summaryrefslogtreecommitdiff
path: root/trunk/array.c
diff options
context:
space:
mode:
Diffstat (limited to 'trunk/array.c')
-rw-r--r--trunk/array.c3617
1 files changed, 3617 insertions, 0 deletions
diff --git a/trunk/array.c b/trunk/array.c
new file mode 100644
index 0000000000..1f6140d265
--- /dev/null
+++ b/trunk/array.c
@@ -0,0 +1,3617 @@
+/**********************************************************************
+
+ array.c -
+
+ $Author$
+ created at: Fri Aug 6 09:46:12 JST 1993
+
+ Copyright (C) 1993-2007 Yukihiro Matsumoto
+ Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
+ Copyright (C) 2000 Information-technology Promotion Agency, Japan
+
+**********************************************************************/
+
+#include "ruby/ruby.h"
+#include "ruby/util.h"
+#include "ruby/st.h"
+
+VALUE rb_cArray;
+
+static ID id_cmp;
+
+#define ARY_DEFAULT_SIZE 16
+#define ARY_MAX_SIZE (LONG_MAX / sizeof(VALUE))
+
+void
+rb_mem_clear(register VALUE *mem, register long size)
+{
+ while (size--) {
+ *mem++ = Qnil;
+ }
+}
+
+static inline void
+memfill(register VALUE *mem, register long size, register VALUE val)
+{
+ while (size--) {
+ *mem++ = val;
+ }
+}
+
+#define ARY_SHARED_P(a) FL_TEST(a, ELTS_SHARED)
+
+#define ARY_SET_LEN(ary, n) do { \
+ RARRAY(ary)->len = (n);\
+} while (0)
+
+#define ARY_CAPA(ary) RARRAY(ary)->aux.capa
+#define RESIZE_CAPA(ary,capacity) do {\
+ REALLOC_N(RARRAY(ary)->ptr, VALUE, (capacity));\
+ RARRAY(ary)->aux.capa = (capacity);\
+} while (0)
+
+static inline void
+rb_ary_modify_check(VALUE ary)
+{
+ if (OBJ_FROZEN(ary)) rb_error_frozen("array");
+ if (!OBJ_UNTRUSTED(ary) && rb_safe_level() >= 4)
+ rb_raise(rb_eSecurityError, "Insecure: can't modify array");
+}
+
+static void
+rb_ary_modify(VALUE ary)
+{
+ VALUE *ptr;
+
+ rb_ary_modify_check(ary);
+ if (ARY_SHARED_P(ary)) {
+ ptr = ALLOC_N(VALUE, RARRAY_LEN(ary));
+ FL_UNSET(ary, ELTS_SHARED);
+ RARRAY(ary)->aux.capa = RARRAY_LEN(ary);
+ MEMCPY(ptr, RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary));
+ RARRAY(ary)->ptr = ptr;
+ }
+}
+
+VALUE
+rb_ary_freeze(VALUE ary)
+{
+ return rb_obj_freeze(ary);
+}
+
+/*
+ * call-seq:
+ * array.frozen? -> true or false
+ *
+ * Return <code>true</code> if this array is frozen (or temporarily frozen
+ * while being sorted).
+ */
+
+static VALUE
+rb_ary_frozen_p(VALUE ary)
+{
+ if (OBJ_FROZEN(ary)) return Qtrue;
+ return Qfalse;
+}
+
+static VALUE
+ary_alloc(VALUE klass)
+{
+ NEWOBJ(ary, struct RArray);
+ OBJSETUP(ary, klass, T_ARRAY);
+
+ ary->len = 0;
+ ary->ptr = 0;
+ ary->aux.capa = 0;
+
+ return (VALUE)ary;
+}
+
+static VALUE
+ary_new(VALUE klass, long len)
+{
+ VALUE ary;
+
+ if (len < 0) {
+ rb_raise(rb_eArgError, "negative array size (or size too big)");
+ }
+ if (len > ARY_MAX_SIZE) {
+ rb_raise(rb_eArgError, "array size too big");
+ }
+ ary = ary_alloc(klass);
+ if (len == 0) len++;
+ RARRAY(ary)->ptr = ALLOC_N(VALUE, len);
+ RARRAY(ary)->aux.capa = len;
+
+ return ary;
+}
+
+VALUE
+rb_ary_new2(long len)
+{
+ return ary_new(rb_cArray, len);
+}
+
+
+VALUE
+rb_ary_new(void)
+{
+ return rb_ary_new2(ARY_DEFAULT_SIZE);
+}
+
+#include <stdarg.h>
+
+VALUE
+rb_ary_new3(long n, ...)
+{
+ va_list ar;
+ VALUE ary;
+ long i;
+
+ ary = rb_ary_new2(n);
+
+ va_start(ar, n);
+ for (i=0; i<n; i++) {
+ RARRAY_PTR(ary)[i] = va_arg(ar, VALUE);
+ }
+ va_end(ar);
+
+ RARRAY(ary)->len = n;
+ return ary;
+}
+
+VALUE
+rb_ary_new4(long n, const VALUE *elts)
+{
+ VALUE ary;
+
+ ary = rb_ary_new2(n);
+ if (n > 0 && elts) {
+ MEMCPY(RARRAY_PTR(ary), elts, VALUE, n);
+ RARRAY(ary)->len = n;
+ }
+
+ return ary;
+}
+
+VALUE
+rb_ary_tmp_new(long len)
+{
+ return ary_new(0, len);
+}
+
+void
+rb_ary_free(VALUE ary)
+{
+ if (!ARY_SHARED_P(ary)) {
+ xfree(RARRAY(ary)->ptr);
+ }
+}
+
+static VALUE
+ary_make_shared(VALUE ary)
+{
+ if (ARY_SHARED_P(ary)) {
+ return RARRAY(ary)->aux.shared;
+ }
+ else {
+ NEWOBJ(shared, struct RArray);
+ OBJSETUP(shared, 0, T_ARRAY);
+
+ shared->len = RARRAY(ary)->len;
+ shared->ptr = RARRAY(ary)->ptr;
+ shared->aux.capa = RARRAY(ary)->aux.capa;
+ RARRAY(ary)->aux.shared = (VALUE)shared;
+ FL_SET(ary, ELTS_SHARED);
+ OBJ_FREEZE(shared);
+ return (VALUE)shared;
+ }
+}
+
+VALUE
+rb_assoc_new(VALUE car, VALUE cdr)
+{
+ return rb_ary_new3(2, car, cdr);
+}
+
+static VALUE
+to_ary(VALUE ary)
+{
+ return rb_convert_type(ary, T_ARRAY, "Array", "to_ary");
+}
+
+VALUE
+rb_check_array_type(VALUE ary)
+{
+ return rb_check_convert_type(ary, T_ARRAY, "Array", "to_ary");
+}
+
+/*
+ * call-seq:
+ * Array.try_convert(obj) -> array or nil
+ *
+ * Try to convert <i>obj</i> into an array, using to_ary method.
+ * Returns converted array or nil if <i>obj</i> cannot be converted
+ * for any reason. This method is to check if an argument is an
+ * array.
+ *
+ * Array.try_convert([1]) # => [1]
+ * Array.try_convert("1") # => nil
+ *
+ * if tmp = Array.try_convert(arg)
+ * # the argument is an array
+ * elsif tmp = String.try_convert(arg)
+ * # the argument is a string
+ * end
+ *
+ */
+
+static VALUE
+rb_ary_s_try_convert(VALUE dummy, VALUE ary)
+{
+ return rb_check_array_type(ary);
+}
+
+/*
+ * call-seq:
+ * Array.new(size=0, obj=nil)
+ * Array.new(array)
+ * Array.new(size) {|index| block }
+ *
+ * Returns a new array. In the first form, the new array is
+ * empty. In the second it is created with _size_ copies of _obj_
+ * (that is, _size_ references to the same
+ * _obj_). The third form creates a copy of the array
+ * passed as a parameter (the array is generated by calling
+ * to_ary on the parameter). In the last form, an array
+ * of the given size is created. Each element in this array is
+ * calculated by passing the element's index to the given block and
+ * storing the return value.
+ *
+ * Array.new
+ * Array.new(2)
+ * Array.new(5, "A")
+ *
+ * # only one copy of the object is created
+ * a = Array.new(2, Hash.new)
+ * a[0]['cat'] = 'feline'
+ * a
+ * a[1]['cat'] = 'Felix'
+ * a
+ *
+ * # here multiple copies are created
+ * a = Array.new(2) { Hash.new }
+ * a[0]['cat'] = 'feline'
+ * a
+ *
+ * squares = Array.new(5) {|i| i*i}
+ * squares
+ *
+ * copy = Array.new(squares)
+ */
+
+static VALUE
+rb_ary_initialize(int argc, VALUE *argv, VALUE ary)
+{
+ long len;
+ VALUE size, val;
+
+ rb_ary_modify(ary);
+ if (argc == 0) {
+ if (RARRAY_PTR(ary) && !ARY_SHARED_P(ary)) {
+ xfree(RARRAY(ary)->ptr);
+ }
+ RARRAY(ary)->len = 0;
+ if (rb_block_given_p()) {
+ rb_warning("given block not used");
+ }
+ return ary;
+ }
+ rb_scan_args(argc, argv, "02", &size, &val);
+ if (argc == 1 && !FIXNUM_P(size)) {
+ val = rb_check_array_type(size);
+ if (!NIL_P(val)) {
+ rb_ary_replace(ary, val);
+ return ary;
+ }
+ }
+
+ len = NUM2LONG(size);
+ if (len < 0) {
+ rb_raise(rb_eArgError, "negative array size");
+ }
+ if (len > ARY_MAX_SIZE) {
+ rb_raise(rb_eArgError, "array size too big");
+ }
+ rb_ary_modify(ary);
+ RESIZE_CAPA(ary, len);
+ if (rb_block_given_p()) {
+ long i;
+
+ if (argc == 2) {
+ rb_warn("block supersedes default value argument");
+ }
+ for (i=0; i<len; i++) {
+ rb_ary_store(ary, i, rb_yield(LONG2NUM(i)));
+ RARRAY(ary)->len = i + 1;
+ }
+ }
+ else {
+ memfill(RARRAY_PTR(ary), len, val);
+ RARRAY(ary)->len = len;
+ }
+ return ary;
+}
+
+
+/*
+* Returns a new array populated with the given objects.
+*
+* Array.[]( 1, 'a', /^A/ )
+* Array[ 1, 'a', /^A/ ]
+* [ 1, 'a', /^A/ ]
+*/
+
+static VALUE
+rb_ary_s_create(int argc, VALUE *argv, VALUE klass)
+{
+ VALUE ary = ary_alloc(klass);
+
+ if (argc < 0) {
+ rb_raise(rb_eArgError, "negative array size");
+ }
+ RARRAY(ary)->ptr = ALLOC_N(VALUE, argc);
+ RARRAY(ary)->aux.capa = argc;
+ MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc);
+ RARRAY(ary)->len = argc;
+
+ return ary;
+}
+
+void
+rb_ary_store(VALUE ary, long idx, VALUE val)
+{
+ if (idx < 0) {
+ idx += RARRAY_LEN(ary);
+ if (idx < 0) {
+ rb_raise(rb_eIndexError, "index %ld out of array",
+ idx - RARRAY_LEN(ary));
+ }
+ }
+ else if (idx >= ARY_MAX_SIZE) {
+ rb_raise(rb_eIndexError, "index %ld too big", idx);
+ }
+
+ rb_ary_modify(ary);
+ if (idx >= ARY_CAPA(ary)) {
+ long new_capa = ARY_CAPA(ary) / 2;
+
+ if (new_capa < ARY_DEFAULT_SIZE) {
+ new_capa = ARY_DEFAULT_SIZE;
+ }
+ if (new_capa >= ARY_MAX_SIZE - idx) {
+ new_capa = (ARY_MAX_SIZE - idx) / 2;
+ }
+ new_capa += idx;
+ RESIZE_CAPA(ary, new_capa);
+ }
+ if (idx > RARRAY_LEN(ary)) {
+ rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary),
+ idx-RARRAY_LEN(ary) + 1);
+ }
+
+ if (idx >= RARRAY_LEN(ary)) {
+ RARRAY(ary)->len = idx + 1;
+ }
+ RARRAY_PTR(ary)[idx] = val;
+}
+
+static VALUE
+ary_shared_array(VALUE klass, VALUE ary)
+{
+ VALUE val = ary_alloc(klass);
+
+ ary_make_shared(ary);
+ RARRAY(val)->ptr = RARRAY(ary)->ptr;
+ RARRAY(val)->len = RARRAY(ary)->len;
+ RARRAY(val)->aux.shared = RARRAY(ary)->aux.shared;
+ FL_SET(val, ELTS_SHARED);
+ return val;
+}
+
+static VALUE
+ary_shared_first(int argc, VALUE *argv, VALUE ary, int last)
+{
+ VALUE nv, result;
+ long n;
+ long offset = 0;
+
+ rb_scan_args(argc, argv, "1", &nv);
+ n = NUM2LONG(nv);
+ if (n > RARRAY_LEN(ary)) {
+ n = RARRAY_LEN(ary);
+ }
+ else if (n < 0) {
+ rb_raise(rb_eArgError, "negative array size");
+ }
+ if (last) {
+ offset = RARRAY_LEN(ary) - n;
+ }
+ result = ary_shared_array(rb_cArray, ary);
+ RARRAY(result)->ptr += offset;
+ RARRAY(result)->len = n;
+
+ return result;
+}
+
+/*
+ * call-seq:
+ * array << obj -> array
+ *
+ * Append---Pushes the given object on to the end of this array. This
+ * expression returns the array itself, so several appends
+ * may be chained together.
+ *
+ * [ 1, 2 ] << "c" << "d" << [ 3, 4 ]
+ * #=> [ 1, 2, "c", "d", [ 3, 4 ] ]
+ *
+ */
+
+VALUE
+rb_ary_push(VALUE ary, VALUE item)
+{
+ rb_ary_store(ary, RARRAY_LEN(ary), item);
+ return ary;
+}
+
+/*
+ * call-seq:
+ * array.push(obj, ... ) -> array
+ *
+ * Append---Pushes the given object(s) on to the end of this array. This
+ * expression returns the array itself, so several appends
+ * may be chained together.
+ *
+ * a = [ "a", "b", "c" ]
+ * a.push("d", "e", "f")
+ * #=> ["a", "b", "c", "d", "e", "f"]
+ */
+
+static VALUE
+rb_ary_push_m(int argc, VALUE *argv, VALUE ary)
+{
+ while (argc--) {
+ rb_ary_push(ary, *argv++);
+ }
+ return ary;
+}
+
+VALUE
+rb_ary_pop(VALUE ary)
+{
+ long n;
+ rb_ary_modify_check(ary);
+ if (RARRAY_LEN(ary) == 0) return Qnil;
+ if (!ARY_SHARED_P(ary) &&
+ RARRAY_LEN(ary) * 3 < ARY_CAPA(ary) &&
+ ARY_CAPA(ary) > ARY_DEFAULT_SIZE)
+ {
+ RESIZE_CAPA(ary, RARRAY_LEN(ary) * 2);
+ }
+ n = RARRAY_LEN(ary)-1;
+ RARRAY(ary)->len = n;
+ return RARRAY_PTR(ary)[n];
+}
+
+/*
+ * call-seq:
+ * array.pop -> obj or nil
+ * array.pop(n) -> array
+ *
+ * Removes the last element from <i>self</i> and returns it, or
+ * <code>nil</code> if the array is empty.
+ *
+ * If a number _n_ is given, returns an array of the last n elements
+ * (or less) just like <code>array.slice!(-n, n)</code> does.
+ *
+ * a = [ "a", "b", "c", "d" ]
+ * a.pop #=> "d"
+ * a.pop(2) #=> ["b", "c"]
+ * a #=> ["a"]
+ */
+
+static VALUE
+rb_ary_pop_m(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE result;
+
+ if (argc == 0) {
+ return rb_ary_pop(ary);
+ }
+
+ rb_ary_modify_check(ary);
+ result = ary_shared_first(argc, argv, ary, Qtrue);
+ RARRAY(ary)->len -= RARRAY_LEN(result);
+ return result;
+}
+
+VALUE
+rb_ary_shift(VALUE ary)
+{
+ VALUE top;
+
+ rb_ary_modify_check(ary);
+ if (RARRAY_LEN(ary) == 0) return Qnil;
+ top = RARRAY_PTR(ary)[0];
+ if (!ARY_SHARED_P(ary)) {
+ if (RARRAY_LEN(ary) < ARY_DEFAULT_SIZE) {
+ MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+1, VALUE, RARRAY_LEN(ary)-1);
+ RARRAY(ary)->len--;
+ return top;
+ }
+ RARRAY_PTR(ary)[0] = Qnil;
+ ary_make_shared(ary);
+ }
+ RARRAY(ary)->ptr++; /* shift ptr */
+ RARRAY(ary)->len--;
+
+ return top;
+}
+
+/*
+ * call-seq:
+ * array.shift -> obj or nil
+ * array.shift(n) -> array
+ *
+ * Returns the first element of <i>self</i> and removes it (shifting all
+ * other elements down by one). Returns <code>nil</code> if the array
+ * is empty.
+ *
+ * If a number _n_ is given, returns an array of the first n elements
+ * (or less) just like <code>array.slice!(0, n)</code> does.
+ *
+ * args = [ "-m", "-q", "filename" ]
+ * args.shift #=> "-m"
+ * args #=> ["-q", "filename"]
+ *
+ * args = [ "-m", "-q", "filename" ]
+ * args.shift(2) #=> ["-m", "-q"]
+ * args #=> ["filename"]
+ */
+
+static VALUE
+rb_ary_shift_m(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE result;
+ long n;
+
+ if (argc == 0) {
+ return rb_ary_shift(ary);
+ }
+
+ rb_ary_modify_check(ary);
+ result = ary_shared_first(argc, argv, ary, Qfalse);
+ n = RARRAY_LEN(result);
+ if (ARY_SHARED_P(ary)) {
+ RARRAY(ary)->ptr += n;
+ RARRAY(ary)->len -= n;
+ }
+ else {
+ MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+n, VALUE, RARRAY_LEN(ary)-n);
+ RARRAY(ary)->len -= n;
+ }
+
+ return result;
+}
+
+/*
+ * call-seq:
+ * array.unshift(obj, ...) -> array
+ *
+ * Prepends objects to the front of <i>array</i>.
+ * other elements up one.
+ *
+ * a = [ "b", "c", "d" ]
+ * a.unshift("a") #=> ["a", "b", "c", "d"]
+ * a.unshift(1, 2) #=> [ 1, 2, "a", "b", "c", "d"]
+ */
+
+static VALUE
+rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary)
+{
+ long len;
+
+ if (argc == 0) return ary;
+ rb_ary_modify(ary);
+ if (RARRAY(ary)->aux.capa <= (len = RARRAY(ary)->len) + argc) {
+ RESIZE_CAPA(ary, len + argc + ARY_DEFAULT_SIZE);
+ }
+
+ /* sliding items */
+ MEMMOVE(RARRAY(ary)->ptr + argc, RARRAY(ary)->ptr, VALUE, len);
+ MEMCPY(RARRAY(ary)->ptr, argv, VALUE, argc);
+ RARRAY(ary)->len += argc;
+
+ return ary;
+}
+
+VALUE
+rb_ary_unshift(VALUE ary, VALUE item)
+{
+ return rb_ary_unshift_m(1,&item,ary);
+}
+
+/* faster version - use this if you don't need to treat negative offset */
+static inline VALUE
+rb_ary_elt(VALUE ary, long offset)
+{
+ if (RARRAY_LEN(ary) == 0) return Qnil;
+ if (offset < 0 || RARRAY_LEN(ary) <= offset) {
+ return Qnil;
+ }
+ return RARRAY_PTR(ary)[offset];
+}
+
+VALUE
+rb_ary_entry(VALUE ary, long offset)
+{
+ if (offset < 0) {
+ offset += RARRAY_LEN(ary);
+ }
+ return rb_ary_elt(ary, offset);
+}
+
+VALUE
+rb_ary_subseq(VALUE ary, long beg, long len)
+{
+ VALUE klass, ary2, shared;
+ VALUE *ptr;
+
+ if (beg > RARRAY_LEN(ary)) return Qnil;
+ if (beg < 0 || len < 0) return Qnil;
+
+ if (RARRAY_LEN(ary) < len || RARRAY_LEN(ary) < beg + len) {
+ len = RARRAY_LEN(ary) - beg;
+ }
+ klass = rb_obj_class(ary);
+ if (len == 0) return ary_new(klass, 0);
+
+ shared = ary_make_shared(ary);
+ ptr = RARRAY_PTR(ary);
+ ary2 = ary_alloc(klass);
+ RARRAY(ary2)->ptr = ptr + beg;
+ RARRAY(ary2)->len = len;
+ RARRAY(ary2)->aux.shared = shared;
+ FL_SET(ary2, ELTS_SHARED);
+
+ return ary2;
+}
+
+/*
+ * call-seq:
+ * array[index] -> obj or nil
+ * array[start, length] -> an_array or nil
+ * array[range] -> an_array or nil
+ * array.slice(index) -> obj or nil
+ * array.slice(start, length) -> an_array or nil
+ * array.slice(range) -> an_array or nil
+ *
+ * Element Reference---Returns the element at _index_,
+ * or returns a subarray starting at _start_ and
+ * continuing for _length_ elements, or returns a subarray
+ * specified by _range_.
+ * Negative indices count backward from the end of the
+ * array (-1 is the last element). Returns nil if the index
+ * (or starting index) are out of range.
+ *
+ * a = [ "a", "b", "c", "d", "e" ]
+ * a[2] + a[0] + a[1] #=> "cab"
+ * a[6] #=> nil
+ * a[1, 2] #=> [ "b", "c" ]
+ * a[1..3] #=> [ "b", "c", "d" ]
+ * a[4..7] #=> [ "e" ]
+ * a[6..10] #=> nil
+ * a[-3, 3] #=> [ "c", "d", "e" ]
+ * # special cases
+ * a[5] #=> nil
+ * a[5, 1] #=> []
+ * a[5..10] #=> []
+ *
+ */
+
+VALUE
+rb_ary_aref(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE arg;
+ long beg, len;
+
+ if (argc == 2) {
+ beg = NUM2LONG(argv[0]);
+ len = NUM2LONG(argv[1]);
+ if (beg < 0) {
+ beg += RARRAY_LEN(ary);
+ }
+ return rb_ary_subseq(ary, beg, len);
+ }
+ if (argc != 1) {
+ rb_scan_args(argc, argv, "11", 0, 0);
+ }
+ arg = argv[0];
+ /* special case - speeding up */
+ if (FIXNUM_P(arg)) {
+ return rb_ary_entry(ary, FIX2LONG(arg));
+ }
+ /* check if idx is Range */
+ switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) {
+ case Qfalse:
+ break;
+ case Qnil:
+ return Qnil;
+ default:
+ return rb_ary_subseq(ary, beg, len);
+ }
+ return rb_ary_entry(ary, NUM2LONG(arg));
+}
+
+/*
+ * call-seq:
+ * array.at(index) -> obj or nil
+ *
+ * Returns the element at _index_. A
+ * negative index counts from the end of _self_. Returns +nil+
+ * if the index is out of range. See also <code>Array#[]</code>.
+ *
+ * a = [ "a", "b", "c", "d", "e" ]
+ * a.at(0) #=> "a"
+ * a.at(-1) #=> "e"
+ */
+
+static VALUE
+rb_ary_at(VALUE ary, VALUE pos)
+{
+ return rb_ary_entry(ary, NUM2LONG(pos));
+}
+
+/*
+ * call-seq:
+ * array.first -> obj or nil
+ * array.first(n) -> an_array
+ *
+ * Returns the first element, or the first +n+ elements, of the array.
+ * If the array is empty, the first form returns <code>nil</code>, and the
+ * second form returns an empty array.
+ *
+ * a = [ "q", "r", "s", "t" ]
+ * a.first #=> "q"
+ * a.first(2) #=> ["q", "r"]
+ */
+
+static VALUE
+rb_ary_first(int argc, VALUE *argv, VALUE ary)
+{
+ if (argc == 0) {
+ if (RARRAY_LEN(ary) == 0) return Qnil;
+ return RARRAY_PTR(ary)[0];
+ }
+ else {
+ return ary_shared_first(argc, argv, ary, Qfalse);
+ }
+}
+
+/*
+ * call-seq:
+ * array.last -> obj or nil
+ * array.last(n) -> an_array
+ *
+ * Returns the last element(s) of <i>self</i>. If the array is empty,
+ * the first form returns <code>nil</code>.
+ *
+ * a = [ "w", "x", "y", "z" ]
+ * a.last #=> "z"
+ * a.last(2) #=> ["y", "z"]
+ */
+
+VALUE
+rb_ary_last(int argc, VALUE *argv, VALUE ary)
+{
+ if (argc == 0) {
+ if (RARRAY_LEN(ary) == 0) return Qnil;
+ return RARRAY_PTR(ary)[RARRAY_LEN(ary)-1];
+ }
+ else {
+ return ary_shared_first(argc, argv, ary, Qtrue);
+ }
+}
+
+/*
+ * call-seq:
+ * array.fetch(index) -> obj
+ * array.fetch(index, default ) -> obj
+ * array.fetch(index) {|index| block } -> obj
+ *
+ * Tries to return the element at position <i>index</i>. If the index
+ * lies outside the array, the first form throws an
+ * <code>IndexError</code> exception, the second form returns
+ * <i>default</i>, and the third form returns the value of invoking
+ * the block, passing in the index. Negative values of <i>index</i>
+ * count from the end of the array.
+ *
+ * a = [ 11, 22, 33, 44 ]
+ * a.fetch(1) #=> 22
+ * a.fetch(-1) #=> 44
+ * a.fetch(4, 'cat') #=> "cat"
+ * a.fetch(4) { |i| i*i } #=> 16
+ */
+
+static VALUE
+rb_ary_fetch(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE pos, ifnone;
+ long block_given;
+ long idx;
+
+ rb_scan_args(argc, argv, "11", &pos, &ifnone);
+ block_given = rb_block_given_p();
+ if (block_given && argc == 2) {
+ rb_warn("block supersedes default value argument");
+ }
+ idx = NUM2LONG(pos);
+
+ if (idx < 0) {
+ idx += RARRAY_LEN(ary);
+ }
+ if (idx < 0 || RARRAY_LEN(ary) <= idx) {
+ if (block_given) return rb_yield(pos);
+ if (argc == 1) {
+ rb_raise(rb_eIndexError, "index %ld out of array", idx);
+ }
+ return ifnone;
+ }
+ return RARRAY_PTR(ary)[idx];
+}
+
+/*
+ * call-seq:
+ * array.index(obj) -> int or nil
+ * array.index {|item| block} -> int or nil
+ *
+ * Returns the index of the first object in <i>self</i> such that is
+ * <code>==</code> to <i>obj</i>. If a block is given instead of an
+ * argument, returns first object for which <em>block</em> is true.
+ * Returns <code>nil</code> if no match is found.
+ *
+ * a = [ "a", "b", "c" ]
+ * a.index("b") #=> 1
+ * a.index("z") #=> nil
+ * a.index{|x|x=="b"} #=> 1
+ *
+ * This is an alias of <code>#find_index</code>.
+ */
+
+static VALUE
+rb_ary_index(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE val;
+ long i;
+
+ if (argc == 0) {
+ RETURN_ENUMERATOR(ary, 0, 0);
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
+ return LONG2NUM(i);
+ }
+ }
+ return Qnil;
+ }
+ rb_scan_args(argc, argv, "01", &val);
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ if (rb_equal(RARRAY_PTR(ary)[i], val))
+ return LONG2NUM(i);
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * array.rindex(obj) -> int or nil
+ *
+ * Returns the index of the last object in <i>array</i>
+ * <code>==</code> to <i>obj</i>. If a block is given instead of an
+ * argument, returns first object for which <em>block</em> is
+ * true. Returns <code>nil</code> if no match is found.
+ *
+ * a = [ "a", "b", "b", "b", "c" ]
+ * a.rindex("b") #=> 3
+ * a.rindex("z") #=> nil
+ * a.rindex{|x|x=="b"} #=> 3
+ */
+
+static VALUE
+rb_ary_rindex(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE val;
+ long i = RARRAY_LEN(ary);
+
+ if (argc == 0) {
+ RETURN_ENUMERATOR(ary, 0, 0);
+ while (i--) {
+ if (RTEST(rb_yield(RARRAY_PTR(ary)[i])))
+ return LONG2NUM(i);
+ if (i > RARRAY_LEN(ary)) {
+ i = RARRAY_LEN(ary);
+ }
+ }
+ return Qnil;
+ }
+ rb_scan_args(argc, argv, "01", &val);
+ while (i--) {
+ if (rb_equal(RARRAY_PTR(ary)[i], val))
+ return LONG2NUM(i);
+ if (i > RARRAY_LEN(ary)) {
+ i = RARRAY_LEN(ary);
+ }
+ }
+ return Qnil;
+}
+
+VALUE
+rb_ary_to_ary(VALUE obj)
+{
+ if (TYPE(obj) == T_ARRAY) {
+ return obj;
+ }
+ if (rb_respond_to(obj, rb_intern("to_ary"))) {
+ return to_ary(obj);
+ }
+ return rb_ary_new3(1, obj);
+}
+
+static void
+rb_ary_splice(VALUE ary, long beg, long len, VALUE rpl)
+{
+ long rlen;
+
+ if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len);
+ if (beg < 0) {
+ beg += RARRAY_LEN(ary);
+ if (beg < 0) {
+ beg -= RARRAY_LEN(ary);
+ rb_raise(rb_eIndexError, "index %ld out of array", beg);
+ }
+ }
+ if (RARRAY_LEN(ary) < len || RARRAY_LEN(ary) < beg + len) {
+ len = RARRAY_LEN(ary) - beg;
+ }
+
+ if (rpl == Qundef) {
+ rlen = 0;
+ }
+ else {
+ rpl = rb_ary_to_ary(rpl);
+ rlen = RARRAY_LEN(rpl);
+ }
+ rb_ary_modify(ary);
+ if (beg >= RARRAY_LEN(ary)) {
+ if (beg > ARY_MAX_SIZE - rlen) {
+ rb_raise(rb_eIndexError, "index %ld too big", beg);
+ }
+ len = beg + rlen;
+ if (len >= ARY_CAPA(ary)) {
+ RESIZE_CAPA(ary, len);
+ }
+ rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), beg - RARRAY_LEN(ary));
+ if (rlen > 0) {
+ MEMCPY(RARRAY_PTR(ary) + beg, RARRAY_PTR(rpl), VALUE, rlen);
+ }
+ RARRAY(ary)->len = len;
+ }
+ else {
+ long alen;
+
+ if (beg + len > RARRAY_LEN(ary)) {
+ len = RARRAY_LEN(ary) - beg;
+ }
+
+ alen = RARRAY_LEN(ary) + rlen - len;
+ if (alen >= ARY_CAPA(ary)) {
+ RESIZE_CAPA(ary, alen);
+ }
+
+ if (len != rlen) {
+ MEMMOVE(RARRAY_PTR(ary) + beg + rlen, RARRAY_PTR(ary) + beg + len,
+ VALUE, RARRAY_LEN(ary) - (beg + len));
+ RARRAY(ary)->len = alen;
+ }
+ if (rlen > 0) {
+ MEMMOVE(RARRAY_PTR(ary) + beg, RARRAY_PTR(rpl), VALUE, rlen);
+ }
+ }
+}
+
+/*
+ * call-seq:
+ * array[index] = obj -> obj
+ * array[start, length] = obj or an_array or nil -> obj or an_array or nil
+ * array[range] = obj or an_array or nil -> obj or an_array or nil
+ *
+ * Element Assignment---Sets the element at _index_,
+ * or replaces a subarray starting at _start_ and
+ * continuing for _length_ elements, or replaces a subarray
+ * specified by _range_. If indices are greater than
+ * the current capacity of the array, the array grows
+ * automatically. A negative indices will count backward
+ * from the end of the array. Inserts elements if _length_ is
+ * zero. An +IndexError+ is raised if a negative index points
+ * past the beginning of the array. See also
+ * <code>Array#push</code>, and <code>Array#unshift</code>.
+ *
+ * a = Array.new
+ * a[4] = "4"; #=> [nil, nil, nil, nil, "4"]
+ * a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"]
+ * a[1..2] = [ 1, 2 ] #=> ["a", 1, 2, nil, "4"]
+ * a[0, 2] = "?" #=> ["?", 2, nil, "4"]
+ * a[0..2] = "A" #=> ["A", "4"]
+ * a[-1] = "Z" #=> ["A", "Z"]
+ * a[1..-1] = nil #=> ["A", nil]
+ * a[1..-1] = [] #=> ["A"]
+ */
+
+static VALUE
+rb_ary_aset(int argc, VALUE *argv, VALUE ary)
+{
+ long offset, beg, len;
+
+ if (argc == 3) {
+ rb_ary_splice(ary, NUM2LONG(argv[0]), NUM2LONG(argv[1]), argv[2]);
+ return argv[2];
+ }
+ if (argc != 2) {
+ rb_raise(rb_eArgError, "wrong number of arguments (%d for 2)", argc);
+ }
+ if (FIXNUM_P(argv[0])) {
+ offset = FIX2LONG(argv[0]);
+ goto fixnum;
+ }
+ if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) {
+ /* check if idx is Range */
+ rb_ary_splice(ary, beg, len, argv[1]);
+ return argv[1];
+ }
+
+ offset = NUM2LONG(argv[0]);
+fixnum:
+ rb_ary_store(ary, offset, argv[1]);
+ return argv[1];
+}
+
+/*
+ * call-seq:
+ * array.insert(index, obj...) -> array
+ *
+ * Inserts the given values before the element with the given index
+ * (which may be negative).
+ *
+ * a = %w{ a b c d }
+ * a.insert(2, 99) #=> ["a", "b", 99, "c", "d"]
+ * a.insert(-2, 1, 2, 3) #=> ["a", "b", 99, "c", 1, 2, 3, "d"]
+ */
+
+static VALUE
+rb_ary_insert(int argc, VALUE *argv, VALUE ary)
+{
+ long pos;
+
+ if (argc == 1) return ary;
+ if (argc < 1) {
+ rb_raise(rb_eArgError, "wrong number of arguments (at least 1)");
+ }
+ pos = NUM2LONG(argv[0]);
+ if (pos == -1) {
+ pos = RARRAY_LEN(ary);
+ }
+ if (pos < 0) {
+ pos++;
+ }
+ rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1));
+ return ary;
+}
+
+/*
+ * call-seq:
+ * array.each {|item| block } -> array
+ *
+ * Calls <i>block</i> once for each element in <i>self</i>, passing that
+ * element as a parameter.
+ *
+ * a = [ "a", "b", "c" ]
+ * a.each {|x| print x, " -- " }
+ *
+ * produces:
+ *
+ * a -- b -- c --
+ */
+
+VALUE
+rb_ary_each(VALUE ary)
+{
+ long i;
+
+ RETURN_ENUMERATOR(ary, 0, 0);
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ rb_yield(RARRAY_PTR(ary)[i]);
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * array.each_index {|index| block } -> array
+ *
+ * Same as <code>Array#each</code>, but passes the index of the element
+ * instead of the element itself.
+ *
+ * a = [ "a", "b", "c" ]
+ * a.each_index {|x| print x, " -- " }
+ *
+ * produces:
+ *
+ * 0 -- 1 -- 2 --
+ */
+
+static VALUE
+rb_ary_each_index(VALUE ary)
+{
+ long i;
+ RETURN_ENUMERATOR(ary, 0, 0);
+
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ rb_yield(LONG2NUM(i));
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * array.reverse_each {|item| block }
+ *
+ * Same as <code>Array#each</code>, but traverses <i>self</i> in reverse
+ * order.
+ *
+ * a = [ "a", "b", "c" ]
+ * a.reverse_each {|x| print x, " " }
+ *
+ * produces:
+ *
+ * c b a
+ */
+
+static VALUE
+rb_ary_reverse_each(VALUE ary)
+{
+ long len;
+
+ RETURN_ENUMERATOR(ary, 0, 0);
+ len = RARRAY_LEN(ary);
+ while (len--) {
+ rb_yield(RARRAY_PTR(ary)[len]);
+ if (RARRAY_LEN(ary) < len) {
+ len = RARRAY_LEN(ary);
+ }
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * array.length -> int
+ *
+ * Returns the number of elements in <i>self</i>. May be zero.
+ *
+ * [ 1, 2, 3, 4, 5 ].length #=> 5
+ */
+
+static VALUE
+rb_ary_length(VALUE ary)
+{
+ long len = RARRAY_LEN(ary);
+ return LONG2NUM(len);
+}
+
+/*
+ * call-seq:
+ * array.empty? -> true or false
+ *
+ * Returns <code>true</code> if <i>self</i> array contains no elements.
+ *
+ * [].empty? #=> true
+ */
+
+static VALUE
+rb_ary_empty_p(VALUE ary)
+{
+ if (RARRAY_LEN(ary) == 0)
+ return Qtrue;
+ return Qfalse;
+}
+
+VALUE
+rb_ary_dup(VALUE ary)
+{
+ VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
+
+ DUPSETUP(dup, ary);
+ MEMCPY(RARRAY_PTR(dup), RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary));
+ RARRAY(dup)->len = RARRAY_LEN(ary);
+
+ return dup;
+}
+
+extern VALUE rb_output_fs;
+
+static VALUE
+recursive_join(VALUE ary, VALUE argp, int recur)
+{
+ VALUE *arg = (VALUE *)argp;
+ if (recur) {
+ return rb_usascii_str_new2("[...]");
+ }
+ return rb_ary_join(arg[0], arg[1]);
+}
+
+VALUE
+rb_ary_join(VALUE ary, VALUE sep)
+{
+ long len = 1, i;
+ int taint = Qfalse;
+ int untrust = Qfalse;
+ VALUE result, tmp;
+
+ if (RARRAY_LEN(ary) == 0) return rb_str_new(0, 0);
+ if (OBJ_TAINTED(ary) || OBJ_TAINTED(sep)) taint = Qtrue;
+ if (OBJ_UNTRUSTED(ary) || OBJ_UNTRUSTED(sep)) untrust = Qtrue;
+
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ tmp = rb_check_string_type(RARRAY_PTR(ary)[i]);
+ len += NIL_P(tmp) ? 10 : RSTRING_LEN(tmp);
+ }
+ if (!NIL_P(sep)) {
+ StringValue(sep);
+ len += RSTRING_LEN(sep) * (RARRAY_LEN(ary) - 1);
+ }
+ result = rb_str_buf_new(len);
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ tmp = RARRAY_PTR(ary)[i];
+ switch (TYPE(tmp)) {
+ case T_STRING:
+ break;
+ case T_ARRAY:
+ {
+ VALUE args[2];
+
+ args[0] = tmp;
+ args[1] = sep;
+ tmp = rb_exec_recursive(recursive_join, ary, (VALUE)args);
+ }
+ break;
+ default:
+ tmp = rb_obj_as_string(tmp);
+ }
+ if (i > 0 && !NIL_P(sep))
+ rb_str_buf_append(result, sep);
+ rb_str_buf_append(result, tmp);
+ if (OBJ_TAINTED(tmp)) taint = Qtrue;
+ if (OBJ_UNTRUSTED(tmp)) untrust = Qtrue;
+ }
+
+ if (taint) OBJ_TAINT(result);
+ if (untrust) OBJ_UNTRUST(result);
+ return result;
+}
+
+/*
+ * call-seq:
+ * array.join(sep=$,) -> str
+ *
+ * Returns a string created by converting each element of the array to
+ * a string, separated by <i>sep</i>.
+ *
+ * [ "a", "b", "c" ].join #=> "abc"
+ * [ "a", "b", "c" ].join("-") #=> "a-b-c"
+ */
+
+static VALUE
+rb_ary_join_m(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE sep;
+
+ rb_scan_args(argc, argv, "01", &sep);
+ if (NIL_P(sep)) sep = rb_output_fs;
+
+ return rb_ary_join(ary, sep);
+}
+
+static VALUE
+inspect_ary(VALUE ary, VALUE dummy, int recur)
+{
+ int tainted = OBJ_TAINTED(ary);
+ int untrust = OBJ_UNTRUSTED(ary);
+ long i;
+ VALUE s, str;
+
+ if (recur) return rb_tainted_str_new2("[...]");
+ str = rb_str_buf_new2("[");
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ s = rb_inspect(RARRAY_PTR(ary)[i]);
+ if (OBJ_TAINTED(s)) tainted = Qtrue;
+ if (OBJ_UNTRUSTED(s)) untrust = Qtrue;
+ if (i > 0) rb_str_buf_cat2(str, ", ");
+ rb_str_buf_append(str, s);
+ }
+ rb_str_buf_cat2(str, "]");
+ if (tainted) OBJ_TAINT(str);
+ if (untrust) OBJ_UNTRUST(str);
+ return str;
+}
+
+/*
+ * call-seq:
+ * array.to_s -> string
+ * array.inspect -> string
+ *
+ * Create a printable version of <i>array</i>.
+ */
+
+static VALUE
+rb_ary_inspect(VALUE ary)
+{
+ if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]");
+ return rb_exec_recursive(inspect_ary, ary, 0);
+}
+
+VALUE
+rb_ary_to_s(VALUE ary)
+{
+ return rb_ary_inspect(ary);
+}
+
+/*
+ * call-seq:
+ * array.to_a -> array
+ *
+ * Returns _self_. If called on a subclass of Array, converts
+ * the receiver to an Array object.
+ */
+
+static VALUE
+rb_ary_to_a(VALUE ary)
+{
+ if (rb_obj_class(ary) != rb_cArray) {
+ VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
+ rb_ary_replace(dup, ary);
+ return dup;
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * array.to_ary -> array
+ *
+ * Returns _self_.
+ */
+
+static VALUE
+rb_ary_to_ary_m(VALUE ary)
+{
+ return ary;
+}
+
+VALUE
+rb_ary_reverse(VALUE ary)
+{
+ VALUE *p1, *p2;
+ VALUE tmp;
+
+ rb_ary_modify(ary);
+ if (RARRAY_LEN(ary) > 1) {
+ p1 = RARRAY_PTR(ary);
+ p2 = p1 + RARRAY_LEN(ary) - 1; /* points last item */
+
+ while (p1 < p2) {
+ tmp = *p1;
+ *p1++ = *p2;
+ *p2-- = tmp;
+ }
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * array.reverse! -> array
+ *
+ * Reverses _self_ in place.
+ *
+ * a = [ "a", "b", "c" ]
+ * a.reverse! #=> ["c", "b", "a"]
+ * a #=> ["c", "b", "a"]
+ */
+
+static VALUE
+rb_ary_reverse_bang(VALUE ary)
+{
+ return rb_ary_reverse(ary);
+}
+
+/*
+ * call-seq:
+ * array.reverse -> an_array
+ *
+ * Returns a new array containing <i>self</i>'s elements in reverse order.
+ *
+ * [ "a", "b", "c" ].reverse #=> ["c", "b", "a"]
+ * [ 1 ].reverse #=> [1]
+ */
+
+static VALUE
+rb_ary_reverse_m(VALUE ary)
+{
+ return rb_ary_reverse(rb_ary_dup(ary));
+}
+
+struct ary_sort_data {
+ VALUE ary;
+ int opt_methods;
+ int opt_inited;
+};
+
+enum {
+ sort_opt_Fixnum,
+ sort_opt_String,
+ sort_optimizable_count
+};
+
+#define STRING_P(s) (TYPE(s) == T_STRING && CLASS_OF(s) == rb_cString)
+
+#define SORT_OPTIMIZABLE_BIT(type) (1U << TOKEN_PASTE(sort_opt_,type))
+#define SORT_OPTIMIZABLE(data, type) \
+ ((data->opt_inited & SORT_OPTIMIZABLE_BIT(type)) ? \
+ (data->opt_methods & SORT_OPTIMIZABLE_BIT(type)) : \
+ ((data->opt_inited |= SORT_OPTIMIZABLE_BIT(type)), \
+ rb_method_basic_definition_p(TOKEN_PASTE(rb_c,type), id_cmp) && \
+ (data->opt_methods |= SORT_OPTIMIZABLE_BIT(type))))
+
+static VALUE
+sort_reentered(VALUE ary)
+{
+ if (RBASIC(ary)->klass) {
+ rb_raise(rb_eRuntimeError, "sort reentered");
+ }
+ return Qnil;
+}
+
+static int
+sort_1(const void *ap, const void *bp, void *dummy)
+{
+ struct ary_sort_data *data = dummy;
+ VALUE retval = sort_reentered(data->ary);
+ VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
+ int n;
+
+ retval = rb_yield_values(2, a, b);
+ n = rb_cmpint(retval, a, b);
+ sort_reentered(data->ary);
+ return n;
+}
+
+static int
+sort_2(const void *ap, const void *bp, void *dummy)
+{
+ struct ary_sort_data *data = dummy;
+ VALUE retval = sort_reentered(data->ary);
+ VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
+ int n;
+
+ if (FIXNUM_P(a) && FIXNUM_P(b) && SORT_OPTIMIZABLE(data, Fixnum)) {
+ if ((long)a > (long)b) return 1;
+ if ((long)a < (long)b) return -1;
+ return 0;
+ }
+ if (STRING_P(a) && STRING_P(b) && SORT_OPTIMIZABLE(data, String)) {
+ return rb_str_cmp(a, b);
+ }
+
+ retval = rb_funcall(a, id_cmp, 1, b);
+ n = rb_cmpint(retval, a, b);
+ sort_reentered(data->ary);
+
+ return n;
+}
+
+/*
+ * call-seq:
+ * array.sort! -> array
+ * array.sort! {| a,b | block } -> array
+ *
+ * Sorts _self_. Comparisons for
+ * the sort will be done using the <code><=></code> operator or using
+ * an optional code block. The block implements a comparison between
+ * <i>a</i> and <i>b</i>, returning -1, 0, or +1. See also
+ * <code>Enumerable#sort_by</code>.
+ *
+ * a = [ "d", "a", "e", "c", "b" ]
+ * a.sort #=> ["a", "b", "c", "d", "e"]
+ * a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
+ */
+
+VALUE
+rb_ary_sort_bang(VALUE ary)
+{
+ rb_ary_modify(ary);
+ if (RARRAY_LEN(ary) > 1) {
+ VALUE tmp = ary_make_shared(ary);
+ struct ary_sort_data data;
+
+ RBASIC(tmp)->klass = 0;
+ data.ary = tmp;
+ data.opt_methods = 0;
+ data.opt_inited = 0;
+ ruby_qsort(RARRAY_PTR(tmp), RARRAY_LEN(tmp), sizeof(VALUE),
+ rb_block_given_p()?sort_1:sort_2, &data);
+ if (RARRAY(ary)->ptr != RARRAY(tmp)->ptr) {
+ if (!ARY_SHARED_P(ary)) xfree(RARRAY(ary)->ptr);
+ RARRAY(ary)->ptr = RARRAY(tmp)->ptr;
+ RARRAY(ary)->len = RARRAY(tmp)->len;
+ RARRAY(ary)->aux.capa = RARRAY(tmp)->aux.capa;
+ FL_SET(ary, ELTS_SHARED);
+ };
+ FL_UNSET(ary, ELTS_SHARED);
+ RARRAY(tmp)->ptr = 0;
+ RARRAY(tmp)->len = 0;
+ RARRAY(tmp)->aux.capa = 0;
+ RBASIC(tmp)->klass = rb_cArray;
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * array.sort -> an_array
+ * array.sort {| a,b | block } -> an_array
+ *
+ * Returns a new array created by sorting <i>self</i>. Comparisons for
+ * the sort will be done using the <code><=></code> operator or using
+ * an optional code block. The block implements a comparison between
+ * <i>a</i> and <i>b</i>, returning -1, 0, or +1. See also
+ * <code>Enumerable#sort_by</code>.
+ *
+ * a = [ "d", "a", "e", "c", "b" ]
+ * a.sort #=> ["a", "b", "c", "d", "e"]
+ * a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
+ */
+
+VALUE
+rb_ary_sort(VALUE ary)
+{
+ ary = rb_ary_dup(ary);
+ rb_ary_sort_bang(ary);
+ return ary;
+}
+
+
+/*
+ * call-seq:
+ * array.collect {|item| block } -> an_array
+ * array.map {|item| block } -> an_array
+ *
+ * Invokes <i>block</i> once for each element of <i>self</i>. Creates a
+ * new array containing the values returned by the block.
+ * See also <code>Enumerable#collect</code>.
+ *
+ * a = [ "a", "b", "c", "d" ]
+ * a.collect {|x| x + "!" } #=> ["a!", "b!", "c!", "d!"]
+ * a #=> ["a", "b", "c", "d"]
+ */
+
+static VALUE
+rb_ary_collect(VALUE ary)
+{
+ long i;
+ VALUE collect;
+
+ RETURN_ENUMERATOR(ary, 0, 0);
+ collect = rb_ary_new2(RARRAY_LEN(ary));
+ for (i = 0; i < RARRAY_LEN(ary); i++) {
+ rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i]));
+ }
+ return collect;
+}
+
+
+/*
+ * call-seq:
+ * array.collect! {|item| block } -> array
+ * array.map! {|item| block } -> array
+ *
+ * Invokes the block once for each element of _self_, replacing the
+ * element with the value returned by _block_.
+ * See also <code>Enumerable#collect</code>.
+ *
+ * a = [ "a", "b", "c", "d" ]
+ * a.collect! {|x| x + "!" }
+ * a #=> [ "a!", "b!", "c!", "d!" ]
+ */
+
+static VALUE
+rb_ary_collect_bang(VALUE ary)
+{
+ long i;
+
+ RETURN_ENUMERATOR(ary, 0, 0);
+ rb_ary_modify(ary);
+ for (i = 0; i < RARRAY_LEN(ary); i++) {
+ rb_ary_store(ary, i, rb_yield(RARRAY_PTR(ary)[i]));
+ }
+ return ary;
+}
+
+VALUE
+rb_get_values_at(VALUE obj, long olen, int argc, VALUE *argv, VALUE (*func) (VALUE, long))
+{
+ VALUE result = rb_ary_new2(argc);
+ long beg, len, i, j;
+
+ for (i=0; i<argc; i++) {
+ if (FIXNUM_P(argv[i])) {
+ rb_ary_push(result, (*func)(obj, FIX2LONG(argv[i])));
+ continue;
+ }
+ /* check if idx is Range */
+ switch (rb_range_beg_len(argv[i], &beg, &len, olen, 0)) {
+ case Qfalse:
+ break;
+ case Qnil:
+ continue;
+ default:
+ for (j=0; j<len; j++) {
+ rb_ary_push(result, (*func)(obj, j+beg));
+ }
+ continue;
+ }
+ rb_ary_push(result, (*func)(obj, NUM2LONG(argv[i])));
+ }
+ return result;
+}
+
+/*
+ * call-seq:
+ * array.values_at(selector,... ) -> an_array
+ *
+ * Returns an array containing the elements in
+ * _self_ corresponding to the given selector(s). The selectors
+ * may be either integer indices or ranges.
+ * See also <code>Array#select</code>.
+ *
+ * a = %w{ a b c d e f }
+ * a.values_at(1, 3, 5)
+ * a.values_at(1, 3, 5, 7)
+ * a.values_at(-1, -3, -5, -7)
+ * a.values_at(1..3, 2...5)
+ */
+
+static VALUE
+rb_ary_values_at(int argc, VALUE *argv, VALUE ary)
+{
+ return rb_get_values_at(ary, RARRAY_LEN(ary), argc, argv, rb_ary_entry);
+}
+
+
+/*
+ * call-seq:
+ * array.select {|item| block } -> an_array
+ *
+ * Invokes the block passing in successive elements from <i>array</i>,
+ * returning an array containing those elements for which the block
+ * returns a true value (equivalent to <code>Enumerable#select</code>).
+ *
+ * a = %w{ a b c d e f }
+ * a.select {|v| v =~ /[aeiou]/} #=> ["a", "e"]
+ */
+
+static VALUE
+rb_ary_select(VALUE ary)
+{
+ VALUE result;
+ long i;
+
+ RETURN_ENUMERATOR(ary, 0, 0);
+ result = rb_ary_new2(RARRAY_LEN(ary));
+ for (i = 0; i < RARRAY_LEN(ary); i++) {
+ if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
+ rb_ary_push(result, rb_ary_elt(ary, i));
+ }
+ }
+ return result;
+}
+
+/*
+ * call-seq:
+ * array.delete(obj) -> obj or nil
+ * array.delete(obj) { block } -> obj or nil
+ *
+ * Deletes items from <i>self</i> that are equal to <i>obj</i>. If
+ * the item is not found, returns <code>nil</code>. If the optional
+ * code block is given, returns the result of <i>block</i> if the item
+ * is not found.
+ *
+ * a = [ "a", "b", "b", "b", "c" ]
+ * a.delete("b") #=> "b"
+ * a #=> ["a", "c"]
+ * a.delete("z") #=> nil
+ * a.delete("z") { "not found" } #=> "not found"
+ */
+
+VALUE
+rb_ary_delete(VALUE ary, VALUE item)
+{
+ VALUE v = item;
+ long i1, i2;
+
+ for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
+ VALUE e = RARRAY_PTR(ary)[i1];
+
+ if (rb_equal(e, item)) {
+ v = e;
+ continue;
+ }
+ if (i1 != i2) {
+ rb_ary_store(ary, i2, e);
+ }
+ i2++;
+ }
+ if (RARRAY_LEN(ary) == i2) {
+ if (rb_block_given_p()) {
+ return rb_yield(item);
+ }
+ return Qnil;
+ }
+
+ rb_ary_modify(ary);
+ if (RARRAY_LEN(ary) > i2) {
+ RARRAY(ary)->len = i2;
+ if (i2 * 2 < ARY_CAPA(ary) &&
+ ARY_CAPA(ary) > ARY_DEFAULT_SIZE) {
+ RESIZE_CAPA(ary, i2*2);
+ }
+ }
+
+ return v;
+}
+
+VALUE
+rb_ary_delete_at(VALUE ary, long pos)
+{
+ long len = RARRAY_LEN(ary);
+ VALUE del;
+
+ if (pos >= len) return Qnil;
+ if (pos < 0) {
+ pos += len;
+ if (pos < 0) return Qnil;
+ }
+
+ rb_ary_modify(ary);
+ del = RARRAY_PTR(ary)[pos];
+ MEMMOVE(RARRAY_PTR(ary)+pos, RARRAY_PTR(ary)+pos+1, VALUE,
+ RARRAY_LEN(ary)-pos-1);
+ RARRAY(ary)->len--;
+
+ return del;
+}
+
+/*
+ * call-seq:
+ * array.delete_at(index) -> obj or nil
+ *
+ * Deletes the element at the specified index, returning that element,
+ * or <code>nil</code> if the index is out of range. See also
+ * <code>Array#slice!</code>.
+ *
+ * a = %w( ant bat cat dog )
+ * a.delete_at(2) #=> "cat"
+ * a #=> ["ant", "bat", "dog"]
+ * a.delete_at(99) #=> nil
+ */
+
+static VALUE
+rb_ary_delete_at_m(VALUE ary, VALUE pos)
+{
+ return rb_ary_delete_at(ary, NUM2LONG(pos));
+}
+
+/*
+ * call-seq:
+ * array.slice!(index) -> obj or nil
+ * array.slice!(start, length) -> sub_array or nil
+ * array.slice!(range) -> sub_array or nil
+ *
+ * Deletes the element(s) given by an index (optionally with a length)
+ * or by a range. Returns the deleted object, subarray, or
+ * <code>nil</code> if the index is out of range.
+ *
+ * a = [ "a", "b", "c" ]
+ * a.slice!(1) #=> "b"
+ * a #=> ["a", "c"]
+ * a.slice!(-1) #=> "c"
+ * a #=> ["a"]
+ * a.slice!(100) #=> nil
+ * a #=> ["a"]
+ */
+
+static VALUE
+rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE arg1, arg2;
+ long pos, len, orig_len;
+
+ rb_ary_modify_check(ary);
+ if (rb_scan_args(argc, argv, "11", &arg1, &arg2) == 2) {
+ pos = NUM2LONG(arg1);
+ len = NUM2LONG(arg2);
+ delete_pos_len:
+ if (len < 0) return Qnil;
+ orig_len = RARRAY_LEN(ary);
+ if (pos < 0) {
+ pos += orig_len;
+ if (pos < 0) return Qnil;
+ }
+ else if (orig_len < pos) return Qnil;
+ if (orig_len < pos + len) {
+ len = orig_len - pos;
+ }
+ if (len == 0) return rb_ary_new2(0);
+ arg2 = rb_ary_new4(len, RARRAY_PTR(ary)+pos);
+ RBASIC(arg2)->klass = rb_obj_class(ary);
+ rb_ary_splice(ary, pos, len, Qundef);
+ return arg2;
+ }
+
+ if (!FIXNUM_P(arg1)) {
+ switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) {
+ case Qtrue:
+ /* valid range */
+ goto delete_pos_len;
+ case Qnil:
+ /* invalid range */
+ return Qnil;
+ default:
+ /* not a range */
+ break;
+ }
+ }
+
+ return rb_ary_delete_at(ary, NUM2LONG(arg1));
+}
+
+/*
+ * call-seq:
+ * array.reject! {|item| block } -> array or nil
+ *
+ * Equivalent to <code>Array#delete_if</code>, deleting elements from
+ * _self_ for which the block evaluates to true, but returns
+ * <code>nil</code> if no changes were made. Also see
+ * <code>Enumerable#reject</code>.
+ */
+
+static VALUE
+rb_ary_reject_bang(VALUE ary)
+{
+ long i1, i2;
+
+ RETURN_ENUMERATOR(ary, 0, 0);
+ rb_ary_modify(ary);
+ for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
+ VALUE v = RARRAY_PTR(ary)[i1];
+ if (RTEST(rb_yield(v))) continue;
+ if (i1 != i2) {
+ rb_ary_store(ary, i2, v);
+ }
+ i2++;
+ }
+
+ if (RARRAY_LEN(ary) == i2) return Qnil;
+ if (i2 < RARRAY_LEN(ary))
+ RARRAY(ary)->len = i2;
+ return ary;
+}
+
+/*
+ * call-seq:
+ * array.reject {|item| block } -> an_array
+ *
+ * Returns a new array containing the items in _self_
+ * for which the block is not true.
+ */
+
+static VALUE
+rb_ary_reject(VALUE ary)
+{
+ RETURN_ENUMERATOR(ary, 0, 0);
+ ary = rb_ary_dup(ary);
+ rb_ary_reject_bang(ary);
+ return ary;
+}
+
+/*
+ * call-seq:
+ * array.delete_if {|item| block } -> array
+ *
+ * Deletes every element of <i>self</i> for which <i>block</i> evaluates
+ * to <code>true</code>.
+ *
+ * a = [ "a", "b", "c" ]
+ * a.delete_if {|x| x >= "b" } #=> ["a"]
+ */
+
+static VALUE
+rb_ary_delete_if(VALUE ary)
+{
+ RETURN_ENUMERATOR(ary, 0, 0);
+ rb_ary_reject_bang(ary);
+ return ary;
+}
+
+static VALUE
+take_i(VALUE val, VALUE *args, int argc, VALUE *argv)
+{
+ if (args[1]-- == 0) rb_iter_break();
+ if (argc > 1) val = rb_ary_new4(argc, argv);
+ rb_ary_push(args[0], val);
+ return Qnil;
+}
+
+static VALUE
+take_items(VALUE obj, long n)
+{
+ VALUE result = rb_ary_new2(n);
+ VALUE args[2];
+
+ args[0] = result; args[1] = (VALUE)n;
+ rb_block_call(obj, rb_intern("each"), 0, 0, take_i, (VALUE)args);
+ return result;
+}
+
+
+/*
+ * call-seq:
+ * array.zip(arg, ...) -> an_array
+ * array.zip(arg, ...) {| arr | block } -> nil
+ *
+ * Converts any arguments to arrays, then merges elements of
+ * <i>self</i> with corresponding elements from each argument. This
+ * generates a sequence of <code>self.size</code> <em>n</em>-element
+ * arrays, where <em>n</em> is one more that the count of arguments. If
+ * the size of any argument is less than <code>enumObj.size</code>,
+ * <code>nil</code> values are supplied. If a block given, it is
+ * invoked for each output array, otherwise an array of arrays is
+ * returned.
+ *
+ * a = [ 4, 5, 6 ]
+ * b = [ 7, 8, 9 ]
+ * [1,2,3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
+ * [1,2].zip(a,b) #=> [[1, 4, 7], [2, 5, 8]]
+ * a.zip([1,2],[8]) #=> [[4,1,8], [5,2,nil], [6,nil,nil]]
+ */
+
+static VALUE
+rb_ary_zip(int argc, VALUE *argv, VALUE ary)
+{
+ int i, j;
+ long len;
+ VALUE result = Qnil;
+
+ len = RARRAY_LEN(ary);
+ for (i=0; i<argc; i++) {
+ argv[i] = take_items(argv[i], len);
+ }
+ if (!rb_block_given_p()) {
+ result = rb_ary_new2(len);
+ }
+
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ VALUE tmp = rb_ary_new2(argc+1);
+
+ rb_ary_push(tmp, rb_ary_elt(ary, i));
+ for (j=0; j<argc; j++) {
+ rb_ary_push(tmp, rb_ary_elt(argv[j], i));
+ }
+ if (NIL_P(result)) {
+ rb_yield(tmp);
+ }
+ else {
+ rb_ary_push(result, tmp);
+ }
+ }
+ return result;
+}
+
+/*
+ * call-seq:
+ * array.transpose -> an_array
+ *
+ * Assumes that <i>self</i> is an array of arrays and transposes the
+ * rows and columns.
+ *
+ * a = [[1,2], [3,4], [5,6]]
+ * a.transpose #=> [[1, 3, 5], [2, 4, 6]]
+ */
+
+static VALUE
+rb_ary_transpose(VALUE ary)
+{
+ long elen = -1, alen, i, j;
+ VALUE tmp, result = 0;
+
+ alen = RARRAY_LEN(ary);
+ if (alen == 0) return rb_ary_dup(ary);
+ for (i=0; i<alen; i++) {
+ tmp = to_ary(rb_ary_elt(ary, i));
+ if (elen < 0) { /* first element */
+ elen = RARRAY_LEN(tmp);
+ result = rb_ary_new2(elen);
+ for (j=0; j<elen; j++) {
+ rb_ary_store(result, j, rb_ary_new2(alen));
+ }
+ }
+ else if (elen != RARRAY_LEN(tmp)) {
+ rb_raise(rb_eIndexError, "element size differs (%ld should be %ld)",
+ RARRAY_LEN(tmp), elen);
+ }
+ for (j=0; j<elen; j++) {
+ rb_ary_store(rb_ary_elt(result, j), i, rb_ary_elt(tmp, j));
+ }
+ }
+ return result;
+}
+
+/*
+ * call-seq:
+ * array.replace(other_array) -> array
+ *
+ * Replaces the contents of <i>self</i> with the contents of
+ * <i>other_array</i>, truncating or expanding if necessary.
+ *
+ * a = [ "a", "b", "c", "d", "e" ]
+ * a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"]
+ * a #=> ["x", "y", "z"]
+ */
+
+VALUE
+rb_ary_replace(VALUE copy, VALUE orig)
+{
+ VALUE shared;
+ VALUE *ptr;
+
+ orig = to_ary(orig);
+ rb_ary_modify_check(copy);
+ if (copy == orig) return copy;
+ shared = ary_make_shared(orig);
+ if (!ARY_SHARED_P(copy)) {
+ ptr = RARRAY(copy)->ptr;
+ xfree(ptr);
+ }
+ RARRAY(copy)->ptr = RARRAY(orig)->ptr;
+ RARRAY(copy)->len = RARRAY(orig)->len;
+ RARRAY(copy)->aux.shared = shared;
+ FL_SET(copy, ELTS_SHARED);
+
+ return copy;
+}
+
+/*
+ * call-seq:
+ * array.clear -> array
+ *
+ * Removes all elements from _self_.
+ *
+ * a = [ "a", "b", "c", "d", "e" ]
+ * a.clear #=> [ ]
+ */
+
+VALUE
+rb_ary_clear(VALUE ary)
+{
+ rb_ary_modify(ary);
+ RARRAY(ary)->len = 0;
+ if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
+ RESIZE_CAPA(ary, ARY_DEFAULT_SIZE * 2);
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * array.fill(obj) -> array
+ * array.fill(obj, start [, length]) -> array
+ * array.fill(obj, range ) -> array
+ * array.fill {|index| block } -> array
+ * array.fill(start [, length] ) {|index| block } -> array
+ * array.fill(range) {|index| block } -> array
+ *
+ * The first three forms set the selected elements of <i>self</i> (which
+ * may be the entire array) to <i>obj</i>. A <i>start</i> of
+ * <code>nil</code> is equivalent to zero. A <i>length</i> of
+ * <code>nil</code> is equivalent to <i>self.length</i>. The last three
+ * forms fill the array with the value of the block. The block is
+ * passed the absolute index of each element to be filled.
+ *
+ * a = [ "a", "b", "c", "d" ]
+ * a.fill("x") #=> ["x", "x", "x", "x"]
+ * a.fill("z", 2, 2) #=> ["x", "x", "z", "z"]
+ * a.fill("y", 0..1) #=> ["y", "y", "z", "z"]
+ * a.fill {|i| i*i} #=> [0, 1, 4, 9]
+ * a.fill(-2) {|i| i*i*i} #=> [0, 1, 8, 27]
+ */
+
+static VALUE
+rb_ary_fill(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE item, arg1, arg2;
+ long beg = 0, end = 0, len = 0;
+ VALUE *p, *pend;
+ int block_p = Qfalse;
+
+ if (rb_block_given_p()) {
+ block_p = Qtrue;
+ rb_scan_args(argc, argv, "02", &arg1, &arg2);
+ argc += 1; /* hackish */
+ }
+ else {
+ rb_scan_args(argc, argv, "12", &item, &arg1, &arg2);
+ }
+ switch (argc) {
+ case 1:
+ beg = 0;
+ len = RARRAY_LEN(ary);
+ break;
+ case 2:
+ if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) {
+ break;
+ }
+ /* fall through */
+ case 3:
+ beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1);
+ if (beg < 0) {
+ beg = RARRAY_LEN(ary) + beg;
+ if (beg < 0) beg = 0;
+ }
+ len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2);
+ break;
+ }
+ rb_ary_modify(ary);
+ if (len < 0) {
+ return ary;
+ }
+ if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) {
+ rb_raise(rb_eArgError, "argument too big");
+ }
+ end = beg + len;
+ if (RARRAY_LEN(ary) < end) {
+ if (end >= ARY_CAPA(ary)) {
+ RESIZE_CAPA(ary, end);
+ }
+ rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), end - RARRAY_LEN(ary));
+ RARRAY(ary)->len = end;
+ }
+
+ if (block_p) {
+ VALUE v;
+ long i;
+
+ for (i=beg; i<end; i++) {
+ v = rb_yield(LONG2NUM(i));
+ if (i>=RARRAY_LEN(ary)) break;
+ RARRAY_PTR(ary)[i] = v;
+ }
+ }
+ else {
+ p = RARRAY_PTR(ary) + beg;
+ pend = p + len;
+ while (p < pend) {
+ *p++ = item;
+ }
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * array + other_array -> an_array
+ *
+ * Concatenation---Returns a new array built by concatenating the
+ * two arrays together to produce a third array.
+ *
+ * [ 1, 2, 3 ] + [ 4, 5 ] #=> [ 1, 2, 3, 4, 5 ]
+ */
+
+VALUE
+rb_ary_plus(VALUE x, VALUE y)
+{
+ VALUE z;
+ long len;
+
+ y = to_ary(y);
+ len = RARRAY_LEN(x) + RARRAY_LEN(y);
+ z = rb_ary_new2(len);
+ MEMCPY(RARRAY_PTR(z), RARRAY_PTR(x), VALUE, RARRAY_LEN(x));
+ MEMCPY(RARRAY_PTR(z) + RARRAY_LEN(x), RARRAY_PTR(y), VALUE, RARRAY_LEN(y));
+ RARRAY(z)->len = len;
+ return z;
+}
+
+/*
+ * call-seq:
+ * array.concat(other_array) -> array
+ *
+ * Appends the elements in other_array to _self_.
+ *
+ * [ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ]
+ */
+
+
+VALUE
+rb_ary_concat(VALUE x, VALUE y)
+{
+ y = to_ary(y);
+ if (RARRAY_LEN(y) > 0) {
+ rb_ary_splice(x, RARRAY_LEN(x), 0, y);
+ }
+ return x;
+}
+
+
+/*
+ * call-seq:
+ * array * int -> an_array
+ * array * str -> a_string
+ *
+ * Repetition---With a String argument, equivalent to
+ * self.join(str). Otherwise, returns a new array
+ * built by concatenating the _int_ copies of _self_.
+ *
+ *
+ * [ 1, 2, 3 ] * 3 #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ]
+ * [ 1, 2, 3 ] * "," #=> "1,2,3"
+ *
+ */
+
+static VALUE
+rb_ary_times(VALUE ary, VALUE times)
+{
+ VALUE ary2, tmp;
+ long i, len;
+
+ tmp = rb_check_string_type(times);
+ if (!NIL_P(tmp)) {
+ return rb_ary_join(ary, tmp);
+ }
+
+ len = NUM2LONG(times);
+ if (len == 0) return ary_new(rb_obj_class(ary), 0);
+ if (len < 0) {
+ rb_raise(rb_eArgError, "negative argument");
+ }
+ if (ARY_MAX_SIZE/len < RARRAY_LEN(ary)) {
+ rb_raise(rb_eArgError, "argument too big");
+ }
+ len *= RARRAY_LEN(ary);
+
+ ary2 = ary_new(rb_obj_class(ary), len);
+ RARRAY(ary2)->len = len;
+
+ for (i=0; i<len; i+=RARRAY_LEN(ary)) {
+ MEMCPY(RARRAY_PTR(ary2)+i, RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary));
+ }
+ OBJ_INFECT(ary2, ary);
+
+ return ary2;
+}
+
+/*
+ * call-seq:
+ * array.assoc(obj) -> an_array or nil
+ *
+ * Searches through an array whose elements are also arrays
+ * comparing _obj_ with the first element of each contained array
+ * using obj.==.
+ * Returns the first contained array that matches (that
+ * is, the first associated array),
+ * or +nil+ if no match is found.
+ * See also <code>Array#rassoc</code>.
+ *
+ * s1 = [ "colors", "red", "blue", "green" ]
+ * s2 = [ "letters", "a", "b", "c" ]
+ * s3 = "foo"
+ * a = [ s1, s2, s3 ]
+ * a.assoc("letters") #=> [ "letters", "a", "b", "c" ]
+ * a.assoc("foo") #=> nil
+ */
+
+VALUE
+rb_ary_assoc(VALUE ary, VALUE key)
+{
+ long i;
+ VALUE v;
+
+ for (i = 0; i < RARRAY_LEN(ary); ++i) {
+ v = rb_check_array_type(RARRAY_PTR(ary)[i]);
+ if (!NIL_P(v) && RARRAY_LEN(v) > 0 &&
+ rb_equal(RARRAY_PTR(v)[0], key))
+ return v;
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * array.rassoc(obj) -> an_array or nil
+ *
+ * Searches through the array whose elements are also arrays. Compares
+ * _obj_ with the second element of each contained array using
+ * <code>==</code>. Returns the first contained array that matches. See
+ * also <code>Array#assoc</code>.
+ *
+ * a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ]
+ * a.rassoc("two") #=> [2, "two"]
+ * a.rassoc("four") #=> nil
+ */
+
+VALUE
+rb_ary_rassoc(VALUE ary, VALUE value)
+{
+ long i;
+ VALUE v;
+
+ for (i = 0; i < RARRAY_LEN(ary); ++i) {
+ v = RARRAY_PTR(ary)[i];
+ if (TYPE(v) == T_ARRAY &&
+ RARRAY_LEN(v) > 1 &&
+ rb_equal(RARRAY_PTR(v)[1], value))
+ return v;
+ }
+ return Qnil;
+}
+
+static VALUE
+recursive_equal(VALUE ary1, VALUE ary2, int recur)
+{
+ long i;
+
+ if (recur) return Qfalse;
+ for (i=0; i<RARRAY_LEN(ary1); i++) {
+ if (!rb_equal(rb_ary_elt(ary1, i), rb_ary_elt(ary2, i)))
+ return Qfalse;
+ }
+ return Qtrue;
+}
+
+/*
+ * call-seq:
+ * array == other_array -> bool
+ *
+ * Equality---Two arrays are equal if they contain the same number
+ * of elements and if each element is equal to (according to
+ * Object.==) the corresponding element in the other array.
+ *
+ * [ "a", "c" ] == [ "a", "c", 7 ] #=> false
+ * [ "a", "c", 7 ] == [ "a", "c", 7 ] #=> true
+ * [ "a", "c", 7 ] == [ "a", "d", "f" ] #=> false
+ *
+ */
+
+static VALUE
+rb_ary_equal(VALUE ary1, VALUE ary2)
+{
+ if (ary1 == ary2) return Qtrue;
+ if (TYPE(ary2) != T_ARRAY) {
+ if (!rb_respond_to(ary2, rb_intern("to_ary"))) {
+ return Qfalse;
+ }
+ return rb_equal(ary2, ary1);
+ }
+ if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
+ return rb_exec_recursive(recursive_equal, ary1, ary2);
+}
+
+static VALUE
+recursive_eql(VALUE ary1, VALUE ary2, int recur)
+{
+ long i;
+
+ if (recur) return Qfalse;
+ for (i=0; i<RARRAY_LEN(ary1); i++) {
+ if (!rb_eql(rb_ary_elt(ary1, i), rb_ary_elt(ary2, i)))
+ return Qfalse;
+ }
+ return Qtrue;
+}
+
+/*
+ * call-seq:
+ * array.eql?(other) -> true or false
+ *
+ * Returns <code>true</code> if _array_ and _other_ are the same object,
+ * or are both arrays with the same content.
+ */
+
+static VALUE
+rb_ary_eql(VALUE ary1, VALUE ary2)
+{
+ if (ary1 == ary2) return Qtrue;
+ if (TYPE(ary2) != T_ARRAY) return Qfalse;
+ if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
+ return rb_exec_recursive(recursive_eql, ary1, ary2);
+}
+
+static VALUE
+recursive_hash(VALUE ary, VALUE dummy, int recur)
+{
+ long i, h;
+ VALUE n;
+
+ if (recur) {
+ return LONG2FIX(0);
+ }
+ h = RARRAY_LEN(ary);
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ h = (h << 1) | (h<0 ? 1 : 0);
+ n = rb_hash(RARRAY_PTR(ary)[i]);
+ h ^= NUM2LONG(n);
+ }
+ return LONG2FIX(h);
+}
+
+/*
+ * call-seq:
+ * array.hash -> fixnum
+ *
+ * Compute a hash-code for this array. Two arrays with the same content
+ * will have the same hash code (and will compare using <code>eql?</code>).
+ */
+
+static VALUE
+rb_ary_hash(VALUE ary)
+{
+ return rb_exec_recursive(recursive_hash, ary, 0);
+}
+
+/*
+ * call-seq:
+ * array.include?(obj) -> true or false
+ *
+ * Returns <code>true</code> if the given object is present in
+ * <i>self</i> (that is, if any object <code>==</code> <i>anObject</i>),
+ * <code>false</code> otherwise.
+ *
+ * a = [ "a", "b", "c" ]
+ * a.include?("b") #=> true
+ * a.include?("z") #=> false
+ */
+
+VALUE
+rb_ary_includes(VALUE ary, VALUE item)
+{
+ long i;
+
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ if (rb_equal(RARRAY_PTR(ary)[i], item)) {
+ return Qtrue;
+ }
+ }
+ return Qfalse;
+}
+
+
+static VALUE
+recursive_cmp(VALUE ary1, VALUE ary2, int recur)
+{
+ long i, len;
+
+ if (recur) return Qnil;
+ len = RARRAY_LEN(ary1);
+ if (len > RARRAY_LEN(ary2)) {
+ len = RARRAY_LEN(ary2);
+ }
+ for (i=0; i<len; i++) {
+ VALUE v = rb_funcall(rb_ary_elt(ary1, i), id_cmp, 1, rb_ary_elt(ary2, i));
+ if (v != INT2FIX(0)) {
+ return v;
+ }
+ }
+ return Qundef;
+}
+
+/*
+ * call-seq:
+ * array <=> other_array -> -1, 0, +1
+ *
+ * Comparison---Returns an integer (-1, 0,
+ * or +1) if this array is less than, equal to, or greater than
+ * other_array. Each object in each array is compared
+ * (using <=>). If any value isn't
+ * equal, then that inequality is the return value. If all the
+ * values found are equal, then the return is based on a
+ * comparison of the array lengths. Thus, two arrays are
+ * ``equal'' according to <code>Array#<=></code> if and only if they have
+ * the same length and the value of each element is equal to the
+ * value of the corresponding element in the other array.
+ *
+ * [ "a", "a", "c" ] <=> [ "a", "b", "c" ] #=> -1
+ * [ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ] #=> +1
+ *
+ */
+
+VALUE
+rb_ary_cmp(VALUE ary1, VALUE ary2)
+{
+ long len;
+ VALUE v;
+
+ ary2 = to_ary(ary2);
+ if (ary1 == ary2) return INT2FIX(0);
+ v = rb_exec_recursive(recursive_cmp, ary1, ary2);
+ if (v != Qundef) return v;
+ len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2);
+ if (len == 0) return INT2FIX(0);
+ if (len > 0) return INT2FIX(1);
+ return INT2FIX(-1);
+}
+
+static VALUE
+ary_make_hash(VALUE ary1, VALUE ary2)
+{
+ VALUE hash = rb_hash_new();
+ long i;
+
+ for (i=0; i<RARRAY_LEN(ary1); i++) {
+ rb_hash_aset(hash, RARRAY_PTR(ary1)[i], Qtrue);
+ }
+ if (ary2) {
+ for (i=0; i<RARRAY_LEN(ary2); i++) {
+ rb_hash_aset(hash, RARRAY_PTR(ary2)[i], Qtrue);
+ }
+ }
+ return hash;
+}
+
+/*
+ * call-seq:
+ * array - other_array -> an_array
+ *
+ * Array Difference---Returns a new array that is a copy of
+ * the original array, removing any items that also appear in
+ * other_array. (If you need set-like behavior, see the
+ * library class Set.)
+ *
+ * [ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ] #=> [ 3, 3, 5 ]
+ */
+
+static VALUE
+rb_ary_diff(VALUE ary1, VALUE ary2)
+{
+ VALUE ary3;
+ volatile VALUE hash;
+ long i;
+
+ hash = ary_make_hash(to_ary(ary2), 0);
+ ary3 = rb_ary_new();
+
+ for (i=0; i<RARRAY_LEN(ary1); i++) {
+ if (st_lookup(RHASH_TBL(hash), RARRAY_PTR(ary1)[i], 0)) continue;
+ rb_ary_push(ary3, rb_ary_elt(ary1, i));
+ }
+ return ary3;
+}
+
+/*
+ * call-seq:
+ * array & other_array
+ *
+ * Set Intersection---Returns a new array
+ * containing elements common to the two arrays, with no duplicates.
+ *
+ * [ 1, 1, 3, 5 ] & [ 1, 2, 3 ] #=> [ 1, 3 ]
+ */
+
+
+static VALUE
+rb_ary_and(VALUE ary1, VALUE ary2)
+{
+ VALUE hash, ary3, v, vv;
+ long i;
+
+ ary2 = to_ary(ary2);
+ ary3 = rb_ary_new2(RARRAY_LEN(ary1) < RARRAY_LEN(ary2) ?
+ RARRAY_LEN(ary1) : RARRAY_LEN(ary2));
+ hash = ary_make_hash(ary2, 0);
+
+ if (RHASH_EMPTY_P(hash))
+ return ary3;
+
+ for (i=0; i<RARRAY_LEN(ary1); i++) {
+ v = vv = rb_ary_elt(ary1, i);
+ if (st_delete(RHASH_TBL(hash), (st_data_t*)&vv, 0)) {
+ rb_ary_push(ary3, v);
+ }
+ }
+
+ return ary3;
+}
+
+/*
+ * call-seq:
+ * array | other_array -> an_array
+ *
+ * Set Union---Returns a new array by joining this array with
+ * other_array, removing duplicates.
+ *
+ * [ "a", "b", "c" ] | [ "c", "d", "a" ]
+ * #=> [ "a", "b", "c", "d" ]
+ */
+
+static VALUE
+rb_ary_or(VALUE ary1, VALUE ary2)
+{
+ VALUE hash, ary3;
+ VALUE v, vv;
+ long i;
+
+ ary2 = to_ary(ary2);
+ ary3 = rb_ary_new2(RARRAY_LEN(ary1)+RARRAY_LEN(ary2));
+ hash = ary_make_hash(ary1, ary2);
+
+ for (i=0; i<RARRAY_LEN(ary1); i++) {
+ v = vv = rb_ary_elt(ary1, i);
+ if (st_delete(RHASH_TBL(hash), (st_data_t*)&vv, 0)) {
+ rb_ary_push(ary3, v);
+ }
+ }
+ for (i=0; i<RARRAY_LEN(ary2); i++) {
+ v = vv = rb_ary_elt(ary2, i);
+ if (st_delete(RHASH_TBL(hash), (st_data_t*)&vv, 0)) {
+ rb_ary_push(ary3, v);
+ }
+ }
+ return ary3;
+}
+
+/*
+ * call-seq:
+ * array.uniq! -> array or nil
+ *
+ * Removes duplicate elements from _self_.
+ * Returns <code>nil</code> if no changes are made (that is, no
+ * duplicates are found).
+ *
+ * a = [ "a", "a", "b", "b", "c" ]
+ * a.uniq! #=> ["a", "b", "c"]
+ * b = [ "a", "b", "c" ]
+ * b.uniq! #=> nil
+ */
+
+static VALUE
+rb_ary_uniq_bang(VALUE ary)
+{
+ VALUE hash, v, vv;
+ long i, j;
+
+ hash = ary_make_hash(ary, 0);
+
+ if (RARRAY_LEN(ary) == RHASH_SIZE(hash)) {
+ return Qnil;
+ }
+ for (i=j=0; i<RARRAY_LEN(ary); i++) {
+ v = vv = rb_ary_elt(ary, i);
+ if (st_delete(RHASH_TBL(hash), (st_data_t*)&vv, 0)) {
+ rb_ary_store(ary, j++, v);
+ }
+ }
+ RARRAY(ary)->len = j;
+
+ return ary;
+}
+
+/*
+ * call-seq:
+ * array.uniq -> an_array
+ *
+ * Returns a new array by removing duplicate values in <i>self</i>.
+ *
+ * a = [ "a", "a", "b", "b", "c" ]
+ * a.uniq #=> ["a", "b", "c"]
+ */
+
+static VALUE
+rb_ary_uniq(VALUE ary)
+{
+ ary = rb_ary_dup(ary);
+ rb_ary_uniq_bang(ary);
+ return ary;
+}
+
+/*
+ * call-seq:
+ * array.compact! -> array or nil
+ *
+ * Removes +nil+ elements from array.
+ * Returns +nil+ if no changes were made.
+ *
+ * [ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ]
+ * [ "a", "b", "c" ].compact! #=> nil
+ */
+
+static VALUE
+rb_ary_compact_bang(VALUE ary)
+{
+ VALUE *p, *t, *end;
+ long n;
+
+ rb_ary_modify(ary);
+ p = t = RARRAY_PTR(ary);
+ end = p + RARRAY_LEN(ary);
+
+ while (t < end) {
+ if (NIL_P(*t)) t++;
+ else *p++ = *t++;
+ }
+ n = p - RARRAY_PTR(ary);
+ if (RARRAY_LEN(ary) == n) {
+ return Qnil;
+ }
+ if (n * 2 < ARY_CAPA(ary) && ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
+ RESIZE_CAPA(ary, n * 2);
+ }
+ RARRAY(ary)->len = n;
+
+ return ary;
+}
+
+/*
+ * call-seq:
+ * array.compact -> an_array
+ *
+ * Returns a copy of _self_ with all +nil+ elements removed.
+ *
+ * [ "a", nil, "b", nil, "c", nil ].compact
+ * #=> [ "a", "b", "c" ]
+ */
+
+static VALUE
+rb_ary_compact(VALUE ary)
+{
+ ary = rb_ary_dup(ary);
+ rb_ary_compact_bang(ary);
+ return ary;
+}
+
+/*
+ * call-seq:
+ * array.count -> int
+ * array.count(obj) -> int
+ * array.count { |item| block } -> int
+ *
+ * Returns the number of elements. If an argument is given, counts
+ * the number of elements which equals to <i>obj</i>. If a block is
+ * given, counts the number of elements yielding a true value.
+ *
+ * ary = [1, 2, 4, 2]
+ * ary.count # => 4
+ * ary.count(2) # => 2
+ * ary.count{|x|x%2==0} # => 3
+ *
+ */
+
+static VALUE
+rb_ary_count(int argc, VALUE *argv, VALUE ary)
+{
+ long n = 0;
+
+ if (argc == 0) {
+ VALUE *p, *pend;
+
+ if (!rb_block_given_p())
+ return LONG2NUM(RARRAY_LEN(ary));
+
+ for (p = RARRAY_PTR(ary), pend = p + RARRAY_LEN(ary); p < pend; p++) {
+ if (RTEST(rb_yield(*p))) n++;
+ }
+ }
+ else {
+ VALUE obj, *p, *pend;
+
+ rb_scan_args(argc, argv, "1", &obj);
+ if (rb_block_given_p()) {
+ rb_warn("given block not used");
+ }
+ for (p = RARRAY_PTR(ary), pend = p + RARRAY_LEN(ary); p < pend; p++) {
+ if (rb_equal(*p, obj)) n++;
+ }
+ }
+
+ return LONG2NUM(n);
+}
+
+static VALUE
+flatten(VALUE ary, int level, int *modified)
+{
+ long i = 0;
+ VALUE stack, result, tmp, elt;
+ st_table *memo;
+ st_data_t id;
+
+ stack = ary_new(0, ARY_DEFAULT_SIZE);
+ result = ary_new(0, RARRAY_LEN(ary));
+ memo = st_init_numtable();
+ st_insert(memo, (st_data_t)ary, (st_data_t)Qtrue);
+ *modified = 0;
+
+ while (1) {
+ while (i < RARRAY_LEN(ary)) {
+ elt = RARRAY_PTR(ary)[i++];
+ tmp = rb_check_array_type(elt);
+ if (RBASIC(result)->klass) {
+ rb_raise(rb_eRuntimeError, "flatten reentered");
+ }
+ if (NIL_P(tmp) || (level >= 0 && RARRAY_LEN(stack) / 2 >= level)) {
+ rb_ary_push(result, elt);
+ }
+ else {
+ *modified = 1;
+ id = (st_data_t)tmp;
+ if (st_lookup(memo, id, 0)) {
+ st_free_table(memo);
+ rb_raise(rb_eArgError, "tried to flatten recursive array");
+ }
+ st_insert(memo, id, (st_data_t)Qtrue);
+ rb_ary_push(stack, ary);
+ rb_ary_push(stack, LONG2NUM(i));
+ ary = tmp;
+ i = 0;
+ }
+ }
+ if (RARRAY_LEN(stack) == 0) {
+ break;
+ }
+ id = (st_data_t)ary;
+ st_delete(memo, &id, 0);
+ tmp = rb_ary_pop(stack);
+ i = NUM2LONG(tmp);
+ ary = rb_ary_pop(stack);
+ }
+
+ st_free_table(memo);
+
+ RBASIC(result)->klass = rb_class_of(ary);
+ return result;
+}
+
+/*
+ * call-seq:
+ * array.flatten! -> array or nil
+ * array.flatten!(level) -> array or nil
+ *
+ * Flattens _self_ in place.
+ * Returns <code>nil</code> if no modifications were made (i.e.,
+ * <i>array</i> contains no subarrays.) If the optional <i>level</i>
+ * argument determines the level of recursion to flatten.
+ *
+ * a = [ 1, 2, [3, [4, 5] ] ]
+ * a.flatten! #=> [1, 2, 3, 4, 5]
+ * a.flatten! #=> nil
+ * a #=> [1, 2, 3, 4, 5]
+ * a = [ 1, 2, [3, [4, 5] ] ]
+ * a.flatten!(1) #=> [1, 2, 3, [4, 5]]
+ */
+
+static VALUE
+rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary)
+{
+ int mod = 0, level = -1;
+ VALUE result, lv;
+
+ rb_scan_args(argc, argv, "01", &lv);
+ if (!NIL_P(lv)) level = NUM2INT(lv);
+ if (level == 0) return ary;
+
+ result = flatten(ary, level, &mod);
+ if (mod == 0) return Qnil;
+ rb_ary_replace(ary, result);
+
+ return ary;
+}
+
+/*
+ * call-seq:
+ * array.flatten -> an_array
+ * array.flatten(level) -> an_array
+ *
+ * Returns a new array that is a one-dimensional flattening of this
+ * array (recursively). That is, for every element that is an array,
+ * extract its elements into the new array. If the optional
+ * <i>level</i> argument determines the level of recursion to flatten.
+ *
+ * s = [ 1, 2, 3 ] #=> [1, 2, 3]
+ * t = [ 4, 5, 6, [7, 8] ] #=> [4, 5, 6, [7, 8]]
+ * a = [ s, t, 9, 10 ] #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]
+ * a.flatten #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
+ * a = [ 1, 2, [3, [4, 5] ] ]
+ * a.flatten(1) #=> [1, 2, 3, [4, 5]]
+ */
+
+static VALUE
+rb_ary_flatten(int argc, VALUE *argv, VALUE ary)
+{
+ int mod = 0, level = -1;
+ VALUE result, lv;
+
+ rb_scan_args(argc, argv, "01", &lv);
+ if (!NIL_P(lv)) level = NUM2INT(lv);
+ if (level == 0) return ary;
+
+ result = flatten(ary, level, &mod);
+ OBJ_INFECT(result, ary);
+
+ return result;
+}
+
+/*
+ * call-seq:
+ * array.shuffle! -> array
+ *
+ * Shuffles elements in _self_ in place.
+ */
+
+
+static VALUE
+rb_ary_shuffle_bang(VALUE ary)
+{
+ long i = RARRAY_LEN(ary);
+
+ rb_ary_modify(ary);
+ while (i) {
+ long j = rb_genrand_real()*i;
+ VALUE tmp = RARRAY_PTR(ary)[--i];
+ RARRAY_PTR(ary)[i] = RARRAY_PTR(ary)[j];
+ RARRAY_PTR(ary)[j] = tmp;
+ }
+ return ary;
+}
+
+
+/*
+ * call-seq:
+ * array.shuffle -> an_array
+ *
+ * Returns a new array with elements of this array shuffled.
+ *
+ * a = [ 1, 2, 3 ] #=> [1, 2, 3]
+ * a.shuffle #=> [2, 3, 1]
+ */
+
+static VALUE
+rb_ary_shuffle(VALUE ary)
+{
+ ary = rb_ary_dup(ary);
+ rb_ary_shuffle_bang(ary);
+ return ary;
+}
+
+
+/*
+ * call-seq:
+ * array.sample -> obj
+ * array.sample(n) -> an_array
+ *
+ * Choose a random element, or the random +n+ elements, fron the array.
+ * If the array is empty, the first form returns <code>nil</code>, and the
+ * second form returns an empty array.
+ *
+ */
+
+
+static VALUE
+rb_ary_sample(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE nv, result, *ptr;
+ long n, len, i, j, k, idx[10];
+
+ len = RARRAY_LEN(ary);
+ if (argc == 0) {
+ if (len == 0) return Qnil;
+ i = len == 1 ? 0 : rb_genrand_real()*len;
+ return RARRAY_PTR(ary)[i];
+ }
+ rb_scan_args(argc, argv, "1", &nv);
+ n = NUM2LONG(nv);
+ ptr = RARRAY_PTR(ary);
+ len = RARRAY_LEN(ary);
+ if (n > len) n = len;
+ switch (n) {
+ case 0: return rb_ary_new2(0);
+ case 1:
+ return rb_ary_new4(1, &ptr[(long)(rb_genrand_real()*len)]);
+ case 2:
+ i = rb_genrand_real()*len;
+ j = rb_genrand_real()*(len-1);
+ if (j == i) j++;
+ return rb_ary_new3(2, ptr[i], ptr[j]);
+ case 3:
+ i = rb_genrand_real()*len;
+ j = rb_genrand_real()*(len-1);
+ k = rb_genrand_real()*(len-2);
+ if (j == i) j++;
+ if ((k == i) ? (++k == j) : (k == j) ? (++k == i): 0) ++k;
+ return rb_ary_new3(3, ptr[i], ptr[j], ptr[k]);
+ }
+ if (n < sizeof(idx)/sizeof(idx[0])) {
+ idx[0] = rb_genrand_real()*len;
+ for (i=1; i<n; i++) {
+ long p = i;
+ k = rb_genrand_real()*--len;
+ retry:
+ j = 0;
+ do {
+ if (idx[j] == k) {
+ ++k;
+ if (p < j) goto retry;
+ }
+ else if (idx[j] > k) {
+ if (p > j) p = j;
+ }
+ } while (++j < i);
+ idx[i] = k;
+ }
+ result = rb_ary_new2(n);
+ for (i=0; i<n; i++) {
+ RARRAY_PTR(result)[i] = RARRAY_PTR(ary)[idx[i]];
+ }
+ }
+ else {
+ result = rb_ary_new4(len, ptr);
+ RB_GC_GUARD(ary);
+ for (i=0; i<n; i++) {
+ j = (long)(rb_genrand_real()*(len-i)) + i;
+ nv = RARRAY_PTR(result)[j];
+ RARRAY_PTR(result)[j] = RARRAY_PTR(result)[i];
+ RARRAY_PTR(result)[i] = nv;
+ }
+ }
+
+ return result;
+}
+
+
+/*
+ * call-seq:
+ * ary.cycle {|obj| block }
+ * ary.cycle(n) {|obj| block }
+ *
+ * Calls <i>block</i> for each element repeatedly _n_ times or
+ * forever if none or nil is given. If a non-positive number is
+ * given or the array is empty, does nothing. Returns nil if the
+ * loop has finished without getting interrupted.
+ *
+ * a = ["a", "b", "c"]
+ * a.cycle {|x| puts x } # print, a, b, c, a, b, c,.. forever.
+ * a.cycle(2) {|x| puts x } # print, a, b, c, a, b, c.
+ *
+ */
+
+static VALUE
+rb_ary_cycle(int argc, VALUE *argv, VALUE ary)
+{
+ long n, i;
+ VALUE nv = Qnil;
+
+ rb_scan_args(argc, argv, "01", &nv);
+
+ RETURN_ENUMERATOR(ary, argc, argv);
+ if (NIL_P(nv)) {
+ n = -1;
+ }
+ else {
+ n = NUM2LONG(nv);
+ if (n <= 0) return Qnil;
+ }
+
+ while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) {
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ rb_yield(RARRAY_PTR(ary)[i]);
+ }
+ }
+ return Qnil;
+}
+
+#define tmpbuf(n, size) rb_str_tmp_new((n)*(size))
+
+/*
+ * Recursively compute permutations of r elements of the set [0..n-1].
+ * When we have a complete permutation of array indexes, copy the values
+ * at those indexes into a new array and yield that array.
+ *
+ * n: the size of the set
+ * r: the number of elements in each permutation
+ * p: the array (of size r) that we're filling in
+ * index: what index we're filling in now
+ * used: an array of booleans: whether a given index is already used
+ * values: the Ruby array that holds the actual values to permute
+ */
+static void
+permute0(long n, long r, long *p, long index, int *used, VALUE values)
+{
+ long i,j;
+ for (i = 0; i < n; i++) {
+ if (used[i] == 0) {
+ p[index] = i;
+ if (index < r-1) { /* if not done yet */
+ used[i] = 1; /* mark index used */
+ permute0(n, r, p, index+1, /* recurse */
+ used, values);
+ used[i] = 0; /* index unused */
+ }
+ else {
+ /* We have a complete permutation of array indexes */
+ /* Build a ruby array of the corresponding values */
+ /* And yield it to the associated block */
+ VALUE result = rb_ary_new2(r);
+ VALUE *result_array = RARRAY_PTR(result);
+ const VALUE *values_array = RARRAY_PTR(values);
+
+ for (j = 0; j < r; j++) result_array[j] = values_array[p[j]];
+ RARRAY(result)->len = r;
+ rb_yield(result);
+ }
+ }
+ }
+}
+
+/*
+ * call-seq:
+ * ary.permutation { |p| block } -> array
+ * ary.permutation -> enumerator
+ * ary.permutation(n) { |p| block } -> array
+ * ary.permutation(n) -> enumerator
+ *
+ * When invoked with a block, yield all permutations of length <i>n</i>
+ * of the elements of <i>ary</i>, then return the array itself.
+ * If <i>n</i> is not specified, yield all permutations of all elements.
+ * The implementation makes no guarantees about the order in which
+ * the permutations are yielded.
+ *
+ * When invoked without a block, return an enumerator object instead.
+ *
+ * Examples:
+ *
+ * a = [1, 2, 3]
+ * a.permutation.to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
+ * a.permutation(1).to_a #=> [[1],[2],[3]]
+ * a.permutation(2).to_a #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]
+ * a.permutation(3).to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
+ * a.permutation(0).to_a #=> [[]] # one permutation of length 0
+ * a.permutation(4).to_a #=> [] # no permutations of length 4
+ */
+
+static VALUE
+rb_ary_permutation(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE num;
+ long r, n, i;
+
+ n = RARRAY_LEN(ary); /* Array length */
+ RETURN_ENUMERATOR(ary, argc, argv); /* Return enumerator if no block */
+ rb_scan_args(argc, argv, "01", &num);
+ r = NIL_P(num) ? n : NUM2LONG(num); /* Permutation size from argument */
+
+ if (r < 0 || n < r) {
+ /* no permutations: yield nothing */
+ }
+ else if (r == 0) { /* exactly one permutation: the zero-length array */
+ rb_yield(rb_ary_new2(0));
+ }
+ else if (r == 1) { /* this is a special, easy case */
+ for (i = 0; i < RARRAY_LEN(ary); i++) {
+ rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
+ }
+ }
+ else { /* this is the general case */
+ volatile VALUE t0 = tmpbuf(n,sizeof(long));
+ long *p = (long*)RSTRING_PTR(t0);
+ volatile VALUE t1 = tmpbuf(n,sizeof(int));
+ int *used = (int*)RSTRING_PTR(t1);
+ VALUE ary0 = ary_make_shared(ary); /* private defensive copy of ary */
+
+ for (i = 0; i < n; i++) used[i] = 0; /* initialize array */
+
+ permute0(n, r, p, 0, used, ary0); /* compute and yield permutations */
+ RB_GC_GUARD(t0);
+ RB_GC_GUARD(t1);
+ }
+ return ary;
+}
+
+static long
+combi_len(long n, long k)
+{
+ long i, val = 1;
+
+ if (k*2 > n) k = n-k;
+ if (k == 0) return 1;
+ if (k < 0) return 0;
+ val = 1;
+ for (i=1; i <= k; i++,n--) {
+ long m = val;
+ val *= n;
+ if (val < m) {
+ rb_raise(rb_eRangeError, "too big for combination");
+ }
+ val /= i;
+ }
+ return val;
+}
+
+/*
+ * call-seq:
+ * ary.combination(n) { |c| block } -> ary
+ * ary.combination(n) -> enumerator
+ *
+ * When invoked with a block, yields all combinations of length <i>n</i>
+ * of elements from <i>ary</i> and then returns <i>ary</i> itself.
+ * The implementation makes no guarantees about the order in which
+ * the combinations are yielded.
+ *
+ * When invoked without a block, returns an enumerator object instead.
+ *
+ * Examples:
+ *
+ * a = [1, 2, 3, 4]
+ * a.combination(1).to_a #=> [[1],[2],[3],[4]]
+ * a.combination(2).to_a #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
+ * a.combination(3).to_a #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
+ * a.combination(4).to_a #=> [[1,2,3,4]]
+ * a.combination(0).to_a #=> [[]] # one combination of length 0
+ * a.combination(5).to_a #=> [] # no combinations of length 5
+ *
+ */
+
+static VALUE
+rb_ary_combination(VALUE ary, VALUE num)
+{
+ long n, i, len;
+
+ n = NUM2LONG(num);
+ RETURN_ENUMERATOR(ary, 1, &num);
+ len = RARRAY_LEN(ary);
+ if (n < 0 || len < n) {
+ /* yield nothing */
+ }
+ else if (n == 0) {
+ rb_yield(rb_ary_new2(0));
+ }
+ else if (n == 1) {
+ for (i = 0; i < len; i++) {
+ rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
+ }
+ }
+ else {
+ volatile VALUE t0 = tmpbuf(n+1, sizeof(long));
+ long *stack = (long*)RSTRING_PTR(t0);
+ long nlen = combi_len(len, n);
+ volatile VALUE cc = rb_ary_new2(n);
+ VALUE *chosen = RARRAY_PTR(cc);
+ long lev = 0;
+
+ RBASIC(cc)->klass = 0;
+ MEMZERO(stack, long, n);
+ stack[0] = -1;
+ for (i = 0; i < nlen; i++) {
+ chosen[lev] = RARRAY_PTR(ary)[stack[lev+1]];
+ for (lev++; lev < n; lev++) {
+ chosen[lev] = RARRAY_PTR(ary)[stack[lev+1] = stack[lev]+1];
+ }
+ rb_yield(rb_ary_new4(n, chosen));
+ do {
+ stack[lev--]++;
+ } while (lev && (stack[lev+1]+n == len+lev+1));
+ }
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.product(other_ary, ...)
+ *
+ * Returns an array of all combinations of elements from all arrays.
+ * The length of the returned array is the product of the length
+ * of ary and the argument arrays
+ *
+ * [1,2,3].product([4,5]) # => [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]]
+ * [1,2].product([1,2]) # => [[1,1],[1,2],[2,1],[2,2]]
+ * [1,2].product([3,4],[5,6]) # => [[1,3,5],[1,3,6],[1,4,5],[1,4,6],
+ * # [2,3,5],[2,3,6],[2,4,5],[2,4,6]]
+ * [1,2].product() # => [[1],[2]]
+ * [1,2].product([]) # => []
+ */
+
+static VALUE
+rb_ary_product(int argc, VALUE *argv, VALUE ary)
+{
+ int n = argc+1; /* How many arrays we're operating on */
+ volatile VALUE t0 = tmpbuf(n, sizeof(VALUE));
+ volatile VALUE t1 = tmpbuf(n, sizeof(int));
+ VALUE *arrays = (VALUE*)RSTRING_PTR(t0); /* The arrays we're computing the product of */
+ int *counters = (int*)RSTRING_PTR(t1); /* The current position in each one */
+ VALUE result; /* The array we'll be returning */
+ long i,j;
+ long resultlen = 1;
+
+ RBASIC(t0)->klass = 0;
+ RBASIC(t1)->klass = 0;
+
+ /* initialize the arrays of arrays */
+ arrays[0] = ary;
+ for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]);
+
+ /* initialize the counters for the arrays */
+ for (i = 0; i < n; i++) counters[i] = 0;
+
+ /* Compute the length of the result array; return [] if any is empty */
+ for (i = 0; i < n; i++) {
+ long k = RARRAY_LEN(arrays[i]), l = resultlen;
+ if (k == 0) return rb_ary_new2(0);
+ resultlen *= k;
+ if (resultlen < k || resultlen < l || resultlen / k != l) {
+ rb_raise(rb_eRangeError, "too big to product");
+ }
+ }
+
+ /* Otherwise, allocate and fill in an array of results */
+ result = rb_ary_new2(resultlen);
+ for (i = 0; i < resultlen; i++) {
+ int m;
+ /* fill in one subarray */
+ VALUE subarray = rb_ary_new2(n);
+ for (j = 0; j < n; j++) {
+ rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j]));
+ }
+
+ /* put it on the result array */
+ rb_ary_push(result, subarray);
+
+ /*
+ * Increment the last counter. If it overflows, reset to 0
+ * and increment the one before it.
+ */
+ m = n-1;
+ counters[m]++;
+ while (m > 0 && counters[m] == RARRAY_LEN(arrays[m])) {
+ counters[m] = 0;
+ m--;
+ counters[m]++;
+ }
+ }
+
+ return result;
+}
+
+/*
+ * call-seq:
+ * ary.take(n) => array
+ *
+ * Returns first n elements from <i>ary</i>.
+ *
+ * a = [1, 2, 3, 4, 5, 0]
+ * a.take(3) # => [1, 2, 3]
+ *
+ */
+
+static VALUE
+rb_ary_take(VALUE obj, VALUE n)
+{
+ long len = NUM2LONG(n);
+ if (len < 0) {
+ rb_raise(rb_eArgError, "attempt to take negative size");
+ }
+ return rb_ary_subseq(obj, 0, len);
+}
+
+/*
+ * call-seq:
+ * ary.take_while {|arr| block } => array
+ *
+ * Passes elements to the block until the block returns nil or false,
+ * then stops iterating and returns an array of all prior elements.
+ *
+ * a = [1, 2, 3, 4, 5, 0]
+ * a.take_while {|i| i < 3 } # => [1, 2]
+ *
+ */
+
+static VALUE
+rb_ary_take_while(VALUE ary)
+{
+ long i;
+
+ RETURN_ENUMERATOR(ary, 0, 0);
+ for (i = 0; i < RARRAY_LEN(ary); i++) {
+ if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break;
+ }
+ return rb_ary_take(ary, LONG2FIX(i));
+}
+
+/*
+ * call-seq:
+ * ary.drop(n) => array
+ *
+ * Drops first n elements from <i>ary</i>, and returns rest elements
+ * in an array.
+ *
+ * a = [1, 2, 3, 4, 5, 0]
+ * a.drop(3) # => [4, 5, 0]
+ *
+ */
+
+static VALUE
+rb_ary_drop(VALUE ary, VALUE n)
+{
+ VALUE result;
+ long pos = NUM2LONG(n);
+ if (pos < 0) {
+ rb_raise(rb_eArgError, "attempt to drop negative size");
+ }
+
+ result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary));
+ if (result == Qnil) result = rb_ary_new();
+ return result;
+}
+
+/*
+ * call-seq:
+ * ary.drop_while {|arr| block } => array
+ *
+ * Drops elements up to, but not including, the first element for
+ * which the block returns nil or false and returns an array
+ * containing the remaining elements.
+ *
+ * a = [1, 2, 3, 4, 5, 0]
+ * a.drop_while {|i| i < 3 } # => [3, 4, 5, 0]
+ *
+ */
+
+static VALUE
+rb_ary_drop_while(VALUE ary)
+{
+ long i;
+
+ RETURN_ENUMERATOR(ary, 0, 0);
+ for (i = 0; i < RARRAY_LEN(ary); i++) {
+ if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break;
+ }
+ return rb_ary_drop(ary, LONG2FIX(i));
+}
+
+
+
+/* Arrays are ordered, integer-indexed collections of any object.
+ * Array indexing starts at 0, as in C or Java. A negative index is
+ * assumed to be relative to the end of the array---that is, an index of -1
+ * indicates the last element of the array, -2 is the next to last
+ * element in the array, and so on.
+ */
+
+void
+Init_Array(void)
+{
+#undef rb_intern
+#define rb_intern(str) rb_intern_const(str)
+
+ rb_cArray = rb_define_class("Array", rb_cObject);
+ rb_include_module(rb_cArray, rb_mEnumerable);
+
+ rb_define_alloc_func(rb_cArray, ary_alloc);
+ rb_define_singleton_method(rb_cArray, "[]", rb_ary_s_create, -1);
+ rb_define_singleton_method(rb_cArray, "try_convert", rb_ary_s_try_convert, 1);
+ rb_define_method(rb_cArray, "initialize", rb_ary_initialize, -1);
+ rb_define_method(rb_cArray, "initialize_copy", rb_ary_replace, 1);
+
+ rb_define_method(rb_cArray, "to_s", rb_ary_inspect, 0);
+ rb_define_method(rb_cArray, "inspect", rb_ary_inspect, 0);
+ rb_define_method(rb_cArray, "to_a", rb_ary_to_a, 0);
+ rb_define_method(rb_cArray, "to_ary", rb_ary_to_ary_m, 0);
+ rb_define_method(rb_cArray, "frozen?", rb_ary_frozen_p, 0);
+
+ rb_define_method(rb_cArray, "==", rb_ary_equal, 1);
+ rb_define_method(rb_cArray, "eql?", rb_ary_eql, 1);
+ rb_define_method(rb_cArray, "hash", rb_ary_hash, 0);
+
+ rb_define_method(rb_cArray, "[]", rb_ary_aref, -1);
+ rb_define_method(rb_cArray, "[]=", rb_ary_aset, -1);
+ rb_define_method(rb_cArray, "at", rb_ary_at, 1);
+ rb_define_method(rb_cArray, "fetch", rb_ary_fetch, -1);
+ rb_define_method(rb_cArray, "first", rb_ary_first, -1);
+ rb_define_method(rb_cArray, "last", rb_ary_last, -1);
+ rb_define_method(rb_cArray, "concat", rb_ary_concat, 1);
+ rb_define_method(rb_cArray, "<<", rb_ary_push, 1);
+ rb_define_method(rb_cArray, "push", rb_ary_push_m, -1);
+ rb_define_method(rb_cArray, "pop", rb_ary_pop_m, -1);
+ rb_define_method(rb_cArray, "shift", rb_ary_shift_m, -1);
+ rb_define_method(rb_cArray, "unshift", rb_ary_unshift_m, -1);
+ rb_define_method(rb_cArray, "insert", rb_ary_insert, -1);
+ rb_define_method(rb_cArray, "each", rb_ary_each, 0);
+ rb_define_method(rb_cArray, "each_index", rb_ary_each_index, 0);
+ rb_define_method(rb_cArray, "reverse_each", rb_ary_reverse_each, 0);
+ rb_define_method(rb_cArray, "length", rb_ary_length, 0);
+ rb_define_alias(rb_cArray, "size", "length");
+ rb_define_method(rb_cArray, "empty?", rb_ary_empty_p, 0);
+ rb_define_method(rb_cArray, "find_index", rb_ary_index, -1);
+ rb_define_method(rb_cArray, "index", rb_ary_index, -1);
+ rb_define_method(rb_cArray, "rindex", rb_ary_rindex, -1);
+ rb_define_method(rb_cArray, "join", rb_ary_join_m, -1);
+ rb_define_method(rb_cArray, "reverse", rb_ary_reverse_m, 0);
+ rb_define_method(rb_cArray, "reverse!", rb_ary_reverse_bang, 0);
+ rb_define_method(rb_cArray, "sort", rb_ary_sort, 0);
+ rb_define_method(rb_cArray, "sort!", rb_ary_sort_bang, 0);
+ rb_define_method(rb_cArray, "collect", rb_ary_collect, 0);
+ rb_define_method(rb_cArray, "collect!", rb_ary_collect_bang, 0);
+ rb_define_method(rb_cArray, "map", rb_ary_collect, 0);
+ rb_define_method(rb_cArray, "map!", rb_ary_collect_bang, 0);
+ rb_define_method(rb_cArray, "select", rb_ary_select, 0);
+ rb_define_method(rb_cArray, "values_at", rb_ary_values_at, -1);
+ rb_define_method(rb_cArray, "delete", rb_ary_delete, 1);
+ rb_define_method(rb_cArray, "delete_at", rb_ary_delete_at_m, 1);
+ rb_define_method(rb_cArray, "delete_if", rb_ary_delete_if, 0);
+ rb_define_method(rb_cArray, "reject", rb_ary_reject, 0);
+ rb_define_method(rb_cArray, "reject!", rb_ary_reject_bang, 0);
+ rb_define_method(rb_cArray, "zip", rb_ary_zip, -1);
+ rb_define_method(rb_cArray, "transpose", rb_ary_transpose, 0);
+ rb_define_method(rb_cArray, "replace", rb_ary_replace, 1);
+ rb_define_method(rb_cArray, "clear", rb_ary_clear, 0);
+ rb_define_method(rb_cArray, "fill", rb_ary_fill, -1);
+ rb_define_method(rb_cArray, "include?", rb_ary_includes, 1);
+ rb_define_method(rb_cArray, "<=>", rb_ary_cmp, 1);
+
+ rb_define_method(rb_cArray, "slice", rb_ary_aref, -1);
+ rb_define_method(rb_cArray, "slice!", rb_ary_slice_bang, -1);
+
+ rb_define_method(rb_cArray, "assoc", rb_ary_assoc, 1);
+ rb_define_method(rb_cArray, "rassoc", rb_ary_rassoc, 1);
+
+ rb_define_method(rb_cArray, "+", rb_ary_plus, 1);
+ rb_define_method(rb_cArray, "*", rb_ary_times, 1);
+
+ rb_define_method(rb_cArray, "-", rb_ary_diff, 1);
+ rb_define_method(rb_cArray, "&", rb_ary_and, 1);
+ rb_define_method(rb_cArray, "|", rb_ary_or, 1);
+
+ rb_define_method(rb_cArray, "uniq", rb_ary_uniq, 0);
+ rb_define_method(rb_cArray, "uniq!", rb_ary_uniq_bang, 0);
+ rb_define_method(rb_cArray, "compact", rb_ary_compact, 0);
+ rb_define_method(rb_cArray, "compact!", rb_ary_compact_bang, 0);
+ rb_define_method(rb_cArray, "flatten", rb_ary_flatten, -1);
+ rb_define_method(rb_cArray, "flatten!", rb_ary_flatten_bang, -1);
+ rb_define_method(rb_cArray, "count", rb_ary_count, -1);
+ rb_define_method(rb_cArray, "shuffle!", rb_ary_shuffle_bang, 0);
+ rb_define_method(rb_cArray, "shuffle", rb_ary_shuffle, 0);
+ rb_define_method(rb_cArray, "sample", rb_ary_sample, -1);
+ rb_define_method(rb_cArray, "cycle", rb_ary_cycle, -1);
+ rb_define_method(rb_cArray, "permutation", rb_ary_permutation, -1);
+ rb_define_method(rb_cArray, "combination", rb_ary_combination, 1);
+ rb_define_method(rb_cArray, "product", rb_ary_product, -1);
+
+ rb_define_method(rb_cArray, "take", rb_ary_take, 1);
+ rb_define_method(rb_cArray, "take_while", rb_ary_take_while, 0);
+ rb_define_method(rb_cArray, "drop", rb_ary_drop, 1);
+ rb_define_method(rb_cArray, "drop_while", rb_ary_drop_while, 0);
+
+ id_cmp = rb_intern("<=>");
+}