summaryrefslogtreecommitdiff
path: root/ruby_1_8_5/lib/set.rb
diff options
context:
space:
mode:
Diffstat (limited to 'ruby_1_8_5/lib/set.rb')
-rw-r--r--ruby_1_8_5/lib/set.rb1220
1 files changed, 1220 insertions, 0 deletions
diff --git a/ruby_1_8_5/lib/set.rb b/ruby_1_8_5/lib/set.rb
new file mode 100644
index 0000000000..36e718eaf7
--- /dev/null
+++ b/ruby_1_8_5/lib/set.rb
@@ -0,0 +1,1220 @@
+#!/usr/bin/env ruby
+#--
+# set.rb - defines the Set class
+#++
+# Copyright (c) 2002 Akinori MUSHA <knu@iDaemons.org>
+#
+# Documentation by Akinori MUSHA and Gavin Sinclair.
+#
+# All rights reserved. You can redistribute and/or modify it under the same
+# terms as Ruby.
+#
+# $Id: set.rb,v 1.20.2.7 2005/06/30 06:16:13 matz Exp $
+#
+# == Overview
+#
+# This library provides the Set class, which deals with a collection
+# of unordered values with no duplicates. It is a hybrid of Array's
+# intuitive inter-operation facilities and Hash's fast lookup. If you
+# need to keep values ordered, use the SortedSet class.
+#
+# The method +to_set+ is added to Enumerable for convenience.
+#
+# See the Set class for an example of usage.
+
+
+#
+# Set implements a collection of unordered values with no duplicates.
+# This is a hybrid of Array's intuitive inter-operation facilities and
+# Hash's fast lookup.
+#
+# Several methods accept any Enumerable object (implementing +each+)
+# for greater flexibility: new, replace, merge, subtract, |, &, -, ^.
+#
+# The equality of each couple of elements is determined according to
+# Object#eql? and Object#hash, since Set uses Hash as storage.
+#
+# Finally, if you are using class Set, you can also use Enumerable#to_set
+# for convenience.
+#
+# == Example
+#
+# require 'set'
+# s1 = Set.new [1, 2] # -> #<Set: {1, 2}>
+# s2 = [1, 2].to_set # -> #<Set: {1, 2}>
+# s1 == s2 # -> true
+# s1.add("foo") # -> #<Set: {1, 2, "foo"}>
+# s1.merge([2, 6]) # -> #<Set: {6, 1, 2, "foo"}>
+# s1.subset? s2 # -> false
+# s2.subset? s1 # -> true
+#
+class Set
+ include Enumerable
+
+ # Creates a new set containing the given objects.
+ def self.[](*ary)
+ new(ary)
+ end
+
+ # Creates a new set containing the elements of the given enumerable
+ # object.
+ #
+ # If a block is given, the elements of enum are preprocessed by the
+ # given block.
+ def initialize(enum = nil, &block) # :yields: o
+ @hash ||= Hash.new
+
+ enum.nil? and return
+
+ if block
+ enum.each { |o| add(block[o]) }
+ else
+ merge(enum)
+ end
+ end
+
+ # Copy internal hash.
+ def initialize_copy(orig)
+ @hash = orig.instance_eval{@hash}.dup
+ end
+
+ # Returns the number of elements.
+ def size
+ @hash.size
+ end
+ alias length size
+
+ # Returns true if the set contains no elements.
+ def empty?
+ @hash.empty?
+ end
+
+ # Removes all elements and returns self.
+ def clear
+ @hash.clear
+ self
+ end
+
+ # Replaces the contents of the set with the contents of the given
+ # enumerable object and returns self.
+ def replace(enum)
+ if enum.class == self.class
+ @hash.replace(enum.instance_eval { @hash })
+ else
+ enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable"
+ clear
+ enum.each { |o| add(o) }
+ end
+
+ self
+ end
+
+ # Converts the set to an array. The order of elements is uncertain.
+ def to_a
+ @hash.keys
+ end
+
+ def flatten_merge(set, seen = Set.new)
+ set.each { |e|
+ if e.is_a?(Set)
+ if seen.include?(e_id = e.object_id)
+ raise ArgumentError, "tried to flatten recursive Set"
+ end
+
+ seen.add(e_id)
+ flatten_merge(e, seen)
+ seen.delete(e_id)
+ else
+ add(e)
+ end
+ }
+
+ self
+ end
+ protected :flatten_merge
+
+ # Returns a new set that is a copy of the set, flattening each
+ # containing set recursively.
+ def flatten
+ self.class.new.flatten_merge(self)
+ end
+
+ # Equivalent to Set#flatten, but replaces the receiver with the
+ # result in place. Returns nil if no modifications were made.
+ def flatten!
+ if detect { |e| e.is_a?(Set) }
+ replace(flatten())
+ else
+ nil
+ end
+ end
+
+ # Returns true if the set contains the given object.
+ def include?(o)
+ @hash.include?(o)
+ end
+ alias member? include?
+
+ # Returns true if the set is a superset of the given set.
+ def superset?(set)
+ set.is_a?(Set) or raise ArgumentError, "value must be a set"
+ return false if size < set.size
+ set.all? { |o| include?(o) }
+ end
+
+ # Returns true if the set is a proper superset of the given set.
+ def proper_superset?(set)
+ set.is_a?(Set) or raise ArgumentError, "value must be a set"
+ return false if size <= set.size
+ set.all? { |o| include?(o) }
+ end
+
+ # Returns true if the set is a subset of the given set.
+ def subset?(set)
+ set.is_a?(Set) or raise ArgumentError, "value must be a set"
+ return false if set.size < size
+ all? { |o| set.include?(o) }
+ end
+
+ # Returns true if the set is a proper subset of the given set.
+ def proper_subset?(set)
+ set.is_a?(Set) or raise ArgumentError, "value must be a set"
+ return false if set.size <= size
+ all? { |o| set.include?(o) }
+ end
+
+ # Calls the given block once for each element in the set, passing
+ # the element as parameter.
+ def each
+ @hash.each_key { |o| yield(o) }
+ self
+ end
+
+ # Adds the given object to the set and returns self. Use +merge+ to
+ # add several elements at once.
+ def add(o)
+ @hash[o] = true
+ self
+ end
+ alias << add
+
+ # Adds the given object to the set and returns self. If the
+ # object is already in the set, returns nil.
+ def add?(o)
+ if include?(o)
+ nil
+ else
+ add(o)
+ end
+ end
+
+ # Deletes the given object from the set and returns self. Use +subtract+ to
+ # delete several items at once.
+ def delete(o)
+ @hash.delete(o)
+ self
+ end
+
+ # Deletes the given object from the set and returns self. If the
+ # object is not in the set, returns nil.
+ def delete?(o)
+ if include?(o)
+ delete(o)
+ else
+ nil
+ end
+ end
+
+ # Deletes every element of the set for which block evaluates to
+ # true, and returns self.
+ def delete_if
+ @hash.delete_if { |o,| yield(o) }
+ self
+ end
+
+ # Do collect() destructively.
+ def collect!
+ set = self.class.new
+ each { |o| set << yield(o) }
+ replace(set)
+ end
+ alias map! collect!
+
+ # Equivalent to Set#delete_if, but returns nil if no changes were
+ # made.
+ def reject!
+ n = size
+ delete_if { |o| yield(o) }
+ size == n ? nil : self
+ end
+
+ # Merges the elements of the given enumerable object to the set and
+ # returns self.
+ def merge(enum)
+ if enum.is_a?(Set)
+ @hash.update(enum.instance_eval { @hash })
+ else
+ enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable"
+ enum.each { |o| add(o) }
+ end
+
+ self
+ end
+
+ # Deletes every element that appears in the given enumerable object
+ # and returns self.
+ def subtract(enum)
+ enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable"
+ enum.each { |o| delete(o) }
+ self
+ end
+
+ # Returns a new set built by merging the set and the elements of the
+ # given enumerable object.
+ def |(enum)
+ enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable"
+ dup.merge(enum)
+ end
+ alias + | ##
+ alias union | ##
+
+ # Returns a new set built by duplicating the set, removing every
+ # element that appears in the given enumerable object.
+ def -(enum)
+ enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable"
+ dup.subtract(enum)
+ end
+ alias difference - ##
+
+ # Returns a new array containing elements common to the set and the
+ # given enumerable object.
+ def &(enum)
+ enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable"
+ n = self.class.new
+ enum.each { |o| n.add(o) if include?(o) }
+ n
+ end
+ alias intersection & ##
+
+ # Returns a new array containing elements exclusive between the set
+ # and the given enumerable object. (set ^ enum) is equivalent to
+ # ((set | enum) - (set & enum)).
+ def ^(enum)
+ enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable"
+ n = dup
+ enum.each { |o| if n.include?(o) then n.delete(o) else n.add(o) end }
+ n
+ end
+
+ # Returns true if two sets are equal. The equality of each couple
+ # of elements is defined according to Object#eql?.
+ def ==(set)
+ equal?(set) and return true
+
+ set.is_a?(Set) && size == set.size or return false
+
+ hash = @hash.dup
+ set.all? { |o| hash.include?(o) }
+ end
+
+ def hash # :nodoc:
+ @hash.hash
+ end
+
+ def eql?(o) # :nodoc:
+ return false unless o.is_a?(Set)
+ @hash.eql?(o.instance_eval{@hash})
+ end
+
+ # Classifies the set by the return value of the given block and
+ # returns a hash of {value => set of elements} pairs. The block is
+ # called once for each element of the set, passing the element as
+ # parameter.
+ #
+ # e.g.:
+ #
+ # require 'set'
+ # files = Set.new(Dir.glob("*.rb"))
+ # hash = files.classify { |f| File.mtime(f).year }
+ # p hash # => {2000=>#<Set: {"a.rb", "b.rb"}>,
+ # # 2001=>#<Set: {"c.rb", "d.rb", "e.rb"}>,
+ # # 2002=>#<Set: {"f.rb"}>}
+ def classify # :yields: o
+ h = {}
+
+ each { |i|
+ x = yield(i)
+ (h[x] ||= self.class.new).add(i)
+ }
+
+ h
+ end
+
+ # Divides the set into a set of subsets according to the commonality
+ # defined by the given block.
+ #
+ # If the arity of the block is 2, elements o1 and o2 are in common
+ # if block.call(o1, o2) is true. Otherwise, elements o1 and o2 are
+ # in common if block.call(o1) == block.call(o2).
+ #
+ # e.g.:
+ #
+ # require 'set'
+ # numbers = Set[1, 3, 4, 6, 9, 10, 11]
+ # set = numbers.divide { |i,j| (i - j).abs == 1 }
+ # p set # => #<Set: {#<Set: {1}>,
+ # # #<Set: {11, 9, 10}>,
+ # # #<Set: {3, 4}>,
+ # # #<Set: {6}>}>
+ def divide(&func)
+ if func.arity == 2
+ require 'tsort'
+
+ class << dig = {} # :nodoc:
+ include TSort
+
+ alias tsort_each_node each_key
+ def tsort_each_child(node, &block)
+ fetch(node).each(&block)
+ end
+ end
+
+ each { |u|
+ dig[u] = a = []
+ each{ |v| func.call(u, v) and a << v }
+ }
+
+ set = Set.new()
+ dig.each_strongly_connected_component { |css|
+ set.add(self.class.new(css))
+ }
+ set
+ else
+ Set.new(classify(&func).values)
+ end
+ end
+
+ InspectKey = :__inspect_key__ # :nodoc:
+
+ # Returns a string containing a human-readable representation of the
+ # set. ("#<Set: {element1, element2, ...}>")
+ def inspect
+ ids = (Thread.current[InspectKey] ||= [])
+
+ if ids.include?(object_id)
+ return sprintf('#<%s: {...}>', self.class.name)
+ end
+
+ begin
+ ids << object_id
+ return sprintf('#<%s: {%s}>', self.class, to_a.inspect[1..-2])
+ ensure
+ ids.pop
+ end
+ end
+
+ def pretty_print(pp) # :nodoc:
+ pp.text sprintf('#<%s: {', self.class.name)
+ pp.nest(1) {
+ pp.seplist(self) { |o|
+ pp.pp o
+ }
+ }
+ pp.text "}>"
+ end
+
+ def pretty_print_cycle(pp) # :nodoc:
+ pp.text sprintf('#<%s: {%s}>', self.class.name, empty? ? '' : '...')
+ end
+end
+
+# SortedSet implements a set which elements are sorted in order. See Set.
+class SortedSet < Set
+ @@setup = false
+
+ class << self
+ def [](*ary) # :nodoc:
+ new(ary)
+ end
+
+ def setup # :nodoc:
+ @@setup and return
+
+ module_eval {
+ # a hack to shut up warning
+ alias old_init initialize
+ remove_method :old_init
+ }
+ begin
+ require 'rbtree'
+
+ module_eval %{
+ def initialize(*args, &block)
+ @hash = RBTree.new
+ super
+ end
+ }
+ rescue LoadError
+ module_eval %{
+ def initialize(*args, &block)
+ @keys = nil
+ super
+ end
+
+ def clear
+ @keys = nil
+ super
+ end
+
+ def replace(enum)
+ @keys = nil
+ super
+ end
+
+ def add(o)
+ @keys = nil
+ @hash[o] = true
+ self
+ end
+ alias << add
+
+ def delete(o)
+ @keys = nil
+ @hash.delete(o)
+ self
+ end
+
+ def delete_if
+ n = @hash.size
+ @hash.delete_if { |o,| yield(o) }
+ @keys = nil if @hash.size != n
+ self
+ end
+
+ def merge(enum)
+ @keys = nil
+ super
+ end
+
+ def each
+ to_a.each { |o| yield(o) }
+ end
+
+ def to_a
+ (@keys = @hash.keys).sort! unless @keys
+ @keys
+ end
+ }
+ end
+
+ @@setup = true
+ end
+ end
+
+ def initialize(*args, &block) # :nodoc:
+ SortedSet.setup
+ initialize(*args, &block)
+ end
+end
+
+module Enumerable
+ # Makes a set from the enumerable object with given arguments.
+ # Needs to +require "set"+ to use this method.
+ def to_set(klass = Set, *args, &block)
+ klass.new(self, *args, &block)
+ end
+end
+
+# =begin
+# == RestricedSet class
+# RestricedSet implements a set with restrictions defined by a given
+# block.
+#
+# === Super class
+# Set
+#
+# === Class Methods
+# --- RestricedSet::new(enum = nil) { |o| ... }
+# --- RestricedSet::new(enum = nil) { |rset, o| ... }
+# Creates a new restricted set containing the elements of the given
+# enumerable object. Restrictions are defined by the given block.
+#
+# If the block's arity is 2, it is called with the RestrictedSet
+# itself and an object to see if the object is allowed to be put in
+# the set.
+#
+# Otherwise, the block is called with an object to see if the object
+# is allowed to be put in the set.
+#
+# === Instance Methods
+# --- restriction_proc
+# Returns the restriction procedure of the set.
+#
+# =end
+#
+# class RestricedSet < Set
+# def initialize(*args, &block)
+# @proc = block or raise ArgumentError, "missing a block"
+#
+# if @proc.arity == 2
+# instance_eval %{
+# def add(o)
+# @hash[o] = true if @proc.call(self, o)
+# self
+# end
+# alias << add
+#
+# def add?(o)
+# if include?(o) || !@proc.call(self, o)
+# nil
+# else
+# @hash[o] = true
+# self
+# end
+# end
+#
+# def replace(enum)
+# enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable"
+# clear
+# enum.each { |o| add(o) }
+#
+# self
+# end
+#
+# def merge(enum)
+# enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable"
+# enum.each { |o| add(o) }
+#
+# self
+# end
+# }
+# else
+# instance_eval %{
+# def add(o)
+# if @proc.call(o)
+# @hash[o] = true
+# end
+# self
+# end
+# alias << add
+#
+# def add?(o)
+# if include?(o) || !@proc.call(o)
+# nil
+# else
+# @hash[o] = true
+# self
+# end
+# end
+# }
+# end
+#
+# super(*args)
+# end
+#
+# def restriction_proc
+# @proc
+# end
+# end
+
+if $0 == __FILE__
+ eval DATA.read, nil, $0, __LINE__+4
+end
+
+__END__
+
+require 'test/unit'
+
+class TC_Set < Test::Unit::TestCase
+ def test_aref
+ assert_nothing_raised {
+ Set[]
+ Set[nil]
+ Set[1,2,3]
+ }
+
+ assert_equal(0, Set[].size)
+ assert_equal(1, Set[nil].size)
+ assert_equal(1, Set[[]].size)
+ assert_equal(1, Set[[nil]].size)
+
+ set = Set[2,4,6,4]
+ assert_equal(Set.new([2,4,6]), set)
+ end
+
+ def test_s_new
+ assert_nothing_raised {
+ Set.new()
+ Set.new(nil)
+ Set.new([])
+ Set.new([1,2])
+ Set.new('a'..'c')
+ Set.new('XYZ')
+ }
+ assert_raises(ArgumentError) {
+ Set.new(false)
+ }
+ assert_raises(ArgumentError) {
+ Set.new(1)
+ }
+ assert_raises(ArgumentError) {
+ Set.new(1,2)
+ }
+
+ assert_equal(0, Set.new().size)
+ assert_equal(0, Set.new(nil).size)
+ assert_equal(0, Set.new([]).size)
+ assert_equal(1, Set.new([nil]).size)
+
+ ary = [2,4,6,4]
+ set = Set.new(ary)
+ ary.clear
+ assert_equal(false, set.empty?)
+ assert_equal(3, set.size)
+
+ ary = [1,2,3]
+
+ s = Set.new(ary) { |o| o * 2 }
+ assert_equal([2,4,6], s.sort)
+ end
+
+ def test_clone
+ set1 = Set.new
+ set2 = set1.clone
+ set1 << 'abc'
+ assert_equal(Set.new, set2)
+ end
+
+ def test_dup
+ set1 = Set[1,2]
+ set2 = set1.dup
+
+ assert_not_same(set1, set2)
+
+ assert_equal(set1, set2)
+
+ set1.add(3)
+
+ assert_not_equal(set1, set2)
+ end
+
+ def test_size
+ assert_equal(0, Set[].size)
+ assert_equal(2, Set[1,2].size)
+ assert_equal(2, Set[1,2,1].size)
+ end
+
+ def test_empty?
+ assert_equal(true, Set[].empty?)
+ assert_equal(false, Set[1, 2].empty?)
+ end
+
+ def test_clear
+ set = Set[1,2]
+ ret = set.clear
+
+ assert_same(set, ret)
+ assert_equal(true, set.empty?)
+ end
+
+ def test_replace
+ set = Set[1,2]
+ ret = set.replace('a'..'c')
+
+ assert_same(set, ret)
+ assert_equal(Set['a','b','c'], set)
+ end
+
+ def test_to_a
+ set = Set[1,2,3,2]
+ ary = set.to_a
+
+ assert_equal([1,2,3], ary.sort)
+ end
+
+ def test_flatten
+ # test1
+ set1 = Set[
+ 1,
+ Set[
+ 5,
+ Set[7,
+ Set[0]
+ ],
+ Set[6,2],
+ 1
+ ],
+ 3,
+ Set[3,4]
+ ]
+
+ set2 = set1.flatten
+ set3 = Set.new(0..7)
+
+ assert_not_same(set2, set1)
+ assert_equal(set3, set2)
+
+ # test2; destructive
+ orig_set1 = set1
+ set1.flatten!
+
+ assert_same(orig_set1, set1)
+ assert_equal(set3, set1)
+
+ # test3; multiple occurrences of a set in an set
+ set1 = Set[1, 2]
+ set2 = Set[set1, Set[set1, 4], 3]
+
+ assert_nothing_raised {
+ set2.flatten!
+ }
+
+ assert_equal(Set.new(1..4), set2)
+
+ # test4; recursion
+ set2 = Set[]
+ set1 = Set[1, set2]
+ set2.add(set1)
+
+ assert_raises(ArgumentError) {
+ set1.flatten!
+ }
+
+ # test5; miscellaneous
+ empty = Set[]
+ set = Set[Set[empty, "a"],Set[empty, "b"]]
+
+ assert_nothing_raised {
+ set.flatten
+ }
+
+ set1 = empty.merge(Set["no_more", set])
+
+ assert_nil(Set.new(0..31).flatten!)
+
+ x = Set[Set[],Set[1,2]].flatten!
+ y = Set[1,2]
+
+ assert_equal(x, y)
+ end
+
+ def test_include?
+ set = Set[1,2,3]
+
+ assert_equal(true, set.include?(1))
+ assert_equal(true, set.include?(2))
+ assert_equal(true, set.include?(3))
+ assert_equal(false, set.include?(0))
+ assert_equal(false, set.include?(nil))
+
+ set = Set["1",nil,"2",nil,"0","1",false]
+ assert_equal(true, set.include?(nil))
+ assert_equal(true, set.include?(false))
+ assert_equal(true, set.include?("1"))
+ assert_equal(false, set.include?(0))
+ assert_equal(false, set.include?(true))
+ end
+
+ def test_superset?
+ set = Set[1,2,3]
+
+ assert_raises(ArgumentError) {
+ set.superset?()
+ }
+
+ assert_raises(ArgumentError) {
+ set.superset?(2)
+ }
+
+ assert_raises(ArgumentError) {
+ set.superset?([2])
+ }
+
+ assert_equal(true, set.superset?(Set[]))
+ assert_equal(true, set.superset?(Set[1,2]))
+ assert_equal(true, set.superset?(Set[1,2,3]))
+ assert_equal(false, set.superset?(Set[1,2,3,4]))
+ assert_equal(false, set.superset?(Set[1,4]))
+
+ assert_equal(true, Set[].superset?(Set[]))
+ end
+
+ def test_proper_superset?
+ set = Set[1,2,3]
+
+ assert_raises(ArgumentError) {
+ set.proper_superset?()
+ }
+
+ assert_raises(ArgumentError) {
+ set.proper_superset?(2)
+ }
+
+ assert_raises(ArgumentError) {
+ set.proper_superset?([2])
+ }
+
+ assert_equal(true, set.proper_superset?(Set[]))
+ assert_equal(true, set.proper_superset?(Set[1,2]))
+ assert_equal(false, set.proper_superset?(Set[1,2,3]))
+ assert_equal(false, set.proper_superset?(Set[1,2,3,4]))
+ assert_equal(false, set.proper_superset?(Set[1,4]))
+
+ assert_equal(false, Set[].proper_superset?(Set[]))
+ end
+
+ def test_subset?
+ set = Set[1,2,3]
+
+ assert_raises(ArgumentError) {
+ set.subset?()
+ }
+
+ assert_raises(ArgumentError) {
+ set.subset?(2)
+ }
+
+ assert_raises(ArgumentError) {
+ set.subset?([2])
+ }
+
+ assert_equal(true, set.subset?(Set[1,2,3,4]))
+ assert_equal(true, set.subset?(Set[1,2,3]))
+ assert_equal(false, set.subset?(Set[1,2]))
+ assert_equal(false, set.subset?(Set[]))
+
+ assert_equal(true, Set[].subset?(Set[1]))
+ assert_equal(true, Set[].subset?(Set[]))
+ end
+
+ def test_proper_subset?
+ set = Set[1,2,3]
+
+ assert_raises(ArgumentError) {
+ set.proper_subset?()
+ }
+
+ assert_raises(ArgumentError) {
+ set.proper_subset?(2)
+ }
+
+ assert_raises(ArgumentError) {
+ set.proper_subset?([2])
+ }
+
+ assert_equal(true, set.proper_subset?(Set[1,2,3,4]))
+ assert_equal(false, set.proper_subset?(Set[1,2,3]))
+ assert_equal(false, set.proper_subset?(Set[1,2]))
+ assert_equal(false, set.proper_subset?(Set[]))
+
+ assert_equal(false, Set[].proper_subset?(Set[]))
+ end
+
+ def test_each
+ ary = [1,3,5,7,10,20]
+ set = Set.new(ary)
+
+ assert_raises(LocalJumpError) {
+ set.each
+ }
+
+ assert_nothing_raised {
+ set.each { |o|
+ ary.delete(o) or raise "unexpected element: #{o}"
+ }
+
+ ary.empty? or raise "forgotten elements: #{ary.join(', ')}"
+ }
+ end
+
+ def test_add
+ set = Set[1,2,3]
+
+ ret = set.add(2)
+ assert_same(set, ret)
+ assert_equal(Set[1,2,3], set)
+
+ ret = set.add?(2)
+ assert_nil(ret)
+ assert_equal(Set[1,2,3], set)
+
+ ret = set.add(4)
+ assert_same(set, ret)
+ assert_equal(Set[1,2,3,4], set)
+
+ ret = set.add?(5)
+ assert_same(set, ret)
+ assert_equal(Set[1,2,3,4,5], set)
+ end
+
+ def test_delete
+ set = Set[1,2,3]
+
+ ret = set.delete(4)
+ assert_same(set, ret)
+ assert_equal(Set[1,2,3], set)
+
+ ret = set.delete?(4)
+ assert_nil(ret)
+ assert_equal(Set[1,2,3], set)
+
+ ret = set.delete(2)
+ assert_equal(set, ret)
+ assert_equal(Set[1,3], set)
+
+ ret = set.delete?(1)
+ assert_equal(set, ret)
+ assert_equal(Set[3], set)
+ end
+
+ def test_delete_if
+ set = Set.new(1..10)
+ ret = set.delete_if { |i| i > 10 }
+ assert_same(set, ret)
+ assert_equal(Set.new(1..10), set)
+
+ set = Set.new(1..10)
+ ret = set.delete_if { |i| i % 3 == 0 }
+ assert_same(set, ret)
+ assert_equal(Set[1,2,4,5,7,8,10], set)
+ end
+
+ def test_collect!
+ set = Set[1,2,3,'a','b','c',-1..1,2..4]
+
+ ret = set.collect! { |i|
+ case i
+ when Numeric
+ i * 2
+ when String
+ i.upcase
+ else
+ nil
+ end
+ }
+
+ assert_same(set, ret)
+ assert_equal(Set[2,4,6,'A','B','C',nil], set)
+ end
+
+ def test_reject!
+ set = Set.new(1..10)
+
+ ret = set.reject! { |i| i > 10 }
+ assert_nil(ret)
+ assert_equal(Set.new(1..10), set)
+
+ ret = set.reject! { |i| i % 3 == 0 }
+ assert_same(set, ret)
+ assert_equal(Set[1,2,4,5,7,8,10], set)
+ end
+
+ def test_merge
+ set = Set[1,2,3]
+
+ ret = set.merge([2,4,6])
+ assert_same(set, ret)
+ assert_equal(Set[1,2,3,4,6], set)
+ end
+
+ def test_subtract
+ set = Set[1,2,3]
+
+ ret = set.subtract([2,4,6])
+ assert_same(set, ret)
+ assert_equal(Set[1,3], set)
+ end
+
+ def test_plus
+ set = Set[1,2,3]
+
+ ret = set + [2,4,6]
+ assert_not_same(set, ret)
+ assert_equal(Set[1,2,3,4,6], ret)
+ end
+
+ def test_minus
+ set = Set[1,2,3]
+
+ ret = set - [2,4,6]
+ assert_not_same(set, ret)
+ assert_equal(Set[1,3], ret)
+ end
+
+ def test_and
+ set = Set[1,2,3,4]
+
+ ret = set & [2,4,6]
+ assert_not_same(set, ret)
+ assert_equal(Set[2,4], ret)
+ end
+
+ def test_eq
+ set1 = Set[2,3,1]
+ set2 = Set[1,2,3]
+
+ assert_equal(set1, set1)
+ assert_equal(set1, set2)
+ assert_not_equal(Set[1], [1])
+
+ set1 = Class.new(Set)["a", "b"]
+ set2 = Set["a", "b", set1]
+ set1 = set1.add(set1.clone)
+
+# assert_equal(set1, set2)
+# assert_equal(set2, set1)
+ assert_equal(set2, set2.clone)
+ assert_equal(set1.clone, set1)
+
+ assert_not_equal(Set[Exception.new,nil], Set[Exception.new,Exception.new], "[ruby-dev:26127]")
+ end
+
+ # def test_hash
+ # end
+
+ # def test_eql?
+ # end
+
+ def test_classify
+ set = Set.new(1..10)
+ ret = set.classify { |i| i % 3 }
+
+ assert_equal(3, ret.size)
+ assert_instance_of(Hash, ret)
+ ret.each_value { |value| assert_instance_of(Set, value) }
+ assert_equal(Set[3,6,9], ret[0])
+ assert_equal(Set[1,4,7,10], ret[1])
+ assert_equal(Set[2,5,8], ret[2])
+ end
+
+ def test_divide
+ set = Set.new(1..10)
+ ret = set.divide { |i| i % 3 }
+
+ assert_equal(3, ret.size)
+ n = 0
+ ret.each { |s| n += s.size }
+ assert_equal(set.size, n)
+ assert_equal(set, ret.flatten)
+
+ set = Set[7,10,5,11,1,3,4,9,0]
+ ret = set.divide { |a,b| (a - b).abs == 1 }
+
+ assert_equal(4, ret.size)
+ n = 0
+ ret.each { |s| n += s.size }
+ assert_equal(set.size, n)
+ assert_equal(set, ret.flatten)
+ ret.each { |s|
+ if s.include?(0)
+ assert_equal(Set[0,1], s)
+ elsif s.include?(3)
+ assert_equal(Set[3,4,5], s)
+ elsif s.include?(7)
+ assert_equal(Set[7], s)
+ elsif s.include?(9)
+ assert_equal(Set[9,10,11], s)
+ else
+ raise "unexpected group: #{s.inspect}"
+ end
+ }
+ end
+
+ def test_inspect
+ set1 = Set[1]
+
+ assert_equal('#<Set: {1}>', set1.inspect)
+
+ set2 = Set[Set[0], 1, 2, set1]
+ assert_equal(false, set2.inspect.include?('#<Set: {...}>'))
+
+ set1.add(set2)
+ assert_equal(true, set1.inspect.include?('#<Set: {...}>'))
+ end
+
+ # def test_pretty_print
+ # end
+
+ # def test_pretty_print_cycle
+ # end
+end
+
+class TC_SortedSet < Test::Unit::TestCase
+ def test_sortedset
+ s = SortedSet[4,5,3,1,2]
+
+ assert_equal([1,2,3,4,5], s.to_a)
+
+ prev = nil
+ s.each { |o| assert(prev < o) if prev; prev = o }
+ assert_not_nil(prev)
+
+ s.map! { |o| -2 * o }
+
+ assert_equal([-10,-8,-6,-4,-2], s.to_a)
+
+ prev = nil
+ s.each { |o| assert(prev < o) if prev; prev = o }
+ assert_not_nil(prev)
+
+ s = SortedSet.new([2,1,3]) { |o| o * -2 }
+ assert_equal([-6,-4,-2], s.to_a)
+ end
+end
+
+class TC_Enumerable < Test::Unit::TestCase
+ def test_to_set
+ ary = [2,5,4,3,2,1,3]
+
+ set = ary.to_set
+ assert_instance_of(Set, set)
+ assert_equal([1,2,3,4,5], set.sort)
+
+ set = ary.to_set { |o| o * -2 }
+ assert_instance_of(Set, set)
+ assert_equal([-10,-8,-6,-4,-2], set.sort)
+
+ set = ary.to_set(SortedSet)
+ assert_instance_of(SortedSet, set)
+ assert_equal([1,2,3,4,5], set.to_a)
+
+ set = ary.to_set(SortedSet) { |o| o * -2 }
+ assert_instance_of(SortedSet, set)
+ assert_equal([-10,-8,-6,-4,-2], set.sort)
+ end
+end
+
+# class TC_RestricedSet < Test::Unit::TestCase
+# def test_s_new
+# assert_raises(ArgumentError) { RestricedSet.new }
+#
+# s = RestricedSet.new([-1,2,3]) { |o| o > 0 }
+# assert_equal([2,3], s.sort)
+# end
+#
+# def test_restriction_proc
+# s = RestricedSet.new([-1,2,3]) { |o| o > 0 }
+#
+# f = s.restriction_proc
+# assert_instance_of(Proc, f)
+# assert(f[1])
+# assert(!f[0])
+# end
+#
+# def test_replace
+# s = RestricedSet.new(-3..3) { |o| o > 0 }
+# assert_equal([1,2,3], s.sort)
+#
+# s.replace([-2,0,3,4,5])
+# assert_equal([3,4,5], s.sort)
+# end
+#
+# def test_merge
+# s = RestricedSet.new { |o| o > 0 }
+# s.merge(-5..5)
+# assert_equal([1,2,3,4,5], s.sort)
+#
+# s.merge([10,-10,-8,8])
+# assert_equal([1,2,3,4,5,8,10], s.sort)
+# end
+# end