summaryrefslogtreecommitdiff
path: root/trunk/math.c
diff options
context:
space:
mode:
authoryugui <yugui@b2dd03c8-39d4-4d8f-98ff-823fe69b080e>2008-08-25 15:02:05 +0000
committeryugui <yugui@b2dd03c8-39d4-4d8f-98ff-823fe69b080e>2008-08-25 15:02:05 +0000
commit0dc342de848a642ecce8db697b8fecd83a63e117 (patch)
tree2b7ed4724aff1f86073e4740134bda9c4aac1a39 /trunk/math.c
parentef70cf7138ab8034b5b806f466e4b484b24f0f88 (diff)
added tag v1_9_0_4
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/tags/v1_9_0_4@18845 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
Diffstat (limited to 'trunk/math.c')
-rw-r--r--trunk/math.c715
1 files changed, 715 insertions, 0 deletions
diff --git a/trunk/math.c b/trunk/math.c
new file mode 100644
index 0000000000..e23734a812
--- /dev/null
+++ b/trunk/math.c
@@ -0,0 +1,715 @@
+/**********************************************************************
+
+ math.c -
+
+ $Author$
+ created at: Tue Jan 25 14:12:56 JST 1994
+
+ Copyright (C) 1993-2007 Yukihiro Matsumoto
+
+**********************************************************************/
+
+#include "ruby/ruby.h"
+#include <math.h>
+#include <errno.h>
+
+VALUE rb_mMath;
+
+static VALUE
+to_flo(VALUE x)
+{
+ if (!rb_obj_is_kind_of(x, rb_cNumeric)) {
+ rb_raise(rb_eTypeError, "can't convert %s into Float",
+ NIL_P(x) ? "nil" :
+ x == Qtrue ? "true" :
+ x == Qfalse ? "false" :
+ rb_obj_classname(x));
+ }
+ return rb_convert_type(x, T_FLOAT, "Float", "to_f");
+}
+
+#define Need_Float(x) (x) = to_flo(x)
+#define Need_Float2(x,y) do {\
+ Need_Float(x);\
+ Need_Float(y);\
+} while (0)
+
+static void
+domain_check(double x, const char *msg)
+{
+ while(1) {
+ if (errno) {
+ rb_sys_fail(msg);
+ }
+ if (isnan(x)) {
+#if defined(EDOM)
+ errno = EDOM;
+#elif defined(ERANGE)
+ errno = ERANGE;
+#endif
+ continue;
+ }
+ break;
+ }
+}
+
+static void
+infinity_check(VALUE arg, double res, const char *msg)
+{
+ while(1) {
+ if (errno) {
+ rb_sys_fail(msg);
+ }
+ if (isinf(res) && !isinf(RFLOAT_VALUE(arg))) {
+#if defined(EDOM)
+ errno = EDOM;
+#elif defined(ERANGE)
+ errno = ERANGE;
+#endif
+ continue;
+ }
+ break;
+ }
+}
+
+/*
+ * call-seq:
+ * Math.atan2(y, x) => float
+ *
+ * Computes the arc tangent given <i>y</i> and <i>x</i>. Returns
+ * -PI..PI.
+ *
+ */
+
+VALUE
+math_atan2(VALUE obj, VALUE y, VALUE x)
+{
+ Need_Float2(y, x);
+ return DOUBLE2NUM(atan2(RFLOAT_VALUE(y), RFLOAT_VALUE(x)));
+}
+
+
+/*
+ * call-seq:
+ * Math.cos(x) => float
+ *
+ * Computes the cosine of <i>x</i> (expressed in radians). Returns
+ * -1..1.
+ */
+
+VALUE
+math_cos(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DOUBLE2NUM(cos(RFLOAT_VALUE(x)));
+}
+
+/*
+ * call-seq:
+ * Math.sin(x) => float
+ *
+ * Computes the sine of <i>x</i> (expressed in radians). Returns
+ * -1..1.
+ */
+
+VALUE
+math_sin(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+
+ return DOUBLE2NUM(sin(RFLOAT_VALUE(x)));
+}
+
+
+/*
+ * call-seq:
+ * Math.tan(x) => float
+ *
+ * Returns the tangent of <i>x</i> (expressed in radians).
+ */
+
+static VALUE
+math_tan(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+
+ return DOUBLE2NUM(tan(RFLOAT_VALUE(x)));
+}
+
+/*
+ * call-seq:
+ * Math.acos(x) => float
+ *
+ * Computes the arc cosine of <i>x</i>. Returns 0..PI.
+ */
+
+static VALUE
+math_acos(VALUE obj, VALUE x)
+{
+ double d;
+
+ Need_Float(x);
+ errno = 0;
+ d = acos(RFLOAT_VALUE(x));
+ domain_check(d, "acos");
+ return DOUBLE2NUM(d);
+}
+
+/*
+ * call-seq:
+ * Math.asin(x) => float
+ *
+ * Computes the arc sine of <i>x</i>. Returns -{PI/2} .. {PI/2}.
+ */
+
+static VALUE
+math_asin(VALUE obj, VALUE x)
+{
+ double d;
+
+ Need_Float(x);
+ errno = 0;
+ d = asin(RFLOAT_VALUE(x));
+ domain_check(d, "asin");
+ return DOUBLE2NUM(d);
+}
+
+/*
+ * call-seq:
+ * Math.atan(x) => float
+ *
+ * Computes the arc tangent of <i>x</i>. Returns -{PI/2} .. {PI/2}.
+ */
+
+static VALUE
+math_atan(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DOUBLE2NUM(atan(RFLOAT_VALUE(x)));
+}
+
+#ifndef HAVE_COSH
+double
+cosh(double x)
+{
+ return (exp(x) + exp(-x)) / 2;
+}
+#endif
+
+/*
+ * call-seq:
+ * Math.cosh(x) => float
+ *
+ * Computes the hyperbolic cosine of <i>x</i> (expressed in radians).
+ */
+
+VALUE
+math_cosh(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+
+ return DOUBLE2NUM(cosh(RFLOAT_VALUE(x)));
+}
+
+#ifndef HAVE_SINH
+double
+sinh(double x)
+{
+ return (exp(x) - exp(-x)) / 2;
+}
+#endif
+
+/*
+ * call-seq:
+ * Math.sinh(x) => float
+ *
+ * Computes the hyperbolic sine of <i>x</i> (expressed in
+ * radians).
+ */
+
+VALUE
+math_sinh(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DOUBLE2NUM(sinh(RFLOAT_VALUE(x)));
+}
+
+#ifndef HAVE_TANH
+double
+tanh(double x)
+{
+ return sinh(x) / cosh(x);
+}
+#endif
+
+/*
+ * call-seq:
+ * Math.tanh() => float
+ *
+ * Computes the hyperbolic tangent of <i>x</i> (expressed in
+ * radians).
+ */
+
+static VALUE
+math_tanh(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DOUBLE2NUM(tanh(RFLOAT_VALUE(x)));
+}
+
+/*
+ * call-seq:
+ * Math.acosh(x) => float
+ *
+ * Computes the inverse hyperbolic cosine of <i>x</i>.
+ */
+
+static VALUE
+math_acosh(VALUE obj, VALUE x)
+{
+ double d;
+
+ Need_Float(x);
+ errno = 0;
+ d = acosh(RFLOAT_VALUE(x));
+ domain_check(d, "acosh");
+ return DOUBLE2NUM(d);
+}
+
+/*
+ * call-seq:
+ * Math.asinh(x) => float
+ *
+ * Computes the inverse hyperbolic sine of <i>x</i>.
+ */
+
+static VALUE
+math_asinh(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DOUBLE2NUM(asinh(RFLOAT_VALUE(x)));
+}
+
+/*
+ * call-seq:
+ * Math.atanh(x) => float
+ *
+ * Computes the inverse hyperbolic tangent of <i>x</i>.
+ */
+
+static VALUE
+math_atanh(VALUE obj, VALUE x)
+{
+ double d;
+
+ Need_Float(x);
+ errno = 0;
+ d = atanh(RFLOAT_VALUE(x));
+ domain_check(d, "atanh");
+ infinity_check(x, d, "atanh");
+ return DOUBLE2NUM(d);
+}
+
+/*
+ * call-seq:
+ * Math.exp(x) => float
+ *
+ * Returns e**x.
+ */
+
+VALUE
+math_exp(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DOUBLE2NUM(exp(RFLOAT_VALUE(x)));
+}
+
+#if defined __CYGWIN__
+# include <cygwin/version.h>
+# if CYGWIN_VERSION_DLL_MAJOR < 1005
+# define nan(x) nan()
+# endif
+# define log(x) ((x) < 0.0 ? nan("") : log(x))
+# define log10(x) ((x) < 0.0 ? nan("") : log10(x))
+#endif
+
+/*
+ * call-seq:
+ * Math.log(numeric) => float
+ * Math.log(num,base) => float
+ *
+ * Returns the natural logarithm of <i>numeric</i>.
+ * If additional second argument is given, it will be the base
+ * of logarithm.
+ */
+
+VALUE
+math_log(int argc, VALUE *argv)
+{
+ VALUE x, base;
+ double d;
+
+ rb_scan_args(argc, argv, "11", &x, &base);
+ Need_Float(x);
+ errno = 0;
+ d = log(RFLOAT_VALUE(x));
+ if (!NIL_P(base)) {
+ Need_Float(base);
+ d /= log(RFLOAT_VALUE(base));
+ }
+ domain_check(d, "log");
+ infinity_check(x, d, "log");
+ return DOUBLE2NUM(d);
+}
+
+#ifndef log2
+#ifndef HAVE_LOG2
+double
+log2(double x)
+{
+ return log10(x)/log10(2.0);
+}
+#else
+extern double log2(double);
+#endif
+#endif
+
+/*
+ * call-seq:
+ * Math.log2(numeric) => float
+ *
+ * Returns the base 2 logarithm of <i>numeric</i>.
+ */
+
+static VALUE
+math_log2(VALUE obj, VALUE x)
+{
+ double d;
+
+ Need_Float(x);
+ errno = 0;
+ d = log2(RFLOAT_VALUE(x));
+ domain_check(d, "log2");
+ infinity_check(x, d, "log2");
+ return DOUBLE2NUM(d);
+}
+
+/*
+ * call-seq:
+ * Math.log10(numeric) => float
+ *
+ * Returns the base 10 logarithm of <i>numeric</i>.
+ */
+
+static VALUE
+math_log10(VALUE obj, VALUE x)
+{
+ double d;
+
+ Need_Float(x);
+ errno = 0;
+ d = log10(RFLOAT_VALUE(x));
+ domain_check(d, "log10");
+ infinity_check(x, d, "log10");
+ return DOUBLE2NUM(d);
+}
+
+/*
+ * call-seq:
+ * Math.sqrt(numeric) => float
+ *
+ * Returns the non-negative square root of <i>numeric</i>.
+ *
+ * 0.upto(10) {|x|
+ * p [x, Math.sqrt(x), Math.sqrt(x)**2]
+ * }
+ * #=>
+ * [0, 0.0, 0.0]
+ * [1, 1.0, 1.0]
+ * [2, 1.4142135623731, 2.0]
+ * [3, 1.73205080756888, 3.0]
+ * [4, 2.0, 4.0]
+ * [5, 2.23606797749979, 5.0]
+ * [6, 2.44948974278318, 6.0]
+ * [7, 2.64575131106459, 7.0]
+ * [8, 2.82842712474619, 8.0]
+ * [9, 3.0, 9.0]
+ * [10, 3.16227766016838, 10.0]
+ *
+ */
+
+VALUE
+math_sqrt(VALUE obj, VALUE x)
+{
+ double d;
+
+ Need_Float(x);
+ errno = 0;
+ d = sqrt(RFLOAT_VALUE(x));
+ domain_check(d, "sqrt");
+ return DOUBLE2NUM(d);
+}
+
+/*
+ * call-seq:
+ * Math.cbrt(numeric) => float
+ *
+ * Returns the cube root of <i>numeric</i>.
+ *
+ * -9.upto(9) {|x|
+ * p [x, Math.cbrt(x), Math.cbrt(x)**3]
+ * }
+ * #=>
+ * [-9, -2.0800838230519, -9.0]
+ * [-8, -2.0, -8.0]
+ * [-7, -1.91293118277239, -7.0]
+ * [-6, -1.81712059283214, -6.0]
+ * [-5, -1.7099759466767, -5.0]
+ * [-4, -1.5874010519682, -4.0]
+ * [-3, -1.44224957030741, -3.0]
+ * [-2, -1.25992104989487, -2.0]
+ * [-1, -1.0, -1.0]
+ * [0, 0.0, 0.0]
+ * [1, 1.0, 1.0]
+ * [2, 1.25992104989487, 2.0]
+ * [3, 1.44224957030741, 3.0]
+ * [4, 1.5874010519682, 4.0]
+ * [5, 1.7099759466767, 5.0]
+ * [6, 1.81712059283214, 6.0]
+ * [7, 1.91293118277239, 7.0]
+ * [8, 2.0, 8.0]
+ * [9, 2.0800838230519, 9.0]
+ *
+ */
+
+static VALUE
+math_cbrt(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DOUBLE2NUM(cbrt(RFLOAT_VALUE(x)));
+}
+
+/*
+ * call-seq:
+ * Math.frexp(numeric) => [ fraction, exponent ]
+ *
+ * Returns a two-element array containing the normalized fraction (a
+ * <code>Float</code>) and exponent (a <code>Fixnum</code>) of
+ * <i>numeric</i>.
+ *
+ * fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11]
+ * fraction * 2**exponent #=> 1234.0
+ */
+
+static VALUE
+math_frexp(VALUE obj, VALUE x)
+{
+ double d;
+ int exp;
+
+ Need_Float(x);
+
+ d = frexp(RFLOAT_VALUE(x), &exp);
+ return rb_assoc_new(DOUBLE2NUM(d), INT2NUM(exp));
+}
+
+/*
+ * call-seq:
+ * Math.ldexp(flt, int) -> float
+ *
+ * Returns the value of <i>flt</i>*(2**<i>int</i>).
+ *
+ * fraction, exponent = Math.frexp(1234)
+ * Math.ldexp(fraction, exponent) #=> 1234.0
+ */
+
+static VALUE
+math_ldexp(VALUE obj, VALUE x, VALUE n)
+{
+ Need_Float(x);
+ return DOUBLE2NUM(ldexp(RFLOAT_VALUE(x), NUM2INT(n)));
+}
+
+/*
+ * call-seq:
+ * Math.hypot(x, y) => float
+ *
+ * Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle
+ * with sides <i>x</i> and <i>y</i>.
+ *
+ * Math.hypot(3, 4) #=> 5.0
+ */
+
+VALUE
+math_hypot(VALUE obj, VALUE x, VALUE y)
+{
+ Need_Float2(x, y);
+ return DOUBLE2NUM(hypot(RFLOAT_VALUE(x), RFLOAT_VALUE(y)));
+}
+
+/*
+ * call-seq:
+ * Math.erf(x) => float
+ *
+ * Calculates the error function of x.
+ */
+
+static VALUE
+math_erf(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DOUBLE2NUM(erf(RFLOAT_VALUE(x)));
+}
+
+/*
+ * call-seq:
+ * Math.erfc(x) => float
+ *
+ * Calculates the complementary error function of x.
+ */
+
+static VALUE
+math_erfc(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DOUBLE2NUM(erfc(RFLOAT_VALUE(x)));
+}
+
+/*
+ * call-seq:
+ * Math.gamma(x) => float
+ *
+ * Calculates the gamma function of x.
+ *
+ * Note that gamma(n) is same as fact(n-1) for integer n >= 0.
+ * However gamma(n) returns float and possibly has error in calculation.
+ *
+ * def fact(n) (1..n).inject(1) {|r,i| r*i } end
+ * 0.upto(25) {|i| p [i, Math.gamma(i+1), fact(i)] }
+ * #=>
+ * [0, 1.0, 1]
+ * [1, 1.0, 1]
+ * [2, 2.0, 2]
+ * [3, 6.0, 6]
+ * [4, 24.0, 24]
+ * [5, 120.0, 120]
+ * [6, 720.0, 720]
+ * [7, 5040.0, 5040]
+ * [8, 40320.0, 40320]
+ * [9, 362880.0, 362880]
+ * [10, 3628800.0, 3628800]
+ * [11, 39916800.0, 39916800]
+ * [12, 479001599.999999, 479001600]
+ * [13, 6227020800.00001, 6227020800]
+ * [14, 87178291199.9998, 87178291200]
+ * [15, 1307674368000.0, 1307674368000]
+ * [16, 20922789888000.0, 20922789888000]
+ * [17, 3.55687428096001e+14, 355687428096000]
+ * [18, 6.40237370572799e+15, 6402373705728000]
+ * [19, 1.21645100408832e+17, 121645100408832000]
+ * [20, 2.43290200817664e+18, 2432902008176640000]
+ * [21, 5.10909421717094e+19, 51090942171709440000]
+ * [22, 1.12400072777761e+21, 1124000727777607680000]
+ * [23, 2.58520167388851e+22, 25852016738884976640000]
+ * [24, 6.20448401733239e+23, 620448401733239439360000]
+ * [25, 1.5511210043331e+25, 15511210043330985984000000]
+ *
+ */
+
+static VALUE
+math_gamma(VALUE obj, VALUE x)
+{
+ double d;
+ Need_Float(x);
+ errno = 0;
+ d = tgamma(RFLOAT_VALUE(x));
+ domain_check(d, "gamma");
+ return DOUBLE2NUM(d);
+}
+
+/*
+ * call-seq:
+ * Math.lgamma(x) => [float, -1 or 1]
+ *
+ * Calculates the logarithmic gamma of x and
+ * the sign of gamma of x.
+ *
+ * Math.lgamma(x) is same as
+ * [Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
+ * but avoid overflow by Math.gamma(x) for large x.
+ */
+
+static VALUE
+math_lgamma(VALUE obj, VALUE x)
+{
+ double d;
+ int sign;
+ VALUE v;
+ Need_Float(x);
+ errno = 0;
+ d = lgamma_r(RFLOAT_VALUE(x), &sign);
+ domain_check(d, "lgamma");
+ v = DOUBLE2NUM(d);
+ return rb_assoc_new(v, INT2FIX(sign));
+}
+
+/*
+ * The <code>Math</code> module contains module functions for basic
+ * trigonometric and transcendental functions. See class
+ * <code>Float</code> for a list of constants that
+ * define Ruby's floating point accuracy.
+ */
+
+
+void
+Init_Math(void)
+{
+ rb_mMath = rb_define_module("Math");
+
+#ifdef M_PI
+ rb_define_const(rb_mMath, "PI", DOUBLE2NUM(M_PI));
+#else
+ rb_define_const(rb_mMath, "PI", DOUBLE2NUM(atan(1.0)*4.0));
+#endif
+
+#ifdef M_E
+ rb_define_const(rb_mMath, "E", DOUBLE2NUM(M_E));
+#else
+ rb_define_const(rb_mMath, "E", DOUBLE2NUM(exp(1.0)));
+#endif
+
+ rb_define_module_function(rb_mMath, "atan2", math_atan2, 2);
+ rb_define_module_function(rb_mMath, "cos", math_cos, 1);
+ rb_define_module_function(rb_mMath, "sin", math_sin, 1);
+ rb_define_module_function(rb_mMath, "tan", math_tan, 1);
+
+ rb_define_module_function(rb_mMath, "acos", math_acos, 1);
+ rb_define_module_function(rb_mMath, "asin", math_asin, 1);
+ rb_define_module_function(rb_mMath, "atan", math_atan, 1);
+
+ rb_define_module_function(rb_mMath, "cosh", math_cosh, 1);
+ rb_define_module_function(rb_mMath, "sinh", math_sinh, 1);
+ rb_define_module_function(rb_mMath, "tanh", math_tanh, 1);
+
+ rb_define_module_function(rb_mMath, "acosh", math_acosh, 1);
+ rb_define_module_function(rb_mMath, "asinh", math_asinh, 1);
+ rb_define_module_function(rb_mMath, "atanh", math_atanh, 1);
+
+ rb_define_module_function(rb_mMath, "exp", math_exp, 1);
+ rb_define_module_function(rb_mMath, "log", math_log, -1);
+ rb_define_module_function(rb_mMath, "log2", math_log2, 1);
+ rb_define_module_function(rb_mMath, "log10", math_log10, 1);
+ rb_define_module_function(rb_mMath, "sqrt", math_sqrt, 1);
+ rb_define_module_function(rb_mMath, "cbrt", math_cbrt, 1);
+
+ rb_define_module_function(rb_mMath, "frexp", math_frexp, 1);
+ rb_define_module_function(rb_mMath, "ldexp", math_ldexp, 2);
+
+ rb_define_module_function(rb_mMath, "hypot", math_hypot, 2);
+
+ rb_define_module_function(rb_mMath, "erf", math_erf, 1);
+ rb_define_module_function(rb_mMath, "erfc", math_erfc, 1);
+
+ rb_define_module_function(rb_mMath, "gamma", math_gamma, 1);
+ rb_define_module_function(rb_mMath, "lgamma", math_lgamma, 1);
+}