summaryrefslogtreecommitdiff
path: root/trunk/proc.c
diff options
context:
space:
mode:
authoryugui <yugui@b2dd03c8-39d4-4d8f-98ff-823fe69b080e>2008-08-25 15:02:05 +0000
committeryugui <yugui@b2dd03c8-39d4-4d8f-98ff-823fe69b080e>2008-08-25 15:02:05 +0000
commit0dc342de848a642ecce8db697b8fecd83a63e117 (patch)
tree2b7ed4724aff1f86073e4740134bda9c4aac1a39 /trunk/proc.c
parentef70cf7138ab8034b5b806f466e4b484b24f0f88 (diff)
added tag v1_9_0_4
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/tags/v1_9_0_4@18845 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
Diffstat (limited to 'trunk/proc.c')
-rw-r--r--trunk/proc.c1867
1 files changed, 1867 insertions, 0 deletions
diff --git a/trunk/proc.c b/trunk/proc.c
new file mode 100644
index 0000000000..710ab065d1
--- /dev/null
+++ b/trunk/proc.c
@@ -0,0 +1,1867 @@
+/**********************************************************************
+
+ proc.c - Proc, Binding, Env
+
+ $Author$
+ created at: Wed Jan 17 12:13:14 2007
+
+ Copyright (C) 2004-2007 Koichi Sasada
+
+**********************************************************************/
+
+#include "eval_intern.h"
+#include "gc.h"
+
+struct METHOD {
+ VALUE oclass; /* class that holds the method */
+ VALUE rclass; /* class of the receiver */
+ VALUE recv;
+ ID id, oid;
+ NODE *body;
+};
+
+VALUE rb_cUnboundMethod;
+VALUE rb_cMethod;
+VALUE rb_cBinding;
+VALUE rb_cProc;
+
+static VALUE bmcall(VALUE, VALUE);
+static int method_arity(VALUE);
+static VALUE rb_obj_is_method(VALUE m);
+
+/* Proc */
+
+static void
+proc_free(void *ptr)
+{
+ RUBY_FREE_ENTER("proc");
+ if (ptr) {
+ ruby_xfree(ptr);
+ }
+ RUBY_FREE_LEAVE("proc");
+}
+
+static void
+proc_mark(void *ptr)
+{
+ rb_proc_t *proc;
+ RUBY_MARK_ENTER("proc");
+ if (ptr) {
+ proc = ptr;
+ RUBY_MARK_UNLESS_NULL(proc->envval);
+ RUBY_MARK_UNLESS_NULL(proc->blockprocval);
+ RUBY_MARK_UNLESS_NULL(proc->block.proc);
+ RUBY_MARK_UNLESS_NULL(proc->block.self);
+ if (proc->block.iseq && RUBY_VM_IFUNC_P(proc->block.iseq)) {
+ RUBY_MARK_UNLESS_NULL((VALUE)(proc->block.iseq));
+ }
+ }
+ RUBY_MARK_LEAVE("proc");
+}
+
+VALUE
+rb_proc_alloc(VALUE klass)
+{
+ VALUE obj;
+ rb_proc_t *proc;
+ obj = Data_Make_Struct(klass, rb_proc_t, proc_mark, proc_free, proc);
+ MEMZERO(proc, rb_proc_t, 1);
+ return obj;
+}
+
+VALUE
+rb_obj_is_proc(VALUE proc)
+{
+ if (TYPE(proc) == T_DATA &&
+ RDATA(proc)->dfree == (RUBY_DATA_FUNC) proc_free) {
+ return Qtrue;
+ }
+ else {
+ return Qfalse;
+ }
+}
+
+static VALUE
+proc_dup(VALUE self)
+{
+ VALUE procval = rb_proc_alloc(rb_cProc);
+ rb_proc_t *src, *dst;
+ GetProcPtr(self, src);
+ GetProcPtr(procval, dst);
+
+ dst->block = src->block;
+ dst->block.proc = procval;
+ dst->envval = src->envval;
+ dst->safe_level = src->safe_level;
+ dst->is_lambda = src->is_lambda;
+
+ return procval;
+}
+
+static VALUE
+proc_clone(VALUE self)
+{
+ VALUE procval = proc_dup(self);
+ CLONESETUP(procval, self);
+ return procval;
+}
+
+/*
+ * call-seq:
+ * prc.lambda? => true or false
+ *
+ * Returns true for a Proc object which argument handling is rigid.
+ * Such procs are typically generated by lambda.
+ *
+ * A Proc object generated by proc ignore extra arguments.
+ *
+ * proc {|a,b| [a,b] }.call(1,2,3) => [1,2]
+ *
+ * It provides nil for lacked arguments.
+ *
+ * proc {|a,b| [a,b] }.call(1) => [1,nil]
+ *
+ * It expand single-array argument.
+ *
+ * proc {|a,b| [a,b] }.call([1,2]) => [1,2]
+ *
+ * A Proc object generated by lambda doesn't have such tricks.
+ *
+ * lambda {|a,b| [a,b] }.call(1,2,3) => ArgumentError
+ * lambda {|a,b| [a,b] }.call(1) => ArgumentError
+ * lambda {|a,b| [a,b] }.call([1,2]) => ArgumentError
+ *
+ * Proc#lambda? is a predicate for the tricks.
+ * It returns true if no tricks.
+ *
+ * lambda {}.lambda? => true
+ * proc {}.lambda? => false
+ *
+ * Proc.new is same as proc.
+ *
+ * Proc.new {}.lambda? => false
+ *
+ * lambda, proc and Proc.new preserves the tricks of
+ * a Proc object given by & argument.
+ *
+ * lambda(&lambda {}).lambda? => true
+ * proc(&lambda {}).lambda? => true
+ * Proc.new(&lambda {}).lambda? => true
+ *
+ * lambda(&proc {}).lambda? => false
+ * proc(&proc {}).lambda? => false
+ * Proc.new(&proc {}).lambda? => false
+ *
+ * A Proc object generated by & argument has the tricks
+ *
+ * def n(&b) b.lambda? end
+ * n {} => false
+ *
+ * The & argument preserves the tricks if a Proc object is given
+ * by & argument.
+ *
+ * n(&lambda {}) => true
+ * n(&proc {}) => false
+ * n(&Proc.new {}) => false
+ *
+ * A Proc object converted from a method has no tricks.
+ *
+ * def m() end
+ * method(:m).to_proc.lambda? => true
+ *
+ * n(&method(:m)) => true
+ * n(&method(:m).to_proc) => true
+ *
+ * define_method is treated same as method definition.
+ * The defined method has no tricks.
+ *
+ * class C
+ * define_method(:d) {}
+ * end
+ * C.new.e(1,2) => ArgumentError
+ * C.new.method(:d).to_proc.lambda? => true
+ *
+ * define_method always defines a method without the tricks,
+ * even if a non-lambda Proc object is given.
+ * This is the only exception which the tricks are not preserved.
+ *
+ * class C
+ * define_method(:e, &proc {})
+ * end
+ * C.new.e(1,2) => ArgumentError
+ * C.new.method(:e).to_proc.lambda? => true
+ *
+ * This exception is for a wrapper of define_method.
+ * It eases defining a method defining method which defines a usual method which has no tricks.
+ *
+ * class << C
+ * def def2(name, &body)
+ * define_method(name, &body)
+ * end
+ * end
+ * class C
+ * def2(:f) {}
+ * end
+ * C.new.f(1,2) => ArgumentError
+ *
+ * The wrapper, def2, defines a method which has no tricks.
+ *
+ */
+
+static VALUE
+proc_lambda_p(VALUE procval)
+{
+ rb_proc_t *proc;
+ GetProcPtr(procval, proc);
+
+ return proc->is_lambda ? Qtrue : Qfalse;
+}
+
+/* Binding */
+
+static void
+binding_free(void *ptr)
+{
+ rb_binding_t *bind;
+ RUBY_FREE_ENTER("binding");
+ if (ptr) {
+ bind = ptr;
+ ruby_xfree(ptr);
+ }
+ RUBY_FREE_LEAVE("binding");
+}
+
+static void
+binding_mark(void *ptr)
+{
+ rb_binding_t *bind;
+ RUBY_MARK_ENTER("binding");
+ if (ptr) {
+ bind = ptr;
+ RUBY_MARK_UNLESS_NULL(bind->env);
+ }
+ RUBY_MARK_LEAVE("binding");
+}
+
+static VALUE
+binding_alloc(VALUE klass)
+{
+ VALUE obj;
+ rb_binding_t *bind;
+ obj = Data_Make_Struct(klass, rb_binding_t, binding_mark, binding_free, bind);
+ return obj;
+}
+
+static VALUE
+binding_dup(VALUE self)
+{
+ VALUE bindval = binding_alloc(rb_cBinding);
+ rb_binding_t *src, *dst;
+ GetBindingPtr(self, src);
+ GetBindingPtr(bindval, dst);
+ dst->env = src->env;
+ return bindval;
+}
+
+static VALUE
+binding_clone(VALUE self)
+{
+ VALUE bindval = binding_dup(self);
+ CLONESETUP(bindval, self);
+ return bindval;
+}
+
+rb_control_frame_t *vm_get_ruby_level_next_cfp(rb_thread_t *th, rb_control_frame_t *cfp);
+
+VALUE
+rb_binding_new(void)
+{
+ rb_thread_t *th = GET_THREAD();
+ rb_control_frame_t *cfp = vm_get_ruby_level_next_cfp(th, th->cfp);
+ VALUE bindval = binding_alloc(rb_cBinding);
+ rb_binding_t *bind;
+
+ if (cfp == 0) {
+ rb_raise(rb_eRuntimeError, "Can't create Binding Object on top of Fiber.");
+ }
+
+ GetBindingPtr(bindval, bind);
+ bind->env = vm_make_env_object(th, cfp);
+ return bindval;
+}
+
+/*
+ * call-seq:
+ * binding -> a_binding
+ *
+ * Returns a +Binding+ object, describing the variable and
+ * method bindings at the point of call. This object can be used when
+ * calling +eval+ to execute the evaluated command in this
+ * environment. Also see the description of class +Binding+.
+ *
+ * def getBinding(param)
+ * return binding
+ * end
+ * b = getBinding("hello")
+ * eval("param", b) #=> "hello"
+ */
+
+static VALUE
+rb_f_binding(VALUE self)
+{
+ return rb_binding_new();
+}
+
+/*
+ * call-seq:
+ * binding.eval(string [, filename [,lineno]]) => obj
+ *
+ * Evaluates the Ruby expression(s) in <em>string</em>, in the
+ * <em>binding</em>'s context. If the optional <em>filename</em> and
+ * <em>lineno</em> parameters are present, they will be used when
+ * reporting syntax errors.
+ *
+ * def getBinding(param)
+ * return binding
+ * end
+ * b = getBinding("hello")
+ * b.eval("param") #=> "hello"
+ */
+
+static VALUE
+bind_eval(int argc, VALUE *argv, VALUE bindval)
+{
+ VALUE args[4];
+
+ rb_scan_args(argc, argv, "12", &args[0], &args[2], &args[3]);
+ args[1] = bindval;
+ return rb_f_eval(argc+1, args, Qnil /* self will be searched in eval */);
+}
+
+static VALUE
+proc_new(VALUE klass, int is_lambda)
+{
+ VALUE procval = Qnil;
+ rb_thread_t *th = GET_THREAD();
+ rb_control_frame_t *cfp = th->cfp;
+ rb_block_t *block;
+
+ if ((GC_GUARDED_PTR_REF(cfp->lfp[0])) != 0 &&
+ !RUBY_VM_CLASS_SPECIAL_P(cfp->lfp[0])) {
+
+ block = GC_GUARDED_PTR_REF(cfp->lfp[0]);
+ cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
+ }
+ else {
+ cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
+
+ if ((GC_GUARDED_PTR_REF(cfp->lfp[0])) != 0 &&
+ !RUBY_VM_CLASS_SPECIAL_P(cfp->lfp[0])) {
+
+ block = GC_GUARDED_PTR_REF(cfp->lfp[0]);
+
+ if (block->proc) {
+ return block->proc;
+ }
+
+ /* TODO: check more (cfp limit, called via cfunc, etc) */
+ while (cfp->dfp != block->dfp) {
+ cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
+ }
+
+ if (is_lambda) {
+ rb_warn("tried to create Proc object without a block");
+ }
+ }
+ else {
+ rb_raise(rb_eArgError,
+ "tried to create Proc object without a block");
+ }
+ }
+
+ procval = block->proc;
+ if (procval && RBASIC(procval)->klass == klass) {
+ return procval;
+ }
+
+ procval = vm_make_proc(th, cfp, block, klass);
+
+ if (is_lambda) {
+ rb_proc_t *proc;
+ GetProcPtr(procval, proc);
+ proc->is_lambda = Qtrue;
+ }
+ return procval;
+}
+
+/*
+ * call-seq:
+ * Proc.new {|...| block } => a_proc
+ * Proc.new => a_proc
+ *
+ * Creates a new <code>Proc</code> object, bound to the current
+ * context. <code>Proc::new</code> may be called without a block only
+ * within a method with an attached block, in which case that block is
+ * converted to the <code>Proc</code> object.
+ *
+ * def proc_from
+ * Proc.new
+ * end
+ * proc = proc_from { "hello" }
+ * proc.call #=> "hello"
+ */
+
+static VALUE
+rb_proc_s_new(int argc, VALUE *argv, VALUE klass)
+{
+ VALUE block = proc_new(klass, Qfalse);
+
+ rb_obj_call_init(block, argc, argv);
+ return block;
+}
+
+/*
+ * call-seq:
+ * proc { |...| block } => a_proc
+ *
+ * Equivalent to <code>Proc.new</code>.
+ */
+
+VALUE
+rb_block_proc(void)
+{
+ return proc_new(rb_cProc, Qfalse);
+}
+
+VALUE
+rb_block_lambda(void)
+{
+ return proc_new(rb_cProc, Qtrue);
+}
+
+VALUE
+rb_f_lambda(void)
+{
+ rb_warn("rb_f_lambda() is deprecated; use rb_block_proc() instead");
+ return rb_block_lambda();
+}
+
+/*
+ * call-seq:
+ * lambda { |...| block } => a_proc
+ *
+ * Equivalent to <code>Proc.new</code>, except the resulting Proc objects
+ * check the number of parameters passed when called.
+ */
+
+static VALUE
+proc_lambda(void)
+{
+ return rb_block_lambda();
+}
+
+/* CHECKME: are the argument checking semantics correct? */
+
+/*
+ * call-seq:
+ * prc.call(params,...) => obj
+ * prc[params,...] => obj
+ *
+ * Invokes the block, setting the block's parameters to the values in
+ * <i>params</i> using something close to method calling semantics.
+ * Generates a warning if multiple values are passed to a proc that
+ * expects just one (previously this silently converted the parameters
+ * to an array).
+ *
+ * For procs created using <code>Kernel.proc</code>, generates an
+ * error if the wrong number of parameters
+ * are passed to a proc with multiple parameters. For procs created using
+ * <code>Proc.new</code>, extra parameters are silently discarded.
+ *
+ * Returns the value of the last expression evaluated in the block. See
+ * also <code>Proc#yield</code>.
+ *
+ * a_proc = Proc.new {|a, *b| b.collect {|i| i*a }}
+ * a_proc.call(9, 1, 2, 3) #=> [9, 18, 27]
+ * a_proc[9, 1, 2, 3] #=> [9, 18, 27]
+ * a_proc = Proc.new {|a,b| a}
+ * a_proc.call(1,2,3)
+ *
+ * <em>produces:</em>
+ *
+ * prog.rb:5: wrong number of arguments (3 for 2) (ArgumentError)
+ * from prog.rb:4:in `call'
+ * from prog.rb:5
+ */
+
+static VALUE
+proc_call(int argc, VALUE *argv, VALUE procval)
+{
+ rb_proc_t *proc;
+ rb_block_t *blockptr = 0;
+ GetProcPtr(procval, proc);
+
+ if (BUILTIN_TYPE(proc->block.iseq) == T_NODE ||
+ proc->block.iseq->arg_block != -1) {
+
+ if (rb_block_given_p()) {
+ rb_proc_t *proc;
+ VALUE procval;
+ procval = rb_block_proc();
+ GetProcPtr(procval, proc);
+ blockptr = &proc->block;
+ }
+ }
+
+ return vm_invoke_proc(GET_THREAD(), proc, proc->block.self,
+ argc, argv, blockptr);
+}
+
+VALUE
+rb_proc_call(VALUE self, VALUE args)
+{
+ rb_proc_t *proc;
+ GetProcPtr(self, proc);
+ return vm_invoke_proc(GET_THREAD(), proc, proc->block.self,
+ RARRAY_LEN(args), RARRAY_PTR(args), 0);
+}
+
+VALUE
+rb_proc_call_with_block(VALUE self, int argc, VALUE *argv, VALUE pass_procval)
+{
+ rb_proc_t *proc;
+ rb_block_t *block = 0;
+ GetProcPtr(self, proc);
+
+ if (!NIL_P(pass_procval)) {
+ rb_proc_t *pass_proc;
+ GetProcPtr(pass_procval, pass_proc);
+ block = &pass_proc->block;
+ }
+
+ return vm_invoke_proc(GET_THREAD(), proc, proc->block.self,
+ argc, argv, block);
+}
+
+/*
+ * call-seq:
+ * prc.arity -> fixnum
+ *
+ * Returns the number of arguments that would not be ignored. If the block
+ * is declared to take no arguments, returns 0. If the block is known
+ * to take exactly n arguments, returns n. If the block has optional
+ * arguments, return -n-1, where n is the number of mandatory
+ * arguments. A <code>proc</code> with no argument declarations
+ * is the same a block declaring <code>||</code> as its arguments.
+ *
+ * Proc.new {}.arity #=> 0
+ * Proc.new {||}.arity #=> 0
+ * Proc.new {|a|}.arity #=> 1
+ * Proc.new {|a,b|}.arity #=> 2
+ * Proc.new {|a,b,c|}.arity #=> 3
+ * Proc.new {|*a|}.arity #=> -1
+ * Proc.new {|a,*b|}.arity #=> -2
+ * Proc.new {|a,*b, c|}.arity #=> -3
+ */
+
+static VALUE
+proc_arity(VALUE self)
+{
+ rb_proc_t *proc;
+ rb_iseq_t *iseq;
+ GetProcPtr(self, proc);
+ iseq = proc->block.iseq;
+ if (iseq) {
+ if (BUILTIN_TYPE(iseq) != T_NODE) {
+ if (iseq->arg_rest < 0) {
+ return INT2FIX(iseq->argc);
+ }
+ else {
+ return INT2FIX(-(iseq->argc + 1 + iseq->arg_post_len));
+ }
+ }
+ else {
+ NODE *node = (NODE *)iseq;
+ if (nd_type(node) == NODE_IFUNC && node->nd_cfnc == bmcall) {
+ /* method(:foo).to_proc.arity */
+ return INT2FIX(method_arity(node->nd_tval));
+ }
+ }
+ }
+ return INT2FIX(-1);
+}
+
+int
+rb_proc_arity(VALUE proc)
+{
+ return FIX2INT(proc_arity(proc));
+}
+
+static rb_iseq_t *
+get_proc_iseq(VALUE self)
+{
+ rb_proc_t *proc;
+ rb_iseq_t *iseq;
+
+ GetProcPtr(self, proc);
+ iseq = proc->block.iseq;
+ if (!RUBY_VM_NORMAL_ISEQ_P(iseq))
+ return 0;
+ return iseq;
+}
+
+VALUE
+rb_proc_location(VALUE self)
+{
+ rb_iseq_t *iseq = get_proc_iseq(self);
+ VALUE loc[2];
+
+ if (!iseq) return Qnil;
+ loc[0] = iseq->filename;
+ if (iseq->insn_info_table) {
+ loc[1] = INT2FIX(iseq->insn_info_table[0].line_no);
+ }
+ else {
+ loc[1] = Qnil;
+ }
+ return rb_ary_new4(2, loc);
+}
+
+/*
+ * call-seq:
+ * prc == other_proc => true or false
+ *
+ * Return <code>true</code> if <i>prc</i> is the same object as
+ * <i>other_proc</i>, or if they are both procs with the same body.
+ */
+
+static VALUE
+proc_eq(VALUE self, VALUE other)
+{
+ if (self == other) {
+ return Qtrue;
+ }
+ else {
+ if (TYPE(other) == T_DATA &&
+ RBASIC(other)->klass == rb_cProc &&
+ CLASS_OF(self) == CLASS_OF(other)) {
+ rb_proc_t *p1, *p2;
+ GetProcPtr(self, p1);
+ GetProcPtr(other, p2);
+ if (p1->block.iseq == p2->block.iseq && p1->envval == p2->envval) {
+ return Qtrue;
+ }
+ }
+ }
+ return Qfalse;
+}
+
+/*
+ * call-seq:
+ * prc.hash => integer
+ *
+ * Return hash value corresponding to proc body.
+ */
+
+static VALUE
+proc_hash(VALUE self)
+{
+ int hash;
+ rb_proc_t *proc;
+ GetProcPtr(self, proc);
+ hash = (long)proc->block.iseq;
+ hash ^= (long)proc->envval;
+ hash ^= (long)proc->block.lfp >> 16;
+ return INT2FIX(hash);
+}
+
+/*
+ * call-seq:
+ * prc.to_s => string
+ *
+ * Shows the unique identifier for this proc, along with
+ * an indication of where the proc was defined.
+ */
+
+static VALUE
+proc_to_s(VALUE self)
+{
+ VALUE str = 0;
+ rb_proc_t *proc;
+ const char *cname = rb_obj_classname(self);
+ rb_iseq_t *iseq;
+ const char *is_lambda;
+
+ GetProcPtr(self, proc);
+ iseq = proc->block.iseq;
+ is_lambda = proc->is_lambda ? " (lambda)" : "";
+
+ if (RUBY_VM_NORMAL_ISEQ_P(iseq)) {
+ int line_no = 0;
+
+ if (iseq->insn_info_table) {
+ line_no = iseq->insn_info_table[0].line_no;
+ }
+ str = rb_sprintf("#<%s:%p@%s:%d%s>", cname, (void *)self,
+ RSTRING_PTR(iseq->filename),
+ line_no, is_lambda);
+ }
+ else {
+ str = rb_sprintf("#<%s:%p%s>", cname, proc->block.iseq,
+ is_lambda);
+ }
+
+ if (OBJ_TAINTED(self)) {
+ OBJ_TAINT(str);
+ }
+ return str;
+}
+
+/*
+ * call-seq:
+ * prc.to_proc -> prc
+ *
+ * Part of the protocol for converting objects to <code>Proc</code>
+ * objects. Instances of class <code>Proc</code> simply return
+ * themselves.
+ */
+
+static VALUE
+proc_to_proc(VALUE self)
+{
+ return self;
+}
+
+static void
+bm_mark(struct METHOD *data)
+{
+ rb_gc_mark(data->rclass);
+ rb_gc_mark(data->oclass);
+ rb_gc_mark(data->recv);
+ rb_gc_mark((VALUE)data->body);
+}
+
+NODE *
+rb_method_body(VALUE method)
+{
+ struct METHOD *data;
+
+ if (TYPE(method) == T_DATA &&
+ RDATA(method)->dmark == (RUBY_DATA_FUNC) bm_mark) {
+ Data_Get_Struct(method, struct METHOD, data);
+ return data->body;
+ }
+ else {
+ return 0;
+ }
+}
+
+NODE *rb_get_method_body(VALUE klass, ID id, ID *idp);
+
+static VALUE
+mnew(VALUE klass, VALUE obj, ID id, VALUE mclass, int scope)
+{
+ VALUE method;
+ NODE *body;
+ struct METHOD *data;
+ VALUE rclass = klass;
+ ID oid = id;
+
+ again:
+ if ((body = rb_get_method_body(klass, id, 0)) == 0) {
+ rb_print_undef(rclass, oid, 0);
+ }
+ if (scope && (body->nd_noex & NOEX_MASK) != NOEX_PUBLIC) {
+ rb_print_undef(rclass, oid, (body->nd_noex & NOEX_MASK));
+ }
+
+ klass = body->nd_clss;
+ body = body->nd_body;
+
+ if (nd_type(body) == NODE_ZSUPER) {
+ klass = RCLASS_SUPER(klass);
+ goto again;
+ }
+
+ while (rclass != klass &&
+ (FL_TEST(rclass, FL_SINGLETON) || TYPE(rclass) == T_ICLASS)) {
+ rclass = RCLASS_SUPER(rclass);
+ }
+ if (TYPE(klass) == T_ICLASS)
+ klass = RBASIC(klass)->klass;
+ method = Data_Make_Struct(mclass, struct METHOD, bm_mark, -1, data);
+ data->oclass = klass;
+ data->recv = obj;
+
+ data->id = id;
+ data->body = body;
+ data->rclass = rclass;
+ data->oid = oid;
+ OBJ_INFECT(method, klass);
+
+ return method;
+}
+
+
+/**********************************************************************
+ *
+ * Document-class : Method
+ *
+ * Method objects are created by <code>Object#method</code>, and are
+ * associated with a particular object (not just with a class). They
+ * may be used to invoke the method within the object, and as a block
+ * associated with an iterator. They may also be unbound from one
+ * object (creating an <code>UnboundMethod</code>) and bound to
+ * another.
+ *
+ * class Thing
+ * def square(n)
+ * n*n
+ * end
+ * end
+ * thing = Thing.new
+ * meth = thing.method(:square)
+ *
+ * meth.call(9) #=> 81
+ * [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9]
+ *
+ */
+
+/*
+ * call-seq:
+ * meth == other_meth => true or false
+ *
+ * Two method objects are equal if that are bound to the same
+ * object and contain the same body.
+ */
+
+
+static VALUE
+method_eq(VALUE method, VALUE other)
+{
+ struct METHOD *m1, *m2;
+
+ if (TYPE(other) != T_DATA
+ || RDATA(other)->dmark != (RUBY_DATA_FUNC) bm_mark)
+ return Qfalse;
+ if (CLASS_OF(method) != CLASS_OF(other))
+ return Qfalse;
+
+ Data_Get_Struct(method, struct METHOD, m1);
+ Data_Get_Struct(other, struct METHOD, m2);
+
+ if (m1->oclass != m2->oclass || m1->rclass != m2->rclass ||
+ m1->recv != m2->recv || m1->body != m2->body)
+ return Qfalse;
+
+ return Qtrue;
+}
+
+/*
+ * call-seq:
+ * meth.hash => integer
+ *
+ * Return a hash value corresponding to the method object.
+ */
+
+static VALUE
+method_hash(VALUE method)
+{
+ struct METHOD *m;
+ long hash;
+
+ Data_Get_Struct(method, struct METHOD, m);
+ hash = (long)m->oclass;
+ hash ^= (long)m->rclass;
+ hash ^= (long)m->recv;
+ hash ^= (long)m->body;
+
+ return INT2FIX(hash);
+}
+
+/*
+ * call-seq:
+ * meth.unbind => unbound_method
+ *
+ * Dissociates <i>meth</i> from it's current receiver. The resulting
+ * <code>UnboundMethod</code> can subsequently be bound to a new object
+ * of the same class (see <code>UnboundMethod</code>).
+ */
+
+static VALUE
+method_unbind(VALUE obj)
+{
+ VALUE method;
+ struct METHOD *orig, *data;
+
+ Data_Get_Struct(obj, struct METHOD, orig);
+ method =
+ Data_Make_Struct(rb_cUnboundMethod, struct METHOD, bm_mark, -1, data);
+ data->oclass = orig->oclass;
+ data->recv = Qundef;
+ data->id = orig->id;
+ data->body = orig->body;
+ data->rclass = orig->rclass;
+ data->oid = orig->oid;
+ OBJ_INFECT(method, obj);
+
+ return method;
+}
+
+/*
+ * call-seq:
+ * meth.receiver => object
+ *
+ * Returns the bound receiver of the method object.
+ */
+
+static VALUE
+method_receiver(VALUE obj)
+{
+ struct METHOD *data;
+
+ Data_Get_Struct(obj, struct METHOD, data);
+ return data->recv;
+}
+
+/*
+ * call-seq:
+ * meth.name => symbol
+ *
+ * Returns the name of the method.
+ */
+
+static VALUE
+method_name(VALUE obj)
+{
+ struct METHOD *data;
+
+ Data_Get_Struct(obj, struct METHOD, data);
+ return ID2SYM(data->id);
+}
+
+/*
+ * call-seq:
+ * meth.owner => class_or_module
+ *
+ * Returns the class or module that defines the method.
+ */
+
+static VALUE
+method_owner(VALUE obj)
+{
+ struct METHOD *data;
+
+ Data_Get_Struct(obj, struct METHOD, data);
+ return data->oclass;
+}
+
+/*
+ * call-seq:
+ * obj.method(sym) => method
+ *
+ * Looks up the named method as a receiver in <i>obj</i>, returning a
+ * <code>Method</code> object (or raising <code>NameError</code>). The
+ * <code>Method</code> object acts as a closure in <i>obj</i>'s object
+ * instance, so instance variables and the value of <code>self</code>
+ * remain available.
+ *
+ * class Demo
+ * def initialize(n)
+ * @iv = n
+ * end
+ * def hello()
+ * "Hello, @iv = #{@iv}"
+ * end
+ * end
+ *
+ * k = Demo.new(99)
+ * m = k.method(:hello)
+ * m.call #=> "Hello, @iv = 99"
+ *
+ * l = Demo.new('Fred')
+ * m = l.method("hello")
+ * m.call #=> "Hello, @iv = Fred"
+ */
+
+VALUE
+rb_obj_method(VALUE obj, VALUE vid)
+{
+ return mnew(CLASS_OF(obj), obj, rb_to_id(vid), rb_cMethod, Qfalse);
+}
+
+VALUE
+rb_obj_public_method(VALUE obj, VALUE vid)
+{
+ return mnew(CLASS_OF(obj), obj, rb_to_id(vid), rb_cMethod, Qtrue);
+}
+
+/*
+ * call-seq:
+ * mod.instance_method(symbol) => unbound_method
+ *
+ * Returns an +UnboundMethod+ representing the given
+ * instance method in _mod_.
+ *
+ * class Interpreter
+ * def do_a() print "there, "; end
+ * def do_d() print "Hello "; end
+ * def do_e() print "!\n"; end
+ * def do_v() print "Dave"; end
+ * Dispatcher = {
+ * ?a => instance_method(:do_a),
+ * ?d => instance_method(:do_d),
+ * ?e => instance_method(:do_e),
+ * ?v => instance_method(:do_v)
+ * }
+ * def interpret(string)
+ * string.each_byte {|b| Dispatcher[b].bind(self).call }
+ * end
+ * end
+ *
+ *
+ * interpreter = Interpreter.new
+ * interpreter.interpret('dave')
+ *
+ * <em>produces:</em>
+ *
+ * Hello there, Dave!
+ */
+
+static VALUE
+rb_mod_instance_method(VALUE mod, VALUE vid)
+{
+ return mnew(mod, Qundef, rb_to_id(vid), rb_cUnboundMethod, Qfalse);
+}
+
+static VALUE
+rb_mod_public_instance_method(VALUE mod, VALUE vid)
+{
+ return mnew(mod, Qundef, rb_to_id(vid), rb_cUnboundMethod, Qtrue);
+}
+
+/*
+ * call-seq:
+ * define_method(symbol, method) => new_method
+ * define_method(symbol) { block } => proc
+ *
+ * Defines an instance method in the receiver. The _method_
+ * parameter can be a +Proc+ or +Method+ object.
+ * If a block is specified, it is used as the method body. This block
+ * is evaluated using <code>instance_eval</code>, a point that is
+ * tricky to demonstrate because <code>define_method</code> is private.
+ * (This is why we resort to the +send+ hack in this example.)
+ *
+ * class A
+ * def fred
+ * puts "In Fred"
+ * end
+ * def create_method(name, &block)
+ * self.class.send(:define_method, name, &block)
+ * end
+ * define_method(:wilma) { puts "Charge it!" }
+ * end
+ * class B < A
+ * define_method(:barney, instance_method(:fred))
+ * end
+ * a = B.new
+ * a.barney
+ * a.wilma
+ * a.create_method(:betty) { p self }
+ * a.betty
+ *
+ * <em>produces:</em>
+ *
+ * In Fred
+ * Charge it!
+ * #<B:0x401b39e8>
+ */
+
+static VALUE
+rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
+{
+ ID id;
+ VALUE body;
+ NODE *node;
+ int noex = NOEX_PUBLIC;
+
+ if (argc == 1) {
+ id = rb_to_id(argv[0]);
+ body = rb_block_lambda();
+ }
+ else if (argc == 2) {
+ id = rb_to_id(argv[0]);
+ body = argv[1];
+ if (!rb_obj_is_method(body) && !rb_obj_is_proc(body)) {
+ rb_raise(rb_eTypeError,
+ "wrong argument type %s (expected Proc/Method)",
+ rb_obj_classname(body));
+ }
+ }
+ else {
+ rb_raise(rb_eArgError, "wrong number of arguments (%d for 1)", argc);
+ }
+
+ if (RDATA(body)->dmark == (RUBY_DATA_FUNC) bm_mark) {
+ struct METHOD *method = (struct METHOD *)DATA_PTR(body);
+ VALUE rclass = method->rclass;
+ if (rclass != mod) {
+ if (FL_TEST(rclass, FL_SINGLETON)) {
+ rb_raise(rb_eTypeError,
+ "can't bind singleton method to a different class");
+ }
+ if (!RTEST(rb_class_inherited_p(mod, rclass))) {
+ rb_raise(rb_eTypeError,
+ "bind argument must be a subclass of %s",
+ rb_class2name(rclass));
+ }
+ }
+ node = method->body;
+ }
+ else if (rb_obj_is_proc(body)) {
+ rb_proc_t *proc;
+ body = proc_dup(body);
+ GetProcPtr(body, proc);
+ if (BUILTIN_TYPE(proc->block.iseq) != T_NODE) {
+ proc->block.iseq->defined_method_id = id;
+ proc->block.iseq->klass = mod;
+ proc->is_lambda = Qtrue;
+ proc->is_from_method = Qtrue;
+ }
+ node = NEW_BMETHOD(body);
+ }
+ else {
+ /* type error */
+ rb_raise(rb_eTypeError, "wrong argument type (expected Proc/Method)");
+ }
+
+ /* TODO: visibility */
+
+ rb_add_method(mod, id, node, noex);
+ return body;
+}
+
+static VALUE
+rb_obj_define_method(int argc, VALUE *argv, VALUE obj)
+{
+ VALUE klass = rb_singleton_class(obj);
+
+ return rb_mod_define_method(argc, argv, klass);
+}
+
+
+/*
+ * MISSING: documentation
+ */
+
+static VALUE
+method_clone(VALUE self)
+{
+ VALUE clone;
+ struct METHOD *orig, *data;
+
+ Data_Get_Struct(self, struct METHOD, orig);
+ clone = Data_Make_Struct(CLASS_OF(self), struct METHOD, bm_mark, -1, data);
+ CLONESETUP(clone, self);
+ *data = *orig;
+
+ return clone;
+}
+
+/*
+ * call-seq:
+ * meth.call(args, ...) => obj
+ * meth[args, ...] => obj
+ *
+ * Invokes the <i>meth</i> with the specified arguments, returning the
+ * method's return value.
+ *
+ * m = 12.method("+")
+ * m.call(3) #=> 15
+ * m.call(20) #=> 32
+ */
+
+VALUE
+rb_method_call(int argc, VALUE *argv, VALUE method)
+{
+ VALUE result = Qnil; /* OK */
+ struct METHOD *data;
+ int state;
+ volatile int safe = -1;
+
+ Data_Get_Struct(method, struct METHOD, data);
+ if (data->recv == Qundef) {
+ rb_raise(rb_eTypeError, "can't call unbound method; bind first");
+ }
+ PUSH_TAG();
+ if (OBJ_TAINTED(method)) {
+ safe = rb_safe_level();
+ if (rb_safe_level() < 4) {
+ rb_set_safe_level_force(4);
+ }
+ }
+ if ((state = EXEC_TAG()) == 0) {
+ rb_thread_t *th = GET_THREAD();
+ VALUE rb_vm_call(rb_thread_t * th, VALUE klass, VALUE recv, VALUE id, ID oid,
+ int argc, const VALUE *argv, const NODE *body, int nosuper);
+
+ PASS_PASSED_BLOCK_TH(th);
+ result = rb_vm_call(th, data->oclass, data->recv, data->id, data->oid,
+ argc, argv, data->body, 0);
+ }
+ POP_TAG();
+ if (safe >= 0)
+ rb_set_safe_level_force(safe);
+ if (state)
+ JUMP_TAG(state);
+ return result;
+}
+
+/**********************************************************************
+ *
+ * Document-class: UnboundMethod
+ *
+ * Ruby supports two forms of objectified methods. Class
+ * <code>Method</code> is used to represent methods that are associated
+ * with a particular object: these method objects are bound to that
+ * object. Bound method objects for an object can be created using
+ * <code>Object#method</code>.
+ *
+ * Ruby also supports unbound methods; methods objects that are not
+ * associated with a particular object. These can be created either by
+ * calling <code>Module#instance_method</code> or by calling
+ * <code>unbind</code> on a bound method object. The result of both of
+ * these is an <code>UnboundMethod</code> object.
+ *
+ * Unbound methods can only be called after they are bound to an
+ * object. That object must be be a kind_of? the method's original
+ * class.
+ *
+ * class Square
+ * def area
+ * @side * @side
+ * end
+ * def initialize(side)
+ * @side = side
+ * end
+ * end
+ *
+ * area_un = Square.instance_method(:area)
+ *
+ * s = Square.new(12)
+ * area = area_un.bind(s)
+ * area.call #=> 144
+ *
+ * Unbound methods are a reference to the method at the time it was
+ * objectified: subsequent changes to the underlying class will not
+ * affect the unbound method.
+ *
+ * class Test
+ * def test
+ * :original
+ * end
+ * end
+ * um = Test.instance_method(:test)
+ * class Test
+ * def test
+ * :modified
+ * end
+ * end
+ * t = Test.new
+ * t.test #=> :modified
+ * um.bind(t).call #=> :original
+ *
+ */
+
+/*
+ * call-seq:
+ * umeth.bind(obj) -> method
+ *
+ * Bind <i>umeth</i> to <i>obj</i>. If <code>Klass</code> was the class
+ * from which <i>umeth</i> was obtained,
+ * <code>obj.kind_of?(Klass)</code> must be true.
+ *
+ * class A
+ * def test
+ * puts "In test, class = #{self.class}"
+ * end
+ * end
+ * class B < A
+ * end
+ * class C < B
+ * end
+ *
+ *
+ * um = B.instance_method(:test)
+ * bm = um.bind(C.new)
+ * bm.call
+ * bm = um.bind(B.new)
+ * bm.call
+ * bm = um.bind(A.new)
+ * bm.call
+ *
+ * <em>produces:</em>
+ *
+ * In test, class = C
+ * In test, class = B
+ * prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)
+ * from prog.rb:16
+ */
+
+static VALUE
+umethod_bind(VALUE method, VALUE recv)
+{
+ struct METHOD *data, *bound;
+
+ Data_Get_Struct(method, struct METHOD, data);
+ if (data->rclass != CLASS_OF(recv)) {
+ if (FL_TEST(data->rclass, FL_SINGLETON)) {
+ rb_raise(rb_eTypeError,
+ "singleton method called for a different object");
+ }
+ if (!rb_obj_is_kind_of(recv, data->rclass)) {
+ rb_raise(rb_eTypeError, "bind argument must be an instance of %s",
+ rb_class2name(data->rclass));
+ }
+ }
+
+ method = Data_Make_Struct(rb_cMethod, struct METHOD, bm_mark, -1, bound);
+ *bound = *data;
+ bound->recv = recv;
+ bound->rclass = CLASS_OF(recv);
+
+ return method;
+}
+
+int
+rb_node_arity(NODE* body)
+{
+ switch (nd_type(body)) {
+ case NODE_CFUNC:
+ if (body->nd_argc < 0)
+ return -1;
+ return body->nd_argc;
+ case NODE_ZSUPER:
+ return -1;
+ case NODE_ATTRSET:
+ return 1;
+ case NODE_IVAR:
+ return 0;
+ case NODE_BMETHOD:
+ return rb_proc_arity(body->nd_cval);
+ case RUBY_VM_METHOD_NODE:
+ {
+ rb_iseq_t *iseq;
+ GetISeqPtr((VALUE)body->nd_body, iseq);
+ if (iseq->arg_rest == -1 && iseq->arg_opts == 0) {
+ return iseq->argc;
+ }
+ else {
+ return -(iseq->argc + 1 + iseq->arg_post_len);
+ }
+ }
+ default:
+ rb_raise(rb_eArgError, "invalid node 0x%x", nd_type(body));
+ }
+}
+
+/*
+ * call-seq:
+ * meth.arity => fixnum
+ *
+ * Returns an indication of the number of arguments accepted by a
+ * method. Returns a nonnegative integer for methods that take a fixed
+ * number of arguments. For Ruby methods that take a variable number of
+ * arguments, returns -n-1, where n is the number of required
+ * arguments. For methods written in C, returns -1 if the call takes a
+ * variable number of arguments.
+ *
+ * class C
+ * def one; end
+ * def two(a); end
+ * def three(*a); end
+ * def four(a, b); end
+ * def five(a, b, *c); end
+ * def six(a, b, *c, &d); end
+ * end
+ * c = C.new
+ * c.method(:one).arity #=> 0
+ * c.method(:two).arity #=> 1
+ * c.method(:three).arity #=> -1
+ * c.method(:four).arity #=> 2
+ * c.method(:five).arity #=> -3
+ * c.method(:six).arity #=> -3
+ *
+ * "cat".method(:size).arity #=> 0
+ * "cat".method(:replace).arity #=> 1
+ * "cat".method(:squeeze).arity #=> -1
+ * "cat".method(:count).arity #=> -1
+ */
+
+static VALUE
+method_arity_m(VALUE method)
+{
+ int n = method_arity(method);
+ return INT2FIX(n);
+}
+
+static int
+method_arity(VALUE method)
+{
+ struct METHOD *data;
+
+ Data_Get_Struct(method, struct METHOD, data);
+ return rb_node_arity(data->body);
+}
+
+int
+rb_mod_method_arity(VALUE mod, ID id)
+{
+ NODE *node = rb_method_node(mod, id);
+ return rb_node_arity(node);
+}
+
+int
+rb_obj_method_arity(VALUE obj, ID id)
+{
+ return rb_mod_method_arity(CLASS_OF(obj), id);
+}
+
+/*
+ * call-seq:
+ * meth.to_s => string
+ * meth.inspect => string
+ *
+ * Show the name of the underlying method.
+ *
+ * "cat".method(:count).inspect #=> "#<Method: String#count>"
+ */
+
+static VALUE
+method_inspect(VALUE method)
+{
+ struct METHOD *data;
+ VALUE str;
+ const char *s;
+ const char *sharp = "#";
+
+ Data_Get_Struct(method, struct METHOD, data);
+ str = rb_str_buf_new2("#<");
+ s = rb_obj_classname(method);
+ rb_str_buf_cat2(str, s);
+ rb_str_buf_cat2(str, ": ");
+
+ if (FL_TEST(data->oclass, FL_SINGLETON)) {
+ VALUE v = rb_iv_get(data->oclass, "__attached__");
+
+ if (data->recv == Qundef) {
+ rb_str_buf_append(str, rb_inspect(data->oclass));
+ }
+ else if (data->recv == v) {
+ rb_str_buf_append(str, rb_inspect(v));
+ sharp = ".";
+ }
+ else {
+ rb_str_buf_append(str, rb_inspect(data->recv));
+ rb_str_buf_cat2(str, "(");
+ rb_str_buf_append(str, rb_inspect(v));
+ rb_str_buf_cat2(str, ")");
+ sharp = ".";
+ }
+ }
+ else {
+ rb_str_buf_cat2(str, rb_class2name(data->rclass));
+ if (data->rclass != data->oclass) {
+ rb_str_buf_cat2(str, "(");
+ rb_str_buf_cat2(str, rb_class2name(data->oclass));
+ rb_str_buf_cat2(str, ")");
+ }
+ }
+ rb_str_buf_cat2(str, sharp);
+ rb_str_append(str, rb_id2str(data->oid));
+ rb_str_buf_cat2(str, ">");
+
+ return str;
+}
+
+static VALUE
+mproc(VALUE method)
+{
+ return rb_funcall(Qnil, rb_intern("proc"), 0);
+}
+
+static VALUE
+mlambda(VALUE method)
+{
+ return rb_funcall(Qnil, rb_intern("lambda"), 0);
+}
+
+static VALUE
+bmcall(VALUE args, VALUE method)
+{
+ volatile VALUE a;
+
+ if (CLASS_OF(args) != rb_cArray) {
+ args = rb_ary_new3(1, args);
+ }
+
+ a = args;
+ return rb_method_call(RARRAY_LEN(a), RARRAY_PTR(a), method);
+}
+
+VALUE
+rb_proc_new(
+ VALUE (*func)(ANYARGS), /* VALUE yieldarg[, VALUE procarg] */
+ VALUE val)
+{
+ VALUE procval = rb_iterate(mproc, 0, func, val);
+ return procval;
+}
+
+/*
+ * call-seq:
+ * meth.to_proc => prc
+ *
+ * Returns a <code>Proc</code> object corresponding to this method.
+ */
+
+static VALUE
+method_proc(VALUE method)
+{
+ VALUE procval;
+ rb_proc_t *proc;
+ /*
+ * class Method
+ * def to_proc
+ * proc{|*args|
+ * self.call(*args)
+ * }
+ * end
+ * end
+ */
+ procval = rb_iterate(mlambda, 0, bmcall, method);
+ GetProcPtr(procval, proc);
+ proc->is_from_method = 1;
+ return procval;
+}
+
+static VALUE
+rb_obj_is_method(VALUE m)
+{
+ if (TYPE(m) == T_DATA && RDATA(m)->dmark == (RUBY_DATA_FUNC) bm_mark) {
+ return Qtrue;
+ }
+ return Qfalse;
+}
+
+/*
+ * call_seq:
+ * local_jump_error.exit_value => obj
+ *
+ * Returns the exit value associated with this +LocalJumpError+.
+ */
+static VALUE
+localjump_xvalue(VALUE exc)
+{
+ return rb_iv_get(exc, "@exit_value");
+}
+
+/*
+ * call-seq:
+ * local_jump_error.reason => symbol
+ *
+ * The reason this block was terminated:
+ * :break, :redo, :retry, :next, :return, or :noreason.
+ */
+
+static VALUE
+localjump_reason(VALUE exc)
+{
+ return rb_iv_get(exc, "@reason");
+}
+
+/*
+ * call-seq:
+ * prc.binding => binding
+ *
+ * Returns the binding associated with <i>prc</i>. Note that
+ * <code>Kernel#eval</code> accepts either a <code>Proc</code> or a
+ * <code>Binding</code> object as its second parameter.
+ *
+ * def fred(param)
+ * proc {}
+ * end
+ *
+ * b = fred(99)
+ * eval("param", b.binding) #=> 99
+ */
+static VALUE
+proc_binding(VALUE self)
+{
+ rb_proc_t *proc;
+ VALUE bindval = binding_alloc(rb_cBinding);
+ rb_binding_t *bind;
+
+ GetProcPtr(self, proc);
+ GetBindingPtr(bindval, bind);
+
+ if (TYPE(proc->block.iseq) == T_NODE) {
+ rb_raise(rb_eArgError, "Can't create Binding from C level Proc");
+ }
+
+ bind->env = proc->envval;
+ return bindval;
+}
+
+static VALUE curry(VALUE dummy, VALUE args, int argc, VALUE *argv, VALUE passed_proc);
+
+static VALUE
+make_curry_proc(VALUE proc, VALUE passed, VALUE arity)
+{
+ VALUE args = rb_ary_new2(3);
+ RARRAY_PTR(args)[0] = proc;
+ RARRAY_PTR(args)[1] = passed;
+ RARRAY_PTR(args)[2] = arity;
+ RARRAY_LEN(args) = 3;
+ rb_ary_freeze(passed);
+ rb_ary_freeze(args);
+ return rb_proc_new(curry, args);
+}
+
+static VALUE
+curry(VALUE dummy, VALUE args, int argc, VALUE *argv, VALUE passed_proc)
+{
+ VALUE proc, passed, arity;
+ proc = RARRAY_PTR(args)[0];
+ passed = RARRAY_PTR(args)[1];
+ arity = RARRAY_PTR(args)[2];
+
+ passed = rb_ary_plus(passed, rb_ary_new4(argc, argv));
+ rb_ary_freeze(passed);
+
+ if(RARRAY_LEN(passed) < FIX2INT(arity)) {
+ if (!NIL_P(passed_proc)) {
+ rb_warn("given block not used");
+ }
+ arity = make_curry_proc(proc, passed, arity);
+ return arity;
+ }
+ else {
+ return rb_proc_call_with_block(proc, RARRAY_LEN(passed), RARRAY_PTR(passed), passed_proc);
+ }
+}
+
+ /*
+ * call-seq:
+ * prc.curry => a_proc
+ * prc.curry(arity) => a_proc
+ *
+ * Returns a curried proc. If the optional <i>arity</i> argument is given,
+ * it determines the number of arguments.
+ * A curried proc receives some arguments. If a sufficient number of
+ * arguments are supplied, it passes the supplied arguments to the original
+ * proc and returns the result. Otherwise, returns another curried proc that
+ * takes the rest of arguments.
+ *
+ * b = proc {|x, y, z| (x||0) + (y||0) + (z||0) }
+ * p b.curry[1][2][3] #=> 6
+ * p b.curry[1, 2][3, 4] #=> 6
+ * p b.curry(5)[1][2][3][4][5] #=> 6
+ * p b.curry(5)[1, 2][3, 4][5] #=> 6
+ * p b.curry(1)[1] #=> 1
+ *
+ * b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
+ * p b.curry[1][2][3] #=> 6
+ * p b.curry[1, 2][3, 4] #=> 10
+ * p b.curry(5)[1][2][3][4][5] #=> 15
+ * p b.curry(5)[1, 2][3, 4][5] #=> 15
+ * p b.curry(1)[1] #=> 1
+ *
+ * b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) }
+ * p b.curry[1][2][3] #=> 6
+ * p b.curry[1, 2][3, 4] #=> wrong number of arguments (4 or 3)
+ * p b.curry(5) #=> wrong number of arguments (5 or 3)
+ * p b.curry(1) #=> wrong number of arguments (1 or 3)
+ *
+ * b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
+ * p b.curry[1][2][3] #=> 6
+ * p b.curry[1, 2][3, 4] #=> 10
+ * p b.curry(5)[1][2][3][4][5] #=> 15
+ * p b.curry(5)[1, 2][3, 4][5] #=> 15
+ * p b.curry(1) #=> wrong number of arguments (1 or 3)
+ *
+ * b = proc { :foo }
+ * p b.curry[] #=> :foo
+ */
+static VALUE
+proc_curry(int argc, VALUE *argv, VALUE self)
+{
+ int sarity, marity = FIX2INT(proc_arity(self));
+ VALUE arity, opt = Qfalse;
+
+ if (marity < 0) {
+ marity = -marity - 1;
+ opt = Qtrue;
+ }
+
+ rb_scan_args(argc, argv, "01", &arity);
+ if (NIL_P(arity)) {
+ arity = INT2FIX(marity);
+ }
+ else {
+ sarity = FIX2INT(arity);
+ if (proc_lambda_p(self) && (sarity < marity || (sarity > marity && !opt))) {
+ rb_raise(rb_eArgError, "wrong number of arguments (%d for %d)", sarity, marity);
+ }
+ }
+
+ return make_curry_proc(self, rb_ary_new(), arity);
+}
+
+/*
+ * <code>Proc</code> objects are blocks of code that have been bound to
+ * a set of local variables. Once bound, the code may be called in
+ * different contexts and still access those variables.
+ *
+ * def gen_times(factor)
+ * return Proc.new {|n| n*factor }
+ * end
+ *
+ * times3 = gen_times(3)
+ * times5 = gen_times(5)
+ *
+ * times3.call(12) #=> 36
+ * times5.call(5) #=> 25
+ * times3.call(times5.call(4)) #=> 60
+ *
+ */
+
+void
+Init_Proc(void)
+{
+ /* Proc */
+ rb_cProc = rb_define_class("Proc", rb_cObject);
+ rb_undef_alloc_func(rb_cProc);
+ rb_define_singleton_method(rb_cProc, "new", rb_proc_s_new, -1);
+ rb_define_method(rb_cProc, "call", proc_call, -1);
+ rb_define_method(rb_cProc, "[]", proc_call, -1);
+ rb_define_method(rb_cProc, "yield", proc_call, -1);
+ rb_define_method(rb_cProc, "to_proc", proc_to_proc, 0);
+ rb_define_method(rb_cProc, "arity", proc_arity, 0);
+ rb_define_method(rb_cProc, "clone", proc_clone, 0);
+ rb_define_method(rb_cProc, "dup", proc_dup, 0);
+ rb_define_method(rb_cProc, "==", proc_eq, 1);
+ rb_define_method(rb_cProc, "eql?", proc_eq, 1);
+ rb_define_method(rb_cProc, "hash", proc_hash, 0);
+ rb_define_method(rb_cProc, "to_s", proc_to_s, 0);
+ rb_define_method(rb_cProc, "lambda?", proc_lambda_p, 0);
+ rb_define_method(rb_cProc, "binding", proc_binding, 0);
+ rb_define_method(rb_cProc, "curry", proc_curry, -1);
+
+ /* Exceptions */
+ rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError);
+ rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0);
+ rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0);
+
+ rb_eSysStackError = rb_define_class("SystemStackError", rb_eException);
+ sysstack_error = rb_exc_new3(rb_eSysStackError,
+ rb_obj_freeze(rb_str_new2("stack level too deep")));
+ OBJ_TAINT(sysstack_error);
+ OBJ_FREEZE(sysstack_error);
+
+ /* utility functions */
+ rb_define_global_function("proc", rb_block_proc, 0);
+ rb_define_global_function("lambda", proc_lambda, 0);
+
+ /* Method */
+ rb_cMethod = rb_define_class("Method", rb_cObject);
+ rb_undef_alloc_func(rb_cMethod);
+ rb_undef_method(CLASS_OF(rb_cMethod), "new");
+ rb_define_method(rb_cMethod, "==", method_eq, 1);
+ rb_define_method(rb_cMethod, "eql?", method_eq, 1);
+ rb_define_method(rb_cMethod, "hash", method_hash, 0);
+ rb_define_method(rb_cMethod, "clone", method_clone, 0);
+ rb_define_method(rb_cMethod, "call", rb_method_call, -1);
+ rb_define_method(rb_cMethod, "[]", rb_method_call, -1);
+ rb_define_method(rb_cMethod, "arity", method_arity_m, 0);
+ rb_define_method(rb_cMethod, "inspect", method_inspect, 0);
+ rb_define_method(rb_cMethod, "to_s", method_inspect, 0);
+ rb_define_method(rb_cMethod, "to_proc", method_proc, 0);
+ rb_define_method(rb_cMethod, "receiver", method_receiver, 0);
+ rb_define_method(rb_cMethod, "name", method_name, 0);
+ rb_define_method(rb_cMethod, "owner", method_owner, 0);
+ rb_define_method(rb_cMethod, "unbind", method_unbind, 0);
+ rb_define_method(rb_mKernel, "method", rb_obj_method, 1);
+ rb_define_method(rb_mKernel, "public_method", rb_obj_public_method, 1);
+
+ /* UnboundMethod */
+ rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject);
+ rb_undef_alloc_func(rb_cUnboundMethod);
+ rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new");
+ rb_define_method(rb_cUnboundMethod, "==", method_eq, 1);
+ rb_define_method(rb_cUnboundMethod, "eql?", method_eq, 1);
+ rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0);
+ rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0);
+ rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0);
+ rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0);
+ rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0);
+ rb_define_method(rb_cUnboundMethod, "name", method_name, 0);
+ rb_define_method(rb_cUnboundMethod, "owner", method_owner, 0);
+ rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1);
+
+ /* Module#*_method */
+ rb_define_method(rb_cModule, "instance_method", rb_mod_instance_method, 1);
+ rb_define_method(rb_cModule, "public_instance_method", rb_mod_public_instance_method, 1);
+ rb_define_private_method(rb_cModule, "define_method", rb_mod_define_method, -1);
+
+ /* Kernel */
+ rb_define_method(rb_mKernel, "define_singleton_method", rb_obj_define_method, -1);
+}
+
+/*
+ * Objects of class <code>Binding</code> encapsulate the execution
+ * context at some particular place in the code and retain this context
+ * for future use. The variables, methods, value of <code>self</code>,
+ * and possibly an iterator block that can be accessed in this context
+ * are all retained. Binding objects can be created using
+ * <code>Kernel#binding</code>, and are made available to the callback
+ * of <code>Kernel#set_trace_func</code>.
+ *
+ * These binding objects can be passed as the second argument of the
+ * <code>Kernel#eval</code> method, establishing an environment for the
+ * evaluation.
+ *
+ * class Demo
+ * def initialize(n)
+ * @secret = n
+ * end
+ * def getBinding
+ * return binding()
+ * end
+ * end
+ *
+ * k1 = Demo.new(99)
+ * b1 = k1.getBinding
+ * k2 = Demo.new(-3)
+ * b2 = k2.getBinding
+ *
+ * eval("@secret", b1) #=> 99
+ * eval("@secret", b2) #=> -3
+ * eval("@secret") #=> nil
+ *
+ * Binding objects have no class-specific methods.
+ *
+ */
+
+void
+Init_Binding(void)
+{
+ rb_cBinding = rb_define_class("Binding", rb_cObject);
+ rb_undef_alloc_func(rb_cBinding);
+ rb_undef_method(CLASS_OF(rb_cBinding), "new");
+ rb_define_method(rb_cBinding, "clone", binding_clone, 0);
+ rb_define_method(rb_cBinding, "dup", binding_dup, 0);
+ rb_define_method(rb_cBinding, "eval", bind_eval, -1);
+ rb_define_global_function("binding", rb_f_binding, 0);
+}
+