo_divmod(VALUE x, VALUE y)
-{
- double fy, div, mod;
- volatile VALUE a, b;
-
- switch (TYPE(y)) {
- case T_FIXNUM:
- fy = (double)FIX2LONG(y);
- break;
- case T_BIGNUM:
- fy = rb_big2dbl(y);
- break;
- case T_FLOAT:
- fy = RFLOAT_VALUE(y);
- break;
- default:
- return rb_num_coerce_bin(x, y, rb_intern("divmod"));
- }
- flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
- a = dbl2ival(div);
- b = DOUBLE2NUM(mod);
- return rb_assoc_new(a, b);
-}
-
-/*
- * call-seq:
- *
- * flt ** other => float
- *
- * Raises <code>float</code> the <code>other</code> power.
- */
-
-static VALUE
-flo_pow(VALUE x, VALUE y)
-{
- switch (TYPE(y)) {
- case T_FIXNUM:
- return DOUBLE2NUM(pow(RFLOAT_VALUE(x), (double)FIX2LONG(y)));
- case T_BIGNUM:
- return DOUBLE2NUM(pow(RFLOAT_VALUE(x), rb_big2dbl(y)));
- case T_FLOAT:
- return DOUBLE2NUM(pow(RFLOAT_VALUE(x), RFLOAT_VALUE(y)));
- default:
- return rb_num_coerce_bin(x, y, rb_intern("**"));
- }
-}
-
-/*
- * call-seq:
- * num.eql?(numeric) => true or false
- *
- * Returns <code>true</code> if <i>num</i> and <i>numeric</i> are the
- * same type and have equal values.
- *
- * 1 == 1.0 #=> true
- * 1.eql?(1.0) #=> false
- * (1.0).eql?(1.0) #=> true
- */
-
-static VALUE
-num_eql(VALUE x, VALUE y)
-{
- if (TYPE(x) != TYPE(y)) return Qfalse;
-
- return rb_equal(x, y);
-}
-
-/*
- * call-seq:
- * num <=> other -> 0 or nil
- *
- * Returns zero if <i>num</i> equals <i>other</i>, <code>nil</code>
- * otherwise.
- */
-
-static VALUE
-num_cmp(VALUE x, VALUE y)
-{
- if (x == y) return INT2FIX(0);
- return Qnil;
-}
-
-static VALUE
-num_equal(VALUE x, VALUE y)
-{
- if (x == y) return Qtrue;
- return rb_funcall(y, id_eq, 1, x);
-}
-
-/*
- * call-seq:
- * flt == obj => true or false
- *
- * Returns <code>true</code> only if <i>obj</i> has the same value
- * as <i>flt</i>. Contrast this with <code>Float#eql?</code>, which
- * requires <i>obj</i> to be a <code>Float</code>.
- *
- * 1.0 == 1 #=> true
- *
- */
-
-static VALUE
-flo_eq(VALUE x, VALUE y)
-{
- volatile double a, b;
-
- switch (TYPE(y)) {
- case T_FIXNUM:
- b = FIX2LONG(y);
- break;
- case T_BIGNUM:
- b = rb_big2dbl(y);
- break;
- case T_FLOAT:
- b = RFLOAT_VALUE(y);
- if (isnan(b)) return Qfalse;
- break;
- default:
- return num_equal(x, y);
- }
- a = RFLOAT_VALUE(x);
- if (isnan(a)) return Qfalse;
- return (a == b)?Qtrue:Qfalse;
-}
-
-/*
- * call-seq:
- * flt.hash => integer
- *
- * Returns a hash code for this float.
- */
-
-static VALUE
-flo_hash(VALUE num)
-{
- double d;
- int hash;
-
- d = RFLOAT_VALUE(num);
- hash = rb_memhash(&d, sizeof(d));
- return INT2FIX(hash);
-}
-
-VALUE
-rb_dbl_cmp(double a, double b)
-{
- if (isnan(a) || isnan(b)) return Qnil;
- if (a == b) return INT2FIX(0);
- if (a > b) return INT2FIX(1);
- if (a < b) return INT2FIX(-1);
- return Qnil;
-}
-
-/*
- * call-seq:
- * flt <=> numeric => -1, 0, +1
- *
- * Returns -1, 0, or +1 depending on whether <i>flt</i> is less than,
- * equal to, or greater than <i>numeric</i>. This is the basis for the
- * tests in <code>Comparable</code>.
- */
-
-static VALUE
-flo_cmp(VALUE x, VALUE y)
-{
- double a, b;
-
- a = RFLOAT_VALUE(x);
- switch (TYPE(y)) {
- case T_FIXNUM:
- b = (double)FIX2LONG(y);
- break;
-
- case T_BIGNUM:
- b = rb_big2dbl(y);
- break;
-
- case T_FLOAT:
- b = RFLOAT_VALUE(y);
- break;
-
- default:
- return rb_num_coerce_cmp(x, y, rb_intern("<=>"));
- }
- return rb_dbl_cmp(a, b);
-}
-
-/*
- * call-seq:
- * flt > other => true or false
- *
- * <code>true</code> if <code>flt</code> is greater than <code>other</code>.
- */
-
-static VALUE
-flo_gt(VALUE x, VALUE y)
-{
- double a, b;
-
- a = RFLOAT_VALUE(x);
- switch (TYPE(y)) {
- case T_FIXNUM:
- b = (double)FIX2LONG(y);
- break;
-
- case T_BIGNUM:
- b = rb_big2dbl(y);
- break;
-
- case T_FLOAT:
- b = RFLOAT_VALUE(y);
- if (isnan(b)) return Qfalse;
- break;
-
- default:
- return rb_num_coerce_relop(x, y, '>');
- }
- if (isnan(a)) return Qfalse;
- return (a > b)?Qtrue:Qfalse;
-}
-
-/*
- * call-seq:
- * flt >= other => true or false
- *
- * <code>true</code> if <code>flt</code> is greater than
- * or equal to <code>other</code>.
- */
-
-static VALUE
-flo_ge(VALUE x, VALUE y)
-{
- double a, b;
-
- a = RFLOAT_VALUE(x);
- switch (TYPE(y)) {
- case T_FIXNUM:
- b = (double)FIX2LONG(y);
- break;
-
- case T_BIGNUM:
- b = rb_big2dbl(y);
- break;
-
- case T_FLOAT:
- b = RFLOAT_VALUE(y);
- if (isnan(b)) return Qfalse;
- break;
-
- default:
- return rb_num_coerce_relop(x, y, rb_intern(">="));
- }
- if (isnan(a)) return Qfalse;
- return (a >= b)?Qtrue:Qfalse;
-}
-
-/*
- * call-seq:
- * flt < other => true or false
- *
- * <code>true</code> if <code>flt</code> is less than <code>other</code>.
- */
-
-static VALUE
-flo_lt(VALUE x, VALUE y)
-{
- double a, b;
-
- a = RFLOAT_VALUE(x);
- switch (TYPE(y)) {
- case T_FIXNUM:
- b = (double)FIX2LONG(y);
- break;
-
- case T_BIGNUM:
- b = rb_big2dbl(y);
- break;
-
- case T_FLOAT:
- b = RFLOAT_VALUE(y);
- if (isnan(b)) return Qfalse;
- break;
-
- default:
- return rb_num_coerce_relop(x, y, '<');
- }
- if (isnan(a)) return Qfalse;
- return (a < b)?Qtrue:Qfalse;
-}
-
-/*
- * call-seq:
- * flt <= other => true or false
- *
- * <code>true</code> if <code>flt</code> is less than
- * or equal to <code>other</code>.
- */
-
-static VALUE
-flo_le(VALUE x, VALUE y)
-{
- double a, b;
-
- a = RFLOAT_VALUE(x);
- switch (TYPE(y)) {
- case T_FIXNUM:
- b = (double)FIX2LONG(y);
- break;
-
- case T_BIGNUM:
- b = rb_big2dbl(y);
- break;
-
- case T_FLOAT:
- b = RFLOAT_VALUE(y);
- if (isnan(b)) return Qfalse;
- break;
-
- default:
- return rb_num_coerce_relop(x, y, rb_intern("<="));
- }
- if (isnan(a)) return Qfalse;
- return (a <= b)?Qtrue:Qfalse;
-}
-
-/*
- * call-seq:
- * flt.eql?(obj) => true or false
- *
- * Returns <code>true</code> only if <i>obj</i> is a
- * <code>Float</code> with the same value as <i>flt</i>. Contrast this
- * with <code>Float#==</code>, which performs type conversions.
- *
- * 1.0.eql?(1) #=> false
- */
-
-static VALUE
-flo_eql(VALUE x, VALUE y)
-{
- if (TYPE(y) == T_FLOAT) {
- double a = RFLOAT_VALUE(x);
- double b = RFLOAT_VALUE(y);
-
- if (isnan(a) || isnan(b)) return Qfalse;
- if (a == b) return Qtrue;
- }
- return Qfalse;
-}
-
-/*
- * call-seq:
- * flt.to_f => flt
- *
- * As <code>flt</code> is already a float, returns <i>self</i>.
- */
-
-static VALUE
-flo_to_f(VALUE num)
-{
- return num;
-}
-
-/*
- * call-seq:
- * flt.abs => float
- *
- * Returns the absolute value of <i>flt</i>.
- *
- * (-34.56).abs #=> 34.56
- * -34.56.abs #=> 34.56
- *
- */
-
-static VALUE
-flo_abs(VALUE flt)
-{
- double val = fabs(RFLOAT_VALUE(flt));
- return DOUBLE2NUM(val);
-}
-
-/*
- * call-seq:
- * flt.zero? -> true or false
- *
- * Returns <code>true</code> if <i>flt</i> is 0.0.
- *
- */
-
-static VALUE
-flo_zero_p(VALUE num)
-{
- if (RFLOAT_VALUE(num) == 0.0) {
- return Qtrue;
- }
- return Qfalse;
-}
-
-/*
- * call-seq:
- * flt.nan? -> true or false
- *
- * Returns <code>true</code> if <i>flt</i> is an invalid IEEE floating
- * point number.
- *
- * a = -1.0 #=> -1.0
- * a.nan? #=> false
- * a = 0.0/0.0 #=> NaN
- * a.nan? #=> true
- */
-
-static VALUE
-flo_is_nan_p(VALUE num)
-{
- double value = RFLOAT_VALUE(num);
-
- return isnan(value) ? Qtrue : Qfalse;
-}
-
-/*
- * call-seq:
- * flt.infinite? -> nil, -1, +1
- *
- * Returns <code>nil</code>, -1, or +1 depending on whether <i>flt</i>
- * is finite, -infinity, or +infinity.
- *
- * (0.0).infinite? #=> nil
- * (-1.0/0.0).infinite? #=> -1
- * (+1.0/0.0).infinite? #=> 1
- */
-
-static VALUE
-flo_is_infinite_p(VALUE num)
-{
- double value = RFLOAT_VALUE(num);
-
- if (isinf(value)) {
- return INT2FIX( value < 0 ? -1 : 1 );
- }
-
- return Qnil;
-}
-
-/*
- * call-seq:
- * flt.finite? -> true or false
- *
- * Returns <code>true</code> if <i>flt</i> is a valid IEEE floating
- * point number (it is not infinite, and <code>nan?</code> is
- * <code>false</code>).
- *
- */
-
-static VALUE
-flo_is_finite_p(VALUE num)
-{
- double value = RFLOAT_VALUE(num);
-
-#if HAVE_FINITE
- if (!finite(value))
- return Qfalse;
-#else
- if (isinf(value) || isnan(value))
- return Qfalse;
-#endif
-
- return Qtrue;
-}
-
-/*
- * call-seq:
- * flt.floor => integer
- *
- * Returns the largest integer less than or equal to <i>flt</i>.
- *
- * 1.2.floor #=> 1
- * 2.0.floor #=> 2
- * (-1.2).floor #=> -2
- * (-2.0).floor #=> -2
- */
-
-static VALUE
-flo_floor(VALUE num)
-{
- double f = floor(RFLOAT_VALUE(num));
- long val;
-
- if (!FIXABLE(f)) {
- return rb_dbl2big(f);
- }
- val = f;
- return LONG2FIX(val);
-}
-
-/*
- * call-seq:
- * flt.ceil => integer
- *
- * Returns the smallest <code>Integer</code> greater than or equal to
- * <i>flt</i>.
- *
- * 1.2.ceil #=> 2
- * 2.0.ceil #=> 2
- * (-1.2).ceil #=> -1
- * (-2.0).ceil #=> -2
- */
-
-static VALUE
-flo_ceil(VALUE num)
-{
- double f = ceil(RFLOAT_VALUE(num));
- long val;
-
- if (!FIXABLE(f)) {
- return rb_dbl2big(f);
- }
- val = f;
- return LONG2FIX(val);
-}
-
-/*
- * call-seq:
- * flt.round([ndigits]) => integer or float
- *
- * Rounds <i>flt</i> to a given precision in decimal digits (default 0 digits).
- * Precision may be negative. Returns a a floating point number when ndigits
- * is more than one.
- *
- * 1.5.round #=> 2
- * (-1.5).round #=> -2
- */
-
-static VALUE
-flo_round(int argc, VALUE *argv, VALUE num)
-{
- VALUE nd;
- double number, f;
- int ndigits = 0, i;
- long val;
-
- if (argc > 0 && rb_scan_args(argc, argv, "01", &nd) == 1) {
- ndigits = NUM2INT(nd);
- }
- number = RFLOAT_VALUE(num);
- f = 1.0;
- i = abs(ndigits);
- while (--i >= 0)
- f = f*10.0;
-
- if (isinf(f)) {
- if (ndigits < 0) number = 0;
- }
- else {
- if (ndigits < 0) number /= f;
- else number *= f;
- number = round(number);
- if (ndigits < 0) number *= f;
- else number /= f;
- }
-
- if (ndigits > 0) return DOUBLE2NUM(number);
-
- if (!FIXABLE(number)) {
- return rb_dbl2big(number);
- }
- val = number;
- return LONG2FIX(val);
-}
-
-/*
- * call-seq:
- * flt.to_i => integer
- * flt.to_int => integer
- * flt.truncate => integer
- *
- * Returns <i>flt</i> truncated to an <code>Integer</code>.
- */
-
-static VALUE
-flo_truncate(VALUE num)
-{
- double f = RFLOAT_VALUE(num);
- long val;
-
- if (f > 0.0) f = floor(f);
- if (f < 0.0) f = ceil(f);
-
- if (!FIXABLE(f)) {
- return rb_dbl2big(f);
- }
- val = f;
- return LONG2FIX(val);
-}
-
-
-/*
- * call-seq:
- * num.floor => integer
- *
- * Returns the largest integer less than or equal to <i>num</i>.
- * <code>Numeric</code> implements this by converting <i>anInteger</i>
- * to a <code>Float</code> and invoking <code>Float#floor</code>.
- *
- * 1.floor #=> 1
- * (-1).floor #=> -1
- */
-
-static VALUE
-num_floor(VALUE num)
-{
- return flo_floor(rb_Float(num));
-}
-
-
-/*
- * call-seq:
- * num.ceil => integer
- *
- * Returns the smallest <code>Integer</code> greater than or equal to
- * <i>num</i>. Class <code>Numeric</code> achieves this by converting
- * itself to a <code>Float</code> then invoking
- * <code>Float#ceil</code>.
- *
- * 1.ceil #=> 1
- * 1.2.ceil #=> 2
- * (-1.2).ceil #=> -1
- * (-1.0).ceil #=> -1
- */
-
-static VALUE
-num_ceil(VALUE num)
-{
- return flo_ceil(rb_Float(num));
-}
-
-/*
- * call-seq:
- * num.round([ndigits]) => integer or float
- *
- * Rounds <i>num</i> to a given precision in decimal digits (default 0 digits).
- * Precision may be negative. Returns a a floating point number when ndigits
- * is more than one. <code>Numeric</code> implements this by converting itself
- * to a <code>Float</code> and invoking <code>Float#round</code>.
- */
-
-static VALUE
-num_round(int argc, VALUE* argv, VALUE num)
-{
- return flo_round(argc, argv, rb_Float(num));
-}
-
-/*
- * call-seq:
- * num.truncate => integer
- *
- * Returns <i>num</i> truncated to an integer. <code>Numeric</code>
- * implements this by converting its value to a float and invoking
- * <code>Float#truncate</code>.
- */
-
-static VALUE
-num_truncate(VALUE num)
-{
- return flo_truncate(rb_Float(num));
-}
-
-
-/*
- * call-seq:
- * num.step(limit, step ) {|i| block } => num
- *
- * Invokes <em>block</em> with the sequence of numbers starting at
- * <i>num</i>, incremented by <i>step</i> on each call. The loop
- * finishes when the value to be passed to the block is greater than
- * <i>limit</i> (if <i>step</i> is positive) or less than
- * <i>limit</i> (if <i>step</i> is negative). If all the arguments are
- * integers, the loop operates using an integer counter. If any of the
- * arguments are floating point numbers, all are converted to floats,
- * and the loop is executed <i>floor(n + n*epsilon)+ 1</i> times,
- * where <i>n = (limit - num)/step</i>. Otherwise, the loop
- * starts at <i>num</i>, uses either the <code><</code> or
- * <code>></code> operator to compare the counter against
- * <i>limit</i>, and increments itself using the <code>+</code>
- * operator.
- *
- * 1.step(10, 2) { |i| print i, " " }
- * Math::E.step(Math::PI, 0.2) { |f| print f, " " }
- *
- * <em>produces:</em>
- *
- * 1 3 5 7 9
- * 2.71828182845905 2.91828182845905 3.11828182845905
- */
-
-static VALUE
-num_step(int argc, VALUE *argv, VALUE from)
-{
- VALUE to, step;
-
- RETURN_ENUMERATOR(from, argc, argv);
- if (argc == 1) {
- to = argv[0];
- step = INT2FIX(1);
- }
- else {
- if (argc == 2) {
- to = argv[0];
- step = argv[1];
- }
- else {
- rb_raise(rb_eArgError, "wrong number of arguments");
- }
- if (rb_equal(step, INT2FIX(0))) {
- rb_raise(rb_eArgError, "step can't be 0");
- }
- }
-
- if (FIXNUM_P(from) && FIXNUM_P(to) && FIXNUM_P(step)) {
- long i, end, diff;
-
- i = FIX2LONG(from);
- end = FIX2LONG(to);
- diff = FIX2LONG(step);
-
- if (diff > 0) {
- while (i <= end) {
- rb_yield(LONG2FIX(i));
- i += diff;
- }
- }
- else {
- while (i >= end) {
- rb_yield(LONG2FIX(i));
- i += diff;
- }
- }
- }
- else if (TYPE(from) == T_FLOAT || TYPE(to) == T_FLOAT || TYPE(step) == T_FLOAT) {
- const double epsilon = DBL_EPSILON;
- double beg = NUM2DBL(from);
- double end = NUM2DBL(to);
- double unit = NUM2DBL(step);
- double n = (end - beg)/unit;
- double err = (fabs(beg) + fabs(end) + fabs(end-beg)) / fabs(unit) * epsilon;
- long i;
-
- if (err>0.5) err=0.5;
- n = floor(n + err) + 1;
- for (i=0; i<n; i++) {
- rb_yield(DOUBLE2NUM(i*unit+beg));
- }
- }
- else {
- VALUE i = from;
- ID cmp;
-
- if (RTEST(rb_funcall(step, '>', 1, INT2FIX(0)))) {
- cmp = '>';
- }
- else {
- cmp = '<';
- }
- for (;;) {
- if (RTEST(rb_funcall(i, cmp, 1, to))) break;
- rb_yield(i);
- i = rb_funcall(i, '+', 1, step);
- }
- }
- return from;
-}
-
-SIGNED_VALUE
-rb_num2long(VALUE val)
-{
- again:
- if (NIL_P(val)) {
- rb_raise(rb_eTypeError, "no implicit conversion from nil to integer");
- }
-
- if (FIXNUM_P(val)) return FIX2LONG(val);
-
- switch (TYPE(val)) {
- case T_FLOAT:
- if (RFLOAT_VALUE(val) <= (double)LONG_MAX
- && RFLOAT_VALUE(val) >= (double)LONG_MIN) {
- return (SIGNED_VALUE)(RFLOAT_VALUE(val));
- }
- else {
- char buf[24];
- char *s;
-
- sprintf(buf, "%-.10g", RFLOAT_VALUE(val));
- if ((s = strchr(buf, ' ')) != 0) *s = '\0';
- rb_raise(rb_eRangeError, "float %s out of range of integer", buf);
- }
-
- case T_BIGNUM:
- return rb_big2long(val);
-
- default:
- val = rb_to_int(val);
- goto again;
- }
-}
-
-VALUE
-rb_num2ulong(VALUE val)
-{
- if (TYPE(val) == T_BIGNUM) {
- return rb_big2ulong(val);
- }
- return (VALUE)rb_num2long(val);
-}
-
-#if SIZEOF_INT < SIZEOF_VALUE
-static void
-check_int(SIGNED_VALUE num)
-{
- const char *s;
-
- if (num < INT_MIN) {
- s = "small";
- }
- else if (num > INT_MAX) {
- s = "big";
- }
- else {
- return;
- }
- rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `int'", num, s);
-}
-
-static void
-check_uint(VALUE num, VALUE sign)
-{
- static const VALUE mask = ~(VALUE)UINT_MAX;
-
- if (RTEST(sign)) {
- /* minus */
- if ((num & mask) != mask || (num & ~mask) <= INT_MAX + 1UL)
- rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too small to convert to `unsigned int'", num);
- }
- else {
- /* plus */
- if ((num & mask) != 0)
- rb_raise(rb_eRangeError, "integer %"PRIuVALUE " too big to convert to `unsigned int'", num);
- }
-}
-
-long
-rb_num2int(VALUE val)
-{
- long num = rb_num2long(val);
-
- check_int(num);
- return num;
-}
-
-long
-rb_fix2int(VALUE val)
-{
- long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val);
-
- check_int(num);
- return num;
-}
-
-unsigned long
-rb_num2uint(VALUE val)
-{
- unsigned long num = rb_num2ulong(val);
-
- check_uint(num, rb_funcall(val, '<', 1, INT2FIX(0)));
- return num;
-}
-
-unsigned long
-rb_fix2uint(VALUE val)
-{
- unsigned long num;
-
- if (!FIXNUM_P(val)) {
- return rb_num2uint(val);
- }
- num = FIX2ULONG(val);
-
- check_uint(num, rb_funcall(val, '<', 1, INT2FIX(0)));
- return num;
-}
-#else
-long
-rb_num2int(VALUE val)
-{
- return rb_num2long(val);
-}
-
-long
-rb_fix2int(VALUE val)
-{
- return FIX2INT(val);
-}
-#endif
-
-VALUE
-rb_num2fix(VALUE val)
-{
- long v;
-
- if (FIXNUM_P(val)) return val;
-
- v = rb_num2long(val);
- if (!FIXABLE(v))
- rb_raise(rb_eRangeError, "integer %"PRIdVALUE " out of range of fixnum", v);
- return LONG2FIX(v);
-}
-
-#if HAVE_LONG_LONG
-
-LONG_LONG
-rb_num2ll(VALUE val)
-{
- if (NIL_P(val)) {
- rb_raise(rb_eTypeError, "no implicit conversion from nil");
- }
-
- if (FIXNUM_P(val)) return (LONG_LONG)FIX2LONG(val);
-
- switch (TYPE(val)) {
- case T_FLOAT:
- if (RFLOAT_VALUE(val) <= (double)LLONG_MAX
- && RFLOAT_VALUE(val) >= (double)LLONG_MIN) {
- return (LONG_LONG)(RFLOAT_VALUE(val));
- }
- else {
- char buf[24];
- char *s;
-
- sprintf(buf, "%-.10g", RFLOAT_VALUE(val));
- if ((s = strchr(buf, ' ')) != 0) *s = '\0';
- rb_raise(rb_eRangeError, "float %s out of range of long long", buf);
- }
-
- case T_BIGNUM:
- return rb_big2ll(val);
-
- case T_STRING:
- rb_raise(rb_eTypeError, "no implicit conversion from string");
- return Qnil; /* not reached */
-
- case T_TRUE:
- case T_FALSE:
- rb_raise(rb_eTypeError, "no implicit conversion from boolean");
- return Qnil; /* not reached */
-
- default:
- val = rb_to_int(val);
- return NUM2LL(val);
- }
-}
-
-unsigned LONG_LONG
-rb_num2ull(VALUE val)
-{
- if (TYPE(val) == T_BIGNUM) {
- return rb_big2ull(val);
- }
- return (unsigned LONG_LONG)rb_num2ll(val);
-}
-
-#endif /* HAVE_LONG_LONG */
-
-static VALUE
-num_numerator(VALUE num)
-{
- return rb_funcall(rb_Rational1(num), rb_intern("numerator"), 0);
-}
-
-static VALUE
-num_denominator(VALUE num)
-{
- return rb_funcall(rb_Rational1(num), rb_intern("denominator"), 0);
-}
-
-/*
- * Document-class: Integer
- *
- * <code>Integer</code> is the basis for the two concrete classes that
- * hold whole numbers, <code>Bignum</code> and <code>Fixnum</code>.
- *
- */
-
-
-/*
- * call-seq:
- * int.to_i => int
- * int.to_int => int
- * int.floor => int
- * int.ceil => int
- * int.round => int
- * int.truncate => int
- *
- * As <i>int</i> is already an <code>Integer</code>, all these
- * methods simply return the receiver.
- */
-
-static VALUE
-int_to_i(VALUE num)
-{
- return num;
-}
-
-/*
- * call-seq:
- * int.integer? -> true
- *
- * Always returns <code>true</code>.
- */
-
-static VALUE
-int_int_p(VALUE num)
-{
- return Qtrue;
-}
-
-/*
- * call-seq:
- * int.odd? -> true or false
- *
- * Returns <code>true</code> if <i>int</i> is an odd number.
- */
-
-static VALUE
-int_odd_p(VALUE num)
-{
- if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) {
- return Qtrue;
- }
- return Qfalse;
-}
-
-/*
- * call-seq:
- * int.even? -> true or false
- *
- * Returns <code>true</code> if <i>int</i> is an even number.
- */
-
-static VALUE
-int_even_p(VALUE num)
-{
- if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) {
- return Qtrue;
- }
- return Qfalse;
-}
-
-/*
- * call-seq:
- * fixnum.next => integer
- * fixnum.succ => integer
- *
- * Returns the <code>Integer</code> equal to <i>int</i> + 1.
- *
- * 1.next #=> 2
- * (-1).next #=> 0
- */
-
-static VALUE
-fix_succ(VALUE num)
-{
- long i = FIX2LONG(num) + 1;
- return LONG2NUM(i);
-}
-
-/*
- * call-seq:
- * int.next => integer
- * int.succ => integer
- *
- * Returns the <code>Integer</code> equal to <i>int</i> + 1.
- *
- * 1.next #=> 2
- * (-1).next #=> 0
- */
-
-static VALUE
-int_succ(VALUE num)
-{
- if (FIXNUM_P(num)) {
- long i = FIX2LONG(num) + 1;
- return LONG2NUM(i);
- }
- return rb_funcall(num, '+', 1, INT2FIX(1));
-}
-
-/*
- * call-seq:
- * int.pred => integer
- *
- * Returns the <code>Integer</code> equal to <i>int</i> - 1.
- *
- * 1.pred #=> 0
- * (-1).pred #=> -2
- */
-
-static VALUE
-int_pred(VALUE num)
-{
- if (FIXNUM_P(num)) {
- long i = FIX2LONG(num) - 1;
- return LONG2NUM(i);
- }
- return rb_funcall(num, '-', 1, INT2FIX(1));
-}
-
-/*
- * call-seq:
- * int.chr([encoding]) => string
- *
- * Returns a string containing the character represented by the
- * receiver's value according to +encoding+.
- *
- * 65.chr #=> "A"
- * 230.chr #=> "\346"
- * 255.chr(Encoding::UTF_8) #=> "\303\277"
- */
-
-static VALUE
-int_chr(int argc, VALUE *argv, VALUE num)
-{
- char c;
- int n;
- long i = NUM2LONG(num);
- rb_encoding *enc;
- VALUE str;
-
- switch (argc) {
- case 0:
- if (i < 0 || 0xff < i) {
- out_of_range:
- rb_raise(rb_eRangeError, "%"PRIdVALUE " out of char range", i);
- }
- c = i;
- if (i < 0x80) {
- return rb_usascii_str_new(&c, 1);
- }
- else {
- return rb_str_new(&c, 1);
- }
- case 1:
- break;
- default:
- rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 or 1)", argc);
- break;
- }
- enc = rb_to_encoding(argv[0]);
- if (!enc) enc = rb_ascii8bit_encoding();
- if (i < 0 || (n = rb_enc_codelen(i, enc)) <= 0) goto out_of_range;
- str = rb_enc_str_new(0, n, enc);
- rb_enc_mbcput(i, RSTRING_PTR(str), enc);
- return str;
-}
-
-static VALUE
-int_numerator(VALUE num)
-{
- return num;
-}
-
-static VALUE
-int_denominator(VALUE num)
-{
- return INT2FIX(1);
-}
-
-/********************************************************************
- *
- * Document-class: Fixnum
- *
- * A <code>Fixnum</code> holds <code>Integer</code> values that can be
- * represented in a native machine word (minus 1 bit). If any operation
- * on a <code>Fixnum</code> exceeds this range, the value is
- * automatically converted to a <code>Bignum</code>.
- *
- * <code>Fixnum</code> objects have immediate value. This means that
- * when they are assigned or passed as parameters, the actual object is
- * passed, rather than a reference to that object. Assignment does not
- * alias <code>Fixnum</code> objects. There is effectively only one
- * <code>Fixnum</code> object instance for any given integer value, so,
- * for example, you cannot add a singleton method to a
- * <code>Fixnum</code>.
- */
-
-
-/*
- * call-seq:
- * Fixnum.induced_from(obj) => fixnum
- *
- * Convert <code>obj</code> to a Fixnum. Works with numeric parameters.
- * Also works with Symbols, but this is deprecated.
- */
-
-static VALUE
-rb_fix_induced_from(VALUE klass, VALUE x)
-{
- return rb_num2fix(x);
-}
-
-/*
- * call-seq:
- * Integer.induced_from(obj) => fixnum, bignum
- *
- * Convert <code>obj</code> to an Integer.
- */
-
-static VALUE
-rb_int_induced_from(VALUE klass, VALUE x)
-{
- switch (TYPE(x)) {
- case T_FIXNUM:
- case T_BIGNUM:
- return x;
- case T_FLOAT:
- case T_RATIONAL:
- return rb_funcall(x, id_to_i, 0);
- default:
- rb_raise(rb_eTypeError, "failed to convert %s into Integer",
- rb_obj_classname(x));
- }
-}
-
-/*
- * call-seq:
- * Float.induced_from(obj) => float
- *
- * Convert <code>obj</code> to a float.
- */
-
-static VALUE
-rb_flo_induced_from(VALUE klass, VALUE x)
-{
- switch (TYPE(x)) {
- case T_FIXNUM:
- case T_BIGNUM:
- case T_RATIONAL:
- return rb_funcall(x, rb_intern("to_f"), 0);
- case T_FLOAT:
- return x;
- default:
- rb_raise(rb_eTypeError, "failed to convert %s into Float",
- rb_obj_classname(x));
- }
-}
-
-/*
- * call-seq:
- * -fix => integer
- *
- * Negates <code>fix</code> (which might return a Bignum).
- */
-
-static VALUE
-fix_uminus(VALUE num)
-{
- return LONG2NUM(-FIX2LONG(num));
-}
-
-VALUE
-rb_fix2str(VALUE x, int base)
-{
- extern const char ruby_digitmap[];
- char buf[SIZEOF_VALUE*CHAR_BIT + 2], *b = buf + sizeof buf;
- long val = FIX2LONG(x);
- int neg = 0;
-
- if (base < 2 || 36 < base) {
- rb_raise(rb_eArgError, "invalid radix %d", base);
- }
- if (val == 0) {
- return rb_usascii_str_new2("0");
- }
- if (val < 0) {
- val = -val;
- neg = 1;
- }
- *--b = '\0';
- do {
- *--b = ruby_digitmap[(int)(val % base)];
- } while (val /= base);
- if (neg) {
- *--b = '-';
- }
-
- return rb_usascii_str_new2(b);
-}
-
-/*
- * call-seq:
- * fix.to_s( base=10 ) -> aString
- *
- * Returns a string containing the representation of <i>fix</i> radix
- * <i>base</i> (between 2 and 36).
- *
- * 12345.to_s #=> "12345"
- * 12345.to_s(2) #=> "11000000111001"
- * 12345.to_s(8) #=> "30071"
- * 12345.to_s(10) #=> "12345"
- * 12345.to_s(16) #=> "3039"
- * 12345.to_s(36) #=> "9ix"
- *
- */
-static VALUE
-fix_to_s(int argc, VALUE *argv, VALUE x)
-{
- int base;
-
- if (argc == 0) base = 10;
- else {
- VALUE b;
-
- rb_scan_args(argc, argv, "01", &b);
- base = NUM2INT(b);
- }
-
- return rb_fix2str(x, base);
-}
-
-/*
- * call-seq:
- * fix + numeric => numeric_result
- *
- * Performs addition: the class of the resulting object depends on
- * the class of <code>numeric</code> and on the magnitude of the
- * result.
- */
-
-static VALUE
-fix_plus(VALUE x, VALUE y)
-{
- if (FIXNUM_P(y)) {
- long a, b, c;
- VALUE r;
-
- a = FIX2LONG(x);
- b = FIX2LONG(y);
- c = a + b;
- r = LONG2NUM(c);
-
- return r;
- }
- switch (TYPE(y)) {
- case T_BIGNUM:
- return rb_big_plus(y, x);
- case T_FLOAT:
- return DOUBLE2NUM((double)FIX2LONG(x) + RFLOAT_VALUE(y));
- default:
- return rb_num_coerce_bin(x, y, '+');
- }
-}
-
-/*
- * call-seq:
- * fix - numeric => numeric_result
- *
- * Performs subtraction: the class of the resulting object depends on
- * the class of <code>numeric</code> and on the magnitude of the
- * result.
- */
-
-static VALUE
-fix_minus(VALUE x, VALUE y)
-{
- if (FIXNUM_P(y)) {
- long a, b, c;
- VALUE r;
-
- a = FIX2LONG(x);
- b = FIX2LONG(y);
- c = a - b;
- r = LONG2NUM(c);
-
- return r;
- }
- switch (TYPE(y)) {
- case T_BIGNUM:
- x = rb_int2big(FIX2LONG(x));
- return rb_big_minus(x, y);
- case T_FLOAT:
- return DOUBLE2NUM((double)FIX2LONG(x) - RFLOAT_VALUE(y));
- default:
- return rb_num_coerce_bin(x, y, '-');
- }
-}
-
-#define SQRT_LONG_MAX ((SIGNED_VALUE)1<<((SIZEOF_LONG*CHAR_BIT-1)/2))
-/*tests if N*N would overflow*/
-#define FIT_SQRT_LONG(n) (((n)<SQRT_LONG_MAX)&&((n)>=-SQRT_LONG_MAX))
-
-/*
- * call-seq:
- * fix * numeric => numeric_result
- *
- * Performs multiplication: the class of the resulting object depends on
- * the class of <code>numeric</code> and on the magnitude of the
- * result.
- */
-
-static VALUE
-fix_mul(VALUE x, VALUE y)
-{
- if (FIXNUM_P(y)) {
-#ifdef __HP_cc
-/* avoids an optimization bug of HP aC++/ANSI C B3910B A.06.05 [Jul 25 2005] */
- volatile
-#endif
- SIGNED_VALUE a, b;
-#if SIZEOF_VALUE * 2 <= SIZEOF_LONG_LONG
- LONG_LONG d;
-#else
- SIGNED_VALUE c;
- VALUE r;
-#endif
-
- a = FIX2LONG(x);
- b = FIX2LONG(y);
-
-#if SIZEOF_VALUE * 2 <= SIZEOF_LONG_LONG
- d = (LONG_LONG)a * b;
- if (FIXABLE(d)) return LONG2FIX(d);
- return rb_ll2inum(d);
-#else
- if (FIT_SQRT_LONG(a) && FIT_SQRT_LONG(b))
- return LONG2FIX(a*b);
- c = a * b;
- r = LONG2FIX(c);
-
- if (a == 0) return x;
- if (FIX2LONG(r) != c || c/a != b) {
- r = rb_big_mul(rb_int2big(a), rb_int2big(b));
- }
- return r;
-#endif
- }
- switch (TYPE(y)) {
- case T_BIGNUM:
- return rb_big_mul(y, x);
- case T_FLOAT:
- return DOUBLE2NUM((double)FIX2LONG(x) * RFLOAT_VALUE(y));
- default:
- return rb_num_coerce_bin(x, y, '*');
- }
-}
-
-static void
-fixdivmod(long x, long y, long *divp, long *modp)
-{
- long div, mod;
-
- if (y == 0) rb_num_zerodiv();
- if (y < 0) {
- if (x < 0)
- div = -x / -y;
- else
- div = - (x / -y);
- }
- else {
- if (x < 0)
- div = - (-x / y);
- else
- div = x / y;
- }
- mod = x - div*y;
- if ((mod < 0 && y > 0) || (mod > 0 && y < 0)) {
- mod += y;
- div -= 1;
- }
- if (divp) *divp = div;
- if (modp) *modp = mod;
-}
-
-/*
- * call-seq:
- * fix.fdiv(numeric) => float
- *
- * Returns the floating point result of dividing <i>fix</i> by
- * <i>numeric</i>.
- *
- * 654321.fdiv(13731) #=> 47.6528293642124
- * 654321.fdiv(13731.24) #=> 47.6519964693647
- *
- */
-
-static VALUE
-fix_fdiv(VALUE x, VALUE y)
-{
- if (FIXNUM_P(y)) {
- return DOUBLE2NUM((double)FIX2LONG(x) / (double)FIX2LONG(y));
- }
- switch (TYPE(y)) {
- case T_BIGNUM:
- return DOUBLE2NUM((double)FIX2LONG(x) / rb_big2dbl(y));
- case T_FLOAT:
- return DOUBLE2NUM((double)FIX2LONG(x) / RFLOAT_VALUE(y));
- default:
- return rb_num_coerce_bin(x, y, rb_intern("fdiv"));
- }
-}
-
-static VALUE
-fix_divide(VALUE x, VALUE y, ID op)
-{
- if (FIXNUM_P(y)) {
- long div;
-
- fixdivmod(FIX2LONG(x), FIX2LONG(y), &div, 0);
- return LONG2NUM(div);
- }
- switch (TYPE(y)) {
- case T_BIGNUM:
- x = rb_int2big(FIX2LONG(x));
- return rb_big_div(x, y);
- case T_FLOAT:
- {
- double div;
-
- if (op == '/') {
- div = (double)FIX2LONG(x) / RFLOAT_VALUE(y);
- return DOUBLE2NUM(div);
- }
- else {
- if (RFLOAT_VALUE(y) == 0) rb_num_zerodiv();
- div = (double)FIX2LONG(x) / RFLOAT_VALUE(y);
- return rb_dbl2big(floor(div));
- }
- }
- default:
- return rb_num_coerce_bin(x, y, op);
- }
-}
-
-/*
- * call-seq:
- * fix / numeric => numeric_result
- *
- * Performs division: the class of the resulting object depends on
- * the class of <code>numeric</code> and on the magnitude of the
- * result.
- */
-
-static VALUE
-fix_div(VALUE x, VALUE y)
-{
- return fix_divide(x, y, '/');
-}
-
-/*
- * call-seq:
- * fix.div(numeric) => numeric_result
- *
- * Performs integer division: returns integer value.
- */
-
-static VALUE
-fix_idiv(VALUE x, VALUE y)
-{
- return fix_divide(x, y, rb_intern("div"));
-}
-
-/*
- * call-seq:
- * fix % other => Numeric
- * fix.modulo(other) => Numeric
- *
- * Returns <code>fix</code> modulo <code>other</code>.
- * See <code>Numeric.divmod</code> for more information.
- */
-
-static VALUE
-fix_mod(VALUE x, VALUE y)
-{
- if (FIXNUM_P(y)) {
- long mod;
-
- fixdivmod(FIX2LONG(x), FIX2LONG(y), 0, &mod);
- return LONG2NUM(mod);
- }
- switch (TYPE(y)) {
- case T_BIGNUM:
- x = rb_int2big(FIX2LONG(x));
- return rb_big_modulo(x, y);
- case T_FLOAT:
- {
- double mod;
-
- flodivmod((double)FIX2LONG(x), RFLOAT_VALUE(y), 0, &mod);
- return DOUBLE2NUM(mod);
- }
- default:
- return rb_num_coerce_bin(x, y, '%');
- }
-}
-
-/*
- * call-seq:
- * fix.divmod(numeric) => array
- *
- * See <code>Numeric#divmod</code>.
- */
-static VALUE
-fix_divmod(VALUE x, VALUE y)
-{
- if (FIXNUM_P(y)) {
- long div, mod;
-
- fixdivmod(FIX2LONG(x), FIX2LONG(y), &div, &mod);
-
- return rb_assoc_new(LONG2NUM(div), LONG2NUM(mod));
- }
- switch (TYPE(y)) {
- case T_BIGNUM:
- x = rb_int2big(FIX2LONG(x));
- return rb_big_divmod(x, y);
- case T_FLOAT:
- {
- double div, mod;
- volatile VALUE a, b;
-
- flodivmod((double)FIX2LONG(x), RFLOAT_VALUE(y), &div, &mod);
- a = dbl2ival(div);
- b = DOUBLE2NUM(mod);
- return rb_assoc_new(a, b);
- }
- default:
- return rb_num_coerce_bin(x, y, rb_intern("divmod"));
- }
-}
-
-static VALUE
-int_pow(long x, unsigned long y)
-{
- int neg = x < 0;
- long z = 1;
-
- if (neg) x = -x;
- if (y & 1)
- z = x;
- else
- neg = 0;
- y &= ~1;
- do {
- while (y % 2 == 0) {
- if (!FIT_SQRT_LONG(x)) {
- VALUE v;
- bignum:
- v = rb_big_pow(rb_int2big(x), LONG2NUM(y));
- if (z != 1) v = rb_big_mul(rb_int2big(neg ? -z : z), v);
- return v;
- }
- x = x * x;
- y >>= 1;
- }
- {
- long xz = x * z;
- if (!POSFIXABLE(xz) || xz / x != z) {
- goto bignum;
- }
- z = xz;
- }
- } while (--y);
- if (neg) z = -z;
- return LONG2NUM(z);
-}
-
-/*
- * call-seq:
- * fix ** other => Numeric
- *
- * Raises <code>fix</code> to the <code>other</code> power, which may
- * be negative or fractional.
- *
- * 2 ** 3 #=> 8
- * 2 ** -1 #=> 0.5
- * 2 ** 0.5 #=> 1.4142135623731
- */
-
-static VALUE
-fix_pow(VALUE x, VALUE y)
-{
- static const double zero = 0.0;
- long a = FIX2LONG(x);
-
- if (FIXNUM_P(y)) {
- long b = FIX2LONG(y);
-
- if (b < 0)
- return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y);
-
- if (b == 0) return INT2FIX(1);
- if (b == 1) return x;
- if (a == 0) {
- if (b > 0) return INT2FIX(0);
- return DOUBLE2NUM(1.0 / zero);
- }
- if (a == 1) return INT2FIX(1);
- if (a == -1) {
- if (b % 2 == 0)
- return INT2FIX(1);
- else
- return INT2FIX(-1);
- }
- return int_pow(a, b);
- }
- switch (TYPE(y)) {
- case T_BIGNUM:
-
- if (rb_funcall(y, '<', 1, INT2FIX(0)))
- return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y);
-
- if (a == 0) return INT2FIX(0);
- if (a == 1) return INT2FIX(1);
- if (a == -1) {
- if (int_even_p(y)) return INT2FIX(1);
- else return INT2FIX(-1);
- }
- x = rb_int2big(FIX2LONG(x));
- return rb_big_pow(x, y);
- case T_FLOAT:
- if (RFLOAT_VALUE(y) == 0.0) return DOUBLE2NUM(1.0);
- if (a == 0) {
- return DOUBLE2NUM(RFLOAT_VALUE(y) < 0 ? (1.0 / zero) : 0.0);
- }
- if (a == 1) return DOUBLE2NUM(1.0);
- return DOUBLE2NUM(pow((double)a, RFLOAT_VALUE(y)));
- default:
- return rb_num_coerce_bin(x, y, rb_intern("**"));
- }
-}
-
-/*
- * call-seq:
- * fix == other
- *
- * Return <code>true</code> if <code>fix</code> equals <code>other</code>
- * numerically.
- *
- * 1 == 2 #=> false
- * 1 == 1.0 #=> true
- */
-
-static VALUE
-fix_equal(VALUE x, VALUE y)
-{
- if (x == y) return Qtrue;
- if (FIXNUM_P(y)) return Qfalse;
- switch (TYPE(y)) {
- case T_BIGNUM:
- return rb_big_eq(y, x);
- case T_FLOAT:
- return (double)FIX2LONG(x) == RFLOAT_VALUE(y) ? Qtrue : Qfalse;
- default:
- return num_equal(x, y);
- }
-}
-
-/*
- * call-seq:
- * fix <=> numeric => -1, 0, +1
- *
- * Comparison---Returns -1, 0, or +1 depending on whether <i>fix</i> is
- * less than, equal to, or greater than <i>numeric</i>. This is the
- * basis for the tests in <code>Comparable</code>.
- */
-
-static VALUE
-fix_cmp(VALUE x, VALUE y)
-{
- if (x == y) return INT2FIX(0);
- if (FIXNUM_P(y)) {
- if (FIX2LONG(x) > FIX2LONG(y)) return INT2FIX(1);
- return INT2FIX(-1);
- }
- switch (TYPE(y)) {
- case T_BIGNUM:
- return rb_big_cmp(rb_int2big(FIX2LONG(x)), y);
- case T_FLOAT:
- return rb_dbl_cmp((double)FIX2LONG(x), RFLOAT_VALUE(y));
- default:
- return rb_num_coerce_cmp(x, y, rb_intern("<=>"));
- }
-}
-
-/*
- * call-seq:
- * fix > other => true or false
- *
- * Returns <code>true</code> if the value of <code>fix</code> is
- * greater than that of <code>other</code>.
- */
-
-static VALUE
-fix_gt(VALUE x, VALUE y)
-{
- if (FIXNUM_P(y)) {
- if (FIX2LONG(x) > FIX2LONG(y)) return Qtrue;
- return Qfalse;
- }
- switch (TYPE(y)) {
- case T_BIGNUM:
- return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) > 0 ? Qtrue : Qfalse;
- case T_FLOAT:
- return (double)FIX2LONG(x) > RFLOAT_VALUE(y) ? Qtrue : Qfalse;
- default:
- return rb_num_coerce_relop(x, y, '>');
- }
-}
-
-/*
- * call-seq:
- * fix >= other => true or false
- *
- * Returns <code>true</code> if the value of <code>fix</code> is
- * greater than or equal to that of <code>other</code>.
- */
-
-static VALUE
-fix_ge(VALUE x, VALUE y)
-{
- if (FIXNUM_P(y)) {
- if (FIX2LONG(x) >= FIX2LONG(y)) return Qtrue;
- return Qfalse;
- }
- switch (TYPE(y)) {
- case T_BIGNUM:
- return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) >= 0 ? Qtrue : Qfalse;
- case T_FLOAT:
- return (double)FIX2LONG(x) >= RFLOAT_VALUE(y) ? Qtrue : Qfalse;
- default:
- return rb_num_coerce_relop(x, y, rb_intern(">="));
- }
-}
-
-/*
- * call-seq:
- * fix < other => true or false
- *
- * Returns <code>true</code> if the value of <code>fix</code> is
- * less than that of <code>other</code>.
- */
-
-static VALUE
-fix_lt(VALUE x, VALUE y)
-{
- if (FIXNUM_P(y)) {
- if (FIX2LONG(x) < FIX2LONG(y)) return Qtrue;
- return Qfalse;
- }
- switch (TYPE(y)) {
- case T_BIGNUM:
- return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) < 0 ? Qtrue : Qfalse;
- case T_FLOAT:
- return (double)FIX2LONG(x) < RFLOAT_VALUE(y) ? Qtrue : Qfalse;
- default:
- return rb_num_coerce_relop(x, y, '<');
- }
-}
-
-/*
- * call-seq:
- * fix <= other => true or false
- *
- * Returns <code>true</code> if the value of <code>fix</code> is
- * less than or equal to that of <code>other</code>.
- */
-
-static VALUE
-fix_le(VALUE x, VALUE y)
-{
- if (FIXNUM_P(y)) {
- if (FIX2LONG(x) <= FIX2LONG(y)) return Qtrue;
- return Qfalse;
- }
- switch (TYPE(y)) {
- case T_BIGNUM:
- return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) <= 0 ? Qtrue : Qfalse;
- case T_FLOAT:
- return (double)FIX2LONG(x) <= RFLOAT_VALUE(y) ? Qtrue : Qfalse;
- default:
- return rb_num_coerce_relop(x, y, rb_intern("<="));
- }
-}
-
-/*
- * call-seq:
- * ~fix => integer
- *
- * One's complement: returns a number where each bit is flipped.
- */
-
-static VALUE
-fix_rev(VALUE num)
-{
- long val = FIX2LONG(num);
-
- val = ~val;
- return LONG2NUM(val);
-}
-
-static VALUE
-bit_coerce(VALUE x)
-{
- while (!FIXNUM_P(x) && TYPE(x) != T_BIGNUM) {
- if (TYPE(x) == T_FLOAT) {
- rb_raise(rb_eTypeError, "can't convert Float into Integer");
- }
- x = rb_to_int(x);
- }
- return x;
-}
-
-/*
- * call-seq:
- * fix & other => integer
- *
- * Bitwise AND.
- */
-
-static VALUE
-fix_and(VALUE x, VALUE y)
-{
- long val;
-
- if (!FIXNUM_P(y = bit_coerce(y))) {
- return rb_big_and(y, x);
- }
- val = FIX2LONG(x) & FIX2LONG(y);
- return LONG2NUM(val);
-}
-
-/*
- * call-seq:
- * fix | other => integer
- *
- * Bitwise OR.
- */
-
-static VALUE
-fix_or(VALUE x, VALUE y)
-{
- long val;
-
- if (!FIXNUM_P(y = bit_coerce(y))) {
- return rb_big_or(y, x);
- }
- val = FIX2LONG(x) | FIX2LONG(y);
- return LONG2NUM(val);
-}
-
-/*
- * call-seq:
- * fix ^ other => integer
- *
- * Bitwise EXCLUSIVE OR.
- */
-
-static VALUE
-fix_xor(VALUE x, VALUE y)
-{
- long val;
-
- if (!FIXNUM_P(y = bit_coerce(y))) {
- return rb_big_xor(y, x);
- }
- val = FIX2LONG(x) ^ FIX2LONG(y);
- return LONG2NUM(val);
-}
-
-static VALUE fix_lshift(long, unsigned long);
-static VALUE fix_rshift(long, unsigned long);
-
-/*
- * call-seq:
- * fix << count => integer
- *
- * Shifts _fix_ left _count_ positions (right if _count_ is negative).
- */
-
-static VALUE
-rb_fix_lshift(VALUE x, VALUE y)
-{
- long val, width;
-
- val = NUM2LONG(x);
- if (!FIXNUM_P(y))
- return rb_big_lshift(rb_int2big(val), y);
- width = FIX2LONG(y);
- if (width < 0)
- return fix_rshift(val, (unsigned long)-width);
- return fix_lshift(val, width);
-}
-
-static VALUE
-fix_lshift(long val, unsigned long width)
-{
- if (width > (SIZEOF_LONG*CHAR_BIT-1)
- || ((unsigned long)val)>>(SIZEOF_LONG*CHAR_BIT-1-width) > 0) {
- return rb_big_lshift(rb_int2big(val), ULONG2NUM(width));
- }
- val = val << width;
- return LONG2NUM(val);
-}
-
-/*
- * call-seq:
- * fix >> count => integer
- *
- * Shifts _fix_ right _count_ positions (left if _count_ is negative).
- */
-
-static VALUE
-rb_fix_rshift(VALUE x, VALUE y)
-{
- long i, val;
-
- val = FIX2LONG(x);
- if (!FIXNUM_P(y))
- return rb_big_rshift(rb_int2big(val), y);
- i = FIX2LONG(y);
- if (i == 0) return x;
- if (i < 0)
- return fix_lshift(val, (unsigned long)-i);
- return fix_rshift(val, i);
-}
-
-static VALUE
-fix_rshift(long val, unsigned long i)
-{
- if (i >= sizeof(long)*CHAR_BIT-1) {
- if (val < 0) return INT2FIX(-1);
- return INT2FIX(0);
- }
- val = RSHIFT(val, i);
- return LONG2FIX(val);
-}
-
-/*
- * call-seq:
- * fix[n] => 0, 1
- *
- * Bit Reference---Returns the <em>n</em>th bit in the binary
- * representation of <i>fix</i>, where <i>fix</i>[0] is the least
- * significant bit.
- *
- * a = 0b11001100101010
- * 30.downto(0) do |n| print a[n] end
- *
- * <em>produces:</em>
- *
- * 0000000000000000011001100101010
- */
-
-static VALUE
-fix_aref(VALUE fix, VALUE idx)
-{
- long val = FIX2LONG(fix);
- long i;
-
- idx = rb_to_int(idx);
- if (!FIXNUM_P(idx)) {
- idx = rb_big_norm(idx);
- if (!FIXNUM_P(idx)) {
- if (!RBIGNUM_SIGN(idx) || val >= 0)
- return INT2FIX(0);
- return INT2FIX(1);
- }
- }
- i = FIX2LONG(idx);
-
- if (i < 0) return INT2FIX(0);
- if (SIZEOF_LONG*CHAR_BIT-1 < i) {
- if (val < 0) return INT2FIX(1);
- return INT2FIX(0);
- }
- if (val & (1L<<i))
- return INT2FIX(1);
- return INT2FIX(0);
-}
-
-/*
- * call-seq:
- * fix.to_f -> float
- *
- * Converts <i>fix</i> to a <code>Float</code>.
- *
- */
-
-static VALUE
-fix_to_f(VALUE num)
-{
- double val;
-
- val = (double)FIX2LONG(num);
-
- return DOUBLE2NUM(val);
-}
-
-/*
- * call-seq:
- * fix.abs -> aFixnum
- *
- * Returns the absolute value of <i>fix</i>.
- *
- * -12345.abs #=> 12345
- * 12345.abs #=> 12345
- *
- */
-
-static VALUE
-fix_abs(VALUE fix)
-{
- long i = FIX2LONG(fix);
-
- if (i < 0) i = -i;
-
- return LONG2NUM(i);
-}
-
-
-
-/*
- * call-seq:
- * fix.size -> fixnum
- *
- * Returns the number of <em>bytes</em> in the machine representation
- * of a <code>Fixnum</code>.
- *
- * 1.size #=> 4
- * -1.size #=> 4
- * 2147483647.size #=> 4
- */
-
-static VALUE
-fix_size(VALUE fix)
-{
- return INT2FIX(sizeof(long));
-}
-
-/*
- * call-seq:
- * int.upto(limit) {|i| block } => int
- *
- * Iterates <em>block</em>, passing in integer values from <i>int</i>
- * up to and including <i>limit</i>.
- *
- * 5.upto(10) { |i| print i, " " }
- *
- * <em>produces:</em>
- *
- * 5 6 7 8 9 10
- */
-
-static VALUE
-int_upto(VALUE from, VALUE to)
-{
- RETURN_ENUMERATOR(from, 1, &to);
- if (FIXNUM_P(from) && FIXNUM_P(to)) {
- long i, end;
-
- end = FIX2LONG(to);
- for (i = FIX2LONG(from); i <= end; i++) {
- rb_yield(LONG2FIX(i));
- }
- }
- else {
- VALUE i = from, c;
-
- while (!(c = rb_funcall(i, '>', 1, to))) {
- rb_yield(i);
- i = rb_funcall(i, '+', 1, INT2FIX(1));
- }
- if (NIL_P(c)) rb_cmperr(i, to);
- }
- return from;
-}
-
-/*
- * call-seq:
- * int.downto(limit) {|i| block } => int
- *
- * Iterates <em>block</em>, passing decreasing values from <i>int</i>
- * down to and including <i>limit</i>.
- *
- * 5.downto(1) { |n| print n, ".. " }
- * print " Liftoff!\n"
- *
- * <em>produces:</em>
- *
- * 5.. 4.. 3.. 2.. 1.. Liftoff!
- */
-
-static VALUE
-int_downto(VALUE from, VALUE to)
-{
- RETURN_ENUMERATOR(from, 1, &to);
- if (FIXNUM_P(from) && FIXNUM_P(to)) {
- long i, end;
-
- end = FIX2LONG(to);
- for (i=FIX2LONG(from); i >= end; i--) {
- rb_yield(LONG2FIX(i));
- }
- }
- else {
- VALUE i = from, c;
-
- while (!(c = rb_funcall(i, '<', 1, to))) {
- rb_yield(i);
- i = rb_funcall(i, '-', 1, INT2FIX(1));
- }
- if (NIL_P(c)) rb_cmperr(i, to);
- }
- return from;
-}
-
-/*
- * call-seq:
- * int.times {|i| block } => int
- *
- * Iterates block <i>int</i> times, passing in values from zero to
- * <i>int</i> - 1.
- *
- * 5.times do |i|
- * print i, " "
- * end
- *
- * <em>produces:</em>
- *
- * 0 1 2 3 4
- */
-
-static VALUE
-int_dotimes(VALUE num)
-{
- RETURN_ENUMERATOR(num, 0, 0);
-
- if (FIXNUM_P(num)) {
- long i, end;
-
- end = FIX2LONG(num);
- for (i=0; i<end; i++) {
- rb_yield(LONG2FIX(i));
- }
- }
- else {
- VALUE i = INT2FIX(0);
-
- for (;;) {
- if (!RTEST(rb_funcall(i, '<', 1, num))) break;
- rb_yield(i);
- i = rb_funcall(i, '+', 1, INT2FIX(1));
- }
- }
- return num;
-}
-
-static VALUE
-int_round(int argc, VALUE* argv, VALUE num)
-{
- VALUE n, f, h, r;
- int ndigits;
-
- if (argc == 0) return num;
- rb_scan_args(argc, argv, "1", &n);
- ndigits = NUM2INT(n);
- if (ndigits > 0) {
- return rb_Float(num);
- }
- if (ndigits == 0) {
- return num;
- }
- ndigits = -ndigits;
- if (ndigits < 0) {
- rb_raise(rb_eArgError, "ndigits out of range");
- }
- f = int_pow(10, ndigits);
- if (FIXNUM_P(num) && FIXNUM_P(f)) {
- SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
- int neg = x < 0;
- if (neg) x = -x;
- x = (x + y / 2) / y * y;
- if (neg) x = -x;
- return LONG2NUM(x);
- }
- h = rb_funcall(f, '/', 1, INT2FIX(2));
- r = rb_funcall(num, '%', 1, f);
- n = rb_funcall(num, '-', 1, r);
- if (!RTEST(rb_funcall(r, '<', 1, h))) {
- n = rb_funcall(n, '+', 1, f);
- }
- return n;
-}
-
-/*
- * call-seq:
- * fix.zero? => true or false
- *
- * Returns <code>true</code> if <i>fix</i> is zero.
- *
- */
-
-static VALUE
-fix_zero_p(VALUE num)
-{
- if (FIX2LONG(num) == 0) {
- return Qtrue;
- }
- return Qfalse;
-}
-
-/*
- * call-seq:
- * fix.odd? -> true or false
- *
- * Returns <code>true</code> if <i>fix</i> is an odd number.
- */
-
-static VALUE
-fix_odd_p(VALUE num)
-{
- if (num & 2) {
- return Qtrue;
- }
- return Qfalse;
-}
-
-/*
- * call-seq:
- * fix.even? -> true or false
- *
- * Returns <code>true</code> if <i>fix</i> is an even number.
- */
-
-static VALUE
-fix_even_p(VALUE num)
-{
- if (num & 2) {
- return Qfalse;
- }
- return Qtrue;
-}
-
-void
-Init_Numeric(void)
-{
-#undef rb_intern
-#define rb_intern(str) rb_intern_const(str)
-
-#if defined(__FreeBSD__) && __FreeBSD__ < 4
- /* allow divide by zero -- Inf */
- fpsetmask(fpgetmask() & ~(FP_X_DZ|FP_X_INV|FP_X_OFL));
-#elif defined(_UNICOSMP)
- /* Turn off floating point exceptions for divide by zero, etc. */
- _set_Creg(0, 0);
-#elif defined(__BORLANDC__)
- /* Turn off floating point exceptions for overflow, etc. */
- _control87(MCW_EM, MCW_EM);
-#endif
- id_coerce = rb_intern("coerce");
- id_to_i = rb_intern("to_i");
- id_eq = rb_intern("==");
-
- rb_eZeroDivError = rb_define_class("ZeroDivisionError", rb_eStandardError);
- rb_eFloatDomainError = rb_define_class("FloatDomainError", rb_eRangeError);
- rb_cNumeric = rb_define_class("Numeric", rb_cObject);
-
- rb_define_method(rb_cNumeric, "singleton_method_added", num_sadded, 1);
- rb_include_module(rb_cNumeric, rb_mComparable);
- rb_define_method(rb_cNumeric, "initialize_copy", num_init_copy, 1);
- rb_define_method(rb_cNumeric, "coerce", num_coerce, 1);
-
- rb_define_method(rb_cNumeric, "+@", num_uplus, 0);
- rb_define_method(rb_cNumeric, "-@", num_uminus, 0);
- rb_define_method(rb_cNumeric, "<=>", num_cmp, 1);
- rb_define_method(rb_cNumeric, "eql?", num_eql, 1);
- rb_define_method(rb_cNumeric, "quo", num_quo, 1);
- rb_define_method(rb_cNumeric, "fdiv", num_fdiv, 1);
- rb_define_method(rb_cNumeric, "div", num_div, 1);
- rb_define_method(rb_cNumeric, "divmod", num_divmod, 1);
- rb_define_method(rb_cNumeric, "modulo", num_modulo, 1);
- rb_define_method(rb_cNumeric, "remainder", num_remainder, 1);
- rb_define_method(rb_cNumeric, "abs", num_abs, 0);
- rb_define_method(rb_cNumeric, "to_int", num_to_int, 0);
-
- rb_define_method(rb_cNumeric, "scalar?", num_scalar_p, 0);
- rb_define_method(rb_cNumeric, "integer?", num_int_p, 0);
- rb_define_method(rb_cNumeric, "zero?", num_zero_p, 0);
- rb_define_method(rb_cNumeric, "nonzero?", num_nonzero_p, 0);
-
- rb_define_method(rb_cNumeric, "floor", num_floor, 0);
- rb_define_method(rb_cNumeric, "ceil", num_ceil, 0);
- rb_define_method(rb_cNumeric, "round", num_round, -1);
- rb_define_method(rb_cNumeric, "truncate", num_truncate, 0);
- rb_define_method(rb_cNumeric, "step", num_step, -1);
-
- rb_define_method(rb_cNumeric, "numerator", num_numerator, 0);
- rb_define_method(rb_cNumeric, "denominator", num_denominator, 0);
-
- rb_cInteger = rb_define_class("Integer", rb_cNumeric);
- rb_undef_alloc_func(rb_cInteger);
- rb_undef_method(CLASS_OF(rb_cInteger), "new");
-
- rb_define_method(rb_cInteger, "integer?", int_int_p, 0);
- rb_define_method(rb_cInteger, "odd?", int_odd_p, 0);
- rb_define_method(rb_cInteger, "even?", int_even_p, 0);
- rb_define_method(rb_cInteger, "upto", int_upto, 1);
- rb_define_method(rb_cInteger, "downto", int_downto, 1);
- rb_define_method(rb_cInteger, "times", int_dotimes, 0);
- rb_include_module(rb_cInteger, rb_mPrecision);
- rb_define_method(rb_cInteger, "succ", int_succ, 0);
- rb_define_method(rb_cInteger, "next", int_succ, 0);
- rb_define_method(rb_cInteger, "pred", int_pred, 0);
- rb_define_method(rb_cInteger, "chr", int_chr, -1);
- rb_define_method(rb_cInteger, "to_i", int_to_i, 0);
- rb_define_method(rb_cInteger, "to_int", int_to_i, 0);
- rb_define_method(rb_cInteger, "floor", int_to_i, 0);
- rb_define_method(rb_cInteger, "ceil", int_to_i, 0);
- rb_define_method(rb_cInteger, "truncate", int_to_i, 0);
- rb_define_method(rb_cInteger, "round", int_round, -1);
-
- rb_cFixnum = rb_define_class("Fixnum", rb_cInteger);
- rb_include_module(rb_cFixnum, rb_mPrecision);
- rb_define_singleton_method(rb_cFixnum, "induced_from", rb_fix_induced_from, 1);
- rb_define_singleton_method(rb_cInteger, "induced_from", rb_int_induced_from, 1);
-
- rb_define_method(rb_cInteger, "numerator", int_numerator, 0);
- rb_define_method(rb_cInteger, "denominator", int_denominator, 0);
-
- rb_define_method(rb_cFixnum, "to_s", fix_to_s, -1);
-
- rb_define_method(rb_cFixnum, "-@", fix_uminus, 0);
- rb_define_method(rb_cFixnum, "+", fix_plus, 1);
- rb_define_method(rb_cFixnum, "-", fix_minus, 1);
- rb_define_method(rb_cFixnum, "*", fix_mul, 1);
- rb_define_method(rb_cFixnum, "/", fix_div, 1);
- rb_define_method(rb_cFixnum, "div", fix_idiv, 1);
- rb_define_method(rb_cFixnum, "%", fix_mod, 1);
- rb_define_method(rb_cFixnum, "modulo", fix_mod, 1);
- rb_define_method(rb_cFixnum, "divmod", fix_divmod, 1);
- rb_define_method(rb_cFixnum, "fdiv", fix_fdiv, 1);
- rb_define_method(rb_cFixnum, "**", fix_pow, 1);
-
- rb_define_method(rb_cFixnum, "abs", fix_abs, 0);
-
- rb_define_method(rb_cFixnum, "==", fix_equal, 1);
- rb_define_method(rb_cFixnum, "<=>", fix_cmp, 1);
- rb_define_method(rb_cFixnum, ">", fix_gt, 1);
- rb_define_method(rb_cFixnum, ">=", fix_ge, 1);
- rb_define_method(rb_cFixnum, "<", fix_lt, 1);
- rb_define_method(rb_cFixnum, "<=", fix_le, 1);
-
- rb_define_method(rb_cFixnum, "~", fix_rev, 0);
- rb_define_method(rb_cFixnum, "&", fix_and, 1);
- rb_define_method(rb_cFixnum, "|", fix_or, 1);
- rb_define_method(rb_cFixnum, "^", fix_xor, 1);
- rb_define_method(rb_cFixnum, "[]", fix_aref, 1);
-
- rb_define_method(rb_cFixnum, "<<", rb_fix_lshift, 1);
- rb_define_method(rb_cFixnum, ">>", rb_fix_rshift, 1);
-
- rb_define_method(rb_cFixnum, "to_f", fix_to_f, 0);
- rb_define_method(rb_cFixnum, "size", fix_size, 0);
- rb_define_method(rb_cFixnum, "zero?", fix_zero_p, 0);
- rb_define_method(rb_cFixnum, "odd?", fix_odd_p, 0);
- rb_define_method(rb_cFixnum, "even?", fix_even_p, 0);
- rb_define_method(rb_cFixnum, "succ", fix_succ, 0);
-
- rb_cFloat = rb_define_class("Float", rb_cNumeric);
-
- rb_undef_alloc_func(rb_cFloat);
- rb_undef_method(CLASS_OF(rb_cFloat), "new");
-
- rb_define_singleton_method(rb_cFloat, "induced_from", rb_flo_induced_from, 1);
- rb_include_module(rb_cFloat, rb_mPrecision);
-
- rb_define_const(rb_cFloat, "ROUNDS", INT2FIX(FLT_ROUNDS));
- rb_define_const(rb_cFloat, "RADIX", INT2FIX(FLT_RADIX));
- rb_define_const(rb_cFloat, "MANT_DIG", INT2FIX(DBL_MANT_DIG));
- rb_define_const(rb_cFloat, "DIG", INT2FIX(DBL_DIG));
- rb_define_const(rb_cFloat, "MIN_EXP", INT2FIX(DBL_MIN_EXP));
- rb_define_const(rb_cFloat, "MAX_EXP", INT2FIX(DBL_MAX_EXP));
- rb_define_const(rb_cFloat, "MIN_10_EXP", INT2FIX(DBL_MIN_10_EXP));
- rb_define_const(rb_cFloat, "MAX_10_EXP", INT2FIX(DBL_MAX_10_EXP));
- rb_define_const(rb_cFloat, "MIN", DOUBLE2NUM(DBL_MIN));
- rb_define_const(rb_cFloat, "MAX", DOUBLE2NUM(DBL_MAX));
- rb_define_const(rb_cFloat, "EPSILON", DOUBLE2NUM(DBL_EPSILON));
-
- rb_define_method(rb_cFloat, "to_s", flo_to_s, 0);
- rb_define_method(rb_cFloat, "coerce", flo_coerce, 1);
- rb_define_method(rb_cFloat, "-@", flo_uminus, 0);
- rb_define_method(rb_cFloat, "+", flo_plus, 1);
- rb_define_method(rb_cFloat, "-", flo_minus, 1);
- rb_define_method(rb_cFloat, "*", flo_mul, 1);
- rb_define_method(rb_cFloat, "/", flo_div, 1);
- rb_define_method(rb_cFloat, "quo", flo_quo, 1);
- rb_define_method(rb_cFloat, "fdiv", flo_quo, 1);
- rb_define_method(rb_cFloat, "%", flo_mod, 1);
- rb_define_method(rb_cFloat, "modulo", flo_mod, 1);
- rb_define_method(rb_cFloat, "divmod", flo_divmod, 1);
- rb_define_method(rb_cFloat, "**", flo_pow, 1);
- rb_define_method(rb_cFloat, "==", flo_eq, 1);
- rb_define_method(rb_cFloat, "<=>", flo_cmp, 1);
- rb_define_method(rb_cFloat, ">", flo_gt, 1);
- rb_define_method(rb_cFloat, ">=", flo_ge, 1);
- rb_define_method(rb_cFloat, "<", flo_lt, 1);
- rb_define_method(rb_cFloat, "<=", flo_le, 1);
- rb_define_method(rb_cFloat, "eql?", flo_eql, 1);
- rb_define_method(rb_cFloat, "hash", flo_hash, 0);
- rb_define_method(rb_cFloat, "to_f", flo_to_f, 0);
- rb_define_method(rb_cFloat, "abs", flo_abs, 0);
- rb_define_method(rb_cFloat, "zero?", flo_zero_p, 0);
-
- rb_define_method(rb_cFloat, "to_i", flo_truncate, 0);
- rb_define_method(rb_cFloat, "to_int", flo_truncate, 0);
- rb_define_method(rb_cFloat, "floor", flo_floor, 0);
- rb_define_method(rb_cFloat, "ceil", flo_ceil, 0);
- rb_define_method(rb_cFloat, "round", flo_round, -1);
- rb_define_method(rb_cFloat, "truncate", flo_truncate, 0);
-
- rb_define_method(rb_cFloat, "nan?", flo_is_nan_p, 0);
- rb_define_method(rb_cFloat, "infinite?", flo_is_infinite_p, 0);
- rb_define_method(rb_cFloat, "finite?", flo_is_finite_p, 0);
-}