summaryrefslogtreecommitdiff
path: root/yjit_codegen.c
blob: 8b60b85be41cfbe9d6c5271addd37bb2007ffb11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
// This file is a fragment of the yjit.o compilation unit. See yjit.c.
#include "internal.h"
#include "gc.h"
#include "internal/compile.h"
#include "internal/class.h"
#include "internal/hash.h"
#include "internal/object.h"
#include "internal/sanitizers.h"
#include "internal/string.h"
#include "internal/struct.h"
#include "internal/variable.h"
#include "internal/re.h"
#include "probes.h"
#include "probes_helper.h"
#include "yjit.h"
#include "yjit_iface.h"
#include "yjit_core.h"
#include "yjit_codegen.h"
#include "yjit_asm.h"

// Map from YARV opcodes to code generation functions
static codegen_fn gen_fns[VM_INSTRUCTION_SIZE] = { NULL };

// Map from method entries to code generation functions
static st_table *yjit_method_codegen_table = NULL;

// Code for exiting back to the interpreter from the leave instruction
static void *leave_exit_code;

// Code for full logic of returning from C method and exiting to the interpreter
static uint32_t outline_full_cfunc_return_pos;

// For implementing global code invalidation
struct codepage_patch {
    uint32_t inline_patch_pos;
    uint32_t outlined_target_pos;
};

typedef rb_darray(struct codepage_patch) patch_array_t;

static patch_array_t global_inval_patches = NULL;

// Print the current source location for debugging purposes
RBIMPL_ATTR_MAYBE_UNUSED()
static void
jit_print_loc(jitstate_t *jit, const char *msg)
{
    char *ptr;
    long len;
    VALUE path = rb_iseq_path(jit->iseq);
    RSTRING_GETMEM(path, ptr, len);
    fprintf(stderr, "%s %.*s:%u\n", msg, (int)len, ptr, rb_iseq_line_no(jit->iseq, jit->insn_idx));
}

// dump an object for debugging purposes
RBIMPL_ATTR_MAYBE_UNUSED()
static void
jit_obj_info_dump(codeblock_t *cb, x86opnd_t opnd) {
    push_regs(cb);
    mov(cb, C_ARG_REGS[0], opnd);
    call_ptr(cb, REG0, (void *)rb_obj_info_dump);
    pop_regs(cb);
}

// Get the current instruction's opcode
static int
jit_get_opcode(jitstate_t *jit)
{
    return jit->opcode;
}

// Get the index of the next instruction
static uint32_t
jit_next_insn_idx(jitstate_t *jit)
{
    return jit->insn_idx + insn_len(jit_get_opcode(jit));
}

// Get an instruction argument by index
static VALUE
jit_get_arg(jitstate_t *jit, size_t arg_idx)
{
    RUBY_ASSERT(arg_idx + 1 < (size_t)insn_len(jit_get_opcode(jit)));
    return *(jit->pc + arg_idx + 1);
}

// Load a VALUE into a register and keep track of the reference if it is on the GC heap.
static void
jit_mov_gc_ptr(jitstate_t *jit, codeblock_t *cb, x86opnd_t reg, VALUE ptr)
{
    RUBY_ASSERT(reg.type == OPND_REG && reg.num_bits == 64);

    // Load the pointer constant into the specified register
    mov(cb, reg, const_ptr_opnd((void*)ptr));

    // The pointer immediate is encoded as the last part of the mov written out
    uint32_t ptr_offset = cb->write_pos - sizeof(VALUE);

    if (!SPECIAL_CONST_P(ptr)) {
        if (!rb_darray_append(&jit->block->gc_object_offsets, ptr_offset)) {
            rb_bug("allocation failed");
        }
    }
}

// Check if we are compiling the instruction at the stub PC
// Meaning we are compiling the instruction that is next to execute
static bool
jit_at_current_insn(jitstate_t *jit)
{
    const VALUE *ec_pc = jit->ec->cfp->pc;
    return (ec_pc == jit->pc);
}

// Peek at the nth topmost value on the Ruby stack.
// Returns the topmost value when n == 0.
static VALUE
jit_peek_at_stack(jitstate_t *jit, ctx_t *ctx, int n)
{
    RUBY_ASSERT(jit_at_current_insn(jit));

    // Note: this does not account for ctx->sp_offset because
    // this is only available when hitting a stub, and while
    // hitting a stub, cfp->sp needs to be up to date in case
    // codegen functions trigger GC. See :stub-sp-flush:.
    VALUE *sp = jit->ec->cfp->sp;

    return *(sp - 1 - n);
}

static VALUE
jit_peek_at_self(jitstate_t *jit, ctx_t *ctx)
{
    return jit->ec->cfp->self;
}

RBIMPL_ATTR_MAYBE_UNUSED()
static VALUE
jit_peek_at_local(jitstate_t *jit, ctx_t *ctx, int n)
{
    RUBY_ASSERT(jit_at_current_insn(jit));

    int32_t local_table_size = jit->iseq->body->local_table_size;
    RUBY_ASSERT(n < (int)jit->iseq->body->local_table_size);

    const VALUE *ep = jit->ec->cfp->ep;
    return ep[-VM_ENV_DATA_SIZE - local_table_size + n + 1];
}

// Save the incremented PC on the CFP
// This is necessary when calleees can raise or allocate
static void
jit_save_pc(jitstate_t *jit, x86opnd_t scratch_reg)
{
    codeblock_t *cb = jit->cb;
    mov(cb, scratch_reg, const_ptr_opnd(jit->pc + insn_len(jit->opcode)));
    mov(cb, mem_opnd(64, REG_CFP, offsetof(rb_control_frame_t, pc)), scratch_reg);
}

// Save the current SP on the CFP
// This realigns the interpreter SP with the JIT SP
// Note: this will change the current value of REG_SP,
//       which could invalidate memory operands
static void
jit_save_sp(jitstate_t *jit, ctx_t *ctx)
{
    if (ctx->sp_offset != 0) {
        x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 0);
        codeblock_t *cb = jit->cb;
        lea(cb, REG_SP, stack_pointer);
        mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP);
        ctx->sp_offset = 0;
    }
}

// jit_save_pc() + jit_save_sp(). Should be used before calling a routine that
// could:
//  - Perform GC allocation
//  - Take the VM lock through RB_VM_LOCK_ENTER()
//  - Perform Ruby method call
static void
jit_prepare_routine_call(jitstate_t *jit, ctx_t *ctx, x86opnd_t scratch_reg)
{
    jit->record_boundary_patch_point = true;
    jit_save_pc(jit, scratch_reg);
    jit_save_sp(jit, ctx);

    // In case the routine calls Ruby methods, it can set local variables
    // through Kernel#binding and other means.
    ctx_clear_local_types(ctx);
}

// Record the current codeblock write position for rewriting into a jump into
// the outlined block later. Used to implement global code invalidation.
static void
record_global_inval_patch(const codeblock_t *cb, uint32_t outline_block_target_pos)
{
    struct codepage_patch patch_point = { cb->write_pos, outline_block_target_pos };
    if (!rb_darray_append(&global_inval_patches, patch_point)) rb_bug("allocation failed");
}

static bool jit_guard_known_klass(jitstate_t *jit, ctx_t *ctx, VALUE known_klass, insn_opnd_t insn_opnd, VALUE sample_instance, const int max_chain_depth, uint8_t *side_exit);

#if YJIT_STATS

// Add a comment at the current position in the code block
static void
_add_comment(codeblock_t *cb, const char *comment_str)
{
    // We can't add comments to the outlined code block
    if (cb == ocb)
        return;

    // Avoid adding duplicate comment strings (can happen due to deferred codegen)
    size_t num_comments = rb_darray_size(yjit_code_comments);
    if (num_comments > 0) {
        struct yjit_comment last_comment = rb_darray_get(yjit_code_comments, num_comments - 1);
        if (last_comment.offset == cb->write_pos && strcmp(last_comment.comment, comment_str) == 0) {
            return;
        }
    }

    struct yjit_comment new_comment = (struct yjit_comment){ cb->write_pos, comment_str };
    rb_darray_append(&yjit_code_comments, new_comment);
}

// Comments for generated machine code
#define ADD_COMMENT(cb, comment) _add_comment((cb), (comment))

// Verify the ctx's types and mappings against the compile-time stack, self,
// and locals.
static void
verify_ctx(jitstate_t *jit, ctx_t *ctx)
{
    // Only able to check types when at current insn
    RUBY_ASSERT(jit_at_current_insn(jit));

    VALUE self_val = jit_peek_at_self(jit, ctx);
    if (type_diff(yjit_type_of_value(self_val), ctx->self_type) == INT_MAX) {
        rb_bug("verify_ctx: ctx type (%s) incompatible with actual value of self: %s", yjit_type_name(ctx->self_type), rb_obj_info(self_val));
    }

    for (int i = 0; i < ctx->stack_size && i < MAX_TEMP_TYPES; i++) {
        temp_type_mapping_t learned = ctx_get_opnd_mapping(ctx, OPND_STACK(i));
        VALUE val = jit_peek_at_stack(jit, ctx, i);
        val_type_t detected = yjit_type_of_value(val);

        if (learned.mapping.kind == TEMP_SELF) {
            if (self_val != val) {
                rb_bug("verify_ctx: stack value was mapped to self, but values did not match\n"
                        "  stack: %s\n"
                        "  self: %s",
                        rb_obj_info(val),
                        rb_obj_info(self_val));
            }
        }

        if (learned.mapping.kind == TEMP_LOCAL) {
            int local_idx = learned.mapping.idx;
            VALUE local_val = jit_peek_at_local(jit, ctx, local_idx);
            if (local_val != val) {
                rb_bug("verify_ctx: stack value was mapped to local, but values did not match\n"
                        "  stack: %s\n"
                        "  local %i: %s",
                        rb_obj_info(val),
                        local_idx,
                        rb_obj_info(local_val));
            }
        }

        if (type_diff(detected, learned.type) == INT_MAX) {
            rb_bug("verify_ctx: ctx type (%s) incompatible with actual value on stack: %s", yjit_type_name(learned.type), rb_obj_info(val));
        }
    }

    int32_t local_table_size = jit->iseq->body->local_table_size;
    for (int i = 0; i < local_table_size && i < MAX_TEMP_TYPES; i++) {
        val_type_t learned = ctx->local_types[i];
        VALUE val = jit_peek_at_local(jit, ctx, i);
        val_type_t detected = yjit_type_of_value(val);

        if (type_diff(detected, learned) == INT_MAX) {
            rb_bug("verify_ctx: ctx type (%s) incompatible with actual value of local: %s", yjit_type_name(learned), rb_obj_info(val));
        }
    }
}

#else

#define ADD_COMMENT(cb, comment) ((void)0)
#define verify_ctx(jit, ctx) ((void)0)

#endif // if YJIT_STATS

#if YJIT_STATS

// Increment a profiling counter with counter_name
#define GEN_COUNTER_INC(cb, counter_name) _gen_counter_inc(cb, &(yjit_runtime_counters . counter_name))
static void
_gen_counter_inc(codeblock_t *cb, int64_t *counter)
{
    if (!rb_yjit_opts.gen_stats) return;

    // Use REG1 because there might be return value in REG0
    mov(cb, REG1, const_ptr_opnd(counter));
    cb_write_lock_prefix(cb); // for ractors.
    add(cb, mem_opnd(64, REG1, 0), imm_opnd(1));
}

// Increment a counter then take an existing side exit.
#define COUNTED_EXIT(jit, side_exit, counter_name) _counted_side_exit(jit, side_exit, &(yjit_runtime_counters . counter_name))
static uint8_t *
_counted_side_exit(jitstate_t* jit, uint8_t *existing_side_exit, int64_t *counter)
{
    if (!rb_yjit_opts.gen_stats) return existing_side_exit;

    uint8_t *start = cb_get_ptr(jit->ocb, jit->ocb->write_pos);
    _gen_counter_inc(jit->ocb, counter);
    jmp_ptr(jit->ocb, existing_side_exit);
    return start;
}

#else

#define GEN_COUNTER_INC(cb, counter_name) ((void)0)
#define COUNTED_EXIT(jit, side_exit, counter_name) side_exit

#endif // if YJIT_STATS

// Generate an exit to return to the interpreter
static uint32_t
yjit_gen_exit(VALUE *exit_pc, ctx_t *ctx, codeblock_t *cb)
{
    const uint32_t code_pos = cb->write_pos;

    ADD_COMMENT(cb, "exit to interpreter");

    // Generate the code to exit to the interpreters
    // Write the adjusted SP back into the CFP
    if (ctx->sp_offset != 0) {
        x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 0);
        lea(cb, REG_SP, stack_pointer);
        mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP);
    }

    // Update CFP->PC
    mov(cb, RAX, const_ptr_opnd(exit_pc));
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), RAX);

    // Accumulate stats about interpreter exits
#if YJIT_STATS
    if (rb_yjit_opts.gen_stats) {
        mov(cb, RDI, const_ptr_opnd(exit_pc));
        call_ptr(cb, RSI, (void *)&yjit_count_side_exit_op);
    }
#endif

    pop(cb, REG_SP);
    pop(cb, REG_EC);
    pop(cb, REG_CFP);

    mov(cb, RAX, imm_opnd(Qundef));
    ret(cb);

    return code_pos;
}

// Generate a continuation for gen_leave() that exits to the interpreter at REG_CFP->pc.
static uint8_t *
yjit_gen_leave_exit(codeblock_t *cb)
{
    uint8_t *code_ptr = cb_get_ptr(cb, cb->write_pos);

    // Note, gen_leave() fully reconstructs interpreter state and leaves the
    // return value in RAX before coming here.

    // Every exit to the interpreter should be counted
    GEN_COUNTER_INC(cb, leave_interp_return);

    pop(cb, REG_SP);
    pop(cb, REG_EC);
    pop(cb, REG_CFP);

    ret(cb);

    return code_ptr;
}

// Fill code_for_exit_from_stub. This is used by branch_stub_hit() to exit
// to the interpreter when it cannot service a stub by generating new code.
// Before coming here, branch_stub_hit() takes care of fully reconstructing
// interpreter state.
static void
gen_code_for_exit_from_stub(void)
{
    codeblock_t *cb = ocb;
    code_for_exit_from_stub = cb_get_ptr(cb, cb->write_pos);

    GEN_COUNTER_INC(cb, exit_from_branch_stub);

    pop(cb, REG_SP);
    pop(cb, REG_EC);
    pop(cb, REG_CFP);

    mov(cb, RAX, imm_opnd(Qundef));
    ret(cb);
}

// :side-exit:
// Get an exit for the current instruction in the outlined block. The code
// for each instruction often begins with several guards before proceeding
// to do work. When guards fail, an option we have is to exit to the
// interpreter at an instruction boundary. The piece of code that takes
// care of reconstructing interpreter state and exiting out of generated
// code is called the side exit.
//
// No guards change the logic for reconstructing interpreter state at the
// moment, so there is one unique side exit for each context. Note that
// it's incorrect to jump to the side exit after any ctx stack push/pop operations
// since they change the logic required for reconstructing interpreter state.
static uint8_t *
yjit_side_exit(jitstate_t *jit, ctx_t *ctx)
{
    if (!jit->side_exit_for_pc) {
        codeblock_t *ocb = jit->ocb;
        uint32_t pos = yjit_gen_exit(jit->pc, ctx, ocb);
        jit->side_exit_for_pc = cb_get_ptr(ocb, pos);
    }

    return jit->side_exit_for_pc;
}

// Ensure that there is an exit for the start of the block being compiled.
// Block invalidation uses this exit.
static void
jit_ensure_block_entry_exit(jitstate_t *jit)
{
    block_t *block = jit->block;
    if (block->entry_exit) return;

    if (jit->insn_idx == block->blockid.idx) {
        // We are compiling the first instruction in the block.
        // Generate the exit with the cache in jitstate.
        block->entry_exit = yjit_side_exit(jit, &block->ctx);
    }
    else {
        VALUE *pc = yjit_iseq_pc_at_idx(block->blockid.iseq, block->blockid.idx);
        uint32_t pos = yjit_gen_exit(pc, &block->ctx, ocb);
        block->entry_exit = cb_get_ptr(ocb, pos);
    }
}

// Generate a runtime guard that ensures the PC is at the start of the iseq,
// otherwise take a side exit.  This is to handle the situation of optional
// parameters.  When a function with optional parameters is called, the entry
// PC for the method isn't necessarily 0, but we always generated code that
// assumes the entry point is 0.
static void
yjit_pc_guard(codeblock_t *cb, const rb_iseq_t *iseq)
{
    RUBY_ASSERT(cb != NULL);

    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, pc));
    mov(cb, REG1, const_ptr_opnd(iseq->body->iseq_encoded));
    xor(cb, REG0, REG1);

    // xor should impact ZF, so we can jz here
    uint32_t pc_is_zero = cb_new_label(cb, "pc_is_zero");
    jz_label(cb, pc_is_zero);

    // We're not starting at the first PC, so we need to exit.
    GEN_COUNTER_INC(cb, leave_start_pc_non_zero);

    pop(cb, REG_SP);
    pop(cb, REG_EC);
    pop(cb, REG_CFP);

    mov(cb, RAX, imm_opnd(Qundef));
    ret(cb);

    // PC should be at the beginning
    cb_write_label(cb, pc_is_zero);
    cb_link_labels(cb);
}

// The code we generate in gen_send_cfunc() doesn't fire the c_return TracePoint event
// like the interpreter. When tracing for c_return is enabled, we patch the code after
// the C method return to call into this to fire the event.
static void
full_cfunc_return(rb_execution_context_t *ec, VALUE return_value)
{
    rb_control_frame_t *cfp = ec->cfp;
    RUBY_ASSERT_ALWAYS(cfp == GET_EC()->cfp);
    const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);

    RUBY_ASSERT_ALWAYS(RUBYVM_CFUNC_FRAME_P(cfp));
    RUBY_ASSERT_ALWAYS(me->def->type == VM_METHOD_TYPE_CFUNC);

    // CHECK_CFP_CONSISTENCY("full_cfunc_return"); TODO revive this

    // Pop the C func's frame and fire the c_return TracePoint event
    // Note that this is the same order as vm_call_cfunc_with_frame().
    rb_vm_pop_frame(ec);
    EXEC_EVENT_HOOK(ec, RUBY_EVENT_C_RETURN, cfp->self, me->def->original_id, me->called_id, me->owner, return_value);
    // Note, this deviates from the interpreter in that users need to enable
    // a c_return TracePoint for this DTrace hook to work. A reasonable change
    // since the Ruby return event works this way as well.
    RUBY_DTRACE_CMETHOD_RETURN_HOOK(ec, me->owner, me->def->original_id);

    // Push return value into the caller's stack. We know that it's a frame that
    // uses cfp->sp because we are patching a call done with gen_send_cfunc().
    ec->cfp->sp[0] = return_value;
    ec->cfp->sp++;
}

// Landing code for when c_return tracing is enabled. See full_cfunc_return().
static void
gen_full_cfunc_return(void)
{
    codeblock_t *cb = ocb;
    outline_full_cfunc_return_pos = ocb->write_pos;

    // This chunk of code expect REG_EC to be filled properly and
    // RAX to contain the return value of the C method.

    // Call full_cfunc_return()
    mov(cb, C_ARG_REGS[0], REG_EC);
    mov(cb, C_ARG_REGS[1], RAX);
    call_ptr(cb, REG0, (void *)full_cfunc_return);

    // Count the exit
    GEN_COUNTER_INC(cb, traced_cfunc_return);

    // Return to the interpreter
    pop(cb, REG_SP);
    pop(cb, REG_EC);
    pop(cb, REG_CFP);

    mov(cb, RAX, imm_opnd(Qundef));
    ret(cb);
}

/*
Compile an interpreter entry block to be inserted into an iseq
Returns `NULL` if compilation fails.
*/
static uint8_t *
yjit_entry_prologue(codeblock_t *cb, const rb_iseq_t *iseq)
{
    RUBY_ASSERT(cb != NULL);

    enum { MAX_PROLOGUE_SIZE = 1024 };

    // Check if we have enough executable memory
    if (cb->write_pos + MAX_PROLOGUE_SIZE >= cb->mem_size) {
        return NULL;
    }

    const uint32_t old_write_pos = cb->write_pos;

    // Align the current write position to cache line boundaries
    cb_align_pos(cb, 64);

    uint8_t *code_ptr = cb_get_ptr(cb, cb->write_pos);
    ADD_COMMENT(cb, "yjit entry");

    push(cb, REG_CFP);
    push(cb, REG_EC);
    push(cb, REG_SP);

    // We are passed EC and CFP
    mov(cb, REG_EC, C_ARG_REGS[0]);
    mov(cb, REG_CFP, C_ARG_REGS[1]);

    // Load the current SP from the CFP into REG_SP
    mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));

    // Setup cfp->jit_return
    // TODO: this could use an IP relative LEA instead of an 8 byte immediate
    mov(cb, REG0, const_ptr_opnd(leave_exit_code));
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, jit_return), REG0);

    // We're compiling iseqs that we *expect* to start at `insn_idx`. But in
    // the case of optional parameters, the interpreter can set the pc to a
    // different location depending on the optional parameters.  If an iseq
    // has optional parameters, we'll add a runtime check that the PC we've
    // compiled for is the same PC that the interpreter wants us to run with.
    // If they don't match, then we'll take a side exit.
    if (iseq->body->param.flags.has_opt) {
        yjit_pc_guard(cb, iseq);
    }

    // Verify MAX_PROLOGUE_SIZE
    RUBY_ASSERT_ALWAYS(cb->write_pos - old_write_pos <= MAX_PROLOGUE_SIZE);

    return code_ptr;
}

// Generate code to check for interrupts and take a side-exit.
// Warning: this function clobbers REG0
static void
yjit_check_ints(codeblock_t *cb, uint8_t *side_exit)
{
    // Check for interrupts
    // see RUBY_VM_CHECK_INTS(ec) macro
    ADD_COMMENT(cb, "RUBY_VM_CHECK_INTS(ec)");
    mov(cb, REG0_32, member_opnd(REG_EC, rb_execution_context_t, interrupt_mask));
    not(cb, REG0_32);
    test(cb, member_opnd(REG_EC, rb_execution_context_t, interrupt_flag), REG0_32);
    jnz_ptr(cb, side_exit);
}

// Generate a stubbed unconditional jump to the next bytecode instruction.
// Blocks that are part of a guard chain can use this to share the same successor.
static void
jit_jump_to_next_insn(jitstate_t *jit, const ctx_t *current_context)
{
    // Reset the depth since in current usages we only ever jump to to
    // chain_depth > 0 from the same instruction.
    ctx_t reset_depth = *current_context;
    reset_depth.chain_depth = 0;

    blockid_t jump_block = { jit->iseq, jit_next_insn_idx(jit) };

    // We are at the end of the current instruction. Record the boundary.
    if (jit->record_boundary_patch_point) {
        uint32_t exit_pos = yjit_gen_exit(jit->pc + insn_len(jit->opcode), &reset_depth, jit->ocb);
        record_global_inval_patch(jit->cb, exit_pos);
        jit->record_boundary_patch_point = false;
    }

    // Generate the jump instruction
    gen_direct_jump(
        jit,
        &reset_depth,
        jump_block
    );
}

// Compile a sequence of bytecode instructions for a given basic block version.
// Part of gen_block_version().
static block_t *
gen_single_block(blockid_t blockid, const ctx_t *start_ctx, rb_execution_context_t *ec)
{
    RUBY_ASSERT(cb != NULL);
    verify_blockid(blockid);

    // Allocate the new block
    block_t *block = calloc(1, sizeof(block_t));
    if (!block) {
        return NULL;
    }

    // Copy the starting context to avoid mutating it
    ctx_t ctx_copy = *start_ctx;
    ctx_t *ctx = &ctx_copy;

    // Limit the number of specialized versions for this block
    *ctx = limit_block_versions(blockid, ctx);

    // Save the starting context on the block.
    block->blockid = blockid;
    block->ctx = *ctx;

    RUBY_ASSERT(!(blockid.idx == 0 && start_ctx->stack_size > 0));

    const rb_iseq_t *iseq = block->blockid.iseq;
    const unsigned int iseq_size = iseq->body->iseq_size;
    uint32_t insn_idx = block->blockid.idx;
    const uint32_t starting_insn_idx = insn_idx;

    // Initialize a JIT state object
    jitstate_t jit = {
        .cb = cb,
        .ocb = ocb,
        .block = block,
        .iseq = iseq,
        .ec = ec
    };

    // Mark the start position of the block
    block->start_addr = cb_get_write_ptr(cb);

    // For each instruction to compile
    while (insn_idx < iseq_size) {
        // Get the current pc and opcode
        VALUE *pc = yjit_iseq_pc_at_idx(iseq, insn_idx);
        int opcode = yjit_opcode_at_pc(iseq, pc);
        RUBY_ASSERT(opcode >= 0 && opcode < VM_INSTRUCTION_SIZE);

        // opt_getinlinecache wants to be in a block all on its own. Cut the block short
        // if we run into it. See gen_opt_getinlinecache() for details.
        if (opcode == BIN(opt_getinlinecache) && insn_idx > starting_insn_idx) {
            jit_jump_to_next_insn(&jit, ctx);
            break;
        }

        // Set the current instruction
        jit.insn_idx = insn_idx;
        jit.opcode = opcode;
        jit.pc = pc;
        jit.side_exit_for_pc = NULL;

        // If previous instruction requested to record the boundary
        if (jit.record_boundary_patch_point) {
            // Generate an exit to this instruction and record it
            uint32_t exit_pos = yjit_gen_exit(jit.pc, ctx, ocb);
            record_global_inval_patch(cb, exit_pos);
            jit.record_boundary_patch_point = false;
        }

        // Verify our existing assumption (DEBUG)
        if (jit_at_current_insn(&jit)) {
            verify_ctx(&jit, ctx);
        }

        // Lookup the codegen function for this instruction
        codegen_fn gen_fn = gen_fns[opcode];
        codegen_status_t status = YJIT_CANT_COMPILE;
        if (gen_fn) {
            if (0) {
                fprintf(stderr, "compiling %d: %s\n", insn_idx, insn_name(opcode));
                print_str(cb, insn_name(opcode));
            }

            // :count-placement:
            // Count bytecode instructions that execute in generated code.
            // Note that the increment happens even when the output takes side exit.
            GEN_COUNTER_INC(cb, exec_instruction);

            // Add a comment for the name of the YARV instruction
            ADD_COMMENT(cb, insn_name(opcode));

            // Call the code generation function
            status = gen_fn(&jit, ctx, cb);
        }

        // If we can't compile this instruction
        // exit to the interpreter and stop compiling
        if (status == YJIT_CANT_COMPILE) {
            // TODO: if the codegen function makes changes to ctx and then return YJIT_CANT_COMPILE,
            // the exit this generates would be wrong. We could save a copy of the entry context
            // and assert that ctx is the same here.
            uint32_t exit_off = yjit_gen_exit(jit.pc, ctx, cb);

            // If this is the first instruction in the block, then we can use
            // the exit for block->entry_exit.
            if (insn_idx == block->blockid.idx) {
                block->entry_exit = cb_get_ptr(cb, exit_off);
            }
            break;
        }

        // For now, reset the chain depth after each instruction as only the
        // first instruction in the block can concern itself with the depth.
        ctx->chain_depth = 0;

        // Move to the next instruction to compile
        insn_idx += insn_len(opcode);

        // If the instruction terminates this block
        if (status == YJIT_END_BLOCK) {
            break;
        }
    }

    // Mark the end position of the block
    block->end_addr = cb_get_write_ptr(cb);

    // Store the index of the last instruction in the block
    block->end_idx = insn_idx;

    // We currently can't handle cases where the request is for a block that
    // doesn't go to the next instruction.
    RUBY_ASSERT(!jit.record_boundary_patch_point);

    // If code for the block doesn't fit, free the block and fail.
    if (cb->dropped_bytes || ocb->dropped_bytes) {
        yjit_free_block(block);
        return NULL;
    }

    if (YJIT_DUMP_MODE >= 2) {
        // Dump list of compiled instrutions
        fprintf(stderr, "Compiled the following for iseq=%p:\n", (void *)iseq);
        for (uint32_t idx = block->blockid.idx; idx < insn_idx; ) {
            int opcode = yjit_opcode_at_pc(iseq, yjit_iseq_pc_at_idx(iseq, idx));
            fprintf(stderr, "  %04d %s\n", idx, insn_name(opcode));
            idx += insn_len(opcode);
        }
    }

    return block;
}

static codegen_status_t gen_opt_send_without_block(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb);

static codegen_status_t
gen_nop(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Do nothing
    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_dup(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Get the top value and its type
    x86opnd_t dup_val = ctx_stack_pop(ctx, 0);
    temp_type_mapping_t mapping = ctx_get_opnd_mapping(ctx, OPND_STACK(0));

    // Push the same value on top
    x86opnd_t loc0 = ctx_stack_push_mapping(ctx, mapping);
    mov(cb, REG0, dup_val);
    mov(cb, loc0, REG0);

    return YJIT_KEEP_COMPILING;
}

// duplicate stack top n elements
static codegen_status_t
gen_dupn(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);

    // In practice, seems to be only used for n==2
    if (n != 2) {
        return YJIT_CANT_COMPILE;
    }

    x86opnd_t opnd1 = ctx_stack_opnd(ctx, 1);
    x86opnd_t opnd0 = ctx_stack_opnd(ctx, 0);
    temp_type_mapping_t mapping1 = ctx_get_opnd_mapping(ctx, OPND_STACK(1));
    temp_type_mapping_t mapping0 = ctx_get_opnd_mapping(ctx, OPND_STACK(0));

    x86opnd_t dst1 = ctx_stack_push_mapping(ctx, mapping1);
    mov(cb, REG0, opnd1);
    mov(cb, dst1, REG0);

    x86opnd_t dst0 = ctx_stack_push_mapping(ctx, mapping0);
    mov(cb, REG0, opnd0);
    mov(cb, dst0, REG0);

    return YJIT_KEEP_COMPILING;
}

static void
stack_swap(ctx_t *ctx, codeblock_t *cb, int offset0, int offset1, x86opnd_t reg0, x86opnd_t reg1)
{
    x86opnd_t opnd0 = ctx_stack_opnd(ctx, offset0);
    x86opnd_t opnd1 = ctx_stack_opnd(ctx, offset1);

    temp_type_mapping_t mapping0 = ctx_get_opnd_mapping(ctx, OPND_STACK(offset0));
    temp_type_mapping_t mapping1 = ctx_get_opnd_mapping(ctx, OPND_STACK(offset1));

    mov(cb, reg0, opnd0);
    mov(cb, reg1, opnd1);
    mov(cb, opnd0, reg1);
    mov(cb, opnd1, reg0);

    ctx_set_opnd_mapping(ctx, OPND_STACK(offset0), mapping1);
    ctx_set_opnd_mapping(ctx, OPND_STACK(offset1), mapping0);
}

// Swap top 2 stack entries
static codegen_status_t
gen_swap(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    stack_swap(ctx , cb, 0, 1, REG0, REG1);
    return YJIT_KEEP_COMPILING;
}

// set Nth stack entry to stack top
static codegen_status_t
gen_setn(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);

    // Set the destination
    x86opnd_t top_val = ctx_stack_pop(ctx, 0);
    x86opnd_t dst_opnd = ctx_stack_opnd(ctx, (int32_t)n);
    mov(cb, REG0, top_val);
    mov(cb, dst_opnd, REG0);

    temp_type_mapping_t mapping = ctx_get_opnd_mapping(ctx, OPND_STACK(0));
    ctx_set_opnd_mapping(ctx, OPND_STACK(n), mapping);

    return YJIT_KEEP_COMPILING;
}

// get nth stack value, then push it
static codegen_status_t
gen_topn(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    int32_t n = (int32_t)jit_get_arg(jit, 0);

    // Get top n type / operand
    x86opnd_t top_n_val = ctx_stack_opnd(ctx, n);
    temp_type_mapping_t mapping = ctx_get_opnd_mapping(ctx, OPND_STACK(n));

    x86opnd_t loc0 = ctx_stack_push_mapping(ctx, mapping);
    mov(cb, REG0, top_n_val);
    mov(cb, loc0, REG0);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_pop(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Decrement SP
    ctx_stack_pop(ctx, 1);
    return YJIT_KEEP_COMPILING;
}

// Pop n values off the stack
static codegen_status_t
gen_adjuststack(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);
    ctx_stack_pop(ctx, n);
    return YJIT_KEEP_COMPILING;
}

// new array initialized from top N values
static codegen_status_t
gen_newarray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);

    // Save the PC and SP because we are allocating
    jit_prepare_routine_call(jit, ctx, REG0);

    x86opnd_t values_ptr = ctx_sp_opnd(ctx, -(int32_t)(sizeof(VALUE) * (uint32_t)n));

    // call rb_ec_ary_new_from_values(struct rb_execution_context_struct *ec, long n, const VALUE *elts);
    mov(cb, C_ARG_REGS[0], REG_EC);
    mov(cb, C_ARG_REGS[1], imm_opnd(n));
    lea(cb, C_ARG_REGS[2], values_ptr);
    call_ptr(cb, REG0, (void *)rb_ec_ary_new_from_values);

    ctx_stack_pop(ctx, n);
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_ARRAY);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

// dup array
static codegen_status_t
gen_duparray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    VALUE ary = jit_get_arg(jit, 0);

    // Save the PC and SP because we are allocating
    jit_prepare_routine_call(jit, ctx, REG0);

    // call rb_ary_resurrect(VALUE ary);
    jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], ary);
    call_ptr(cb, REG0, (void *)rb_ary_resurrect);

    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_ARRAY);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

// dup hash
static codegen_status_t
gen_duphash(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    VALUE hash = jit_get_arg(jit, 0);

    // Save the PC and SP because we are allocating
    jit_prepare_routine_call(jit, ctx, REG0);

    // call rb_hash_resurrect(VALUE hash);
    jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], hash);
    call_ptr(cb, REG0, (void *)rb_hash_resurrect);

    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HASH);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

VALUE rb_vm_splat_array(VALUE flag, VALUE ary);

// call to_a on the array on the stack
static codegen_status_t
gen_splatarray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    VALUE flag = (VALUE) jit_get_arg(jit, 0);

    // Save the PC and SP because the callee may allocate
    // Note that this modifies REG_SP, which is why we do it first
    jit_prepare_routine_call(jit, ctx, REG0);

    // Get the operands from the stack
    x86opnd_t ary_opnd = ctx_stack_pop(ctx, 1);

    // Call rb_vm_splat_array(flag, ary)
    jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], flag);
    mov(cb, C_ARG_REGS[1], ary_opnd);
    call_ptr(cb, REG1, (void *) rb_vm_splat_array);

    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_ARRAY);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

// new range initialized from top 2 values
static codegen_status_t
gen_newrange(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    rb_num_t flag = (rb_num_t)jit_get_arg(jit, 0);

    // rb_range_new() allocates and can raise
    jit_prepare_routine_call(jit, ctx, REG0);

    // val = rb_range_new(low, high, (int)flag);
    mov(cb, C_ARG_REGS[0], ctx_stack_opnd(ctx, 1));
    mov(cb, C_ARG_REGS[1], ctx_stack_opnd(ctx, 0));
    mov(cb, C_ARG_REGS[2], imm_opnd(flag));
    call_ptr(cb, REG0, (void *)rb_range_new);

    ctx_stack_pop(ctx, 2);
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HEAP);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

static void
guard_object_is_heap(codeblock_t *cb, x86opnd_t object_opnd, ctx_t *ctx, uint8_t *side_exit)
{
    ADD_COMMENT(cb, "guard object is heap");

    // Test that the object is not an immediate
    test(cb, object_opnd, imm_opnd(RUBY_IMMEDIATE_MASK));
    jnz_ptr(cb, side_exit);

    // Test that the object is not false or nil
    cmp(cb, object_opnd, imm_opnd(Qnil));
    RUBY_ASSERT(Qfalse < Qnil);
    jbe_ptr(cb, side_exit);
}

static inline void
guard_object_is_array(codeblock_t *cb, x86opnd_t object_opnd, x86opnd_t flags_opnd, ctx_t *ctx, uint8_t *side_exit)
{
    ADD_COMMENT(cb, "guard object is array");

    // Pull out the type mask
    mov(cb, flags_opnd, member_opnd(object_opnd, struct RBasic, flags));
    and(cb, flags_opnd, imm_opnd(RUBY_T_MASK));

    // Compare the result with T_ARRAY
    cmp(cb, flags_opnd, imm_opnd(T_ARRAY));
    jne_ptr(cb, side_exit);
}

// push enough nils onto the stack to fill out an array
static codegen_status_t
gen_expandarray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    int flag = (int) jit_get_arg(jit, 1);

    // If this instruction has the splat flag, then bail out.
    if (flag & 0x01) {
        GEN_COUNTER_INC(cb, expandarray_splat);
        return YJIT_CANT_COMPILE;
    }

    // If this instruction has the postarg flag, then bail out.
    if (flag & 0x02) {
        GEN_COUNTER_INC(cb, expandarray_postarg);
        return YJIT_CANT_COMPILE;
    }

    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    // num is the number of requested values. If there aren't enough in the
    // array then we're going to push on nils.
    int num = (int)jit_get_arg(jit, 0);
    val_type_t array_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
    x86opnd_t array_opnd = ctx_stack_pop(ctx, 1);

    if (array_type.type == ETYPE_NIL) {
        // special case for a, b = nil pattern
        // push N nils onto the stack
        for (int i = 0; i < num; i++) {
            x86opnd_t push = ctx_stack_push(ctx, TYPE_NIL);
            mov(cb, push, imm_opnd(Qnil));
        }
        return YJIT_KEEP_COMPILING;
    }

    // Move the array from the stack into REG0 and check that it's an array.
    mov(cb, REG0, array_opnd);
    guard_object_is_heap(cb, REG0, ctx, COUNTED_EXIT(jit, side_exit, expandarray_not_array));
    guard_object_is_array(cb, REG0, REG1, ctx, COUNTED_EXIT(jit, side_exit, expandarray_not_array));

    // If we don't actually want any values, then just return.
    if (num == 0) {
        return YJIT_KEEP_COMPILING;
    }

    // Pull out the embed flag to check if it's an embedded array.
    x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
    mov(cb, REG1, flags_opnd);

    // Move the length of the embedded array into REG1.
    and(cb, REG1, imm_opnd(RARRAY_EMBED_LEN_MASK));
    shr(cb, REG1, imm_opnd(RARRAY_EMBED_LEN_SHIFT));

    // Conditionally move the length of the heap array into REG1.
    test(cb, flags_opnd, imm_opnd(RARRAY_EMBED_FLAG));
    cmovz(cb, REG1, member_opnd(REG0, struct RArray, as.heap.len));

    // Only handle the case where the number of values in the array is greater
    // than or equal to the number of values requested.
    cmp(cb, REG1, imm_opnd(num));
    jl_ptr(cb, COUNTED_EXIT(jit, side_exit, expandarray_rhs_too_small));

    // Load the address of the embedded array into REG1.
    // (struct RArray *)(obj)->as.ary
    lea(cb, REG1, member_opnd(REG0, struct RArray, as.ary));

    // Conditionally load the address of the heap array into REG1.
    // (struct RArray *)(obj)->as.heap.ptr
    test(cb, flags_opnd, imm_opnd(RARRAY_EMBED_FLAG));
    cmovz(cb, REG1, member_opnd(REG0, struct RArray, as.heap.ptr));

    // Loop backward through the array and push each element onto the stack.
    for (int32_t i = (int32_t) num - 1; i >= 0; i--) {
        x86opnd_t top = ctx_stack_push(ctx, TYPE_UNKNOWN);
        mov(cb, REG0, mem_opnd(64, REG1, i * SIZEOF_VALUE));
        mov(cb, top, REG0);
    }

    return YJIT_KEEP_COMPILING;
}

// new hash initialized from top N values
static codegen_status_t
gen_newhash(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    int32_t num = (int32_t)jit_get_arg(jit, 0);

    // Save the PC and SP because we are allocating
    jit_prepare_routine_call(jit, ctx, REG0);

    if (num) {
        // val = rb_hash_new_with_size(num / 2);
        mov(cb, C_ARG_REGS[0], imm_opnd(num / 2));
        call_ptr(cb, REG0, (void *)rb_hash_new_with_size);

        // save the allocated hash as we want to push it after insertion
        push(cb, RAX);
        push(cb, RAX); // alignment

        // rb_hash_bulk_insert(num, STACK_ADDR_FROM_TOP(num), val);
        mov(cb, C_ARG_REGS[0], imm_opnd(num));
        lea(cb, C_ARG_REGS[1], ctx_stack_opnd(ctx, num - 1));
        mov(cb, C_ARG_REGS[2], RAX);
        call_ptr(cb, REG0, (void *)rb_hash_bulk_insert);

        pop(cb, RAX); // alignment
        pop(cb, RAX);

        ctx_stack_pop(ctx, num);
        x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HASH);
        mov(cb, stack_ret, RAX);
    }
    else {
        // val = rb_hash_new();
        call_ptr(cb, REG0, (void *)rb_hash_new);

        x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HASH);
        mov(cb, stack_ret, RAX);
    }

    return YJIT_KEEP_COMPILING;
}

// Push a constant value to the stack, including type information.
// The constant may be a heap object or a special constant.
static void
jit_putobject(jitstate_t *jit, ctx_t *ctx, VALUE arg)
{
    val_type_t val_type = yjit_type_of_value(arg);
    x86opnd_t stack_top = ctx_stack_push(ctx, val_type);

    if (SPECIAL_CONST_P(arg)) {
        // Immediates will not move and do not need to be tracked for GC
        // Thanks to this we can mov directly to memory when possible.

        // NOTE: VALUE -> int64_t cast below is implementation defined.
        // Hopefully it preserves the the bit pattern or raise a signal.
        // See N1256 section 6.3.1.3.
        x86opnd_t imm = imm_opnd((int64_t)arg);

        // 64-bit immediates can't be directly written to memory
        if (imm.num_bits <= 32) {
            mov(cb, stack_top, imm);
        }
        else {
            mov(cb, REG0, imm);
            mov(cb, stack_top, REG0);
        }
    }
    else {
        // Load the value to push into REG0
        // Note that this value may get moved by the GC
        jit_mov_gc_ptr(jit, cb, REG0, arg);

        // Write argument at SP
        mov(cb, stack_top, REG0);
    }
}

static codegen_status_t
gen_putnil(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    jit_putobject(jit, ctx, Qnil);
    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_putobject(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    VALUE arg = jit_get_arg(jit, 0);

    jit_putobject(jit, ctx, arg);
    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_putstring(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    VALUE put_val = jit_get_arg(jit, 0);

    // Save the PC and SP because the callee will allocate
    jit_prepare_routine_call(jit, ctx, REG0);

    mov(cb, C_ARG_REGS[0], REG_EC);
    jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], put_val);
    call_ptr(cb, REG0, (void *)rb_ec_str_resurrect);

    x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_STRING);
    mov(cb, stack_top, RAX);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_putobject_int2fix(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    int opcode = jit_get_opcode(jit);
    int cst_val = (opcode == BIN(putobject_INT2FIX_0_))? 0:1;

    jit_putobject(jit, ctx, INT2FIX(cst_val));
    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_putself(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Load self from CFP
    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));

    // Write it on the stack
    x86opnd_t stack_top = ctx_stack_push_self(ctx);
    mov(cb, stack_top, REG0);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_putspecialobject(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    enum vm_special_object_type type = (enum vm_special_object_type)jit_get_arg(jit, 0);

    if (type == VM_SPECIAL_OBJECT_VMCORE) {
        x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_HEAP);
        jit_mov_gc_ptr(jit, cb, REG0, rb_mRubyVMFrozenCore);
        mov(cb, stack_top, REG0);
        return YJIT_KEEP_COMPILING;
    }
    else {
        // TODO: implement for VM_SPECIAL_OBJECT_CBASE and
        // VM_SPECIAL_OBJECT_CONST_BASE
        return YJIT_CANT_COMPILE;
    }
}

// Get EP at level from CFP
static void
gen_get_ep(codeblock_t *cb, x86opnd_t reg, uint32_t level)
{
    // Load environment pointer EP from CFP
    mov(cb, reg, member_opnd(REG_CFP, rb_control_frame_t, ep));

    while (level--) {
        // Get the previous EP from the current EP
        // See GET_PREV_EP(ep) macro
        // VALUE *prev_ep = ((VALUE *)((ep)[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03))
        mov(cb, reg, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL));
        and(cb, reg, imm_opnd(~0x03));
    }
}

// Compute the local table index of a variable from its index relative to the
// environment object.
static uint32_t
slot_to_local_idx(const rb_iseq_t *iseq, int32_t slot_idx)
{
    // Layout illustration
    // This is an array of VALUE
    //                                           | VM_ENV_DATA_SIZE |
    //                                           v                  v
    // low addr <+-------+-------+-------+-------+------------------+
    //           |local 0|local 1|  ...  |local n|       ....       |
    //           +-------+-------+-------+-------+------------------+
    //           ^       ^                       ^                  ^
    //           +-------+---local_table_size----+         cfp->ep--+
    //                   |                                          |
    //                   +------------------slot_idx----------------+
    //
    // See usages of local_var_name() from iseq.c for similar calculation.

    // FIXME: unsigned to signed cast below can truncate
    int32_t local_table_size = iseq->body->local_table_size;
    int32_t op = slot_idx - VM_ENV_DATA_SIZE;
    int32_t local_idx = local_table_size - op - 1;
    RUBY_ASSERT(local_idx >= 0 && local_idx < local_table_size);
    return (uint32_t)local_idx;
}

static codegen_status_t
gen_getlocal_wc0(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Compute the offset from BP to the local
    // TODO: Type is lindex_t in interpter. The following cast can truncate.
    //       Not in the mood to dance around signed multiplication UB at the moment...
    int32_t slot_idx = (int32_t)jit_get_arg(jit, 0);
    const int32_t offs = -(SIZEOF_VALUE * slot_idx);
    uint32_t local_idx = slot_to_local_idx(jit->iseq, slot_idx);

    // Load environment pointer EP (level 0) from CFP
    gen_get_ep(cb, REG0, 0);

    // Load the local from the EP
    mov(cb, REG0, mem_opnd(64, REG0, offs));

    // Write the local at SP
    x86opnd_t stack_top = ctx_stack_push_local(ctx, local_idx);
    mov(cb, stack_top, REG0);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_getlocal_generic(ctx_t *ctx, uint32_t local_idx, uint32_t level)
{
    gen_get_ep(cb, REG0, level);

    // Load the local from the block
    // val = *(vm_get_ep(GET_EP(), level) - idx);
    const int32_t offs = -(int32_t)(SIZEOF_VALUE * local_idx);
    mov(cb, REG0, mem_opnd(64, REG0, offs));

    // Write the local at SP
    x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, stack_top, REG0);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_getlocal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    int32_t idx = (int32_t)jit_get_arg(jit, 0);
    int32_t level = (int32_t)jit_get_arg(jit, 1);
    return gen_getlocal_generic(ctx, idx, level);
}

static codegen_status_t
gen_getlocal_wc1(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    int32_t idx = (int32_t)jit_get_arg(jit, 0);
    return gen_getlocal_generic(ctx, idx, 1);
}

static codegen_status_t
gen_setlocal_wc0(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    /*
    vm_env_write(const VALUE *ep, int index, VALUE v)
    {
        VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS];
        if (LIKELY((flags & VM_ENV_FLAG_WB_REQUIRED) == 0)) {
            VM_STACK_ENV_WRITE(ep, index, v);
        }
        else {
            vm_env_write_slowpath(ep, index, v);
        }
    }
    */

    int32_t slot_idx = (int32_t)jit_get_arg(jit, 0);
    uint32_t local_idx = slot_to_local_idx(jit->iseq, slot_idx);

    // Load environment pointer EP (level 0) from CFP
    gen_get_ep(cb, REG0, 0);

    // flags & VM_ENV_FLAG_WB_REQUIRED
    x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS);
    test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED));

    // Create a side-exit to fall back to the interpreter
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    // if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
    jnz_ptr(cb, side_exit);

    // Set the type of the local variable in the context
    val_type_t temp_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
    ctx_set_local_type(ctx, local_idx, temp_type);

    // Pop the value to write from the stack
    x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
    mov(cb, REG1, stack_top);

    // Write the value at the environment pointer
    const int32_t offs = -8 * slot_idx;
    mov(cb, mem_opnd(64, REG0, offs), REG1);

    return YJIT_KEEP_COMPILING;
}

// Push Qtrue or Qfalse depending on whether the given keyword was supplied by
// the caller
static codegen_status_t
gen_checkkeyword(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // When a keyword is unspecified past index 32, a hash will be used
    // instead. This can only happen in iseqs taking more than 32 keywords.
    if (jit->iseq->body->param.keyword->num >= 32) {
        return YJIT_CANT_COMPILE;
    }

    // The EP offset to the undefined bits local
    int32_t bits_offset = (int32_t)jit_get_arg(jit, 0);

    // The index of the keyword we want to check
    int32_t index = (int32_t)jit_get_arg(jit, 1);

    // Load environment pointer EP
    gen_get_ep(cb, REG0, 0);

    // VALUE kw_bits = *(ep - bits);
    x86opnd_t bits_opnd = mem_opnd(64, REG0, sizeof(VALUE) * -bits_offset);

    // unsigned int b = (unsigned int)FIX2ULONG(kw_bits);
    // if ((b & (0x01 << idx))) {
    //
    // We can skip the FIX2ULONG conversion by shifting the bit we test
    int64_t bit_test = 0x01 << (index + 1);
    test(cb, bits_opnd, imm_opnd(bit_test));
    mov(cb, REG0, imm_opnd(Qfalse));
    mov(cb, REG1, imm_opnd(Qtrue));
    cmovz(cb, REG0, REG1);

    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_IMM);
    mov(cb, stack_ret, REG0);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_setlocal_generic(jitstate_t *jit, ctx_t *ctx, uint32_t local_idx, uint32_t level)
{
    // Load environment pointer EP at level
    gen_get_ep(cb, REG0, level);

    // flags & VM_ENV_FLAG_WB_REQUIRED
    x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS);
    test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED));

    // Create a side-exit to fall back to the interpreter
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    // if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
    jnz_ptr(cb, side_exit);

    // Pop the value to write from the stack
    x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
    mov(cb, REG1, stack_top);

    // Write the value at the environment pointer
    const int32_t offs = -(int32_t)(SIZEOF_VALUE * local_idx);
    mov(cb, mem_opnd(64, REG0, offs), REG1);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_setlocal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    int32_t idx = (int32_t)jit_get_arg(jit, 0);
    int32_t level = (int32_t)jit_get_arg(jit, 1);
    return gen_setlocal_generic(jit, ctx, idx, level);
}

static codegen_status_t
gen_setlocal_wc1(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    int32_t idx = (int32_t)jit_get_arg(jit, 0);
    return gen_setlocal_generic(jit, ctx, idx, 1);
}

static void
gen_jnz_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
{
    switch (shape) {
      case SHAPE_NEXT0:
      case SHAPE_NEXT1:
        RUBY_ASSERT(false);
        break;

      case SHAPE_DEFAULT:
        jnz_ptr(cb, target0);
        break;
    }
}

static void
gen_jz_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
{
    switch (shape) {
      case SHAPE_NEXT0:
      case SHAPE_NEXT1:
        RUBY_ASSERT(false);
        break;

      case SHAPE_DEFAULT:
        jz_ptr(cb, target0);
        break;
    }
}

static void
gen_jbe_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
{
    switch (shape) {
      case SHAPE_NEXT0:
      case SHAPE_NEXT1:
        RUBY_ASSERT(false);
        break;

      case SHAPE_DEFAULT:
        jbe_ptr(cb, target0);
        break;
    }
}

enum jcc_kinds {
    JCC_JNE,
    JCC_JNZ,
    JCC_JZ,
    JCC_JE,
    JCC_JBE,
    JCC_JNA,
};

// Generate a jump to a stub that recompiles the current YARV instruction on failure.
// When depth_limitk is exceeded, generate a jump to a side exit.
static void
jit_chain_guard(enum jcc_kinds jcc, jitstate_t *jit, const ctx_t *ctx, uint8_t depth_limit, uint8_t *side_exit)
{
    branchgen_fn target0_gen_fn;

    switch (jcc) {
      case JCC_JNE:
      case JCC_JNZ:
        target0_gen_fn = gen_jnz_to_target0;
        break;
      case JCC_JZ:
      case JCC_JE:
        target0_gen_fn = gen_jz_to_target0;
        break;
      case JCC_JBE:
      case JCC_JNA:
        target0_gen_fn = gen_jbe_to_target0;
        break;
      default:
        rb_bug("yjit: unimplemented jump kind");
        break;
    };

    if (ctx->chain_depth < depth_limit) {
        ctx_t deeper = *ctx;
        deeper.chain_depth++;

        gen_branch(
            jit,
            ctx,
            (blockid_t) { jit->iseq, jit->insn_idx },
            &deeper,
            BLOCKID_NULL,
            NULL,
            target0_gen_fn
        );
    }
    else {
        target0_gen_fn(cb, side_exit, NULL, SHAPE_DEFAULT);
    }
}

enum {
    GETIVAR_MAX_DEPTH = 10,       // up to 5 different classes, and embedded or not for each
    OPT_AREF_MAX_CHAIN_DEPTH = 2, // hashes and arrays
    SEND_MAX_DEPTH = 5,           // up to 5 different classes
};

VALUE rb_vm_set_ivar_idx(VALUE obj, uint32_t idx, VALUE val);

// Codegen for setting an instance variable.
// Preconditions:
//   - receiver is in REG0
//   - receiver has the same class as CLASS_OF(comptime_receiver)
//   - no stack push or pops to ctx since the entry to the codegen of the instruction being compiled
static codegen_status_t
gen_set_ivar(jitstate_t *jit, ctx_t *ctx, VALUE recv, VALUE klass, ID ivar_name)
{
    // Save the PC and SP because the callee may allocate
    // Note that this modifies REG_SP, which is why we do it first
    jit_prepare_routine_call(jit, ctx, REG0);

    // Get the operands from the stack
    x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
    x86opnd_t recv_opnd = ctx_stack_pop(ctx, 1);

    uint32_t ivar_index = rb_obj_ensure_iv_index_mapping(recv, ivar_name);

    // Call rb_vm_set_ivar_idx with the receiver, the index of the ivar, and the value
    mov(cb, C_ARG_REGS[0], recv_opnd);
    mov(cb, C_ARG_REGS[1], imm_opnd(ivar_index));
    mov(cb, C_ARG_REGS[2], val_opnd);
    call_ptr(cb, REG0, (void *)rb_vm_set_ivar_idx);

    x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, out_opnd, RAX);

    return YJIT_KEEP_COMPILING;
}

// Codegen for getting an instance variable.
// Preconditions:
//   - receiver is in REG0
//   - receiver has the same class as CLASS_OF(comptime_receiver)
//   - no stack push or pops to ctx since the entry to the codegen of the instruction being compiled
static codegen_status_t
gen_get_ivar(jitstate_t *jit, ctx_t *ctx, const int max_chain_depth, VALUE comptime_receiver, ID ivar_name, insn_opnd_t reg0_opnd, uint8_t *side_exit)
{
    VALUE comptime_val_klass = CLASS_OF(comptime_receiver);
    const ctx_t starting_context = *ctx; // make a copy for use with jit_chain_guard

    // If the class uses the default allocator, instances should all be T_OBJECT
    // NOTE: This assumes nobody changes the allocator of the class after allocation.
    //       Eventually, we can encode whether an object is T_OBJECT or not
    //       inside object shapes.
    if (!RB_TYPE_P(comptime_receiver, T_OBJECT) ||
            rb_get_alloc_func(comptime_val_klass) != rb_class_allocate_instance) {
        // General case. Call rb_ivar_get().
        // VALUE rb_ivar_get(VALUE obj, ID id)
        ADD_COMMENT(cb, "call rb_ivar_get()");

        // The function could raise exceptions.
        jit_prepare_routine_call(jit, ctx, REG1);

        mov(cb, C_ARG_REGS[0], REG0);
        mov(cb, C_ARG_REGS[1], imm_opnd((int64_t)ivar_name));
        call_ptr(cb, REG1, (void *)rb_ivar_get);

        if (!reg0_opnd.is_self) {
            (void)ctx_stack_pop(ctx, 1);
        }
        // Push the ivar on the stack
        x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN);
        mov(cb, out_opnd, RAX);

        // Jump to next instruction. This allows guard chains to share the same successor.
        jit_jump_to_next_insn(jit, ctx);
        return YJIT_END_BLOCK;
    }

    /*
    // FIXME:
    // This check was added because of a failure in a test involving the
    // Nokogiri Document class where we see a T_DATA that still has the default
    // allocator.
    // Aaron Patterson argues that this is a bug in the C extension, because
    // people could call .allocate() on the class and still get a T_OBJECT
    // For now I added an extra dynamic check that the receiver is T_OBJECT
    // so we can safely pass all the tests in Shopify Core.
    //
    // Guard that the receiver is T_OBJECT
    // #define RB_BUILTIN_TYPE(x) (int)(((struct RBasic*)(x))->flags & RUBY_T_MASK)
    ADD_COMMENT(cb, "guard receiver is T_OBJECT");
    mov(cb, REG1, member_opnd(REG0, struct RBasic, flags));
    and(cb, REG1, imm_opnd(RUBY_T_MASK));
    cmp(cb, REG1, imm_opnd(T_OBJECT));
    jit_chain_guard(JCC_JNE, jit, &starting_context, max_chain_depth, side_exit);
    */

    // FIXME: Mapping the index could fail when there is too many ivar names. If we're
    // compiling for a branch stub that can cause the exception to be thrown from the
    // wrong PC.
    uint32_t ivar_index = rb_obj_ensure_iv_index_mapping(comptime_receiver, ivar_name);

    // Pop receiver if it's on the temp stack
    if (!reg0_opnd.is_self) {
        (void)ctx_stack_pop(ctx, 1);
    }

    // Compile time self is embedded and the ivar index lands within the object
    if (RB_FL_TEST_RAW(comptime_receiver, ROBJECT_EMBED) && ivar_index < ROBJECT_EMBED_LEN_MAX) {
        // See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h

        // Guard that self is embedded
        // TODO: BT and JC is shorter
        ADD_COMMENT(cb, "guard embedded getivar");
        x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
        test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
        jit_chain_guard(JCC_JZ, jit, &starting_context, max_chain_depth, COUNTED_EXIT(jit, side_exit, getivar_megamorphic));

        // Load the variable
        x86opnd_t ivar_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.ary) + ivar_index * SIZEOF_VALUE);
        mov(cb, REG1, ivar_opnd);

        // Guard that the variable is not Qundef
        cmp(cb, REG1, imm_opnd(Qundef));
        mov(cb, REG0, imm_opnd(Qnil));
        cmove(cb, REG1, REG0);

        // Push the ivar on the stack
        x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN);
        mov(cb, out_opnd, REG1);
    }
    else {
        // Compile time value is *not* embedded.

        // Guard that value is *not* embedded
        // See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
        ADD_COMMENT(cb, "guard extended getivar");
        x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
        test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
        jit_chain_guard(JCC_JNZ, jit, &starting_context, max_chain_depth, COUNTED_EXIT(jit, side_exit, getivar_megamorphic));

        // check that the extended table is big enough
        if (ivar_index >= ROBJECT_EMBED_LEN_MAX + 1) {
            // Check that the slot is inside the extended table (num_slots > index)
            x86opnd_t num_slots = mem_opnd(32, REG0, offsetof(struct RObject, as.heap.numiv));
            cmp(cb, num_slots, imm_opnd(ivar_index));
            jle_ptr(cb, COUNTED_EXIT(jit, side_exit, getivar_idx_out_of_range));
        }

        // Get a pointer to the extended table
        x86opnd_t tbl_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.heap.ivptr));
        mov(cb, REG0, tbl_opnd);

        // Read the ivar from the extended table
        x86opnd_t ivar_opnd = mem_opnd(64, REG0, sizeof(VALUE) * ivar_index);
        mov(cb, REG0, ivar_opnd);

        // Check that the ivar is not Qundef
        cmp(cb, REG0, imm_opnd(Qundef));
        mov(cb, REG1, imm_opnd(Qnil));
        cmove(cb, REG0, REG1);

        // Push the ivar on the stack
        x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN);
        mov(cb, out_opnd, REG0);
    }

    // Jump to next instruction. This allows guard chains to share the same successor.
    jit_jump_to_next_insn(jit, ctx);
    return YJIT_END_BLOCK;
}

static codegen_status_t
gen_getinstancevariable(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Defer compilation so we can specialize on a runtime `self`
    if (!jit_at_current_insn(jit)) {
        defer_compilation(jit, ctx);
        return YJIT_END_BLOCK;
    }

    ID ivar_name = (ID)jit_get_arg(jit, 0);

    VALUE comptime_val = jit_peek_at_self(jit, ctx);
    VALUE comptime_val_klass = CLASS_OF(comptime_val);

    // Generate a side exit
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    // Guard that the receiver has the same class as the one from compile time.
    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));

    jit_guard_known_klass(jit, ctx, comptime_val_klass, OPND_SELF, comptime_val, GETIVAR_MAX_DEPTH, side_exit);

    return gen_get_ivar(jit, ctx, GETIVAR_MAX_DEPTH, comptime_val, ivar_name, OPND_SELF, side_exit);
}

void rb_vm_setinstancevariable(const rb_iseq_t *iseq, VALUE obj, ID id, VALUE val, IVC ic);

static codegen_status_t
gen_setinstancevariable(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    ID id = (ID)jit_get_arg(jit, 0);
    IVC ic = (IVC)jit_get_arg(jit, 1);

    // Save the PC and SP because the callee may allocate
    // Note that this modifies REG_SP, which is why we do it first
    jit_prepare_routine_call(jit, ctx, REG0);

    // Get the operands from the stack
    x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);

    // Call rb_vm_setinstancevariable(iseq, obj, id, val, ic);
    mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, self));
    mov(cb, C_ARG_REGS[3], val_opnd);
    mov(cb, C_ARG_REGS[2], imm_opnd(id));
    mov(cb, C_ARG_REGS[4], const_ptr_opnd(ic));
    jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], (VALUE)jit->iseq);
    call_ptr(cb, REG0, (void *)rb_vm_setinstancevariable);

    return YJIT_KEEP_COMPILING;
}

bool rb_vm_defined(rb_execution_context_t *ec, rb_control_frame_t *reg_cfp, rb_num_t op_type, VALUE obj, VALUE v);

static codegen_status_t
gen_defined(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    rb_num_t op_type = (rb_num_t)jit_get_arg(jit, 0);
    VALUE obj = (VALUE)jit_get_arg(jit, 1);
    VALUE pushval = (VALUE)jit_get_arg(jit, 2);

    // Save the PC and SP because the callee may allocate
    // Note that this modifies REG_SP, which is why we do it first
    jit_prepare_routine_call(jit, ctx, REG0);

    // Get the operands from the stack
    x86opnd_t v_opnd = ctx_stack_pop(ctx, 1);

    // Call vm_defined(ec, reg_cfp, op_type, obj, v)
    mov(cb, C_ARG_REGS[0], REG_EC);
    mov(cb, C_ARG_REGS[1], REG_CFP);
    mov(cb, C_ARG_REGS[2], imm_opnd(op_type));
    jit_mov_gc_ptr(jit, cb, C_ARG_REGS[3], (VALUE)obj);
    mov(cb, C_ARG_REGS[4], v_opnd);
    call_ptr(cb, REG0, (void *)rb_vm_defined);

    // if (vm_defined(ec, GET_CFP(), op_type, obj, v)) {
    //  val = pushval;
    // }
    jit_mov_gc_ptr(jit, cb, REG1, (VALUE)pushval);
    cmp(cb, AL, imm_opnd(0));
    mov(cb, RAX, imm_opnd(Qnil));
    cmovnz(cb, RAX, REG1);

    // Push the return value onto the stack
    val_type_t out_type = SPECIAL_CONST_P(pushval)? TYPE_IMM:TYPE_UNKNOWN;
    x86opnd_t stack_ret = ctx_stack_push(ctx, out_type);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_checktype(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    enum ruby_value_type type_val = (enum ruby_value_type)jit_get_arg(jit, 0);
    // Only three types are emitted by compile.c
    if (type_val == T_STRING || type_val == T_ARRAY || type_val == T_HASH) {
        val_type_t val_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
        x86opnd_t val = ctx_stack_pop(ctx, 1);

        x86opnd_t stack_ret;

        // Check if we know from type information
        if ((type_val == T_STRING && val_type.type == ETYPE_STRING) ||
                (type_val == T_ARRAY && val_type.type == ETYPE_ARRAY) ||
                (type_val == T_HASH && val_type.type == ETYPE_HASH)) {
            // guaranteed type match
            stack_ret = ctx_stack_push(ctx, TYPE_TRUE);
            mov(cb, stack_ret, imm_opnd(Qtrue));
            return YJIT_KEEP_COMPILING;
        }
        else if (val_type.is_imm || val_type.type != ETYPE_UNKNOWN) {
            // guaranteed not to match T_STRING/T_ARRAY/T_HASH
            stack_ret = ctx_stack_push(ctx, TYPE_FALSE);
            mov(cb, stack_ret, imm_opnd(Qfalse));
            return YJIT_KEEP_COMPILING;
        }

        mov(cb, REG0, val);
        mov(cb, REG1, imm_opnd(Qfalse));

        uint32_t ret = cb_new_label(cb, "ret");

        if (!val_type.is_heap) {
            // if (SPECIAL_CONST_P(val)) {
            // Return Qfalse via REG1 if not on heap
            test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
            jnz_label(cb, ret);
            cmp(cb, REG0, imm_opnd(Qnil));
            jbe_label(cb, ret);
        }

        // Check type on object
        mov(cb, REG0, mem_opnd(64, REG0, offsetof(struct RBasic, flags)));
        and(cb, REG0, imm_opnd(RUBY_T_MASK));
        cmp(cb, REG0, imm_opnd(type_val));
        mov(cb, REG0, imm_opnd(Qtrue));
        // REG1 contains Qfalse from above
        cmove(cb, REG1, REG0);

        cb_write_label(cb, ret);
        stack_ret = ctx_stack_push(ctx, TYPE_IMM);
        mov(cb, stack_ret, REG1);
        cb_link_labels(cb);

        return YJIT_KEEP_COMPILING;
    }
    else {
        return YJIT_CANT_COMPILE;
    }
}

static codegen_status_t
gen_concatstrings(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);

    // Save the PC and SP because we are allocating
    jit_prepare_routine_call(jit, ctx, REG0);

    x86opnd_t values_ptr = ctx_sp_opnd(ctx, -(int32_t)(sizeof(VALUE) * (uint32_t)n));

    // call rb_str_concat_literals(long n, const VALUE *strings);
    mov(cb, C_ARG_REGS[0], imm_opnd(n));
    lea(cb, C_ARG_REGS[1], values_ptr);
    call_ptr(cb, REG0, (void *)rb_str_concat_literals);

    ctx_stack_pop(ctx, n);
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

static void
guard_two_fixnums(ctx_t *ctx, uint8_t *side_exit)
{
    // Get the stack operand types
    val_type_t arg1_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
    val_type_t arg0_type = ctx_get_opnd_type(ctx, OPND_STACK(1));

    if (arg0_type.is_heap || arg1_type.is_heap) {
        jmp_ptr(cb, side_exit);
        return;
    }

    if (arg0_type.type != ETYPE_FIXNUM && arg0_type.type != ETYPE_UNKNOWN) {
        jmp_ptr(cb, side_exit);
        return;
    }

    if (arg1_type.type != ETYPE_FIXNUM && arg1_type.type != ETYPE_UNKNOWN) {
        jmp_ptr(cb, side_exit);
        return;
    }

    RUBY_ASSERT(!arg0_type.is_heap);
    RUBY_ASSERT(!arg1_type.is_heap);
    RUBY_ASSERT(arg0_type.type == ETYPE_FIXNUM || arg0_type.type == ETYPE_UNKNOWN);
    RUBY_ASSERT(arg1_type.type == ETYPE_FIXNUM || arg1_type.type == ETYPE_UNKNOWN);

    // Get stack operands without popping them
    x86opnd_t arg1 = ctx_stack_opnd(ctx, 0);
    x86opnd_t arg0 = ctx_stack_opnd(ctx, 1);

    // If not fixnums, fall back
    if (arg0_type.type != ETYPE_FIXNUM) {
        ADD_COMMENT(cb, "guard arg0 fixnum");
        test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
        jz_ptr(cb, side_exit);
    }
    if (arg1_type.type != ETYPE_FIXNUM) {
        ADD_COMMENT(cb, "guard arg1 fixnum");
        test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
        jz_ptr(cb, side_exit);
    }

    // Set stack types in context
    ctx_upgrade_opnd_type(ctx, OPND_STACK(0), TYPE_FIXNUM);
    ctx_upgrade_opnd_type(ctx, OPND_STACK(1), TYPE_FIXNUM);
}

// Conditional move operation used by comparison operators
typedef void (*cmov_fn)(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1);

static codegen_status_t
gen_fixnum_cmp(jitstate_t *jit, ctx_t *ctx, cmov_fn cmov_op)
{
    // Defer compilation so we can specialize base on a runtime receiver
    if (!jit_at_current_insn(jit)) {
        defer_compilation(jit, ctx);
        return YJIT_END_BLOCK;
    }

    VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
    VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);

    if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
        // Create a side-exit to fall back to the interpreter
        // Note: we generate the side-exit before popping operands from the stack
        uint8_t *side_exit = yjit_side_exit(jit, ctx);

        if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_LT)) {
            return YJIT_CANT_COMPILE;
        }

        // Check that both operands are fixnums
        guard_two_fixnums(ctx, side_exit);

        // Get the operands from the stack
        x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
        x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

        // Compare the arguments
        xor(cb, REG0_32, REG0_32); // REG0 = Qfalse
        mov(cb, REG1, arg0);
        cmp(cb, REG1, arg1);
        mov(cb, REG1, imm_opnd(Qtrue));
        cmov_op(cb, REG0, REG1);

        // Push the output on the stack
        x86opnd_t dst = ctx_stack_push(ctx, TYPE_UNKNOWN);
        mov(cb, dst, REG0);

        return YJIT_KEEP_COMPILING;
    }
    else {
        return gen_opt_send_without_block(jit, ctx, cb);
    }
}

static codegen_status_t
gen_opt_lt(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    return gen_fixnum_cmp(jit, ctx, cmovl);
}

static codegen_status_t
gen_opt_le(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    return gen_fixnum_cmp(jit, ctx, cmovle);
}

static codegen_status_t
gen_opt_ge(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    return gen_fixnum_cmp(jit, ctx, cmovge);
}

static codegen_status_t
gen_opt_gt(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    return gen_fixnum_cmp(jit, ctx, cmovg);
}

// Implements specialized equality for either two fixnum or two strings
// Returns true if code was generated, otherwise false
static bool
gen_equality_specialized(jitstate_t *jit, ctx_t *ctx, uint8_t *side_exit)
{
    VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
    VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);

    x86opnd_t a_opnd = ctx_stack_opnd(ctx, 1);
    x86opnd_t b_opnd = ctx_stack_opnd(ctx, 0);

    if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
        if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_EQ)) {
            // if overridden, emit the generic version
            return false;
        }

        guard_two_fixnums(ctx, side_exit);

        mov(cb, REG0, a_opnd);
        cmp(cb, REG0, b_opnd);

        mov(cb, REG0, imm_opnd(Qfalse));
        mov(cb, REG1, imm_opnd(Qtrue));
        cmove(cb, REG0, REG1);

        // Push the output on the stack
        ctx_stack_pop(ctx, 2);
        x86opnd_t dst = ctx_stack_push(ctx, TYPE_IMM);
        mov(cb, dst, REG0);

        return true;
    }
    else if (CLASS_OF(comptime_a) == rb_cString &&
            CLASS_OF(comptime_b) == rb_cString) {
        if (!assume_bop_not_redefined(jit, STRING_REDEFINED_OP_FLAG, BOP_EQ)) {
            // if overridden, emit the generic version
            return false;
        }

        // Load a and b in preparation for call later
        mov(cb, C_ARG_REGS[0], a_opnd);
        mov(cb, C_ARG_REGS[1], b_opnd);

        // Guard that a is a String
        mov(cb, REG0, C_ARG_REGS[0]);
        jit_guard_known_klass(jit, ctx, rb_cString, OPND_STACK(1), comptime_a, SEND_MAX_DEPTH, side_exit);

        uint32_t ret = cb_new_label(cb, "ret");

        // If they are equal by identity, return true
        cmp(cb, C_ARG_REGS[0], C_ARG_REGS[1]);
        mov(cb, RAX, imm_opnd(Qtrue));
        je_label(cb, ret);

        // Otherwise guard that b is a T_STRING (from type info) or String (from runtime guard)
        if (ctx_get_opnd_type(ctx, OPND_STACK(0)).type != ETYPE_STRING) {
            mov(cb, REG0, C_ARG_REGS[1]);
            // Note: any T_STRING is valid here, but we check for a ::String for simplicity
            jit_guard_known_klass(jit, ctx, rb_cString, OPND_STACK(0), comptime_b, SEND_MAX_DEPTH, side_exit);
        }

        // Call rb_str_eql_internal(a, b)
        call_ptr(cb, REG0, (void *)rb_str_eql_internal);

        // Push the output on the stack
        cb_write_label(cb, ret);
        ctx_stack_pop(ctx, 2);
        x86opnd_t dst = ctx_stack_push(ctx, TYPE_IMM);
        mov(cb, dst, RAX);
        cb_link_labels(cb);

        return true;
    }
    else {
        return false;
    }
}

static codegen_status_t
gen_opt_eq(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Defer compilation so we can specialize base on a runtime receiver
    if (!jit_at_current_insn(jit)) {
        defer_compilation(jit, ctx);
        return YJIT_END_BLOCK;
    }

    // Create a side-exit to fall back to the interpreter
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    if (gen_equality_specialized(jit, ctx, side_exit)) {
        jit_jump_to_next_insn(jit, ctx);
        return YJIT_END_BLOCK;
    }
    else {
        return gen_opt_send_without_block(jit, ctx, cb);
    }
}

static codegen_status_t gen_send_general(jitstate_t *jit, ctx_t *ctx, struct rb_call_data *cd, rb_iseq_t *block);

static codegen_status_t
gen_opt_neq(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // opt_neq is passed two rb_call_data as arguments:
    // first for ==, second for !=
    struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 1);
    return gen_send_general(jit, ctx, cd, NULL);
}

static codegen_status_t
gen_opt_aref(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    struct rb_call_data * cd = (struct rb_call_data *)jit_get_arg(jit, 0);
    int32_t argc = (int32_t)vm_ci_argc(cd->ci);

    // Only JIT one arg calls like `ary[6]`
    if (argc != 1) {
        GEN_COUNTER_INC(cb, oaref_argc_not_one);
        return YJIT_CANT_COMPILE;
    }

    // Defer compilation so we can specialize base on a runtime receiver
    if (!jit_at_current_insn(jit)) {
        defer_compilation(jit, ctx);
        return YJIT_END_BLOCK;
    }

    // Remember the context on entry for adding guard chains
    const ctx_t starting_context = *ctx;

    // Specialize base on compile time values
    VALUE comptime_idx = jit_peek_at_stack(jit, ctx, 0);
    VALUE comptime_recv = jit_peek_at_stack(jit, ctx, 1);

    // Create a side-exit to fall back to the interpreter
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    if (CLASS_OF(comptime_recv) == rb_cArray && RB_FIXNUM_P(comptime_idx)) {
        if (!assume_bop_not_redefined(jit, ARRAY_REDEFINED_OP_FLAG, BOP_AREF)) {
            return YJIT_CANT_COMPILE;
        }

        // Pop the stack operands
        x86opnd_t idx_opnd = ctx_stack_pop(ctx, 1);
        x86opnd_t recv_opnd = ctx_stack_pop(ctx, 1);
        mov(cb, REG0, recv_opnd);

        // if (SPECIAL_CONST_P(recv)) {
        // Bail if receiver is not a heap object
        test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
        jnz_ptr(cb, side_exit);
        cmp(cb, REG0, imm_opnd(Qfalse));
        je_ptr(cb, side_exit);
        cmp(cb, REG0, imm_opnd(Qnil));
        je_ptr(cb, side_exit);

        // Bail if recv has a class other than ::Array.
        // BOP_AREF check above is only good for ::Array.
        mov(cb, REG1, mem_opnd(64, REG0, offsetof(struct RBasic, klass)));
        mov(cb, REG0, const_ptr_opnd((void *)rb_cArray));
        cmp(cb, REG0, REG1);
        jit_chain_guard(JCC_JNE, jit, &starting_context, OPT_AREF_MAX_CHAIN_DEPTH, side_exit);

        // Bail if idx is not a FIXNUM
        mov(cb, REG1, idx_opnd);
        test(cb, REG1, imm_opnd(RUBY_FIXNUM_FLAG));
        jz_ptr(cb, COUNTED_EXIT(jit, side_exit, oaref_arg_not_fixnum));

        // Call VALUE rb_ary_entry_internal(VALUE ary, long offset).
        // It never raises or allocates, so we don't need to write to cfp->pc.
        {
            mov(cb, RDI, recv_opnd);
            sar(cb, REG1, imm_opnd(1)); // Convert fixnum to int
            mov(cb, RSI, REG1);
            call_ptr(cb, REG0, (void *)rb_ary_entry_internal);

            // Push the return value onto the stack
            x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
            mov(cb, stack_ret, RAX);
        }

        // Jump to next instruction. This allows guard chains to share the same successor.
        jit_jump_to_next_insn(jit, ctx);
        return YJIT_END_BLOCK;
    }
    else if (CLASS_OF(comptime_recv) == rb_cHash) {
        if (!assume_bop_not_redefined(jit, HASH_REDEFINED_OP_FLAG, BOP_AREF)) {
            return YJIT_CANT_COMPILE;
        }

        x86opnd_t key_opnd = ctx_stack_opnd(ctx, 0);
        x86opnd_t recv_opnd = ctx_stack_opnd(ctx, 1);

        // Guard that the receiver is a hash
        mov(cb, REG0, recv_opnd);
        jit_guard_known_klass(jit, ctx, rb_cHash, OPND_STACK(1), comptime_recv, OPT_AREF_MAX_CHAIN_DEPTH, side_exit);

        // Setup arguments for rb_hash_aref().
        mov(cb, C_ARG_REGS[0], REG0);
        mov(cb, C_ARG_REGS[1], key_opnd);

        // Prepare to call rb_hash_aref(). It might call #hash on the key.
        jit_prepare_routine_call(jit, ctx, REG0);

        call_ptr(cb, REG0, (void *)rb_hash_aref);

        // Pop the key and the receiver
        (void)ctx_stack_pop(ctx, 2);

        // Push the return value onto the stack
        x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
        mov(cb, stack_ret, RAX);

        // Jump to next instruction. This allows guard chains to share the same successor.
        jit_jump_to_next_insn(jit, ctx);
        return YJIT_END_BLOCK;
    }
    else {
        // General case. Call the [] method.
        return gen_opt_send_without_block(jit, ctx, cb);
    }
}

static codegen_status_t
gen_opt_aset(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Defer compilation so we can specialize on a runtime `self`
    if (!jit_at_current_insn(jit)) {
        defer_compilation(jit, ctx);
        return YJIT_END_BLOCK;
    }

    VALUE comptime_recv = jit_peek_at_stack(jit, ctx, 2);
    VALUE comptime_key  = jit_peek_at_stack(jit, ctx, 1);

    // Get the operands from the stack
    x86opnd_t recv = ctx_stack_opnd(ctx, 2);
    x86opnd_t key = ctx_stack_opnd(ctx, 1);
    x86opnd_t val = ctx_stack_opnd(ctx, 0);

    if (CLASS_OF(comptime_recv) == rb_cArray && FIXNUM_P(comptime_key)) {
        uint8_t *side_exit = yjit_side_exit(jit, ctx);

        // Guard receiver is an Array
        mov(cb, REG0, recv);
        jit_guard_known_klass(jit, ctx, rb_cArray, OPND_STACK(2), comptime_recv, SEND_MAX_DEPTH, side_exit);

        // Guard key is a fixnum
        mov(cb, REG0, key);
        jit_guard_known_klass(jit, ctx, rb_cInteger, OPND_STACK(1), comptime_key, SEND_MAX_DEPTH, side_exit);

        // Call rb_ary_store
        mov(cb, C_ARG_REGS[0], recv);
        mov(cb, C_ARG_REGS[1], key);
        sar(cb, C_ARG_REGS[1], imm_opnd(1)); // FIX2LONG(key)
        mov(cb, C_ARG_REGS[2], val);

        // We might allocate or raise
        jit_prepare_routine_call(jit, ctx, REG0);

        call_ptr(cb, REG0, (void *)rb_ary_store);

        // rb_ary_store returns void
        // stored value should still be on stack
        mov(cb, REG0, ctx_stack_opnd(ctx, 0));

        // Push the return value onto the stack
        ctx_stack_pop(ctx, 3);
        x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
        mov(cb, stack_ret, REG0);

        jit_jump_to_next_insn(jit, ctx);
        return YJIT_END_BLOCK;
    }
    else if (CLASS_OF(comptime_recv) == rb_cHash) {
        uint8_t *side_exit = yjit_side_exit(jit, ctx);

        // Guard receiver is a Hash
        mov(cb, REG0, recv);
        jit_guard_known_klass(jit, ctx, rb_cHash, OPND_STACK(2), comptime_recv, SEND_MAX_DEPTH, side_exit);

        // Call rb_hash_aset
        mov(cb, C_ARG_REGS[0], recv);
        mov(cb, C_ARG_REGS[1], key);
        mov(cb, C_ARG_REGS[2], val);

        // We might allocate or raise
        jit_prepare_routine_call(jit, ctx, REG0);

        call_ptr(cb, REG0, (void *)rb_hash_aset);

        // Push the return value onto the stack
        ctx_stack_pop(ctx, 3);
        x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
        mov(cb, stack_ret, RAX);

        jit_jump_to_next_insn(jit, ctx);
        return YJIT_END_BLOCK;
    }
    else {
        return gen_opt_send_without_block(jit, ctx, cb);
    }
}

static codegen_status_t
gen_opt_and(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Defer compilation so we can specialize on a runtime `self`
    if (!jit_at_current_insn(jit)) {
        defer_compilation(jit, ctx);
        return YJIT_END_BLOCK;
    }

    VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
    VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);

    if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
        // Create a side-exit to fall back to the interpreter
        // Note: we generate the side-exit before popping operands from the stack
        uint8_t *side_exit = yjit_side_exit(jit, ctx);

        if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_AND)) {
            return YJIT_CANT_COMPILE;
        }

        // Check that both operands are fixnums
        guard_two_fixnums(ctx, side_exit);

        // Get the operands and destination from the stack
        x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
        x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

        // Do the bitwise and arg0 & arg1
        mov(cb, REG0, arg0);
        and(cb, REG0, arg1);

        // Push the output on the stack
        x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM);
        mov(cb, dst, REG0);

        return YJIT_KEEP_COMPILING;
    }
    else {
        // Delegate to send, call the method on the recv
        return gen_opt_send_without_block(jit, ctx, cb);
    }
}

static codegen_status_t
gen_opt_or(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Defer compilation so we can specialize on a runtime `self`
    if (!jit_at_current_insn(jit)) {
        defer_compilation(jit, ctx);
        return YJIT_END_BLOCK;
    }

    VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
    VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);

    if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
        // Create a side-exit to fall back to the interpreter
        // Note: we generate the side-exit before popping operands from the stack
        uint8_t *side_exit = yjit_side_exit(jit, ctx);

        if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_OR)) {
            return YJIT_CANT_COMPILE;
        }

        // Check that both operands are fixnums
        guard_two_fixnums(ctx, side_exit);

        // Get the operands and destination from the stack
        x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
        x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

        // Do the bitwise or arg0 | arg1
        mov(cb, REG0, arg0);
        or(cb, REG0, arg1);

        // Push the output on the stack
        x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM);
        mov(cb, dst, REG0);

        return YJIT_KEEP_COMPILING;
    }
    else {
        // Delegate to send, call the method on the recv
        return gen_opt_send_without_block(jit, ctx, cb);
    }
}

static codegen_status_t
gen_opt_minus(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Defer compilation so we can specialize on a runtime `self`
    if (!jit_at_current_insn(jit)) {
        defer_compilation(jit, ctx);
        return YJIT_END_BLOCK;
    }

    VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
    VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);

    if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
        // Create a side-exit to fall back to the interpreter
        // Note: we generate the side-exit before popping operands from the stack
        uint8_t *side_exit = yjit_side_exit(jit, ctx);

        if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_MINUS)) {
            return YJIT_CANT_COMPILE;
        }

        // Check that both operands are fixnums
        guard_two_fixnums(ctx, side_exit);

        // Get the operands and destination from the stack
        x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
        x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

        // Subtract arg0 - arg1 and test for overflow
        mov(cb, REG0, arg0);
        sub(cb, REG0, arg1);
        jo_ptr(cb, side_exit);
        add(cb, REG0, imm_opnd(1));

        // Push the output on the stack
        x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM);
        mov(cb, dst, REG0);

        return YJIT_KEEP_COMPILING;
    }
    else {
        // Delegate to send, call the method on the recv
        return gen_opt_send_without_block(jit, ctx, cb);
    }
}

static codegen_status_t
gen_opt_plus(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Defer compilation so we can specialize on a runtime `self`
    if (!jit_at_current_insn(jit)) {
        defer_compilation(jit, ctx);
        return YJIT_END_BLOCK;
    }

    VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
    VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);

    if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
        // Create a side-exit to fall back to the interpreter
        // Note: we generate the side-exit before popping operands from the stack
        uint8_t *side_exit = yjit_side_exit(jit, ctx);

        if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_PLUS)) {
            return YJIT_CANT_COMPILE;
        }

        // Check that both operands are fixnums
        guard_two_fixnums(ctx, side_exit);

        // Get the operands and destination from the stack
        x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
        x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

        // Add arg0 + arg1 and test for overflow
        mov(cb, REG0, arg0);
        sub(cb, REG0, imm_opnd(1));
        add(cb, REG0, arg1);
        jo_ptr(cb, side_exit);

        // Push the output on the stack
        x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM);
        mov(cb, dst, REG0);

        return YJIT_KEEP_COMPILING;
    }
    else {
        // Delegate to send, call the method on the recv
        return gen_opt_send_without_block(jit, ctx, cb);
    }
}

static codegen_status_t
gen_opt_mult(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Delegate to send, call the method on the recv
    return gen_opt_send_without_block(jit, ctx, cb);
}

static codegen_status_t
gen_opt_div(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Delegate to send, call the method on the recv
    return gen_opt_send_without_block(jit, ctx, cb);
}

VALUE rb_vm_opt_mod(VALUE recv, VALUE obj);

static codegen_status_t
gen_opt_mod(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Save the PC and SP because the callee may allocate bignums
    // Note that this modifies REG_SP, which is why we do it first
    jit_prepare_routine_call(jit, ctx, REG0);

    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    // Get the operands from the stack
    x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
    x86opnd_t arg0 = ctx_stack_pop(ctx, 1);

    // Call rb_vm_opt_mod(VALUE recv, VALUE obj)
    mov(cb, C_ARG_REGS[0], arg0);
    mov(cb, C_ARG_REGS[1], arg1);
    call_ptr(cb, REG0, (void *)rb_vm_opt_mod);

    // If val == Qundef, bail to do a method call
    cmp(cb, RAX, imm_opnd(Qundef));
    je_ptr(cb, side_exit);

    // Push the return value onto the stack
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_opt_ltlt(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Delegate to send, call the method on the recv
    return gen_opt_send_without_block(jit, ctx, cb);
}

static codegen_status_t
gen_opt_nil_p(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Delegate to send, call the method on the recv
    return gen_opt_send_without_block(jit, ctx, cb);
}

static codegen_status_t
gen_opt_empty_p(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Delegate to send, call the method on the recv
    return gen_opt_send_without_block(jit, ctx, cb);
}

static codegen_status_t
gen_opt_str_freeze(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    if (!assume_bop_not_redefined(jit, STRING_REDEFINED_OP_FLAG, BOP_FREEZE)) {
        return YJIT_CANT_COMPILE;
    }

    VALUE str = jit_get_arg(jit, 0);
    jit_mov_gc_ptr(jit, cb, REG0, str);

    // Push the return value onto the stack
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING);
    mov(cb, stack_ret, REG0);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_opt_str_uminus(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    if (!assume_bop_not_redefined(jit, STRING_REDEFINED_OP_FLAG, BOP_UMINUS)) {
        return YJIT_CANT_COMPILE;
    }

    VALUE str = jit_get_arg(jit, 0);
    jit_mov_gc_ptr(jit, cb, REG0, str);

    // Push the return value onto the stack
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING);
    mov(cb, stack_ret, REG0);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_opt_not(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    return gen_opt_send_without_block(jit, ctx, cb);
}

static codegen_status_t
gen_opt_size(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    return gen_opt_send_without_block(jit, ctx, cb);
}

static codegen_status_t
gen_opt_length(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    return gen_opt_send_without_block(jit, ctx, cb);
}

static codegen_status_t
gen_opt_regexpmatch2(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    return gen_opt_send_without_block(jit, ctx, cb);
}

static codegen_status_t
gen_opt_case_dispatch(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Normally this instruction would lookup the key in a hash and jump to an
    // offset based on that.
    // Instead we can take the fallback case and continue with the next
    // instruction.
    // We'd hope that our jitted code will be sufficiently fast without the
    // hash lookup, at least for small hashes, but it's worth revisiting this
    // assumption in the future.

    ctx_stack_pop(ctx, 1);

    return YJIT_KEEP_COMPILING; // continue with the next instruction
}

static void
gen_branchif_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
{
    switch (shape) {
      case SHAPE_NEXT0:
        jz_ptr(cb, target1);
        break;

      case SHAPE_NEXT1:
        jnz_ptr(cb, target0);
        break;

      case SHAPE_DEFAULT:
        jnz_ptr(cb, target0);
        jmp_ptr(cb, target1);
        break;
    }
}

static codegen_status_t
gen_branchif(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    int32_t jump_offset = (int32_t)jit_get_arg(jit, 0);

    // Check for interrupts, but only on backward branches that may create loops
    if (jump_offset < 0) {
        uint8_t *side_exit = yjit_side_exit(jit, ctx);
        yjit_check_ints(cb, side_exit);
    }

    // Test if any bit (outside of the Qnil bit) is on
    // RUBY_Qfalse  /* ...0000 0000 */
    // RUBY_Qnil    /* ...0000 1000 */
    x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
    test(cb, val_opnd, imm_opnd(~Qnil));

    // Get the branch target instruction offsets
    uint32_t next_idx = jit_next_insn_idx(jit);
    uint32_t jump_idx = next_idx + jump_offset;
    blockid_t next_block = { jit->iseq, next_idx };
    blockid_t jump_block = { jit->iseq, jump_idx };

    // Generate the branch instructions
    gen_branch(
        jit,
        ctx,
        jump_block,
        ctx,
        next_block,
        ctx,
        gen_branchif_branch
    );

    return YJIT_END_BLOCK;
}

static void
gen_branchunless_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
{
    switch (shape) {
      case SHAPE_NEXT0:
        jnz_ptr(cb, target1);
        break;

      case SHAPE_NEXT1:
        jz_ptr(cb, target0);
        break;

      case SHAPE_DEFAULT:
        jz_ptr(cb, target0);
        jmp_ptr(cb, target1);
        break;
    }
}

static codegen_status_t
gen_branchunless(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    int32_t jump_offset = (int32_t)jit_get_arg(jit, 0);

    // Check for interrupts, but only on backward branches that may create loops
    if (jump_offset < 0) {
        uint8_t *side_exit = yjit_side_exit(jit, ctx);
        yjit_check_ints(cb, side_exit);
    }

    // Test if any bit (outside of the Qnil bit) is on
    // RUBY_Qfalse  /* ...0000 0000 */
    // RUBY_Qnil    /* ...0000 1000 */
    x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
    test(cb, val_opnd, imm_opnd(~Qnil));

    // Get the branch target instruction offsets
    uint32_t next_idx = jit_next_insn_idx(jit);
    uint32_t jump_idx = next_idx + jump_offset;
    blockid_t next_block = { jit->iseq, next_idx };
    blockid_t jump_block = { jit->iseq, jump_idx };

    // Generate the branch instructions
    gen_branch(
        jit,
        ctx,
        jump_block,
        ctx,
        next_block,
        ctx,
        gen_branchunless_branch
    );

    return YJIT_END_BLOCK;
}

static void
gen_branchnil_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
{
    switch (shape) {
      case SHAPE_NEXT0:
        jne_ptr(cb, target1);
        break;

      case SHAPE_NEXT1:
        je_ptr(cb, target0);
        break;

      case SHAPE_DEFAULT:
        je_ptr(cb, target0);
        jmp_ptr(cb, target1);
        break;
    }
}

static codegen_status_t
gen_branchnil(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    int32_t jump_offset = (int32_t)jit_get_arg(jit, 0);

    // Check for interrupts, but only on backward branches that may create loops
    if (jump_offset < 0) {
        uint8_t *side_exit = yjit_side_exit(jit, ctx);
        yjit_check_ints(cb, side_exit);
    }

    // Test if the value is Qnil
    // RUBY_Qnil    /* ...0000 1000 */
    x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
    cmp(cb, val_opnd, imm_opnd(Qnil));

    // Get the branch target instruction offsets
    uint32_t next_idx = jit_next_insn_idx(jit);
    uint32_t jump_idx = next_idx + jump_offset;
    blockid_t next_block = { jit->iseq, next_idx };
    blockid_t jump_block = { jit->iseq, jump_idx };

    // Generate the branch instructions
    gen_branch(
        jit,
        ctx,
        jump_block,
        ctx,
        next_block,
        ctx,
        gen_branchnil_branch
    );

    return YJIT_END_BLOCK;
}

static codegen_status_t
gen_jump(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    int32_t jump_offset = (int32_t)jit_get_arg(jit, 0);

    // Check for interrupts, but only on backward branches that may create loops
    if (jump_offset < 0) {
        uint8_t *side_exit = yjit_side_exit(jit, ctx);
        yjit_check_ints(cb, side_exit);
    }

    // Get the branch target instruction offsets
    uint32_t jump_idx = jit_next_insn_idx(jit) + jump_offset;
    blockid_t jump_block = { jit->iseq, jump_idx };

    // Generate the jump instruction
    gen_direct_jump(
        jit,
        ctx,
        jump_block
    );

    return YJIT_END_BLOCK;
}

/*
Guard that self or a stack operand has the same class as `known_klass`, using
`sample_instance` to speculate about the shape of the runtime value.
FIXNUM and on-heap integers are treated as if they have distinct classes, and
the guard generated for one will fail for the other.

Recompile as contingency if possible, or take side exit a last resort.
*/
static bool
jit_guard_known_klass(jitstate_t *jit, ctx_t *ctx, VALUE known_klass, insn_opnd_t insn_opnd, VALUE sample_instance, const int max_chain_depth, uint8_t *side_exit)
{
    val_type_t val_type = ctx_get_opnd_type(ctx, insn_opnd);

    if (known_klass == rb_cNilClass) {
        RUBY_ASSERT(!val_type.is_heap);
        if (val_type.type != ETYPE_NIL) {
            RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);

            ADD_COMMENT(cb, "guard object is nil");
            cmp(cb, REG0, imm_opnd(Qnil));
            jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);

            ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_NIL);
        }
    }
    else if (known_klass == rb_cTrueClass) {
        RUBY_ASSERT(!val_type.is_heap);
        if (val_type.type != ETYPE_TRUE) {
            RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);

            ADD_COMMENT(cb, "guard object is true");
            cmp(cb, REG0, imm_opnd(Qtrue));
            jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);

            ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_TRUE);
        }
    }
    else if (known_klass == rb_cFalseClass) {
        RUBY_ASSERT(!val_type.is_heap);
        if (val_type.type != ETYPE_FALSE) {
            RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);

            ADD_COMMENT(cb, "guard object is false");
            STATIC_ASSERT(qfalse_is_zero, Qfalse == 0);
            test(cb, REG0, REG0);
            jit_chain_guard(JCC_JNZ, jit, ctx, max_chain_depth, side_exit);

            ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_FALSE);
        }
    }
    else if (known_klass == rb_cInteger && FIXNUM_P(sample_instance)) {
        RUBY_ASSERT(!val_type.is_heap);
        // We will guard fixnum and bignum as though they were separate classes
        // BIGNUM can be handled by the general else case below
        if (val_type.type != ETYPE_FIXNUM || !val_type.is_imm) {
            RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);

            ADD_COMMENT(cb, "guard object is fixnum");
            test(cb, REG0, imm_opnd(RUBY_FIXNUM_FLAG));
            jit_chain_guard(JCC_JZ, jit, ctx, max_chain_depth, side_exit);
            ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_FIXNUM);
        }
    }
    else if (known_klass == rb_cSymbol && STATIC_SYM_P(sample_instance)) {
        RUBY_ASSERT(!val_type.is_heap);
        // We will guard STATIC vs DYNAMIC as though they were separate classes
        // DYNAMIC symbols can be handled by the general else case below
        if (val_type.type != ETYPE_SYMBOL || !val_type.is_imm) {
            RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);

            ADD_COMMENT(cb, "guard object is static symbol");
            STATIC_ASSERT(special_shift_is_8, RUBY_SPECIAL_SHIFT == 8);
            cmp(cb, REG0_8, imm_opnd(RUBY_SYMBOL_FLAG));
            jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
            ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_STATIC_SYMBOL);
        }
    }
    else if (known_klass == rb_cFloat && FLONUM_P(sample_instance)) {
        RUBY_ASSERT(!val_type.is_heap);
        if (val_type.type != ETYPE_FLONUM || !val_type.is_imm) {
            RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);

            // We will guard flonum vs heap float as though they were separate classes
            ADD_COMMENT(cb, "guard object is flonum");
            mov(cb, REG1, REG0);
            and(cb, REG1, imm_opnd(RUBY_FLONUM_MASK));
            cmp(cb, REG1, imm_opnd(RUBY_FLONUM_FLAG));
            jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
            ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_FLONUM);
        }
    }
    else if (FL_TEST(known_klass, FL_SINGLETON) && sample_instance == rb_attr_get(known_klass, id__attached__)) {
        // Singleton classes are attached to one specific object, so we can
        // avoid one memory access (and potentially the is_heap check) by
        // looking for the expected object directly.
        // Note that in case the sample instance has a singleton class that
        // doesn't attach to the sample instance, it means the sample instance
        // has an empty singleton class that hasn't been materialized yet. In
        // this case, comparing against the sample instance doesn't guarantee
        // that its singleton class is empty, so we can't avoid the memory
        // access. As an example, `Object.new.singleton_class` is an object in
        // this situation.
        ADD_COMMENT(cb, "guard known object with singleton class");
        // TODO: jit_mov_gc_ptr keeps a strong reference, which leaks the object.
        jit_mov_gc_ptr(jit, cb, REG1, sample_instance);
        cmp(cb, REG0, REG1);
        jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
    }
    else {
        RUBY_ASSERT(!val_type.is_imm);

        // Check that the receiver is a heap object
        // Note: if we get here, the class doesn't have immediate instances.
        if (!val_type.is_heap) {
            ADD_COMMENT(cb, "guard not immediate");
            RUBY_ASSERT(Qfalse < Qnil);
            test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
            jit_chain_guard(JCC_JNZ, jit, ctx, max_chain_depth, side_exit);
            cmp(cb, REG0, imm_opnd(Qnil));
            jit_chain_guard(JCC_JBE, jit, ctx, max_chain_depth, side_exit);

            ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_HEAP);
        }

        x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));

        // Bail if receiver class is different from known_klass
        // TODO: jit_mov_gc_ptr keeps a strong reference, which leaks the class.
        ADD_COMMENT(cb, "guard known class");
        jit_mov_gc_ptr(jit, cb, REG1, known_klass);
        cmp(cb, klass_opnd, REG1);
        jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
    }

    return true;
}

// Generate ancestry guard for protected callee.
// Calls to protected callees only go through when self.is_a?(klass_that_defines_the_callee).
static void
jit_protected_callee_ancestry_guard(jitstate_t *jit, codeblock_t *cb, const rb_callable_method_entry_t *cme, uint8_t *side_exit)
{
    // See vm_call_method().
    mov(cb, C_ARG_REGS[0], member_opnd(REG_CFP, rb_control_frame_t, self));
    jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], cme->defined_class);
    // Note: PC isn't written to current control frame as rb_is_kind_of() shouldn't raise.
    // VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass);
    call_ptr(cb, REG0, (void *)&rb_obj_is_kind_of);
    test(cb, RAX, RAX);
    jz_ptr(cb, COUNTED_EXIT(jit, side_exit, send_se_protected_check_failed));
}

// Return true when the codegen function generates code.
// known_recv_klass is non-NULL when the caller has used jit_guard_known_klass().
// See yjit_reg_method().
typedef bool (*method_codegen_t)(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass);

// Register a specialized codegen function for a particular method. Note that
// the if the function returns true, the code it generates runs without a
// control frame and without interrupt checks. To avoid creating observable
// behavior changes, the codegen function should only target simple code paths
// that do not allocate and do not make method calls.
static void
yjit_reg_method(VALUE klass, const char *mid_str, method_codegen_t gen_fn)
{
    ID mid = rb_intern(mid_str);
    const rb_method_entry_t *me = rb_method_entry_at(klass, mid);

    if (!me) {
        rb_bug("undefined optimized method: %s", rb_id2name(mid));
    }

    // For now, only cfuncs are supported
    RUBY_ASSERT(me && me->def);
    RUBY_ASSERT(me->def->type == VM_METHOD_TYPE_CFUNC);

    st_insert(yjit_method_codegen_table, (st_data_t)me->def->method_serial, (st_data_t)gen_fn);
}

// Codegen for rb_obj_not().
// Note, caller is responsible for generating all the right guards, including
// arity guards.
static bool
jit_rb_obj_not(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass)
{
    const val_type_t recv_opnd = ctx_get_opnd_type(ctx, OPND_STACK(0));

    if (recv_opnd.type == ETYPE_NIL || recv_opnd.type == ETYPE_FALSE) {
        ADD_COMMENT(cb, "rb_obj_not(nil_or_false)");
        ctx_stack_pop(ctx, 1);
        x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_TRUE);
        mov(cb, out_opnd, imm_opnd(Qtrue));
    }
    else if (recv_opnd.is_heap || recv_opnd.type != ETYPE_UNKNOWN) {
        // Note: recv_opnd.type != ETYPE_NIL && recv_opnd.type != ETYPE_FALSE.
        ADD_COMMENT(cb, "rb_obj_not(truthy)");
        ctx_stack_pop(ctx, 1);
        x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_FALSE);
        mov(cb, out_opnd, imm_opnd(Qfalse));
    }
    else {
        // jit_guard_known_klass() already ran on the receiver which should
        // have deduced deduced the type of the receiver. This case should be
        // rare if not unreachable.
        return false;
    }
    return true;
}

// Codegen for rb_true()
static bool
jit_rb_true(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass)
{
    ADD_COMMENT(cb, "nil? == true");
    ctx_stack_pop(ctx, 1);
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_TRUE);
    mov(cb, stack_ret, imm_opnd(Qtrue));
    return true;
}

// Codegen for rb_false()
static bool
jit_rb_false(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass)
{
    ADD_COMMENT(cb, "nil? == false");
    ctx_stack_pop(ctx, 1);
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_FALSE);
    mov(cb, stack_ret, imm_opnd(Qfalse));
    return true;
}

// Codegen for rb_obj_equal()
// object identity comparison
static bool
jit_rb_obj_equal(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass)
{
    ADD_COMMENT(cb, "equal?");
    x86opnd_t obj1 = ctx_stack_pop(ctx, 1);
    x86opnd_t obj2 = ctx_stack_pop(ctx, 1);

    mov(cb, REG0, obj1);
    cmp(cb, REG0, obj2);
    mov(cb, REG0, imm_opnd(Qtrue));
    mov(cb, REG1, imm_opnd(Qfalse));
    cmovne(cb, REG0, REG1);

    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_IMM);
    mov(cb, stack_ret, REG0);
    return true;
}

static VALUE
yjit_str_bytesize(VALUE str)
{
    return LONG2NUM(RSTRING_LEN(str));
}

static bool
jit_rb_str_bytesize(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass)
{
    ADD_COMMENT(cb, "String#bytesize");

    x86opnd_t recv = ctx_stack_pop(ctx, 1);
    mov(cb, C_ARG_REGS[0], recv);
    call_ptr(cb, REG0, (void *)&yjit_str_bytesize);

    x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_FIXNUM);
    mov(cb, out_opnd, RAX);

    return true;
}

// Codegen for rb_str_to_s()
// When String#to_s is called on a String instance, the method returns self and
// most of the overhead comes from setting up the method call. We observed that
// this situation happens a lot in some workloads.
static bool
jit_rb_str_to_s(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *recv_known_klass)
{
    if (recv_known_klass && *recv_known_klass == rb_cString) {
        ADD_COMMENT(cb, "to_s on plain string");
        // The method returns the receiver, which is already on the stack.
        // No stack movement.
        return true;
    }
    return false;
}

static bool
jit_thread_s_current(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *recv_known_klass)
{
    ADD_COMMENT(cb, "Thread.current");
    ctx_stack_pop(ctx, 1);

    // ec->thread_ptr
    mov(cb, REG0, member_opnd(REG_EC, rb_execution_context_t, thread_ptr));

    // thread->self
    mov(cb, REG0, member_opnd(REG0, rb_thread_t, self));

    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HEAP);
    mov(cb, stack_ret, REG0);
    return true;
}

// Check if we know how to codegen for a particular cfunc method
static method_codegen_t
lookup_cfunc_codegen(const rb_method_definition_t *def)
{
    method_codegen_t gen_fn;
    if (st_lookup(yjit_method_codegen_table, def->method_serial, (st_data_t *)&gen_fn)) {
        return gen_fn;
    }
    return NULL;
}

// Is anyone listening for :c_call and :c_return event currently?
static bool
c_method_tracing_currently_enabled(const jitstate_t *jit)
{
    rb_event_flag_t tracing_events;
    if (rb_multi_ractor_p()) {
        tracing_events = ruby_vm_event_enabled_global_flags;
    }
    else {
        // At the time of writing, events are never removed from
        // ruby_vm_event_enabled_global_flags so always checking using it would
        // mean we don't compile even after tracing is disabled.
        tracing_events = rb_ec_ractor_hooks(jit->ec)->events;
    }

    return tracing_events & (RUBY_EVENT_C_CALL | RUBY_EVENT_C_RETURN);
}

// Called at runtime to build hashes of passed kwargs
static VALUE
yjit_runtime_build_kwhash(const struct rb_callinfo *ci, const VALUE *sp) {
    // similar to args_kw_argv_to_hash
    const VALUE *const passed_keywords = vm_ci_kwarg(ci)->keywords;
    const int kw_len = vm_ci_kwarg(ci)->keyword_len;
    const VALUE h = rb_hash_new_with_size(kw_len);

    for (int i = 0; i < kw_len; i++) {
        rb_hash_aset(h, passed_keywords[i], (sp - kw_len)[i]);
    }
    return h;
}

static codegen_status_t
gen_send_cfunc(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *recv_known_klass)
{
    const rb_method_cfunc_t *cfunc = UNALIGNED_MEMBER_PTR(cme->def, body.cfunc);

    const struct rb_callinfo_kwarg *kw_arg = vm_ci_kwarg(ci);
    const int kw_arg_num = kw_arg ? kw_arg->keyword_len : 0;

    // Number of args which will be passed through to the callee
    // This is adjusted by the kwargs being combined into a hash.
    const int passed_argc = kw_arg ? argc - kw_arg_num + 1 : argc;

    // If the argument count doesn't match
    if (cfunc->argc >= 0 && cfunc->argc != passed_argc) {
        GEN_COUNTER_INC(cb, send_cfunc_argc_mismatch);
        return YJIT_CANT_COMPILE;
    }

    // Don't JIT functions that need C stack arguments for now
    if (cfunc->argc >= 0 && passed_argc + 1 > NUM_C_ARG_REGS) {
        GEN_COUNTER_INC(cb, send_cfunc_toomany_args);
        return YJIT_CANT_COMPILE;
    }

    if (c_method_tracing_currently_enabled(jit)) {
        // Don't JIT if tracing c_call or c_return
        GEN_COUNTER_INC(cb, send_cfunc_tracing);
        return YJIT_CANT_COMPILE;
    }

    // Delegate to codegen for C methods if we have it.
    {
        method_codegen_t known_cfunc_codegen;
        if (!kw_arg && (known_cfunc_codegen = lookup_cfunc_codegen(cme->def))) {
            if (known_cfunc_codegen(jit, ctx, ci, cme, block, argc, recv_known_klass)) {
                // cfunc codegen generated code. Terminate the block so
                // there isn't multiple calls in the same block.
                jit_jump_to_next_insn(jit, ctx);
                return YJIT_END_BLOCK;
            }
        }
    }

    // Callee method ID
    //ID mid = vm_ci_mid(ci);
    //printf("JITting call to C function \"%s\", argc: %lu\n", rb_id2name(mid), argc);
    //print_str(cb, "");
    //print_str(cb, "calling CFUNC:");
    //print_str(cb, rb_id2name(mid));
    //print_str(cb, "recv");
    //print_ptr(cb, recv);

    // Create a side-exit to fall back to the interpreter
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    // Check for interrupts
    yjit_check_ints(cb, side_exit);

    // Stack overflow check
    // #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
    // REG_CFP <= REG_SP + 4 * sizeof(VALUE) + sizeof(rb_control_frame_t)
    lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 4 + 2 * sizeof(rb_control_frame_t)));
    cmp(cb, REG_CFP, REG0);
    jle_ptr(cb, COUNTED_EXIT(jit, side_exit, send_se_cf_overflow));

    // Points to the receiver operand on the stack
    x86opnd_t recv = ctx_stack_opnd(ctx, argc);

    // Store incremented PC into current control frame in case callee raises.
    jit_save_pc(jit, REG0);

    if (block) {
        // Change cfp->block_code in the current frame. See vm_caller_setup_arg_block().
        // VM_CFP_TO_CAPTURED_BLCOK does &cfp->self, rb_captured_block->code.iseq aliases
        // with cfp->block_code.
        jit_mov_gc_ptr(jit, cb, REG0, (VALUE)block);
        mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), REG0);
    }

    // Increment the stack pointer by 3 (in the callee)
    // sp += 3
    lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 3));

    // Write method entry at sp[-3]
    // sp[-3] = me;
    // Put compile time cme into REG1. It's assumed to be valid because we are notified when
    // any cme we depend on become outdated. See rb_yjit_method_lookup_change().
    jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme);
    mov(cb, mem_opnd(64, REG0, 8 * -3), REG1);

    // Write block handler at sp[-2]
    // sp[-2] = block_handler;
    if (block) {
        // reg1 = VM_BH_FROM_ISEQ_BLOCK(VM_CFP_TO_CAPTURED_BLOCK(reg_cfp));
        lea(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, self));
        or(cb, REG1, imm_opnd(1));
        mov(cb, mem_opnd(64, REG0, 8 * -2), REG1);
    }
    else {
        mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE));
    }

    // Write env flags at sp[-1]
    // sp[-1] = frame_type;
    uint64_t frame_type = VM_FRAME_MAGIC_CFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL;
    if (kw_arg) {
        frame_type |= VM_FRAME_FLAG_CFRAME_KW;
    }
    mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type));

    // Allocate a new CFP (ec->cfp--)
    sub(
        cb,
        member_opnd(REG_EC, rb_execution_context_t, cfp),
        imm_opnd(sizeof(rb_control_frame_t))
    );

    // Setup the new frame
    // *cfp = (const struct rb_control_frame_struct) {
    //    .pc         = 0,
    //    .sp         = sp,
    //    .iseq       = 0,
    //    .self       = recv,
    //    .ep         = sp - 1,
    //    .block_code = 0,
    //    .__bp__     = sp,
    // };
    mov(cb, REG1, member_opnd(REG_EC, rb_execution_context_t, cfp));
    mov(cb, member_opnd(REG1, rb_control_frame_t, pc), imm_opnd(0));
    mov(cb, member_opnd(REG1, rb_control_frame_t, sp), REG0);
    mov(cb, member_opnd(REG1, rb_control_frame_t, iseq), imm_opnd(0));
    mov(cb, member_opnd(REG1, rb_control_frame_t, block_code), imm_opnd(0));
    mov(cb, member_opnd(REG1, rb_control_frame_t, __bp__), REG0);
    sub(cb, REG0, imm_opnd(sizeof(VALUE)));
    mov(cb, member_opnd(REG1, rb_control_frame_t, ep), REG0);
    mov(cb, REG0, recv);
    mov(cb, member_opnd(REG1, rb_control_frame_t, self), REG0);

    // Verify that we are calling the right function
    if (YJIT_CHECK_MODE > 0) {
        // Call check_cfunc_dispatch
        mov(cb, C_ARG_REGS[0], recv);
        jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], (VALUE)ci);
        mov(cb, C_ARG_REGS[2], const_ptr_opnd((void *)cfunc->func));
        jit_mov_gc_ptr(jit, cb, C_ARG_REGS[3], (VALUE)cme);
        call_ptr(cb, REG0, (void *)&check_cfunc_dispatch);
    }

    if (kw_arg) {
        // Build a hash from all kwargs passed
        jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], (VALUE)ci);
        lea(cb, C_ARG_REGS[1], ctx_sp_opnd(ctx, 0));
        call_ptr(cb, REG0, (void *)&yjit_runtime_build_kwhash);

        // Replace the stack location at the start of kwargs with the new hash
        x86opnd_t stack_opnd = ctx_stack_opnd(ctx, argc - passed_argc);
        mov(cb, stack_opnd, RAX);
    }

    // Non-variadic method
    if (cfunc->argc >= 0) {
        // Copy the arguments from the stack to the C argument registers
        // self is the 0th argument and is at index argc from the stack top
        for (int32_t i = 0; i < passed_argc + 1; ++i)
        {
            x86opnd_t stack_opnd = ctx_stack_opnd(ctx, argc - i);
            x86opnd_t c_arg_reg = C_ARG_REGS[i];
            mov(cb, c_arg_reg, stack_opnd);
        }
    }
    // Variadic method
    if (cfunc->argc == -1) {
        // The method gets a pointer to the first argument
        // rb_f_puts(int argc, VALUE *argv, VALUE recv)
        mov(cb, C_ARG_REGS[0], imm_opnd(passed_argc));
        lea(cb, C_ARG_REGS[1], ctx_stack_opnd(ctx, argc - 1));
        mov(cb, C_ARG_REGS[2], ctx_stack_opnd(ctx, argc));
    }
    // Variadic method with Ruby array
    if (cfunc->argc == -2) {
        // Create a Ruby array from the arguments.
        //
        // This follows similar behaviour to vm_call_cfunc_with_frame() and
        // call_cfunc_m2(). We use rb_ec_ary_new_from_values() instead of
        // rb_ary_new4() since we have REG_EC available.
        //
        // Before getting here we will have set the new CFP in the EC, and the
        // stack at CFP's SP will contain the values we are inserting into the
        // Array, so they will be properly marked if we hit a GC.

        // rb_ec_ary_new_from_values(rb_execution_context_t *ec, long n, const VLAUE *elts)
        mov(cb, C_ARG_REGS[0], REG_EC);
        mov(cb, C_ARG_REGS[1], imm_opnd(passed_argc));
        lea(cb, C_ARG_REGS[2], ctx_stack_opnd(ctx, argc - 1));
        call_ptr(cb, REG0, (void *)rb_ec_ary_new_from_values);

        // rb_file_s_join(VALUE recv, VALUE args)
        mov(cb, C_ARG_REGS[0], ctx_stack_opnd(ctx, argc));
        mov(cb, C_ARG_REGS[1], RAX);
    }

    // Pop the C function arguments from the stack (in the caller)
    ctx_stack_pop(ctx, argc + 1);

    // Write interpreter SP into CFP.
    // Needed in case the callee yields to the block.
    jit_save_sp(jit, ctx);

    // Call the C function
    // VALUE ret = (cfunc->func)(recv, argv[0], argv[1]);
    // cfunc comes from compile-time cme->def, which we assume to be stable.
    // Invalidation logic is in rb_yjit_method_lookup_change()
    call_ptr(cb, REG0, (void*)cfunc->func);

    // Record code position for TracePoint patching. See full_cfunc_return().
    record_global_inval_patch(cb, outline_full_cfunc_return_pos);

    // Push the return value on the Ruby stack
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, stack_ret, RAX);

    // Pop the stack frame (ec->cfp++)
    add(
        cb,
        member_opnd(REG_EC, rb_execution_context_t, cfp),
        imm_opnd(sizeof(rb_control_frame_t))
    );

    // cfunc calls may corrupt types
    ctx_clear_local_types(ctx);

    // Note: the return block of gen_send_iseq() has ctx->sp_offset == 1
    // which allows for sharing the same successor.

    // Jump (fall through) to the call continuation block
    // We do this to end the current block after the call
    jit_jump_to_next_insn(jit, ctx);
    return YJIT_END_BLOCK;
}

static void
gen_return_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
{
    switch (shape) {
      case SHAPE_NEXT0:
      case SHAPE_NEXT1:
        RUBY_ASSERT(false);
        break;

      case SHAPE_DEFAULT:
        mov(cb, REG0, const_ptr_opnd(target0));
        mov(cb, member_opnd(REG_CFP, rb_control_frame_t, jit_return), REG0);
        break;
    }
}

// If true, the iseq is leaf and it can be replaced by a single C call.
static bool
rb_leaf_invokebuiltin_iseq_p(const rb_iseq_t *iseq)
{
    unsigned int invokebuiltin_len = insn_len(BIN(opt_invokebuiltin_delegate_leave));
    unsigned int leave_len = insn_len(BIN(leave));

    return (iseq->body->iseq_size == (invokebuiltin_len + leave_len) &&
        rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[0]) == BIN(opt_invokebuiltin_delegate_leave) &&
        rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[invokebuiltin_len]) == BIN(leave) &&
        iseq->body->builtin_inline_p
    );
 }

// Return an rb_builtin_function if the iseq contains only that leaf builtin function.
static const struct rb_builtin_function*
rb_leaf_builtin_function(const rb_iseq_t *iseq)
{
    if (!rb_leaf_invokebuiltin_iseq_p(iseq))
        return NULL;
    return (const struct rb_builtin_function *)iseq->body->iseq_encoded[1];
}

static codegen_status_t
gen_send_iseq(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, int32_t argc)
{
    const rb_iseq_t *iseq = def_iseq_ptr(cme->def);

    // When you have keyword arguments, there is an extra object that gets
    // placed on the stack the represents a bitmap of the keywords that were not
    // specified at the call site. We need to keep track of the fact that this
    // value is present on the stack in order to properly set up the callee's
    // stack pointer.
    const bool doing_kw_call = iseq->body->param.flags.has_kw;
    const bool supplying_kws = vm_ci_flag(ci) & VM_CALL_KWARG;

    if (vm_ci_flag(ci) & VM_CALL_TAILCALL) {
        // We can't handle tailcalls
        GEN_COUNTER_INC(cb, send_iseq_tailcall);
        return YJIT_CANT_COMPILE;
    }

    // No support for callees with these parameters yet as they require allocation
    // or complex handling.
    if (iseq->body->param.flags.has_rest ||
        iseq->body->param.flags.has_post ||
        iseq->body->param.flags.has_kwrest) {
        GEN_COUNTER_INC(cb, send_iseq_complex_callee);
        return YJIT_CANT_COMPILE;
    }

    // If we have keyword arguments being passed to a callee that only takes
    // positionals, then we need to allocate a hash. For now we're going to
    // call that too complex and bail.
    if (supplying_kws && !iseq->body->param.flags.has_kw) {
        GEN_COUNTER_INC(cb, send_iseq_complex_callee);
        return YJIT_CANT_COMPILE;
    }

    // If we have a method accepting no kwargs (**nil), exit if we have passed
    // it any kwargs.
    if (supplying_kws && iseq->body->param.flags.accepts_no_kwarg) {
        GEN_COUNTER_INC(cb, send_iseq_complex_callee);
        return YJIT_CANT_COMPILE;
    }

    // For computing number of locals to setup for the callee
    int num_params = iseq->body->param.size;

    // Block parameter handling. This mirrors setup_parameters_complex().
    if (iseq->body->param.flags.has_block) {
        if (iseq->body->local_iseq == iseq) {
            // Block argument is passed through EP and not setup as a local in
            // the callee.
            num_params--;
        }
        else {
            // In this case (param.flags.has_block && local_iseq != iseq),
            // the block argument is setup as a local variable and requires
            // materialization (allocation). Bail.
            GEN_COUNTER_INC(cb, send_iseq_complex_callee);
            return YJIT_CANT_COMPILE;
        }
    }

    uint32_t start_pc_offset = 0;

    const int required_num = iseq->body->param.lead_num;

    // This struct represents the metadata about the caller-specified
    // keyword arguments.
    const struct rb_callinfo_kwarg *kw_arg = vm_ci_kwarg(ci);
    const int kw_arg_num = kw_arg ? kw_arg->keyword_len : 0;

    // Arity handling and optional parameter setup
    const int opts_filled = argc - required_num - kw_arg_num;
    const int opt_num = iseq->body->param.opt_num;
    const int opts_missing = opt_num - opts_filled;

    if (opts_filled < 0 || opts_filled > opt_num) {
        GEN_COUNTER_INC(cb, send_iseq_arity_error);
        return YJIT_CANT_COMPILE;
    }

    // If we have unfilled optional arguments and keyword arguments then we
    // would need to move adjust the arguments location to account for that.
    // For now we aren't handling this case.
    if (doing_kw_call && opts_missing > 0) {
        GEN_COUNTER_INC(cb, send_iseq_complex_callee);
        return YJIT_CANT_COMPILE;
    }

    if (opt_num > 0) {
        num_params -= opt_num - opts_filled;
        start_pc_offset = (uint32_t)iseq->body->param.opt_table[opts_filled];
    }

    if (doing_kw_call) {
        // Here we're calling a method with keyword arguments and specifying
        // keyword arguments at this call site.

        // This struct represents the metadata about the callee-specified
        // keyword parameters.
        const struct rb_iseq_param_keyword *keyword = iseq->body->param.keyword;

        int required_kwargs_filled = 0;

        if (keyword->num > 30) {
            // We have so many keywords that (1 << num) encoded as a FIXNUM
            // (which shifts it left one more) no longer fits inside a 32-bit
            // immediate.
            GEN_COUNTER_INC(cb, send_iseq_complex_callee);
            return YJIT_CANT_COMPILE;
        }

        // Check that the kwargs being passed are valid
        if (supplying_kws) {
            // This is the list of keyword arguments that the callee specified
            // in its initial declaration.
            const ID *callee_kwargs = keyword->table;

            // Here we're going to build up a list of the IDs that correspond to
            // the caller-specified keyword arguments. If they're not in the
            // same order as the order specified in the callee declaration, then
            // we're going to need to generate some code to swap values around
            // on the stack.
            ID *caller_kwargs = ALLOCA_N(VALUE, kw_arg->keyword_len);
            for (int kwarg_idx = 0; kwarg_idx < kw_arg->keyword_len; kwarg_idx++)
                caller_kwargs[kwarg_idx] = SYM2ID(kw_arg->keywords[kwarg_idx]);

            // First, we're going to be sure that the names of every
            // caller-specified keyword argument correspond to a name in the
            // list of callee-specified keyword parameters.
            for (int caller_idx = 0; caller_idx < kw_arg->keyword_len; caller_idx++) {
                int callee_idx;

                for (callee_idx = 0; callee_idx < keyword->num; callee_idx++) {
                    if (caller_kwargs[caller_idx] == callee_kwargs[callee_idx]) {
                        break;
                    }
                }

                // If the keyword was never found, then we know we have a
                // mismatch in the names of the keyword arguments, so we need to
                // bail.
                if (callee_idx == keyword->num) {
                    GEN_COUNTER_INC(cb, send_iseq_kwargs_mismatch);
                    return YJIT_CANT_COMPILE;
                }

                // Keep a count to ensure all required kwargs are specified
                if (callee_idx < keyword->required_num) {
                    required_kwargs_filled++;
                }
            }
        }

        RUBY_ASSERT(required_kwargs_filled <= keyword->required_num);
        if (required_kwargs_filled != keyword->required_num) {
            GEN_COUNTER_INC(cb, send_iseq_kwargs_mismatch);
            return YJIT_CANT_COMPILE;
        }
    }

    // Number of locals that are not parameters
    const int num_locals = iseq->body->local_table_size - num_params;

    // Create a side-exit to fall back to the interpreter
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    // Check for interrupts
    yjit_check_ints(cb, side_exit);

    const struct rb_builtin_function *leaf_builtin = rb_leaf_builtin_function(iseq);

    if (leaf_builtin && !block && leaf_builtin->argc + 1 <= NUM_C_ARG_REGS) {
        ADD_COMMENT(cb, "inlined leaf builtin");

        // Call the builtin func (ec, recv, arg1, arg2, ...)
        mov(cb, C_ARG_REGS[0], REG_EC);

        // Copy self and arguments
        for (int32_t i = 0; i < leaf_builtin->argc + 1; i++) {
            x86opnd_t stack_opnd = ctx_stack_opnd(ctx, leaf_builtin->argc - i);
            x86opnd_t c_arg_reg = C_ARG_REGS[i + 1];
            mov(cb, c_arg_reg, stack_opnd);
        }
        ctx_stack_pop(ctx, leaf_builtin->argc + 1);
        call_ptr(cb, REG0, (void *)leaf_builtin->func_ptr);

        // Push the return value
        x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
        mov(cb, stack_ret, RAX);

        // Note: assuming that the leaf builtin doesn't change local variables here.
        // Seems like a safe assumption.

        return YJIT_KEEP_COMPILING;
    }

    // Stack overflow check
    // Note that vm_push_frame checks it against a decremented cfp, hence the multiply by 2.
    // #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
    ADD_COMMENT(cb, "stack overflow check");
    lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (num_locals + iseq->body->stack_max) + 2 * sizeof(rb_control_frame_t)));
    cmp(cb, REG_CFP, REG0);
    jle_ptr(cb, COUNTED_EXIT(jit, side_exit, send_se_cf_overflow));

    if (doing_kw_call) {
        // Here we're calling a method with keyword arguments and specifying
        // keyword arguments at this call site.

        // Number of positional arguments the callee expects before the first
        // keyword argument
        const int args_before_kw = required_num + opt_num;

        // This struct represents the metadata about the caller-specified
        // keyword arguments.
        int caller_keyword_len = 0;
        const VALUE *caller_keywords = NULL;
        if (vm_ci_kwarg(ci)) {
            caller_keyword_len = vm_ci_kwarg(ci)->keyword_len;
            caller_keywords = &vm_ci_kwarg(ci)->keywords[0];
        }

        // This struct represents the metadata about the callee-specified
        // keyword parameters.
        const struct rb_iseq_param_keyword *const keyword = iseq->body->param.keyword;

        ADD_COMMENT(cb, "keyword args");

        // This is the list of keyword arguments that the callee specified
        // in its initial declaration.
        const ID *callee_kwargs = keyword->table;

        int total_kwargs = keyword->num;

        // Here we're going to build up a list of the IDs that correspond to
        // the caller-specified keyword arguments. If they're not in the
        // same order as the order specified in the callee declaration, then
        // we're going to need to generate some code to swap values around
        // on the stack.
        ID *caller_kwargs = ALLOCA_N(VALUE, total_kwargs);
        int kwarg_idx;
        for (kwarg_idx = 0; kwarg_idx < caller_keyword_len; kwarg_idx++) {
            caller_kwargs[kwarg_idx] = SYM2ID(caller_keywords[kwarg_idx]);
        }

        int unspecified_bits = 0;

        for (int callee_idx = keyword->required_num; callee_idx < total_kwargs; callee_idx++) {
            bool already_passed = false;
            ID callee_kwarg = callee_kwargs[callee_idx];

            for (int caller_idx = 0; caller_idx < caller_keyword_len; caller_idx++) {
                if (caller_kwargs[caller_idx] == callee_kwarg) {
                    already_passed = true;
                    break;
                }
            }

            if (!already_passed) {
                // Reserve space on the stack for each default value we'll be
                // filling in (which is done in the next loop). Also increments
                // argc so that the callee's SP is recorded correctly.
                argc++;
                x86opnd_t default_arg = ctx_stack_push(ctx, TYPE_UNKNOWN);
                VALUE default_value = keyword->default_values[callee_idx - keyword->required_num];

                if (default_value == Qundef) {
                    // Qundef means that this value is not constant and must be
                    // recalculated at runtime, so we record it in unspecified_bits
                    // (Qnil is then used as a placeholder instead of Qundef).
                    unspecified_bits |= 0x01 << (callee_idx - keyword->required_num);
                    default_value = Qnil;
                }

                // GC might move default_value.
                jit_mov_gc_ptr(jit, cb, REG0, default_value);
                mov(cb, default_arg, REG0);

                caller_kwargs[kwarg_idx++] = callee_kwarg;
            }
        }
        RUBY_ASSERT(kwarg_idx == total_kwargs);

        // Next, we're going to loop through every keyword that was
        // specified by the caller and make sure that it's in the correct
        // place. If it's not we're going to swap it around with another one.
        for (kwarg_idx = 0; kwarg_idx < total_kwargs; kwarg_idx++) {
            ID callee_kwarg = callee_kwargs[kwarg_idx];

            // If the argument is already in the right order, then we don't
            // need to generate any code since the expected value is already
            // in the right place on the stack.
            if (callee_kwarg == caller_kwargs[kwarg_idx]) continue;

            // In this case the argument is not in the right place, so we
            // need to find its position where it _should_ be and swap with
            // that location.
            for (int swap_idx = kwarg_idx + 1; swap_idx < total_kwargs; swap_idx++) {
                if (callee_kwarg == caller_kwargs[swap_idx]) {
                    // First we're going to generate the code that is going
                    // to perform the actual swapping at runtime.
                    stack_swap(ctx, cb, argc - 1 - swap_idx - args_before_kw, argc - 1 - kwarg_idx - args_before_kw, REG1, REG0);

                    // Next we're going to do some bookkeeping on our end so
                    // that we know the order that the arguments are
                    // actually in now.
                    ID tmp = caller_kwargs[kwarg_idx];
                    caller_kwargs[kwarg_idx] = caller_kwargs[swap_idx];
                    caller_kwargs[swap_idx] = tmp;

                    break;
                }
            }
        }

        // Keyword arguments cause a special extra local variable to be
        // pushed onto the stack that represents the parameters that weren't
        // explicitly given a value and have a non-constant default.
        mov(cb, ctx_stack_opnd(ctx, -1), imm_opnd(INT2FIX(unspecified_bits)));
    }
    // Points to the receiver operand on the stack
    x86opnd_t recv = ctx_stack_opnd(ctx, argc);

    // Store the updated SP on the current frame (pop arguments and receiver)
    ADD_COMMENT(cb, "store caller sp");
    lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * -(argc + 1)));
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0);

    // Store the next PC in the current frame
    jit_save_pc(jit, REG0);

    if (block) {
        // Change cfp->block_code in the current frame. See vm_caller_setup_arg_block().
        // VM_CFP_TO_CAPTURED_BLCOK does &cfp->self, rb_captured_block->code.iseq aliases
        // with cfp->block_code.
        jit_mov_gc_ptr(jit, cb, REG0, (VALUE)block);
        mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), REG0);
    }

    // Adjust the callee's stack pointer
    lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (3 + num_locals + doing_kw_call)));

    // Initialize local variables to Qnil
    for (int i = 0; i < num_locals; i++) {
        mov(cb, mem_opnd(64, REG0, sizeof(VALUE) * (i - num_locals - 3)), imm_opnd(Qnil));
    }

    ADD_COMMENT(cb, "push env");
    // Put compile time cme into REG1. It's assumed to be valid because we are notified when
    // any cme we depend on become outdated. See rb_yjit_method_lookup_change().
    jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme);
    // Write method entry at sp[-3]
    // sp[-3] = me;
    mov(cb, mem_opnd(64, REG0, 8 * -3), REG1);

    // Write block handler at sp[-2]
    // sp[-2] = block_handler;
    if (block) {
        // reg1 = VM_BH_FROM_ISEQ_BLOCK(VM_CFP_TO_CAPTURED_BLOCK(reg_cfp));
        lea(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, self));
        or(cb, REG1, imm_opnd(1));
        mov(cb, mem_opnd(64, REG0, 8 * -2), REG1);
    }
    else {
        mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE));
    }

    // Write env flags at sp[-1]
    // sp[-1] = frame_type;
    uint64_t frame_type = VM_FRAME_MAGIC_METHOD | VM_ENV_FLAG_LOCAL;
    mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type));

    ADD_COMMENT(cb, "push callee CFP");
    // Allocate a new CFP (ec->cfp--)
    sub(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t)));
    mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);

    // Setup the new frame
    // *cfp = (const struct rb_control_frame_struct) {
    //    .pc         = pc,
    //    .sp         = sp,
    //    .iseq       = iseq,
    //    .self       = recv,
    //    .ep         = sp - 1,
    //    .block_code = 0,
    //    .__bp__     = sp,
    // };
    mov(cb, REG1, recv);
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, self), REG1);
    mov(cb, REG_SP, REG0); // Switch to the callee's REG_SP
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0);
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, __bp__), REG0);
    sub(cb, REG0, imm_opnd(sizeof(VALUE)));
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, ep), REG0);
    jit_mov_gc_ptr(jit, cb, REG0, (VALUE)iseq);
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, iseq), REG0);
    mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), imm_opnd(0));

    // No need to set cfp->pc since the callee sets it whenever calling into routines
    // that could look at it through jit_save_pc().
    // mov(cb, REG0, const_ptr_opnd(start_pc));
    // mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), REG0);

    // Stub so we can return to JITted code
    blockid_t return_block = { jit->iseq, jit_next_insn_idx(jit) };

    // Create a context for the callee
    ctx_t callee_ctx = DEFAULT_CTX;

    // Set the argument types in the callee's context
    for (int32_t arg_idx = 0; arg_idx < argc; ++arg_idx) {
        val_type_t arg_type = ctx_get_opnd_type(ctx, OPND_STACK(argc - arg_idx - 1));
        ctx_set_local_type(&callee_ctx, arg_idx, arg_type);
    }
    val_type_t recv_type = ctx_get_opnd_type(ctx, OPND_STACK(argc));
    ctx_upgrade_opnd_type(&callee_ctx, OPND_SELF, recv_type);

    // The callee might change locals through Kernel#binding and other means.
    ctx_clear_local_types(ctx);

    // Pop arguments and receiver in return context, push the return value
    // After the return, sp_offset will be 1. The codegen for leave writes
    // the return value in case of JIT-to-JIT return.
    ctx_t return_ctx = *ctx;
    ctx_stack_pop(&return_ctx, argc + 1);
    ctx_stack_push(&return_ctx, TYPE_UNKNOWN);
    return_ctx.sp_offset = 1;
    return_ctx.chain_depth = 0;

    // Write the JIT return address on the callee frame
    gen_branch(
        jit,
        ctx,
        return_block,
        &return_ctx,
        return_block,
        &return_ctx,
        gen_return_branch
    );

    //print_str(cb, "calling Ruby func:");
    //print_str(cb, rb_id2name(vm_ci_mid(ci)));

    // Directly jump to the entry point of the callee
    gen_direct_jump(
        jit,
        &callee_ctx,
        (blockid_t){ iseq, start_pc_offset }
    );

    return YJIT_END_BLOCK;
}

static codegen_status_t
gen_struct_aref(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, VALUE comptime_recv, VALUE comptime_recv_klass) {
    if (vm_ci_argc(ci) != 0) {
        return YJIT_CANT_COMPILE;
    }

    const unsigned int off = cme->def->body.optimized.index;

    // Confidence checks
    RUBY_ASSERT_ALWAYS(RB_TYPE_P(comptime_recv, T_STRUCT));
    RUBY_ASSERT_ALWAYS((long)off < RSTRUCT_LEN(comptime_recv));

    // We are going to use an encoding that takes a 4-byte immediate which
    // limits the offset to INT32_MAX.
    {
        uint64_t native_off = (uint64_t)off * (uint64_t)SIZEOF_VALUE;
        if (native_off > (uint64_t)INT32_MAX) {
            return YJIT_CANT_COMPILE;
        }
    }

    // All structs from the same Struct class should have the same
    // length. So if our comptime_recv is embedded all runtime
    // structs of the same class should be as well, and the same is
    // true of the converse.
    bool embedded = FL_TEST_RAW(comptime_recv, RSTRUCT_EMBED_LEN_MASK);

    ADD_COMMENT(cb, "struct aref");

    x86opnd_t recv = ctx_stack_pop(ctx, 1);

    mov(cb, REG0, recv);

    if (embedded) {
        mov(cb, REG0, member_opnd_idx(REG0, struct RStruct, as.ary, off));
    }
    else {
        mov(cb, REG0, member_opnd(REG0, struct RStruct, as.heap.ptr));
        mov(cb, REG0, mem_opnd(64, REG0, SIZEOF_VALUE * off));
    }

    x86opnd_t ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, ret, REG0);

    jit_jump_to_next_insn(jit, ctx);
    return YJIT_END_BLOCK;
}

static codegen_status_t
gen_struct_aset(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, VALUE comptime_recv, VALUE comptime_recv_klass) {
    if (vm_ci_argc(ci) != 1) {
        return YJIT_CANT_COMPILE;
    }

    const unsigned int off = cme->def->body.optimized.index;

    // Confidence checks
    RUBY_ASSERT_ALWAYS(RB_TYPE_P(comptime_recv, T_STRUCT));
    RUBY_ASSERT_ALWAYS((long)off < RSTRUCT_LEN(comptime_recv));

    ADD_COMMENT(cb, "struct aset");

    x86opnd_t val = ctx_stack_pop(ctx, 1);
    x86opnd_t recv = ctx_stack_pop(ctx, 1);

    mov(cb, C_ARG_REGS[0], recv);
    mov(cb, C_ARG_REGS[1], imm_opnd(off));
    mov(cb, C_ARG_REGS[2], val);
    call_ptr(cb, REG0, (void *)RSTRUCT_SET);

    x86opnd_t ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, ret, RAX);

    jit_jump_to_next_insn(jit, ctx);
    return YJIT_END_BLOCK;
}

const rb_callable_method_entry_t *
rb_aliased_callable_method_entry(const rb_callable_method_entry_t *me);

static codegen_status_t
gen_send_general(jitstate_t *jit, ctx_t *ctx, struct rb_call_data *cd, rb_iseq_t *block)
{
    // Relevant definitions:
    // rb_execution_context_t       : vm_core.h
    // invoker, cfunc logic         : method.h, vm_method.c
    // rb_callinfo                  : vm_callinfo.h
    // rb_callable_method_entry_t   : method.h
    // vm_call_cfunc_with_frame     : vm_insnhelper.c
    //
    // For a general overview for how the interpreter calls methods,
    // see vm_call_method().

    const struct rb_callinfo *ci = cd->ci; // info about the call site

    int32_t argc = (int32_t)vm_ci_argc(ci);
    ID mid = vm_ci_mid(ci);

    // Don't JIT calls with keyword splat
    if (vm_ci_flag(ci) & VM_CALL_KW_SPLAT) {
        GEN_COUNTER_INC(cb, send_kw_splat);
        return YJIT_CANT_COMPILE;
    }

    // Don't JIT calls that aren't simple
    // Note, not using VM_CALL_ARGS_SIMPLE because sometimes we pass a block.
    if ((vm_ci_flag(ci) & VM_CALL_ARGS_SPLAT) != 0) {
        GEN_COUNTER_INC(cb, send_args_splat);
        return YJIT_CANT_COMPILE;
    }
    if ((vm_ci_flag(ci) & VM_CALL_ARGS_BLOCKARG) != 0) {
        GEN_COUNTER_INC(cb, send_block_arg);
        return YJIT_CANT_COMPILE;
    }

    // Defer compilation so we can specialize on class of receiver
    if (!jit_at_current_insn(jit)) {
        defer_compilation(jit, ctx);
        return YJIT_END_BLOCK;
    }

    VALUE comptime_recv = jit_peek_at_stack(jit, ctx, argc);
    VALUE comptime_recv_klass = CLASS_OF(comptime_recv);

    // Guard that the receiver has the same class as the one from compile time
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    // Points to the receiver operand on the stack
    x86opnd_t recv = ctx_stack_opnd(ctx, argc);
    insn_opnd_t recv_opnd = OPND_STACK(argc);
    mov(cb, REG0, recv);
    if (!jit_guard_known_klass(jit, ctx, comptime_recv_klass, recv_opnd, comptime_recv, SEND_MAX_DEPTH, side_exit)) {
        return YJIT_CANT_COMPILE;
    }

    // Do method lookup
    const rb_callable_method_entry_t *cme = rb_callable_method_entry(comptime_recv_klass, mid);
    if (!cme) {
        // TODO: counter
        return YJIT_CANT_COMPILE;
    }

    switch (METHOD_ENTRY_VISI(cme)) {
      case METHOD_VISI_PUBLIC:
        // Can always call public methods
        break;
      case METHOD_VISI_PRIVATE:
        if (!(vm_ci_flag(ci) & VM_CALL_FCALL)) {
            // Can only call private methods with FCALL callsites.
            // (at the moment they are callsites without a receiver or an explicit `self` receiver)
            return YJIT_CANT_COMPILE;
        }
        break;
      case METHOD_VISI_PROTECTED:
        jit_protected_callee_ancestry_guard(jit, cb, cme, side_exit);
        break;
      case METHOD_VISI_UNDEF:
        RUBY_ASSERT(false && "cmes should always have a visibility");
        break;
    }

    // Register block for invalidation
    RUBY_ASSERT(cme->called_id == mid);
    assume_method_lookup_stable(comptime_recv_klass, cme, jit);

    // To handle the aliased method case (VM_METHOD_TYPE_ALIAS)
    while (true) {
        // switch on the method type
        switch (cme->def->type) {
          case VM_METHOD_TYPE_ISEQ:
            return gen_send_iseq(jit, ctx, ci, cme, block, argc);
          case VM_METHOD_TYPE_CFUNC:
            return gen_send_cfunc(jit, ctx, ci, cme, block, argc, &comptime_recv_klass);
          case VM_METHOD_TYPE_IVAR:
            if (argc != 0) {
                // Argument count mismatch. Getters take no arguments.
                GEN_COUNTER_INC(cb, send_getter_arity);
                return YJIT_CANT_COMPILE;
            }
            if (c_method_tracing_currently_enabled(jit)) {
                // Can't generate code for firing c_call and c_return events
                // :attr-tracing:
                // Handling the C method tracing events for attr_accessor
                // methods is easier than regular C methods as we know the
                // "method" we are calling into never enables those tracing
                // events. Once global invalidation runs, the code for the
                // attr_accessor is invalidated and we exit at the closest
                // instruction boundary which is always outside of the body of
                // the attr_accessor code.
                GEN_COUNTER_INC(cb, send_cfunc_tracing);
                return YJIT_CANT_COMPILE;
            }

            mov(cb, REG0, recv);

            ID ivar_name = cme->def->body.attr.id;
            return gen_get_ivar(jit, ctx, SEND_MAX_DEPTH, comptime_recv, ivar_name, recv_opnd, side_exit);
          case VM_METHOD_TYPE_ATTRSET:
            if ((vm_ci_flag(ci) & VM_CALL_KWARG) != 0) {
                GEN_COUNTER_INC(cb, send_attrset_kwargs);
                return YJIT_CANT_COMPILE;
            }
            else if (argc != 1 || !RB_TYPE_P(comptime_recv, T_OBJECT)) {
                GEN_COUNTER_INC(cb, send_ivar_set_method);
                return YJIT_CANT_COMPILE;
            }
            else if (c_method_tracing_currently_enabled(jit)) {
                // Can't generate code for firing c_call and c_return events
                // See :attr-tracing:
                GEN_COUNTER_INC(cb, send_cfunc_tracing);
                return YJIT_CANT_COMPILE;
            }
            else {
                ID ivar_name = cme->def->body.attr.id;
                return gen_set_ivar(jit, ctx, comptime_recv, comptime_recv_klass, ivar_name);
            }
          // Block method, e.g. define_method(:foo) { :my_block }
          case VM_METHOD_TYPE_BMETHOD:
            GEN_COUNTER_INC(cb, send_bmethod);
            return YJIT_CANT_COMPILE;
          case VM_METHOD_TYPE_ZSUPER:
            GEN_COUNTER_INC(cb, send_zsuper_method);
            return YJIT_CANT_COMPILE;
          case VM_METHOD_TYPE_ALIAS: {
            // Retrieve the alised method and re-enter the switch
            cme = rb_aliased_callable_method_entry(cme);
            continue;
          }
          case VM_METHOD_TYPE_UNDEF:
            GEN_COUNTER_INC(cb, send_undef_method);
            return YJIT_CANT_COMPILE;
          case VM_METHOD_TYPE_NOTIMPLEMENTED:
            GEN_COUNTER_INC(cb, send_not_implemented_method);
            return YJIT_CANT_COMPILE;
          // Send family of methods, e.g. call/apply
          case VM_METHOD_TYPE_OPTIMIZED:
            switch (cme->def->body.optimized.type) {
              case OPTIMIZED_METHOD_TYPE_SEND:
                GEN_COUNTER_INC(cb, send_optimized_method_send);
                return YJIT_CANT_COMPILE;
              case OPTIMIZED_METHOD_TYPE_CALL:
                GEN_COUNTER_INC(cb, send_optimized_method_call);
                return YJIT_CANT_COMPILE;
              case OPTIMIZED_METHOD_TYPE_BLOCK_CALL:
                GEN_COUNTER_INC(cb, send_optimized_method_block_call);
                return YJIT_CANT_COMPILE;
              case OPTIMIZED_METHOD_TYPE_STRUCT_AREF:
                return gen_struct_aref(jit, ctx, ci, cme, comptime_recv, comptime_recv_klass);
              case OPTIMIZED_METHOD_TYPE_STRUCT_ASET:
                return gen_struct_aset(jit, ctx, ci, cme, comptime_recv, comptime_recv_klass);
              default:
                rb_bug("unknown optimized method type (%d)", cme->def->body.optimized.type);
                UNREACHABLE_RETURN(YJIT_CANT_COMPILE);
            }
          case VM_METHOD_TYPE_MISSING:
            GEN_COUNTER_INC(cb, send_missing_method);
            return YJIT_CANT_COMPILE;
          case VM_METHOD_TYPE_REFINED:
            GEN_COUNTER_INC(cb, send_refined_method);
            return YJIT_CANT_COMPILE;
            // no default case so compiler issues a warning if this is not exhaustive
        }

        // Unreachable
        RUBY_ASSERT(false);
    }
}

static codegen_status_t
gen_opt_send_without_block(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0);
    return gen_send_general(jit, ctx, cd, NULL);
}

static codegen_status_t
gen_send(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0);
    rb_iseq_t *block = (rb_iseq_t *)jit_get_arg(jit, 1);
    return gen_send_general(jit, ctx, cd, block);
}

static codegen_status_t
gen_invokesuper(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0);
    rb_iseq_t *block = (rb_iseq_t *)jit_get_arg(jit, 1);

    // Defer compilation so we can specialize on class of receiver
    if (!jit_at_current_insn(jit)) {
        defer_compilation(jit, ctx);
        return YJIT_END_BLOCK;
    }

    const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(jit->ec->cfp);
    if (!me) {
        return YJIT_CANT_COMPILE;
    }

    // FIXME: We should track and invalidate this block when this cme is invalidated
    VALUE current_defined_class = me->defined_class;
    ID mid = me->def->original_id;

    if (me != rb_callable_method_entry(current_defined_class, me->called_id)) {
        // Though we likely could generate this call, as we are only concerned
        // with the method entry remaining valid, assume_method_lookup_stable
        // below requires that the method lookup matches as well
        return YJIT_CANT_COMPILE;
    }

    // vm_search_normal_superclass
    if (BUILTIN_TYPE(current_defined_class) == T_ICLASS && FL_TEST_RAW(RBASIC(current_defined_class)->klass, RMODULE_IS_REFINEMENT)) {
        return YJIT_CANT_COMPILE;
    }
    VALUE comptime_superclass = RCLASS_SUPER(RCLASS_ORIGIN(current_defined_class));

    const struct rb_callinfo *ci = cd->ci;
    int32_t argc = (int32_t)vm_ci_argc(ci);

    // Don't JIT calls that aren't simple
    // Note, not using VM_CALL_ARGS_SIMPLE because sometimes we pass a block.
    if ((vm_ci_flag(ci) & VM_CALL_ARGS_SPLAT) != 0) {
        GEN_COUNTER_INC(cb, send_args_splat);
        return YJIT_CANT_COMPILE;
    }
    if ((vm_ci_flag(ci) & VM_CALL_KWARG) != 0) {
        GEN_COUNTER_INC(cb, send_keywords);
        return YJIT_CANT_COMPILE;
    }
    if ((vm_ci_flag(ci) & VM_CALL_KW_SPLAT) != 0) {
        GEN_COUNTER_INC(cb, send_kw_splat);
        return YJIT_CANT_COMPILE;
    }
    if ((vm_ci_flag(ci) & VM_CALL_ARGS_BLOCKARG) != 0) {
        GEN_COUNTER_INC(cb, send_block_arg);
        return YJIT_CANT_COMPILE;
    }

    // Ensure we haven't rebound this method onto an incompatible class.
    // In the interpreter we try to avoid making this check by performing some
    // cheaper calculations first, but since we specialize on the method entry
    // and so only have to do this once at compile time this is fine to always
    // check and side exit.
    VALUE comptime_recv = jit_peek_at_stack(jit, ctx, argc);
    if (!rb_obj_is_kind_of(comptime_recv, current_defined_class)) {
        return YJIT_CANT_COMPILE;
    }

    // Do method lookup
    const rb_callable_method_entry_t *cme = rb_callable_method_entry(comptime_superclass, mid);

    if (!cme) {
        return YJIT_CANT_COMPILE;
    }

    // Check that we'll be able to write this method dispatch before generating checks
    switch (cme->def->type) {
      case VM_METHOD_TYPE_ISEQ:
      case VM_METHOD_TYPE_CFUNC:
        break;
      default:
        // others unimplemented
        return YJIT_CANT_COMPILE;
    }

    // Guard that the receiver has the same class as the one from compile time
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    if (jit->ec->cfp->ep[VM_ENV_DATA_INDEX_ME_CREF] != (VALUE)me) {
        // This will be the case for super within a block
        return YJIT_CANT_COMPILE;
    }

    ADD_COMMENT(cb, "guard known me");
    mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
    x86opnd_t ep_me_opnd = mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_ME_CREF);
    jit_mov_gc_ptr(jit, cb, REG1, (VALUE)me);
    cmp(cb, ep_me_opnd, REG1);
    jne_ptr(cb, COUNTED_EXIT(jit, side_exit, invokesuper_me_changed));

    if (!block) {
        // Guard no block passed
        // rb_vm_frame_block_handler(GET_EC()->cfp) == VM_BLOCK_HANDLER_NONE
        // note, we assume VM_ASSERT(VM_ENV_LOCAL_P(ep))
        //
        // TODO: this could properly forward the current block handler, but
        // would require changes to gen_send_*
        ADD_COMMENT(cb, "guard no block given");
        // EP is in REG0 from above
        x86opnd_t ep_specval_opnd = mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL);
        cmp(cb, ep_specval_opnd, imm_opnd(VM_BLOCK_HANDLER_NONE));
        jne_ptr(cb, COUNTED_EXIT(jit, side_exit, invokesuper_block));
    }

    // Points to the receiver operand on the stack
    x86opnd_t recv = ctx_stack_opnd(ctx, argc);
    mov(cb, REG0, recv);

    // We need to assume that both our current method entry and the super
    // method entry we invoke remain stable
    assume_method_lookup_stable(current_defined_class, me, jit);
    assume_method_lookup_stable(comptime_superclass, cme, jit);

    // Method calls may corrupt types
    ctx_clear_local_types(ctx);

    switch (cme->def->type) {
      case VM_METHOD_TYPE_ISEQ:
        return gen_send_iseq(jit, ctx, ci, cme, block, argc);
      case VM_METHOD_TYPE_CFUNC:
        return gen_send_cfunc(jit, ctx, ci, cme, block, argc, NULL);
      default:
        break;
    }

    RUBY_ASSERT_ALWAYS(false);
}

static codegen_status_t
gen_leave(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Only the return value should be on the stack
    RUBY_ASSERT(ctx->stack_size == 1);

    // Create a side-exit to fall back to the interpreter
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    // Load environment pointer EP from CFP
    mov(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, ep));

    // Check for interrupts
    ADD_COMMENT(cb, "check for interrupts");
    yjit_check_ints(cb, COUNTED_EXIT(jit, side_exit, leave_se_interrupt));

    // Load the return value
    mov(cb, REG0, ctx_stack_pop(ctx, 1));

    // Pop the current frame (ec->cfp++)
    // Note: the return PC is already in the previous CFP
    add(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t)));
    mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);

    // Reload REG_SP for the caller and write the return value.
    // Top of the stack is REG_SP[0] since the caller has sp_offset=1.
    mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
    mov(cb, mem_opnd(64, REG_SP, 0), REG0);

    // Jump to the JIT return address on the frame that was just popped
    const int32_t offset_to_jit_return = -((int32_t)sizeof(rb_control_frame_t)) + (int32_t)offsetof(rb_control_frame_t, jit_return);
    jmp_rm(cb, mem_opnd(64, REG_CFP, offset_to_jit_return));

    return YJIT_END_BLOCK;
}

RUBY_EXTERN rb_serial_t ruby_vm_global_constant_state;

static codegen_status_t
gen_getglobal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    ID gid = jit_get_arg(jit, 0);

    // Save the PC and SP because we might make a Ruby call for warning
    jit_prepare_routine_call(jit, ctx, REG0);

    mov(cb, C_ARG_REGS[0], imm_opnd(gid));

    call_ptr(cb, REG0, (void *)&rb_gvar_get);

    x86opnd_t top = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, top, RAX);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_setglobal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    ID gid = jit_get_arg(jit, 0);

    // Save the PC and SP because we might make a Ruby call for
    // Kernel#trace_var
    jit_prepare_routine_call(jit, ctx, REG0);

    mov(cb, C_ARG_REGS[0], imm_opnd(gid));

    x86opnd_t val = ctx_stack_pop(ctx, 1);

    mov(cb, C_ARG_REGS[1], val);

    call_ptr(cb, REG0, (void *)&rb_gvar_set);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_anytostring(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Might allocate in rb_obj_as_string_result().
    jit_prepare_routine_call(jit, ctx, REG0);

    x86opnd_t str = ctx_stack_pop(ctx, 1);
    x86opnd_t val = ctx_stack_pop(ctx, 1);

    mov(cb, C_ARG_REGS[0], str);
    mov(cb, C_ARG_REGS[1], val);

    call_ptr(cb, REG0, (void *)&rb_obj_as_string_result);

    // Push the return value
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_objtostring(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    if (!jit_at_current_insn(jit)) {
        defer_compilation(jit, ctx);
        return YJIT_END_BLOCK;
    }

    x86opnd_t recv = ctx_stack_opnd(ctx, 0);
    VALUE comptime_recv = jit_peek_at_stack(jit, ctx, 0);

    if (RB_TYPE_P(comptime_recv, T_STRING)) {
        uint8_t *side_exit = yjit_side_exit(jit, ctx);

        mov(cb, REG0, recv);
        jit_guard_known_klass(jit, ctx, CLASS_OF(comptime_recv), OPND_STACK(0), comptime_recv, SEND_MAX_DEPTH, side_exit);
        // No work needed. The string value is already on the top of the stack.
        return YJIT_KEEP_COMPILING;
    }
    else {
        struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0);
        return gen_send_general(jit, ctx, cd, NULL);
    }
}

static codegen_status_t
gen_toregexp(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    rb_num_t opt = jit_get_arg(jit, 0);
    rb_num_t cnt = jit_get_arg(jit, 1);

    // Save the PC and SP because this allocates an object and could
    // raise an exception.
    jit_prepare_routine_call(jit, ctx, REG0);

    x86opnd_t values_ptr = ctx_sp_opnd(ctx, -(int32_t)(sizeof(VALUE) * (uint32_t)cnt));
    ctx_stack_pop(ctx, cnt);

    mov(cb, C_ARG_REGS[0], imm_opnd(0));
    mov(cb, C_ARG_REGS[1], imm_opnd(cnt));
    lea(cb, C_ARG_REGS[2], values_ptr);
    call_ptr(cb, REG0, (void *)&rb_ary_tmp_new_from_values);

    // Save the array so we can clear it later
    push(cb, RAX);
    push(cb, RAX); // Alignment
    mov(cb, C_ARG_REGS[0], RAX);
    mov(cb, C_ARG_REGS[1], imm_opnd(opt));
    call_ptr(cb, REG0, (void *)&rb_reg_new_ary);

    // The actual regex is in RAX now.  Pop the temp array from
    // rb_ary_tmp_new_from_values into C arg regs so we can clear it
    pop(cb, REG1); // Alignment
    pop(cb, C_ARG_REGS[0]);

    // The value we want to push on the stack is in RAX right now
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, stack_ret, RAX);

    // Clear the temp array.
    call_ptr(cb, REG0, (void *)&rb_ary_clear);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_intern(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // Save the PC and SP because we might allocate
    jit_prepare_routine_call(jit, ctx, REG0);

    x86opnd_t str = ctx_stack_pop(ctx, 1);

    mov(cb, C_ARG_REGS[0], str);

    call_ptr(cb, REG0, (void *)&rb_str_intern);

    // Push the return value
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_getspecial(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // This takes two arguments, key and type
    // key is only used when type == 0
    // A non-zero type determines which type of backref to fetch
    //rb_num_t key = jit_get_arg(jit, 0);
    rb_num_t type = jit_get_arg(jit, 1);

    if (type == 0) {
        // not yet implemented
        return YJIT_CANT_COMPILE;
    }
    else if (type & 0x01) {
        // Fetch a "special" backref based on a char encoded by shifting by 1

        // Can raise if matchdata uninitialized
        jit_prepare_routine_call(jit, ctx, REG0);

        // call rb_backref_get()
        ADD_COMMENT(cb, "rb_backref_get");
        call_ptr(cb, REG0, (void *)rb_backref_get);
        mov(cb, C_ARG_REGS[0], RAX);

        switch (type >> 1) {
          case '&':
            ADD_COMMENT(cb, "rb_reg_last_match");
            call_ptr(cb, REG0, (void *)rb_reg_last_match);
            break;
          case '`':
            ADD_COMMENT(cb, "rb_reg_match_pre");
            call_ptr(cb, REG0, (void *)rb_reg_match_pre);
            break;
          case '\'':
            ADD_COMMENT(cb, "rb_reg_match_post");
            call_ptr(cb, REG0, (void *)rb_reg_match_post);
            break;
          case '+':
            ADD_COMMENT(cb, "rb_reg_match_last");
            call_ptr(cb, REG0, (void *)rb_reg_match_last);
            break;
          default:
            rb_bug("invalid back-ref");
        }

        x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
        mov(cb, stack_ret, RAX);

        return YJIT_KEEP_COMPILING;
    }
    else {
        // Fetch the N-th match from the last backref based on type shifted by 1

        // Can raise if matchdata uninitialized
        jit_prepare_routine_call(jit, ctx, REG0);

        // call rb_backref_get()
        ADD_COMMENT(cb, "rb_backref_get");
        call_ptr(cb, REG0, (void *)rb_backref_get);

        // rb_reg_nth_match((int)(type >> 1), backref);
        ADD_COMMENT(cb, "rb_reg_nth_match");
        mov(cb, C_ARG_REGS[0], imm_opnd(type >> 1));
        mov(cb, C_ARG_REGS[1], RAX);
        call_ptr(cb, REG0, (void *)rb_reg_nth_match);

        x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
        mov(cb, stack_ret, RAX);

        return YJIT_KEEP_COMPILING;
    }
}

VALUE
rb_vm_getclassvariable(const rb_iseq_t *iseq, const rb_control_frame_t *cfp, ID id, ICVARC ic);

static codegen_status_t
gen_getclassvariable(jitstate_t* jit, ctx_t* ctx, codeblock_t* cb)
{
    // rb_vm_getclassvariable can raise exceptions.
    jit_prepare_routine_call(jit, ctx, REG0);

    mov(cb, C_ARG_REGS[0], member_opnd(REG_CFP, rb_control_frame_t, iseq));
    mov(cb, C_ARG_REGS[1], REG_CFP);
    mov(cb, C_ARG_REGS[2], imm_opnd(jit_get_arg(jit, 0)));
    mov(cb, C_ARG_REGS[3], imm_opnd(jit_get_arg(jit, 1)));

    call_ptr(cb, REG0, (void *)rb_vm_getclassvariable);

    x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, stack_top, RAX);

    return YJIT_KEEP_COMPILING;
}

VALUE
rb_vm_setclassvariable(const rb_iseq_t *iseq, const rb_control_frame_t *cfp, ID id, VALUE val, ICVARC ic);

static codegen_status_t
gen_setclassvariable(jitstate_t* jit, ctx_t* ctx, codeblock_t* cb)
{
    // rb_vm_setclassvariable can raise exceptions.
    jit_prepare_routine_call(jit, ctx, REG0);

    mov(cb, C_ARG_REGS[0], member_opnd(REG_CFP, rb_control_frame_t, iseq));
    mov(cb, C_ARG_REGS[1], REG_CFP);
    mov(cb, C_ARG_REGS[2], imm_opnd(jit_get_arg(jit, 0)));
    mov(cb, C_ARG_REGS[3], ctx_stack_pop(ctx, 1));
    mov(cb, C_ARG_REGS[4], imm_opnd(jit_get_arg(jit, 1)));

    call_ptr(cb, REG0, (void *)rb_vm_setclassvariable);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_opt_getinlinecache(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    VALUE jump_offset = jit_get_arg(jit, 0);
    VALUE const_cache_as_value = jit_get_arg(jit, 1);
    IC ic = (IC)const_cache_as_value;

    // See vm_ic_hit_p(). The same conditions are checked in yjit_constant_ic_update().
    struct iseq_inline_constant_cache_entry *ice = ic->entry;
    if (!ice || // cache not filled
        GET_IC_SERIAL(ice) != ruby_vm_global_constant_state /* cache out of date */) {
        // In these cases, leave a block that unconditionally side exits
        // for the interpreter to invalidate.
        return YJIT_CANT_COMPILE;
    }

    // Make sure there is an exit for this block as the interpreter might want
    // to invalidate this block from yjit_constant_ic_update().
    jit_ensure_block_entry_exit(jit);

    if (ice->ic_cref) {
        // Cache is keyed on a certain lexical scope. Use the interpreter's cache.
        uint8_t *side_exit = yjit_side_exit(jit, ctx);

        // Call function to verify the cache. It doesn't allocate or call methods.
        bool rb_vm_ic_hit_p(IC ic, const VALUE *reg_ep);
        mov(cb, C_ARG_REGS[0], const_ptr_opnd((void *)ic));
        mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, ep));
        call_ptr(cb, REG0, (void *)rb_vm_ic_hit_p);

        // Check the result. _Bool is one byte in SysV.
        test(cb, AL, AL);
        jz_ptr(cb, COUNTED_EXIT(jit, side_exit, opt_getinlinecache_miss));

        // Push ic->entry->value
        mov(cb, REG0, const_ptr_opnd((void *)ic));
        mov(cb, REG0, member_opnd(REG0, struct iseq_inline_constant_cache, entry));
        x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_UNKNOWN);
        mov(cb, REG0, member_opnd(REG0, struct iseq_inline_constant_cache_entry, value));
        mov(cb, stack_top, REG0);
    }
    else {
        // Optimize for single ractor mode.
        // FIXME: This leaks when st_insert raises NoMemoryError
        if (!assume_single_ractor_mode(jit)) return YJIT_CANT_COMPILE;

        // Invalidate output code on any and all constant writes
        // FIXME: This leaks when st_insert raises NoMemoryError
        assume_stable_global_constant_state(jit);

        jit_putobject(jit, ctx, ice->value);
    }

    // Jump over the code for filling the cache
    uint32_t jump_idx = jit_next_insn_idx(jit) + (int32_t)jump_offset;
    gen_direct_jump(
        jit,
        ctx,
        (blockid_t){ .iseq = jit->iseq, .idx = jump_idx }
    );

    return YJIT_END_BLOCK;
}

// Push the explicit block parameter onto the temporary stack. Part of the
// interpreter's scheme for avoiding Proc allocations when delegating
// explicit block parameters.
static codegen_status_t
gen_getblockparamproxy(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    // A mirror of the interpreter code. Checking for the case
    // where it's pushing rb_block_param_proxy.
    uint8_t *side_exit = yjit_side_exit(jit, ctx);

    // EP level
    uint32_t level = (uint32_t)jit_get_arg(jit, 1);

    // Load environment pointer EP from CFP
    gen_get_ep(cb, REG0, level);

    // Bail when VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) is non zero
    test(cb, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_FLAGS), imm_opnd(VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM));
    jnz_ptr(cb, COUNTED_EXIT(jit, side_exit, gbpp_block_param_modified));

    // Load the block handler for the current frame
    // note, VM_ASSERT(VM_ENV_LOCAL_P(ep))
    mov(cb, REG0, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL));

    // Block handler is a tagged pointer. Look at the tag. 0x03 is from VM_BH_ISEQ_BLOCK_P().
    and(cb, REG0_8, imm_opnd(0x3));

    // Bail unless VM_BH_ISEQ_BLOCK_P(bh). This also checks for null.
    cmp(cb, REG0_8, imm_opnd(0x1));
    jnz_ptr(cb, COUNTED_EXIT(jit, side_exit, gbpp_block_handler_not_iseq));

    // Push rb_block_param_proxy. It's a root, so no need to use jit_mov_gc_ptr.
    mov(cb, REG0, const_ptr_opnd((void *)rb_block_param_proxy));
    RUBY_ASSERT(!SPECIAL_CONST_P(rb_block_param_proxy));
    x86opnd_t top = ctx_stack_push(ctx, TYPE_HEAP);
    mov(cb, top, REG0);

    return YJIT_KEEP_COMPILING;
}

static codegen_status_t
gen_invokebuiltin(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    const struct rb_builtin_function *bf = (struct rb_builtin_function *)jit_get_arg(jit, 0);

    // ec, self, and arguments
    if (bf->argc + 2 > NUM_C_ARG_REGS) {
        return YJIT_CANT_COMPILE;
    }

    // If the calls don't allocate, do they need up to date PC, SP?
    jit_prepare_routine_call(jit, ctx, REG0);

    // Call the builtin func (ec, recv, arg1, arg2, ...)
    mov(cb, C_ARG_REGS[0], REG_EC);
    mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, self));

    // Copy arguments from locals
    for (int32_t i = 0; i < bf->argc; i++) {
        x86opnd_t stack_opnd = ctx_stack_opnd(ctx, bf->argc - i - 1);
        x86opnd_t c_arg_reg = C_ARG_REGS[2 + i];
        mov(cb, c_arg_reg, stack_opnd);
    }

    call_ptr(cb, REG0, (void *)bf->func_ptr);

    // Push the return value
    ctx_stack_pop(ctx, bf->argc);
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

// opt_invokebuiltin_delegate calls a builtin function, like
// invokebuiltin does, but instead of taking arguments from the top of the
// stack uses the argument locals (and self) from the current method.
static codegen_status_t
gen_opt_invokebuiltin_delegate(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
    const struct rb_builtin_function *bf = (struct rb_builtin_function *)jit_get_arg(jit, 0);
    int32_t start_index = (int32_t)jit_get_arg(jit, 1);

    // ec, self, and arguments
    if (bf->argc + 2 > NUM_C_ARG_REGS) {
        return YJIT_CANT_COMPILE;
    }

    // If the calls don't allocate, do they need up to date PC, SP?
    jit_prepare_routine_call(jit, ctx, REG0);

    if (bf->argc > 0) {
        // Load environment pointer EP from CFP
        mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
    }

    // Call the builtin func (ec, recv, arg1, arg2, ...)
    mov(cb, C_ARG_REGS[0], REG_EC);
    mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, self));

    // Copy arguments from locals
    for (int32_t i = 0; i < bf->argc; i++) {
        const int32_t offs = start_index + i - jit->iseq->body->local_table_size - VM_ENV_DATA_SIZE + 1;
        x86opnd_t local_opnd = mem_opnd(64, REG0, offs * SIZEOF_VALUE);
        x86opnd_t c_arg_reg = C_ARG_REGS[i + 2];
        mov(cb, c_arg_reg, local_opnd);
    }
    call_ptr(cb, REG0, (void *)bf->func_ptr);

    // Push the return value
    x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
    mov(cb, stack_ret, RAX);

    return YJIT_KEEP_COMPILING;
}

static int tracing_invalidate_all_i(void *vstart, void *vend, size_t stride, void *data);
static void invalidate_all_blocks_for_tracing(const rb_iseq_t *iseq);

// Invalidate all generated code and patch C method return code to contain
// logic for firing the c_return TracePoint event. Once rb_vm_barrier()
// returns, all other ractors are pausing inside RB_VM_LOCK_ENTER(), which
// means they are inside a C routine. If there are any generated code on-stack,
// they are waiting for a return from a C routine. For every routine call, we
// patch in an exit after the body of the containing VM instruction. This makes
// it so all the invalidated code exit as soon as execution logically reaches
// the next VM instruction. The interpreter takes care of firing the tracing
// event if it so happens that the next VM instruction has one attached.
//
// The c_return event needs special handling as our codegen never outputs code
// that contains tracing logic. If we let the normal output code run until the
// start of the next VM instruction by relying on the patching scheme above, we
// would fail to fire the c_return event. The interpreter doesn't fire the
// event at an instruction boundary, so simply exiting to the interpreter isn't
// enough. To handle it, we patch in the full logic at the return address. See
// full_cfunc_return().
//
// In addition to patching, we prevent future entries into invalidated code by
// removing all live blocks from their iseq.
void
rb_yjit_tracing_invalidate_all(void)
{
    if (!rb_yjit_enabled_p()) return;

    // Stop other ractors since we are going to patch machine code.
    RB_VM_LOCK_ENTER();
    rb_vm_barrier();

    // Make it so all live block versions are no longer valid branch targets
    rb_objspace_each_objects(tracing_invalidate_all_i, NULL);

    // Apply patches
    const uint32_t old_pos = cb->write_pos;
    rb_darray_for(global_inval_patches, patch_idx) {
        struct codepage_patch patch = rb_darray_get(global_inval_patches, patch_idx);
        cb_set_pos(cb, patch.inline_patch_pos);
        uint8_t *jump_target = cb_get_ptr(ocb, patch.outlined_target_pos);
        jmp_ptr(cb, jump_target);
    }
    cb_set_pos(cb, old_pos);

    // Freeze invalidated part of the codepage. We only want to wait for
    // running instances of the code to exit from now on, so we shouldn't
    // change the code. There could be other ractors sleeping in
    // branch_stub_hit(), for example. We could harden this by changing memory
    // protection on the frozen range.
    RUBY_ASSERT_ALWAYS(yjit_codepage_frozen_bytes <= old_pos && "frozen bytes should increase monotonically");
    yjit_codepage_frozen_bytes = old_pos;

    cb_mark_all_executable(ocb);
    cb_mark_all_executable(cb);
    RB_VM_LOCK_LEAVE();
}

static int
tracing_invalidate_all_i(void *vstart, void *vend, size_t stride, void *data)
{
    VALUE v = (VALUE)vstart;
    for (; v != (VALUE)vend; v += stride) {
        void *ptr = asan_poisoned_object_p(v);
        asan_unpoison_object(v, false);

        if (rb_obj_is_iseq(v)) {
            rb_iseq_t *iseq = (rb_iseq_t *)v;
            invalidate_all_blocks_for_tracing(iseq);
        }

        asan_poison_object_if(ptr, v);
    }
    return 0;
}

static void
invalidate_all_blocks_for_tracing(const rb_iseq_t *iseq)
{
    struct rb_iseq_constant_body *body = iseq->body;
    if (!body) return; // iseq yet to be initialized

    ASSERT_vm_locking();

    // Empty all blocks on the iseq so we don't compile new blocks that jump to the
    // invalidted region.
    // TODO Leaking the blocks for now since we might have situations where
    // a different ractor is waiting in branch_stub_hit(). If we free the block
    // that ractor can wake up with a dangling block.
    rb_darray_for(body->yjit_blocks, version_array_idx) {
        rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx);
        rb_darray_for(version_array, version_idx) {
            // Stop listening for invalidation events like basic operation redefinition.
            block_t *block = rb_darray_get(version_array, version_idx);
            yjit_unlink_method_lookup_dependency(block);
            yjit_block_assumptions_free(block);
        }
        rb_darray_free(version_array);
    }
    rb_darray_free(body->yjit_blocks);
    body->yjit_blocks = NULL;

#if USE_MJIT
    // Reset output code entry point
    body->jit_func = NULL;
#endif
}

static void
yjit_reg_op(int opcode, codegen_fn gen_fn)
{
    RUBY_ASSERT(opcode >= 0 && opcode < VM_INSTRUCTION_SIZE);
    // Check that the op wasn't previously registered
    RUBY_ASSERT(gen_fns[opcode] == NULL);

    gen_fns[opcode] = gen_fn;
}

void
yjit_init_codegen(void)
{
    // Initialize the code blocks
    uint32_t mem_size = rb_yjit_opts.exec_mem_size * 1024 * 1024;
    uint8_t *mem_block = alloc_exec_mem(mem_size);

    cb = &block;
    cb_init(cb, mem_block, mem_size/2);

    ocb = &outline_block;
    cb_init(ocb, mem_block + mem_size/2, mem_size/2);

    // Generate the interpreter exit code for leave
    leave_exit_code = yjit_gen_leave_exit(cb);

    // Generate full exit code for C func
    gen_full_cfunc_return();
    cb_mark_all_executable(cb);

    // Map YARV opcodes to the corresponding codegen functions
    yjit_reg_op(BIN(nop), gen_nop);
    yjit_reg_op(BIN(dup), gen_dup);
    yjit_reg_op(BIN(dupn), gen_dupn);
    yjit_reg_op(BIN(swap), gen_swap);
    yjit_reg_op(BIN(setn), gen_setn);
    yjit_reg_op(BIN(topn), gen_topn);
    yjit_reg_op(BIN(pop), gen_pop);
    yjit_reg_op(BIN(adjuststack), gen_adjuststack);
    yjit_reg_op(BIN(newarray), gen_newarray);
    yjit_reg_op(BIN(duparray), gen_duparray);
    yjit_reg_op(BIN(duphash), gen_duphash);
    yjit_reg_op(BIN(splatarray), gen_splatarray);
    yjit_reg_op(BIN(expandarray), gen_expandarray);
    yjit_reg_op(BIN(newhash), gen_newhash);
    yjit_reg_op(BIN(newrange), gen_newrange);
    yjit_reg_op(BIN(concatstrings), gen_concatstrings);
    yjit_reg_op(BIN(putnil), gen_putnil);
    yjit_reg_op(BIN(putobject), gen_putobject);
    yjit_reg_op(BIN(putstring), gen_putstring);
    yjit_reg_op(BIN(putobject_INT2FIX_0_), gen_putobject_int2fix);
    yjit_reg_op(BIN(putobject_INT2FIX_1_), gen_putobject_int2fix);
    yjit_reg_op(BIN(putself), gen_putself);
    yjit_reg_op(BIN(putspecialobject), gen_putspecialobject);
    yjit_reg_op(BIN(getlocal), gen_getlocal);
    yjit_reg_op(BIN(getlocal_WC_0), gen_getlocal_wc0);
    yjit_reg_op(BIN(getlocal_WC_1), gen_getlocal_wc1);
    yjit_reg_op(BIN(setlocal), gen_setlocal);
    yjit_reg_op(BIN(setlocal_WC_0), gen_setlocal_wc0);
    yjit_reg_op(BIN(setlocal_WC_1), gen_setlocal_wc1);
    yjit_reg_op(BIN(getinstancevariable), gen_getinstancevariable);
    yjit_reg_op(BIN(setinstancevariable), gen_setinstancevariable);
    yjit_reg_op(BIN(defined), gen_defined);
    yjit_reg_op(BIN(checktype), gen_checktype);
    yjit_reg_op(BIN(checkkeyword), gen_checkkeyword);
    yjit_reg_op(BIN(opt_lt), gen_opt_lt);
    yjit_reg_op(BIN(opt_le), gen_opt_le);
    yjit_reg_op(BIN(opt_ge), gen_opt_ge);
    yjit_reg_op(BIN(opt_gt), gen_opt_gt);
    yjit_reg_op(BIN(opt_eq), gen_opt_eq);
    yjit_reg_op(BIN(opt_neq), gen_opt_neq);
    yjit_reg_op(BIN(opt_aref), gen_opt_aref);
    yjit_reg_op(BIN(opt_aset), gen_opt_aset);
    yjit_reg_op(BIN(opt_and), gen_opt_and);
    yjit_reg_op(BIN(opt_or), gen_opt_or);
    yjit_reg_op(BIN(opt_minus), gen_opt_minus);
    yjit_reg_op(BIN(opt_plus), gen_opt_plus);
    yjit_reg_op(BIN(opt_mult), gen_opt_mult);
    yjit_reg_op(BIN(opt_div), gen_opt_div);
    yjit_reg_op(BIN(opt_mod), gen_opt_mod);
    yjit_reg_op(BIN(opt_ltlt), gen_opt_ltlt);
    yjit_reg_op(BIN(opt_nil_p), gen_opt_nil_p);
    yjit_reg_op(BIN(opt_empty_p), gen_opt_empty_p);
    yjit_reg_op(BIN(opt_str_freeze), gen_opt_str_freeze);
    yjit_reg_op(BIN(opt_str_uminus), gen_opt_str_uminus);
    yjit_reg_op(BIN(opt_not), gen_opt_not);
    yjit_reg_op(BIN(opt_size), gen_opt_size);
    yjit_reg_op(BIN(opt_length), gen_opt_length);
    yjit_reg_op(BIN(opt_regexpmatch2), gen_opt_regexpmatch2);
    yjit_reg_op(BIN(opt_getinlinecache), gen_opt_getinlinecache);
    yjit_reg_op(BIN(invokebuiltin), gen_invokebuiltin);
    yjit_reg_op(BIN(opt_invokebuiltin_delegate), gen_opt_invokebuiltin_delegate);
    yjit_reg_op(BIN(opt_invokebuiltin_delegate_leave), gen_opt_invokebuiltin_delegate);
    yjit_reg_op(BIN(opt_case_dispatch), gen_opt_case_dispatch);
    yjit_reg_op(BIN(branchif), gen_branchif);
    yjit_reg_op(BIN(branchunless), gen_branchunless);
    yjit_reg_op(BIN(branchnil), gen_branchnil);
    yjit_reg_op(BIN(jump), gen_jump);
    yjit_reg_op(BIN(getblockparamproxy), gen_getblockparamproxy);
    yjit_reg_op(BIN(opt_send_without_block), gen_opt_send_without_block);
    yjit_reg_op(BIN(send), gen_send);
    yjit_reg_op(BIN(invokesuper), gen_invokesuper);
    yjit_reg_op(BIN(leave), gen_leave);
    yjit_reg_op(BIN(getglobal), gen_getglobal);
    yjit_reg_op(BIN(setglobal), gen_setglobal);
    yjit_reg_op(BIN(anytostring), gen_anytostring);
    yjit_reg_op(BIN(objtostring), gen_objtostring);
    yjit_reg_op(BIN(toregexp), gen_toregexp);
    yjit_reg_op(BIN(intern), gen_intern);
    yjit_reg_op(BIN(getspecial), gen_getspecial);
    yjit_reg_op(BIN(getclassvariable), gen_getclassvariable);
    yjit_reg_op(BIN(setclassvariable), gen_setclassvariable);

    yjit_method_codegen_table = st_init_numtable();

    // Specialization for C methods. See yjit_reg_method() for details.
    yjit_reg_method(rb_cBasicObject, "!", jit_rb_obj_not);

    yjit_reg_method(rb_cNilClass, "nil?", jit_rb_true);
    yjit_reg_method(rb_mKernel, "nil?", jit_rb_false);

    yjit_reg_method(rb_cBasicObject, "==", jit_rb_obj_equal);
    yjit_reg_method(rb_cBasicObject, "equal?", jit_rb_obj_equal);
    yjit_reg_method(rb_mKernel, "eql?", jit_rb_obj_equal);
    yjit_reg_method(rb_cModule, "==", jit_rb_obj_equal);
    yjit_reg_method(rb_cSymbol, "==", jit_rb_obj_equal);
    yjit_reg_method(rb_cSymbol, "===", jit_rb_obj_equal);

    // rb_str_to_s() methods in string.c
    yjit_reg_method(rb_cString, "to_s", jit_rb_str_to_s);
    yjit_reg_method(rb_cString, "to_str", jit_rb_str_to_s);
    yjit_reg_method(rb_cString, "bytesize", jit_rb_str_bytesize);

    // Thread.current
    yjit_reg_method(rb_singleton_class(rb_cThread), "current", jit_thread_s_current);
}