summaryrefslogtreecommitdiff
path: root/ext/openssl/ossl_kdf.c
diff options
context:
space:
mode:
Diffstat (limited to 'ext/openssl/ossl_kdf.c')
-rw-r--r--ext/openssl/ossl_kdf.c221
1 files changed, 221 insertions, 0 deletions
diff --git a/ext/openssl/ossl_kdf.c b/ext/openssl/ossl_kdf.c
new file mode 100644
index 0000000000..9fa42e174a
--- /dev/null
+++ b/ext/openssl/ossl_kdf.c
@@ -0,0 +1,221 @@
+/*
+ * Ruby/OpenSSL Project
+ * Copyright (C) 2007, 2017 Ruby/OpenSSL Project Authors
+ */
+#include "ossl.h"
+
+static VALUE mKDF, eKDF;
+
+/*
+ * call-seq:
+ * KDF.pbkdf2_hmac(pass, salt:, iterations:, length:, hash:) -> aString
+ *
+ * PKCS #5 PBKDF2 (Password-Based Key Derivation Function 2) in combination
+ * with HMAC. Takes _pass_, _salt_ and _iterations_, and then derives a key
+ * of _length_ bytes.
+ *
+ * For more information about PBKDF2, see RFC 2898 Section 5.2
+ * (https://tools.ietf.org/html/rfc2898#section-5.2).
+ *
+ * === Parameters
+ * pass :: The passphrase.
+ * salt :: The salt. Salts prevent attacks based on dictionaries of common
+ * passwords and attacks based on rainbow tables. It is a public
+ * value that can be safely stored along with the password (e.g.
+ * if the derived value is used for password storage).
+ * iterations :: The iteration count. This provides the ability to tune the
+ * algorithm. It is better to use the highest count possible for
+ * the maximum resistance to brute-force attacks.
+ * length :: The desired length of the derived key in octets.
+ * hash :: The hash algorithm used with HMAC for the PRF. May be a String
+ * representing the algorithm name, or an instance of
+ * OpenSSL::Digest.
+ */
+static VALUE
+kdf_pbkdf2_hmac(int argc, VALUE *argv, VALUE self)
+{
+ VALUE pass, salt, opts, kwargs[4], str;
+ static ID kwargs_ids[4];
+ int iters, len;
+ const EVP_MD *md;
+
+ if (!kwargs_ids[0]) {
+ kwargs_ids[0] = rb_intern_const("salt");
+ kwargs_ids[1] = rb_intern_const("iterations");
+ kwargs_ids[2] = rb_intern_const("length");
+ kwargs_ids[3] = rb_intern_const("hash");
+ }
+ rb_scan_args(argc, argv, "1:", &pass, &opts);
+ rb_get_kwargs(opts, kwargs_ids, 4, 0, kwargs);
+
+ StringValue(pass);
+ salt = StringValue(kwargs[0]);
+ iters = NUM2INT(kwargs[1]);
+ len = NUM2INT(kwargs[2]);
+ md = ossl_evp_get_digestbyname(kwargs[3]);
+
+ str = rb_str_new(0, len);
+ if (!PKCS5_PBKDF2_HMAC(RSTRING_PTR(pass), RSTRING_LENINT(pass),
+ (unsigned char *)RSTRING_PTR(salt),
+ RSTRING_LENINT(salt), iters, md, len,
+ (unsigned char *)RSTRING_PTR(str)))
+ ossl_raise(eKDF, "PKCS5_PBKDF2_HMAC");
+
+ return str;
+}
+
+#if defined(HAVE_EVP_PBE_SCRYPT)
+/*
+ * call-seq:
+ * KDF.scrypt(pass, salt:, N:, r:, p:, length:) -> aString
+ *
+ * Derives a key from _pass_ using given parameters with the scrypt
+ * password-based key derivation function. The result can be used for password
+ * storage.
+ *
+ * scrypt is designed to be memory-hard and more secure against brute-force
+ * attacks using custom hardwares than alternative KDFs such as PBKDF2 or
+ * bcrypt.
+ *
+ * The keyword arguments _N_, _r_ and _p_ can be used to tune scrypt. RFC 7914
+ * (published on 2016-08, https://tools.ietf.org/html/rfc7914#section-2) states
+ * that using values r=8 and p=1 appears to yield good results.
+ *
+ * See RFC 7914 (https://tools.ietf.org/html/rfc7914) for more information.
+ *
+ * === Parameters
+ * pass :: Passphrase.
+ * salt :: Salt.
+ * N :: CPU/memory cost parameter. This must be a power of 2.
+ * r :: Block size parameter.
+ * p :: Parallelization parameter.
+ * length :: Length in octets of the derived key.
+ *
+ * === Example
+ * pass = "password"
+ * salt = SecureRandom.random_bytes(16)
+ * dk = OpenSSL::KDF.scrypt(pass, salt: salt, N: 2**14, r: 8, p: 1, length: 32)
+ * p dk #=> "\xDA\xE4\xE2...\x7F\xA1\x01T"
+ */
+static VALUE
+kdf_scrypt(int argc, VALUE *argv, VALUE self)
+{
+ VALUE pass, salt, opts, kwargs[5], str;
+ static ID kwargs_ids[5];
+ size_t len;
+ uint64_t N, r, p, maxmem;
+
+ if (!kwargs_ids[0]) {
+ kwargs_ids[0] = rb_intern_const("salt");
+ kwargs_ids[1] = rb_intern_const("N");
+ kwargs_ids[2] = rb_intern_const("r");
+ kwargs_ids[3] = rb_intern_const("p");
+ kwargs_ids[4] = rb_intern_const("length");
+ }
+ rb_scan_args(argc, argv, "1:", &pass, &opts);
+ rb_get_kwargs(opts, kwargs_ids, 5, 0, kwargs);
+
+ StringValue(pass);
+ salt = StringValue(kwargs[0]);
+ N = NUM2UINT64T(kwargs[1]);
+ r = NUM2UINT64T(kwargs[2]);
+ p = NUM2UINT64T(kwargs[3]);
+ len = NUM2LONG(kwargs[4]);
+ /*
+ * OpenSSL uses 32MB by default (if zero is specified), which is too small.
+ * Let's not limit memory consumption but just let malloc() fail inside
+ * OpenSSL. The amount is controllable by other parameters.
+ */
+ maxmem = SIZE_MAX;
+
+ str = rb_str_new(0, len);
+ if (!EVP_PBE_scrypt(RSTRING_PTR(pass), RSTRING_LEN(pass),
+ (unsigned char *)RSTRING_PTR(salt), RSTRING_LEN(salt),
+ N, r, p, maxmem, (unsigned char *)RSTRING_PTR(str), len))
+ ossl_raise(eKDF, "EVP_PBE_scrypt");
+
+ return str;
+}
+#endif
+
+void
+Init_ossl_kdf(void)
+{
+#if 0
+ mOSSL = rb_define_module("OpenSSL");
+ eOSSLError = rb_define_class_under(mOSSL, "OpenSSLError", rb_eStandardError);
+#endif
+
+ /*
+ * Document-module: OpenSSL::KDF
+ *
+ * Provides functionality of various KDFs (key derivation function).
+ *
+ * KDF is typically used for securely deriving arbitrary length symmetric
+ * keys to be used with an OpenSSL::Cipher from passwords. Another use case
+ * is for storing passwords: Due to the ability to tweak the effort of
+ * computation by increasing the iteration count, computation can be slowed
+ * down artificially in order to render possible attacks infeasible.
+ *
+ * Currently, OpenSSL::KDF provides implementations for the following KDF:
+ *
+ * * PKCS #5 PBKDF2 (Password-Based Key Derivation Function 2) in
+ * combination with HMAC
+ * * scrypt
+ *
+ * == Examples
+ * === Generating a 128 bit key for a Cipher (e.g. AES)
+ * pass = "secret"
+ * salt = OpenSSL::Random.random_bytes(16)
+ * iter = 20_000
+ * key_len = 16
+ * key = OpenSSL::KDF.pbkdf2_hmac(pass, salt: salt, iterations: iter,
+ * length: key_len, hash: "sha1")
+ *
+ * === Storing Passwords
+ * pass = "secret"
+ * # store this with the generated value
+ * salt = OpenSSL::Random.random_bytes(16)
+ * iter = 20_000
+ * hash = OpenSSL::Digest::SHA256.new
+ * len = hash.digest_length
+ * # the final value to be stored
+ * value = OpenSSL::KDF.pbkdf2_hmac(pass, salt: salt, iterations: iter,
+ * length: len, hash: hash)
+ *
+ * == Important Note on Checking Passwords
+ * When comparing passwords provided by the user with previously stored
+ * values, a common mistake made is comparing the two values using "==".
+ * Typically, "==" short-circuits on evaluation, and is therefore
+ * vulnerable to timing attacks. The proper way is to use a method that
+ * always takes the same amount of time when comparing two values, thus
+ * not leaking any information to potential attackers. To compare two
+ * values, the following could be used:
+ *
+ * def eql_time_cmp(a, b)
+ * unless a.length == b.length
+ * return false
+ * end
+ * cmp = b.bytes
+ * result = 0
+ * a.bytes.each_with_index {|c,i|
+ * result |= c ^ cmp[i]
+ * }
+ * result == 0
+ * end
+ *
+ * Please note that the premature return in case of differing lengths
+ * typically does not leak valuable information - when using PBKDF2, the
+ * length of the values to be compared is of fixed size.
+ */
+ mKDF = rb_define_module_under(mOSSL, "KDF");
+ /*
+ * Generic exception class raised if an error occurs in OpenSSL::KDF module.
+ */
+ eKDF = rb_define_class_under(mKDF, "KDFError", eOSSLError);
+
+ rb_define_module_function(mKDF, "pbkdf2_hmac", kdf_pbkdf2_hmac, -1);
+#if defined(HAVE_EVP_PBE_SCRYPT)
+ rb_define_module_function(mKDF, "scrypt", kdf_scrypt, -1);
+#endif
+}